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ABSTRACT 
 

Worldwide, bird migration plays a definitive role in the wide dispersal of bird-

transported ticks. As spring unfolds in the Northern Hemisphere, wild migratory birds 

move northward en route to the boreal forest spanning central and eastern Canada, and 

become parasitized by bird-feeding ticks when they make landfall at tick endemic areas. 

Our bird-tick studies reveal engorged Neotropical ticks, which are indigenous to Central 

America and the northern region of South America, on migratory flycatchers, thrushes, 

and warblers. With their versatile mobility and vast distribution, migratory birds can act 

as maintenance hosts for the wide dispersal of pathogenic microbes. Certain passerines, 

such as the American Robin, Turdus migratorius L., can act as reservoir hosts of the 

Lyme disease bacterium, B. burgdorferi sensu lato (s.l.), and help to perpetuate 

spirochetal infection within a tick population. These hematophagous ectoparasites can 

transmit infectious microorganisms (i.e., bacteria, piroplasms, viruses) to avian hosts and, 

subsequently, after bird parasitism, can transmit these pathogenic microbes to vertebrate 

hosts, including humans. Ticks may simultaneously be co-infected with one or more 

pathogens that can have a broad diversity of genotypes. When birds become heavily 

infested with ticks, these avian hosts have the capacity to initiate a new population of 

ticks. Within an ecosystem, songbirds may be involved in a multi-tick enzootic cycle 

consisting of several tick species. Within one West Coast bioregion, we show that 

songbirds amplify B. burgdorferi s.l. in a 5-tick enzootic cycle. One heavily infested Fox 

Sparrow, Passerella iliaca (Merrem), in this Pacific Northwest locality was parasitized 

by avian coastal ticks, Ixodes auritulus Neumann, and had a B. burgdorferi s.l. infection 

rate of 81%. Canada-wide we have discovered B. burgdorferi s.l. in six different Ixodes 

species of ticks collected from passerine birds. Since wild birds widely disseminate B. 

burgdorferi s.l.-infected ticks, people do not have to frequent an endemic area to contract 

Lyme disease. 
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TICKS PARASITIZE WILD BIRDS 
 

Several bird species play a vital role in the wide dispersal of ticks. Worldwide, hard-

bodied ticks (Ixodida: Ixodidae) parasitize wild birds, and some of these hematophagous 

ecoparasites are reservoirs of zoonotic pathogens. Wild birds are normally parasitized by 

bird-feeding ticks that are questing in low-level vegetation. Passerines, commonly called 

songbirds, are responsible for wide dispersal of ticks during short- and long-distance flight, 

especially during spring and fall migration. The main influx of ticks in Canada occurs when 

migratory passerines make landfall at tick endemic areas throughout the United States of 

America and, likewise, along the southern fringe of Canada. Subsequently, migratory 

passerines disperse fully engorged ticks haphazardly across Canada en route to the boreal 

forest. 

The earliest bird-tick studies in Canada were conducted by John D. Gregson [1]. He 

identified blood-sucking ticks from seven orders of wild birds, namely webbed swimmers 

(Pelicaniformes); seabirds, shorebirds (Charadriiformes); falcons (Falconiformes); pheasants, 

chicken-like birds (Galliformes); true owls (Strigiformes); woodpeckers (Piciformes); and 

perching birds (Passeriformes). Country-wide, he identified nine different tick species 

detached from wild birds. As well, seabird ticks, Ixodes uriae White on King Penguins, 

Aptenodytes patagonicus Miller (Order: Spenisciformes), which breed in the subantartic 

islands, greatly expands the biogeographical range of ticks on Aves.  

In addition, Anderson and Magnarelli [2] reported the European sheep tick, Ixodes 

ricinius (L.), and the taiga tick, Ixodes persulcatus (Schulze), in Eurasia on avian hosts, 

including birds of prey (Accipitriformes), waterfowl (Anseriformes), pigeons, doves 

(Columbiformes), near passerines (Cuculiformes), cormorants (Suliformes), diving birds, 

grebes (Podicipedidae), and rails (Gruiformes). 

Our bird-parasite studies have focused extensively on ticks and Lyme disease across 

Canada. The main source of ticks for our tick-host studies has been bird banders, wildlife 

rehabilitators, and veterinarians. Overall, bird-transported ticks can harbour a myriad of 

pathogenic microbiota, including the etiological contagion of Lyme disease. 

The Lyme disease spirochete, Borrelia burgdorferi sensu lato (s.l.) Johnson, Schmid, 

Hyde, Steigerwalt and Brenner is heterogenous [3], and consists of at least 21 genospecies 

worldwide. Several of these genospecies, including B. afzelii, B. andersonii, B. americana, B. 

bissettii, B. burgdorferi sensu stricto (s.s.), B. lusitaniae, and B. valaisiana, are known to be 

pathogenic to humans [4]. Not only is B. burgdorferi s.l. present in bird-feeding ticks, it is 

harboured in the blood and tissues of certain wild birds [5, 6]. Globally, Lyme disease has 

been detected in over 80 countries.  

In North America, the blacklegged tick, Ixodes scapularis Say, is the primary vector of 

Lyme disease east of the Rocky Mountains and, likewise, along the West Coast, the western 

blacklegged tick, Ixodes pacificus Cooley and Kohls, transmits B. burgdorferi s.l., to avian 

and mammalian hosts. Bird-feeding ticks can carry a wide array of microbial pathogens, 

including bacteria, piroplasms, and viruses [7]. In particular, I. scapularis is known to carry 

bacterial, protozoan, and viral pathogens, namely Anaplasma phagocytophilum (human 

granulocytic anaplasmosis), Babesia spp. (e.g., B. microti, B. odocoilei) (babesiosis), 

Bartonella spp. (e.g., B. henselae bacteria), B. burgdorferi s.l. (Lyme disease), Borrelia 

miyamotoi (relapsing fever group spirochete), deer tick virus (Powassan virus group), 
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Ehrlichia phagocytophila (granulocytic ehrlichiosis [E. equi]), and Mycoplasma spp. (e.g., M. 

fermentans [cat scratch disease]). Notably, several different pathogens have been documented 

in a single tick, and triple coinfections have been detected in I. scapularis from vertebrate 

hosts, including passerines [8-10]. In Eurasia, Russian-based researchers documented 

multiple pathogens in a single bird-transported I. ricinus tick [11]. Overall, many different 

genospecies and genotypes of B. burgdorferi s.l. have been detected in songbird-transported 

ticks and their avian hosts [12]. 

 

 

MIGRATORY SONGBIRDS TRANSPORT TICKS 
 

Historically, Harry Hoogstraal, pioneer tick researcher, provided the earliest report of 

ticks on wild birds that were migrating northward through Egypt to Asia and Europe [13]. 

These bird-carried ticks included Ixodes frontalis (Panzer), Haemaphysalis punctata 

Canestrini and Fanzago, Haemaphysalis sulcata Canestrini and Fanzago, Hyalomma 

aegyptium L. and H. marginatum Koch. The latter 2 tick species are epidemiologically or 

experimentally associated with Crimean hemorrhagic fever, Q-fever, tularaemia, tick typhus 

and brucellosis. Of note, these ticks were observed far from their normal geographic range. 

Researchers subsequently reported migratory birds flying in reverse direction from Europe 

and Asia to Africa via Sudan and Egypt [14]. Although microbial infection was not reported, 

they noted that certain tick species have the potential to carry several Eurasian-based human 

pathogens. 

Collectively, during our pan-Canadian tick studies (1996-2014), we have documented 22 

species of ixodid ticks belonging to 3 genera (Amblyomma, Haemaphysalis, Ixodes) on wild 

birds (Table 1). These bird-transported ticks represent four avian orders: seabirds 

(Charadriiformes); falcons (Falconiformes); chicken-like birds (Galliformes); and perching 

birds (Passeriformes). 

 

Table 1. Ixodid tick species collected from wild birds across Canada, 1996-2014 

 

Amblyomma 

 

Haemaphysalis Ixodes 

A. americanum H. leporispalustris I. affinis 

A. humerale  I. baergi 

A. imitator  I. brunneus 

A. longirostre  I. dentatus 

A. maculatum  I. minor 

A. rotundatum  I. muris 

A. sabanerae  I. pacificus 

  I. scapularis 

  I. spinipalis 

  I. uriae 

  I. species A
†
 

  I. species B
†
 

  I. species C
†
 

†
 undescribed ticks collected from Neotropical passerines during northward  spring migration. 
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Since we know the indigenous areas of many of the ticks on Neotropical passerines, we 

extrapolate that these ticks have been carried from their native land in South and Central 

America during spring migration. Based on the known areas of Neotropical ticks collected 

from passerine migrants, we posit transcontinental and intercontinental transport of ticks. 

Epidemiologically, migratory passerines and raptors have the capacity to quickly fly great 

distances during migration, and play a pivotal role in transporting bird-feeding ticks 

thousands of kilometres. Inevitably, wild birds can easily disperse ticks over notable distances 

because they move much faster than terrestrial wingless hosts.  

In North America, there are 3 major flyways (Atlantic, Mississippi, Pacific) that transect 

the continent in a north-south direction. Several North American researchers have 

documented short- and long-distance movement of ixodid ticks consisting of 4 genera: 

Amblyomma, Dermacentor, Haemaphysalis, Ixodes, especially during spring migration [15-

18]. In Canada, tick researchers have documented B. burgdorferi s.l.-infected I. scapularis 

immatures (larvae, nymphs) on migratory passerines [19-23], and millions of these ticks are 

widely dispersed coast to coast during spring migration. Recently, Scott and Durden 

identified a songbird-transport tick, Ixodes minor Neumann that was collected from a 

Common Yellowthroat, Geothlypis trichas (L.) in Toronto, Canada during northward spring 

migration [24]; this extralimital tick is the northernmost documentation of this neotropical 

tick species in North America, and points out the potential for passerines to carry ticks long 

distances.  

During fall migration, bird-tick researchers studied ticks on songbirds in the upper 

Midwest [25], and found migrants were carrying ticks southward. Some of the ticks were 

infected with B. burgdorferi s.l. As well, Durden et al. [26] documented Ixodes and 

Amblyomma ticks during fall migration infected with B. burgdorferi s.l., and determined that 

songbirds act as southward-shifting disseminators of borreliae. 

Certain migratory birds are noted for transcontinental and transoceanic travel and, at the 

same time, can transport ticks [27]. Many seabirds and shore birds are highly mobile and 

undertake long, complex flight paths of thousands of kilometres. Some of these birds breed in 

the subantarctic islands, and make transequatorial migration to the northern parts of the 

Atlantic and Pacific oceans. Seabirds carry the seabird tick, Ixodes uriae White, which has 

been collected from both the Southern and Northern Hemispheres, infected with B. 

burgdorferi s.l., especially B. garinii [28]. The presence of B. garinii in I. uriae in distant 

islands indicates transhemispheric exchange of Lyme disease spirochetes by seabirds [28]. 

Gylfe et al. [29] provides the first B. burgdorferi s.l. isolates from seabirds, and documents 

these birds as reservoir hosts, and I. uriae as the vector. Along the eastern seaboard, Smith et 

al. [30] detected B. garinii in I. uriae. 

The FarAsian-Australian flyway provides an expansive corridor for avian transport of 

ticks on a north-south axis during bimodal migration within this flyway. Within this extensive 

flyway, Doube [31] documented the Australian paralysis tick, Ixodes holocyclus Neumann on 

ground-frequenting birds in southeastern Australia; this tick species also bites small 

mammals, cattle, and humans. 

On the West Coast of North America, researchers show a wide range of Ixodes species 

ticks on wild birds. In the upper Midwest, Hamer et al. [32] reported long-distance travel 

during northern spring migration of Neotropical migrants carrying Amblyomma nodosum 

Neumann, which is indigenous in Brazil. During our bird-tick studies, we have annually 

collected Amblyomma longirostre Koch, which are indigenous to northern South America and 
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southern Central America, from Neotropical migrants (i.e., warblers and flycatchers) during 

spring migration. This tick species has been reported in central and eastern Canada during 

spring migration, which indicates bird parasitism for an estimated 5-10 days during a flight of 

over 3000 km. Using light-level geolocators on Neotropical passerines, Stutchbury et al. [33] 

tracked the flight path of several migrants, and revealed one particular Purple Martin, Progne 

subis (L.), which departed the Amazon basin, averaged 577 km/day. As well, Brewer et al. 

[34] reported a White-throated Sparrow, Zonotrichia albicollis (Gmelin) flying 681 km in a 

single day. Similarly, Hunt and Eliason [35] reported Blackpoll Warblers, Setophaga striata 

(Forster), flying 3000 km for 88 hours (820 km/day), non-stop, over water during fall 

migration from the eastern seaboard of New England and Maritimes to South America. In 

essence, wild birds expand the geographic range of ticks, and may concomitantly spread tick-

associated pathogens. 

 

 

ASSOCIATION OF SONGBIRDS IN TICK HABITATS 
 

Ground-foraging songbirds act as important reservoirs of infection within tick 

populations. In the upper Midwest, 38% of the songbirds infested with I. scapularis had B. 

burgdorferi s.l.-infected larvae [36]. During Canadian studies related to bird parasitism, Scott 

et al. [23] found that I. scapularis immatures, which were collected from songbirds, had an 

infection prevalence of 36% for B. burgdorferi s.l. 

In order to initiate and maintain a blacklegged tick population, several basic components 

are needed. Since transovarial transmission of B. burgdorferi s.l. does not occur in I. 

scapularis ticks [37], larvae must acquire infection during the initial blood meal from 

spirochete-laden hosts. Additionally, when a senesent female has laid all her eggs, and dies, 

her dead remanent body gives off an odoriferous smell that attracts ground-foraging birds and 

land-inhabiting mammals. Because newly hatched, host-seeking larvae and the dead female 

are in juxtaposition, the larvae ambush and parasitize any scavenger that frequents this site. 

This innate survival tactic has allowed ticks to sustain their presence in nature over many 

millennia. Ixodid tick researchers reveal that songbirds can become heavily infested with 

larvae, especially where a gravid female deposits her eggs [38]. Not only does the female tick 

pellet become a lure for hosts, it acts as a compact source of energy-laden nutrients.  

The spent tick gives off fermenting vapours that increase the luring appeal of the female 

pellet, which contains carbohydrates, fats, protein, and micronutrients. Interestingly, an 

energy-rich off-white adipose deposit is present in the posterior section of the idiosoma 

(posterior body segment) of the female remanent, and it provides a storehouse of nutrition for 

scavengers. Moreover, several tick researchers have observed that songbirds, quail, and 

chickens feed on live ticks to obtain energy reserves [14, 39, 40]. In some tick 

microenvironments, predation of ticks by wild birds is high. One notable example of bird 

predation of ticks is the Yellow-billed Oxpecker, Buphagus africanus Brisson, of sub-Saharan 

Africa [41]. 
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SONGBIRDS ACT AS RESERVOIR HOSTS FOR  

BORRELIA BURGDORFERI 
 

Certain wild birds have the innate physiology to act as reservoir hosts for select 

pathogenic microorganisms, including B. burgdorferi s.l. Based on early bird-tick studies, 

Anderson and Magnarelli [15] proposed that songbirds have the potential to act as reservoir 

hosts of B. burgdorferi s.l., and transport spirochetes and ticks to new foci. As well, Anderson 

et al. [16] isolated the first Lyme disease spirochetes from a songbird, namely a Veery, 

Catharus fuscescens Stephens, to elucidate reservoir competency. In the upper Midwest, 

McLean et al. [42] isolated B. burgdorferi s.l. from the blood of a passerine, viz. Song 

Sparrow, Melospiza melodia (Wilson), while along the East Coast, researchers isolated B. 

burgdorferi s.l. from I. scapularis larvae collected from several songbirds, including Carolina 

Wren, Thryothorus ludovicianus (Latham); Common Grackle, Quiscalus quiscula (L.); 

Swainson‘s Thrush, Catharus ustulatus (Nuttall); Northern Cardinal; and Veery (16, 26, 43]. 

In the European Union, Kurtenbach et al. [44] provide the first documentation that 

gallinaceous birds (Common Pheasants, Phasians colchicus L.) act as reservoir hosts of B. 

valaisiana. When I. ricinus nymphs were collected from feral pheasants in southern England 

more than 50% of the engorged nymphs were infected with B. garinii or B. valaisiana. Both 

of these Borrelia genospecies present a health risk to humans. In central Europe, I. ricinus 

larvae, which were collected from songbirds, were infected with B. garinii and B. valaisiana, 

these findings indicate that these songbirds, namely the Blackbird, Turdus merula (Brehm), 

and the Song Thrush, Turdus philomelos (L.), are reservoirs of borreliae. Throughout the 

European Union, certain passerine act as harbingers of B. burgdorferi s.l. [45-48]; in some 

cases, spirochetes were cultured from blood from these avian hosts [48-50]. 

In far-western North America, Morshed et al. [20] detected B. burgdorferi s.l. in a larva 

of an avian coastal tick, Ixodes auritulus Neumann collected from a Fox Sparrow, Passerella 

iliaca (Merrem); this discovery constitutes the first report of B. burgdorferi s.l. in an ixodid 

larva feeding on a bird in western North America. During our recent bird-tick studies, we 

noted that 21 (81%) of 26 I. auritulus immatures (22 larvae, 4 nymphs), which were collected 

from a Fox Sparrow along coastal British Columbia, were infected with B. burgdorferi s.l.; 

this is the highest spirochetal infection rate that we have ever observed in ticks collected from 

passerine birds. Enzootically, this bird species has the potential to act as a disseminator of 

borreliae, especially within established populations of Lyme disease vector ticks. Songbird-

transported ticks, which parasitize both mammals and humans, can transmit B. burgdorferi 

s.l. from mammals to humans, especially in a localized enzootic tick cycle. As 

interconnecting vectors, larvae of certain bird-feeding ticks (i.e., I. pacificus, I. ricinius, I. 

scapularis) can attach to a B. burgdorferi s.l.-infected mice, take a blood meal, drop to the 

ground, crawl to a cool and moist microhabitat, molt to nymphs in the leaf litter and, 

subsequently, bite and transmit spirochetes to birds and mammals, including humans. In 

essence, reservoir-competent songbirds consistently act as an intermediary bridge to channel 

B. burgdorferi s.l. from mammals and humans. 

Richter et al. [5] discovered that the American Robin, Turdus migratorius L., will retain 

B. burgdorferi s.l. endogenously for up to 6 months. Using xenodiagnostic methods, these 

researchers put spirochete-free I. scapularis larvae on B. burgdorferi-infected robins, and 

allowed them to take a blood meal and feed to repletion. After the larva-nymph molt, unfed 
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nymphs were put on mice, and the parasitized mice became spirochetemic. Within an 

enzootic site for B. burgdorferi s.l., the American Robin serves as reservoir-competent host, 

and provides an ongoing source of spirochete-infected ticks. Throughout the breeding, 

nesting, and fledgling periods, these ground-dwelling birds encounter Lyme disease vector 

ticks. Notably, American Robins can act as borrelial reservoirs throughout the temperate 

season, and may become infected again after a period of non-infectivity. The presence of B. 

burgdorferi s.l.-infected I. scapularis larvae collected from wild birds further suggests a link 

between certain avian hosts and reservoir competency. 

Coinfestation of birds by multiple tick species can occur. Scott et al. [23] witnessed 3 

different species of ticks co-feeding simultaneously on a single passerine during northward 

spring migration. Explicitly, passerines constitute a core functional group that act as 

reservoir-competent hosts for Lyme disease spirochetes. Overall, migratory songbirds play a 

pivotal role in the dissemination of borreliae during short- and long-distance movement. 

 

 

SONGBIRDS DISSEMINATE ZOONOTIC PATHOGENS 
 

Avian hosts have the physical capacity to widely disseminate zoonotic pathogens. Wild 

birds may act as reservoirs for several agents, including arboviruses, influenza A virus, 

piroplasms, enterobacterial pathogens and drug-resistent bacteria, and B. burgdorferi s.l. [27]. 

In nature, birds are the amplifying hosts of West Nile virus. As well, aquatic waterfowl may 

be asymptomatic carriers of influenza A virus. Pertinent to subarctic latitudes, arboviruses 

have been found in ticks on migratory birds in Finland [51]. 

In the European Union, borreliae were initially detected in larval and nymphal I. ricinus 

ticks that parasitized several bird species [46]. DNA probes, which consisted of fla and ospA 

genes, revealed the presence of B. garinii. The presence of B. garinii in I. ricinus larvae, 

which were collected from wild-caught birds (i.e., Eurasian Blackbird, Turdus merula L.; 

European Robin, Erithacus rubecula (L.); European Blackcap, Sylvia atricapilla (L.); and 

Great Tit, Parus major (L.) indicate that these avian hosts are borrelial reservoirs. As well, 

Poupon et al. [52] revealed that northward and southward migratory passerines, which were 

infested with larval and nymphal ticks, were infected with B. valaisiana and B. garinii. 

Likewise, Comstedt et al. [53] detected four Borrelia genospecies (i.e., B. afzelii, B. garinii, 

B. burgdorferi s.s., B. valaisiana), plus the relapsing fever group spirochete, B. miyamotoi, in 

ticks collected from migratory passerines. In Portugal, Norte et al. [54] surveyed passerines 

and detected B. valaisiana, B. garinii, B. turdi, and B. miyamotoi in ticks collected from wild 

birds. Pathologically, B. burgdorferi s.l.-infected ticks put the public at risk. 

In the Baltic region, Lyme disease spirochetes are present in ticks collected from 

passerines. Movila et al. [55] detected nine different tick-borne pathogens in 3 tick species 

(i.e., I. ricinus, I. frontalis, H. maginatum) collected from migratory birds. These pathogens 

include: B. garinii, B. afzelii, B. valaisiana, A. phagocytophilum, Candidatus Neoehrlichia 

mikurensis, Ricksettsia helvetica, Ricksettsia aeshlimanii, and Babesia venatorum and the 

tick-borne encephalitis virus. As well, Hildebrandt et al. [56] documented several zoonotic 

pathogens in bird-feeding ticks collected from migratory birds mist-netted on a Baltic Sea 

island along coastal north-eastern Germany. These tick-borne pathogens included Babesia 

divergens, Babesia microti, A. phagocytophilum, and members of the spotted fever group 
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(i.e., Ricksettsia monacensis, R. helvetica). Alekseev et al. [11] provide the first evidence of 

human monocytic ehrlichiosis (HME) and human anaplasmosis (formerly human 

granulocytic ehrlichiosis) microbiota in immature I. ricinus ticks collected from passerines. 

At the same site, B. afzelii, B. garinii, and B. burgdorferi s.s. were detected in I. ricinus 

attached to passerines. 

In the Far East, Ishiguro et al. [57] documented the movement of passerine migrants from 

Mongolia, and onward to China, to Korea, and to Japan, and these avian hosts were 

transporting tick infected with B. garinii. Seabirds play an integral role in the global 

transmission cycle of B. burgdorferi s.l., especially involving I. uriae, which migrates long 

distances between seabird colonies, and transports these ticks between the Southern and 

Northern Hemispheres [28]. 

In Sweden, B. burgdorferi s.l., which was extracted from seabird-transported I. uriae 

nymphs, matched isolates from I. ricinus ticks collected on nearby islands. In South America, 

wild birds carry several Amblyomma spp. ticks, and some of them are infected with ricksettial 

microorganisms [58]. 

In North America, Levine et al. [59] reported B. burgdorferi s.l. in 3 tick species (i.e., 

Ixodes dentatus Marx, Haemaphysalis leporispalustris Packard, and I. scapularis (denoted as 

I. dammini) collected from passerine migrants in Virginia. 

Additionally, Durden et al. [26] documented eight species of ticks on passerines along 

coastal southern United States of America, and isolated B. burgdorferi s.l. from skin biopsies 

obtained from these migratory passerines and from songbird-transported ticks. Moreover, the 

lone star tick, Amblyomma americanum (L.), and I. scapularis, which are both transported by 

songbirds, harbour filarial nematodes that can infect the circulatory system of humans [60]. 

 

 

SONGBIRDS START TICK POPULATIONS 
 

Songbirds have the propensity to start ixodid tick populations. During the pioneer phase 

of Lyme disease epidemiology and ecology, tick researchers noted that heavily parasitized 

ticks have the potential to initiate new tick populations [15, 17]. 

In a remote area of southeastern Ontario, Scott et al. [61] provide substantial evidence to 

show the establishment of I. scapularis forming an enzootic tick cycle of B. burgdorferi s.l. 

Although it would be impossible to capture the actual event, and see it develop day by day, 

recent tick scenarios of previously undiscovered blacklegged tick populations in eastern and 

central Canada, show substantive evidence for songbirds as tick colony propagators. Since the 

white-tailed deer, Odocoileus virginianus Zimmermann, is not a reservoir-competent host, 

cervids were discounted as initiators. Biogeographically, blacklegged tick populations on 

offshore islands underscore the involvement of passerines in starting new tick colonies. 

Recently, we collected 17 I. scapularis (8 nymphs, 9 larvae) from a Swainson‘s Thrush, 

Catharus ustulatus (Nuttall) on 7 June 2014 at Toronto, Ontario. If these engorged ticks had 

not been detached by bird banders, this heavily infested migrant could handily initiate a new 

Lyme disease endemic area. Songbirds provide a zoonotic mechanism to covertly introduce 

B. burgdorferi s.l.-infected larval and nymphal I. scapularis to a tick habitat, especially 

during spring migration. 
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While collecting food during the nesting, fledgling, and post-nesting periods, songbirds 

will naturally scatter spirochete-infected ticks in the locale, which can potentially infect 

people and domestic animals. Because songbirds widely disperse Lyme disease vector ticks, 

people do not have to go to an endemic area to contract Lyme disease. 

 

 

SONGBIRDS TRANSPORT TICKS CARRYING RELAPSING FEVER 

GROUP SPIROCHETE 
 

The relapsing fever group spirochete, B. miyamotoi Fukunaga et al., is pathogenic to 

humans, and is present throughout the Holarctic region of the world. This spirochete is carried 

by certain ixodid tick species, including I. pacificus, I. persulcatus, I. ricinus, and I. 

scapularis [62]. Borrelia miyamotoi is transmitted transovarially and transstadially, and can 

coexist with B. burgdorferi s.l. in a vector tick. Consequently, an unfed larva can transmit B. 

miyamotoi directly to its host during its first blood meal. In the northeastern United States, 

Scoles et al., initially reported B. miyamotoi in I. scapularis [63], and indicated that B. 

miyamotoi is not detected by Lyme disease serology. However, patients with spirochetemia 

can now use PCR amplification and DNA sequencing to differentiate B. burgdorferi s.l. and 

B. miyamotoi sourced from blood [64]. 

In Canada, Dibernardo et al. [65] reported B. miyamotoi in ixodid ticks collected in each 

province from British Columbia to Nova Scotia and, no doubt, these B. miyamotoi-infected 

ticks were initially dispersed by migratory passerines. Wild birds will undoubtably play an 

ever-increasing role in the wide dispersal of B. miyamotoi Canada-wide and globally.  

In Michigan, U.S.A., Hamer et al. [66] provided the initial documentation of B. 

miyamotoi and B. andersonii in bird-transported I. scapularis; both of these borreliae are 

pathogenic to humans. In their study, the majority of B. miyamotoi-positive ticks were 

removed from Northern Cardinals. As well, in the same study, six bird species were 

implicated as reservoirs for B. andersonii. Not only are songbirds hosts for I. scapularis, they 

serve as intermediate reservoirs for B. miyamotoi and B. andersonii. The presence of B. 

miyamotoi and B. burgdorferi s.l. in ticks parasitizing passerines underpins the ecological 

complexity of these zoonotic pathogens within enzootic tick-host associations. 

 

 

EFFECTS OF TICKS ON SONGBIRDS 
 

Ticks normally attach to the head of the birds, especially around the eyes, mouth, and 

within auricular feathers (Figure 1). In order to prevent bird predation during preening, ticks 

instinctively select these non-reachable sites to attach to the skin. Some bird parasitism 

studies have focused on the health effects of blood-sucking ectoparasites on avian hosts. In 

particular, Norte et al. [67] evaluated the presence of feeding ticks on songbirds in Western 

Europe, and found that B. burgdorferi s.l.-infected ticks increased the heterophyl/ lymphocyte 

ratio of Eurasian Blackbirds suggesting increased stress. 

Along the Pacific coast, American Robins died from heavy infestations of I. auritulus 

females [20]. In essence, bird parasitism may have a detrimental effect on avian hosts and, 

ultimately, may result in fatal outcomes of host birds. 
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Photo credit: Charlotte England. 

Figure 1. Swainson‘s Thrush parasitized by engorged nymphs of the blacklegged tick, Ixodes 

scapularis, below and anterior to the right eye. 

 

COINFECTIONS IN TICKS CARRIED BY BIRDS 
 

Coinfections are apparent in bird-feeding ticks. Migratory birds carry zoonotic pathogens, 

and contribute greatly to the global spread of emerging infectious diseases [27]. European 

researchers detected Borrelia and Chlamydophila in cloacal and throat swabs of migratory 

passerines, and showed that such infections can be endogenous in birds [68]. Based on the 

broad diversity of Borrelia spp. reported in songbird-transported ticks in North America, 

there is a great potential to have these infected ticks imported into Canada during spring 

migration. Interestingly, several genotypes of B. burgdorferi s.l. have been reported in 

widespread regions of Canada [23, 69, 70]. Crowder et al. [71] conducted multilocus 

genotype analysis of borreliae in field-caught ticks collected from various parts of the United 

States of America and Europe, and detected 53 distinct genotypes of B. burgdorferi s.s. 

Epidemiologically, some of these genotypes were shared between continents, which suggests 

transatlantic exchange via ticks on migratory birds. Notably, a significant number of I. 

scapularis and I. ricinus ticks had more than one B. burgdorferi s.s. genotypes. These 

findings show a diversity of genotypes in ticks across wide geographic regions, and these 

diverse genotypes can cause dire clinical consequences. Because of the heterogeneity of 

borreliae in songbird-carried ticks, Lyme disease patients are apt to fail to seroconvert 

because borrelial genotypes may not be present in standard Lyme disease serology [72, 73]. 

Rudenko et al. [74] reported cross-species recombination of B. burgdorferi s.l. isolated from 

an I. minor nymph collected from a single Carolina Wren, Thryothorus ludovianus (Latham). 

Based on molecular-level, multi-locus analysis, it was discovered that the B. burgdorferi s.s. 

housekeeping gene, niff, was incorporated into another homologous locus of another bird-

associated genospecies, B. americana. This event supports the hypothesis that diversity and 

evolution of Lyme disease spirochetes is driven mainly by the host.  

Pertinent to other tick-associated pathogens, A. phagocytophilum has been reported in 

American Robins in North America and, likewise, other wild birds in Eurasia (11, 75]. 
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Additionally, passerine-transported ticks may be infected with pathogenic microorganisms, 

including Ricksettia/Coxiella and tick-borne encephalitis virus. After a larva-nymph or 

nymph-female molt, ticks can transmit one or more tick-associated suitable pathogens to 

suitable vertebrate hosts, including humans. 

 

 

SONGBIRDS ACT AS CONNECTING LINKS IN 

 MULTI-TICK ENZOOTIC CYCLE 
 

In tick-conducive habitats, wild birds act as important carriers in shifting zoonotic 

pathogens from wildlife hosts to humans. For instance, Scott et al. [23] documented a 4-tick 

enzootic cycle of B. burgdorferi s.l. on Vancouver Island, British Columbia, Canada that 

consists of I. angustus Neumann, I. auritulus, I. pacificus, and I. spinipalpis. In this coastal-

forest habitat, I. angustus feeds primarily on small mammals, whereas Ixodes auritulus ticks 

feed exclusively on birds (i.e., passerines, grouse, and raptors). From a bird parasitism 

standpoint, both I. pacificus and I. spinipalpis parasitize avian and mammalian hosts. Not 

only do songbirds play a key role in maintaining and amplifying B. burgdorferi s.l. within this 

Pacific coast habitat, they serve as a spirochetal transit to humans. With the recent inclusion 

of Ixodes cookei Packard, a fifth interconnecting link is added to the enzootic cycle to 

circulate Lyme spirochetes within this coastal ecosystem. Although there may be one or more 

contiguous enzootic cycles of B. burgdorferi s.l. operating concurrently, in parallel, at this 

locality, the net effect is basically the same as one encompassing cycle. This 5-tick enzootic 

cycle of B. burgdorferi s.l. emulates a web-like interplay within a tick-bird-mammal 

community. Ecologically, this interaction of five tick species highlights the complexity of 

maintaining and perpetuating B. burgdorferi s.l. within this particular watershed habitat of 

British Columbia. Within this multi-tick cycle, Scott et al. [76] provide the first report of B. 

burgdorferi s.l.-infected ticks (I. auritulus) parasitizing a raptor (Cooper‘s Hawk, Accipiter 

cooperii (Bonaparte). This newfound, bird-tick association denotes that raptors are explicitly 

involved in the spread of Lyme disease. Medically, I. angustus, I. cookei, I. pacificus, and I. 

spinipalpis ticks parasitize humans, and may potentially transmit tick-borne pathogens. 

 

 

HEALTH IMPLICATIONS 
 

Lyme disease is a multisystem bacterial infection that causes protean manifestations in 

humans. This zoonotic disease can generate a brutal assault on the body, and promptly 

converts a healthy person into a febrile individual with cognitive impairment and unending 

pain. Lyme disease can have significant morbidity, and may be acute, recurrent, or chronic. 

When Lyme disease advances in a host, B. burgdorferi s.l. evades host immunity and 

generates diverse, pleomorphic forms (i.e., spirochetes, round bodies, granules, blebs) and, 

combined together, produce gelatinous masses, called biofilms (persister cells). These 

polysaccarhide-based matrices typify chronicity of infection [77]. Signs and symptoms of 

Lyme disease may persist after short-term antibiotic treatment, and survive in deep-seated and 

immune-privileged sites [78-85]. Several tissues in the body are hard to penetrate with 

antibiotics, including ligaments and tendons [86, 87], muscle [88], brain [89-92], bone [93, 
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94], eyes [95, 96], glial and neuronal cells [97, 98], and fibroblasts/scar tissue [99]. 

Persistence of B. burgdorferi s.l. has been documented in several different mammalian hosts, 

including dogs [100, 101], gerbils [102], guinea pigs [103], hamsters [104], nonhuman 

primates (i.e., rhesus macaques) [105, 106], baboons [107], humans [108-111], laboratory 

mice [112-116], white-footed mice [117-119], rats [120] and horses [121, 122]. Insofar as B. 

burgdorferi s.l. has an immune-evasion mode during its activity, this stealth pathogen 

sequesters and survives in suitable hosts. If left untreated or inadequately treated, this 

zoonotic spirochetosis may ultimately result in fatal outcomes [123, 124]. 

Lyme disease is typically transmitted to avian and mammalian hosts by certain infected 

ticks; however, other modes of transmission are present. Passage of B. burgdorferi s.l. to 

humans and domestic animals may occur by: blood transfusion [125-127], congenital 

transmission [128-133], contact transmission [134], and sexual transmission [135-137]. 

Furthermore, B. burgdorferi s.l. has been detected in breast milk of Lyme disease patients 

[138]. In essence, Lyme disease can induce chronic, progressive illness that can have a wide 

diversity of pathological symptoms in vertebrates [139-141]. During treatment, patients can 

have flu-like Jarisch-Herxheimer reactions. Commercial laboratory testing, which are based 

on immune response, yields poor results for Lyme disease, and has a sensitivity of only 46% 

in patients who have been infected for more than 4-6 weeks [142]. Consequently, these tests 

currently miss more than half of the human Lyme disease cases in North America. 

A reservoir-competent songbird, which is heavily infested with B. burgdorferi s.l.-

infected ticks, can haphazardly disperse fully engorged ticks at stopovers, and consequentially 

initiate a chain of Lyme disease cases along its flight path. Such pathogen-laden ticks are an 

ever-growing concern and a public health risk to unsuspecting outdoor adventurers and 

workers. 
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