Water Purification: Filter Paper for the Production of Safe Drinking Water

Mousa M. Nazhad, Solmaz Heydarifard and Huining Xiao
Pulp and Paper Center,The University of British Columbia, Vancouver, British Columbia, Canada and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, Canada

Series: Chemical Engineering Methods and Technology
BISAC: TEC010030

Clear

$82.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

A large segment of the population in undeveloped and developing countries drink untreated or partially treated water. Annually, 6 to 60 billion cases of gastrointestinal illnesses are continuously reported due to safe drinking water, and over 1.6 million people die due to these water-borne diseases. Owing to increasing concern about global water-related diseases associated with drinking water, finding an affordable and suitable way of water treatment is of great importance. Filtration is a promising point-of-use water treatment. Currently, most water filtration membranes are made of synthetic polymers derived from non-renewable resources. Negative factors like climate change, many different environmental pollutants and the reduction of oil resources give rise to increase the demand of biodegradable products over non-renewable resources. This book introduces a novel, cost effective and biodegradable filter; a so-called cellulose foam filter. The cellulose foam filter is a novel porous cellulosic derivative made via a foam-laid process and modified in order to act as a water filter. Improvements of wet strength performance and the biocidal activity of filters are two main tasks presented in this book. Wet strength improvement is achieved through a furnish formulation, and the addition of agents and anti microbial activity are performed using polymeric anti microbial agents, guanidine-based polymers and å-poly lysine. (Imprint: Nova)

Preface

Acknowledgments

List of Abbreviations

Chapter 1. Introduction

Chapter 2. Literature Review

Chapter 3. Methods

Chapter 4. Results and Discussion

Chapter 5. Conclusions and Recommendations

Index

Chapter 1

Boschi-Pinto, C., Velebit, L. & Shibuya, K. (2008). Estimating child mortality due to diarrhoea in developing countries. Bulletin of the World Health Organization, 86(9), 710–717.
Bruggen, B. Van Der., Vandecasteele, C., Gestel, T. Van., Doyenb, W. & Leysenb, R. (2003). Review of Pressure-Driven Membrane Processes. Environmental Progress, 22(1), 46–56.
Bull, R. J., Birnbaum, L., Cantor, K. P., Rose, J. B., Butterworth, B. E., Pegram, R. E. X. & Tuomisto, J. (1995). Water chlorination: essential process or cancer hazard? Toxicological Sciences, 28(2), 155–166.
Caslake, L. F., Connolly, D. J., Menon, V., Duncanson, C. M., Rojas, R. & Tavakoli, J. (2004). Disinfection of contaminated water by using solar irradiation. Applied and Environmental Microbiology, 70(2), 1145–1151.
Clasen, T. F., Brown, J., Collin, S., Suntura, O. & Cairncross, S. (2004). Reducing Diarrhea Through The Use Of Household-Based Ceramic Water Filters : A Randomized , Controlled Trial In Rural Bolivia. The American Society of Tropical Medicine and Hygiene, 70(6), 651–657.
Crump, J. A. & Mintz, E. D. (2010). Global trends in typhoid and paratyphoid fever. Clinical Infectious Diseases, 50(2), 241–246.
Gordon, B., Callan, P. & Vickers, C. (2008). WHO guidelines for drinking-water quality. WHO Chronicle, 38(3), 564. doi: http:// doi. org/10.1016/S1462-0758(00)00006-6.
Harris, J. (2005). Challenges to the Commercial Viability of Point-of-Use (POU) Water Treatment Systems in Low-Income Settings. Oxford University.
Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J. & Thruston, A. D. (2006). Occurrence of a new generation of disinfection byproducts. Environmental Science {and} Technology, 40(23), 7175–7185.
LeChevallier, M. W. & Au, K. K. (2004). Water Treatment and Pathogen Control World. Health Organization Titles with IWA Publishing.
Lv, Y., Liu, H., Wang, Z., Liu, S., Hao, L., Sang, Y. & Boughton, R. I. (2009). Silver nanoparticle-decorated porous ceramic composite for water treatment. Journal of Membrane Science, 331(1-2), 50–56. doi: http://doi.org/10.1016/j.memsci.2009.01.007.
Morris, R. D., Audet, A.-M., Angelillo, I. F., Chalmers, T. C. and Mosteller, F. (1992). Chlorination, chlorination by-products, and cancer: a meta-analysis. American Journal of Public Health, 82(7), 955–963.
Sagle, A. & Freeman, B. (2004). Fundamentals of Membranes for Water Treatment. The Future of Desalination in Texas, 2, 137–154.
Shrestha, R. R., Shrestha, M. P., Upadhyay, N. P., Pradhan, R., Khadka, R., Maskey, A. & Shrestha, K. (2003). Groundwater arsenic contamination, its health impact and mitigation program in Nepal. Journal of Environmental Science and Health, Part A, 38(1), 185–200.
Thorsen, T. & Flodstad, H. (2006). Nanofiltration in drinking water treatment Literature Review. Techneau.
Weiss, T. C. (2015). Water ­ borne Diseases : Types and Information.
WHO/Unicef. (2014). Progress in Drinking-water and Sanitation: special focus on sanitation. World Health Organization, United States of America. New York.

Chapter 2

Alen, R. (1998). Paper Chemistry. Paper Engineering Association.
Allan, G. G. & Reif, W. M. (1971). No Title. Svensk Papperstid., 74(2), 25.
Al-Qararah, A. M., Ekman, A., Hjelt, T., Ketoja, J. A., Kiiskinen, H., Koponen, A. & Timonen, J. (2015). A unique microstructure of the fiber networks deposited from foam–fiber suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 544–553.
Andreasson, B. & Wågberg, L. (2009). On the Mechanisms Behind the Action of Wet Strength and Wet Strength Agents. In M. Ek (Ed.), Pulping chemistry and technology, (Vol. 2). Walter de Gruyter.
Bai, H., Zhou, Y., Wang, X. & Zhang, L. (2012). The Permeability and Mechanical Properties of Cellulose Acetate Membranes Blended with Polyethylene glycol 600 for Treatment of Municipal Sewage. Procedia Environmental Sciences, 16, 346–351. doi: http://doi.org/ 10.1016/j.proenv.2012.10.049.
Balazy, A., Toivola, M., Reponen, T., Podgórski, A., Zimmer, A. & Grinshpun, S. a. (2006). Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles. The Annals of Occupational Hygiene, 50(3), 259–69. doi: http:// doi.org/10.1093/annhyg/mei058.
Bates, N. A. (1966). Evidence for reaction of cellulose with melamine-formaldehyde resin. Tappi, 49(4), 184.
Bates, R., Beijer, P. & Podd, B. (1999). Wet strengthening of paper. Papermaking Science and Technology, 4, 288–301.
Besra, L., Sengupta, D. K., Roy, S. K. & Ay, P. (2003). Influence of surfactants on flocculation and dewatering of kaolin suspensions by cationic polyacrylamide (PAM-C) flocculant. Separation and Purification Technology, 30(3), 251–264.
Bjorkquist, D. W. (1992, August). Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same. Google Patents.
Bolto, B. & Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water Research, 41(11), 2301–2324.
Botes, M. & Cloete, T. E. (2010). The potential of nanofibers and nanobiocides in water purification. Critical Reviews in Microbiology, 36(1), 68–81. doi: http://doi.org/10.3109/ 1040841 0903397332.
Botkova, M., Šutý, Š., Jablonský, M., Kucerkova, L. & Vrška, M. (2013). Monitoring of kraft pulps swelling in water. Cellulose Chemistry And Technology, 47(1-2), 95–102.
Braga, D., Kramer, G., Pelzer, R. & Halko, M. (2009). Recent Developments in Wet Strength Chemistry Targeting High Performance and Ambitious Environmental Goals. Chemical Technology, (September), 30–34.
Brief, T. (1996). Filtration.
Bruggen, B. Van Der, Vandecasteele, C., Gestel, T. Van, Doyenb, W. & Leysenb, R. (2003). Review of Pressure-Driven Membrane Processes. Environmental Progress, 22(1), 46–56.
Byrne, J., Dunlop, P., Hamilton, J., Fernández-Ibáñez, P., Polo-López, I., Sharma, P. & Vennard, A. (2015). A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection. Molecules, 20(4), 5574–5615. doi: http://doi.org/10.3390/molecules20045574.
Campbell, W. (1959). The mechanism of bonding. Tappi, 42, 999–1001.
Caulfield, D. F. (1994). Ester crosslinking to improve wet performance of paper using multifunctional carboxylic acids, butanetetracarboxylic and citric acid. Tappi Journal (USA).
Cen, L., Neoh, K. G. & Kang, E. T. (2003). Surface Functionalization Technique for Conferring Antibacterial Properties to Polymeric and Cellulosic Surfaces. Langmuir, 19(14), 10295–10303.
Chan, L. L. (1994). Wet-strength Resins and their Application. Tappi Pr.
Chen, N., Hu, S. & Pelton, R. (2002). Mechanisms of aldehyde-containing paper wet-strength resins. Industrial {and} Engineering Chemistry Research, 41(22), 5366–5371.
Chen, W., Li, Q., Wang, Y., Yi, X., Zeng, J., Yu, H. & Li, J. (2014). Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem, 7(1), 154–161.
Chung, R. (1974, September). Method of controlling the orientation of fibers in a foam formed sheet. Google Patents.
Corte, H. & Schaschek, H. (1955). The physical nature of paper strength. Das Papier, 9(11), 519–530.
Dankovich, T. A. & Gray, D. G. (2011). Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environmental Science {and} Technology, 45(5), 1992–1998.
Deng, M., Zhou, Q., Du, A., van Kasteren, J. & Wang, Y. (2009). Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions. Materials Letters, 63(21), 1851–1854. doi: http:// doi.org/10.1016/j.matlet.2009.05.064.
Dunlop-Jones, N. (1991). Wet-strength chemistry. In Paper chemistry, (pp. 76–96). Springer.
Dunlop-Jones, N. (1996). Wet-strength chemistry. In Paper chemistry, (pp. 98–119). Springer.
Espy, H. H. (1995). The mechanism of wet-strength development in paper: a review. Tappi Journal, 78(4), 90–100.
Fahmy, A., Kamoun, E. A., El-Eisawy, R., El-Fakharany, E. M., Taha, T. H., El-Damhougy, B. K. & Abdelhai, F. (2015). Poly(vinyl alcohol)-hyaluronic acid membranes for wound dressing applications: Synthesis and in vitro bio-evaluations. Journal of the Brazilian Chemical Society, 26(7), 1466–1474. http://doi.org/ 10.5935/0103-5053.20150115.
Figueiredo, K., Alves, T. L. M. & Borges, C. P. (2009). Poly (vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. Journal of Applied Polymer Science, 111(6), 3074–3080.
Fukutome, A., Kashima, M. & Aiuchi, M. (1995). A combined chronic toxicity and carcinogenicity study of polylysine powder in rats by peroral dietary administration. The Clinical Report, 29, 1416–1431.
Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005). Coordination chemistry of acrylamide. Coordination Chemistry Reviews, 249(11-12), 1283–1293. http://doi.org/10.1016/j.ccr.2005. 01.028.
Grigoriev, V., Mäkinen, M. & Zulian, R. (2013). Squeezing more profits out of your sheet using novel and conventional strength technologies. In Tissue World. Barcelona, Spain.
Grigoriev, V., Strengell, K., Virtanen, M. & Hietaniemi, M. (2012). Strength chemistry for board and tissue production: Scientific outlook and end applications. Kemira.
Guan, Y., Qian, L., Xiao, H. & Zheng, A. (2008). Preparation of novel antimicrobial-modified starch and its adsorption on cellulose fibers: Part I. Optimization of synthetic conditions and antimicrobial activities. Cellulose, 15(4), 609–618. doi: http://doi.org/10.1007/ s10570-008-9208-6.
Guan, Y., Qian, L., Xiao, H., Zheng, A. & He, B. (2008). Synthesis of a novel antimicrobial-modified starch and its adsorption on cellulose fibers: part II––adsorption behaviors of cationic starch on cellulose fibers. Cellulose, 15(4), 619–629.
Gullichen, J. & Paulapuro, H. (2000). Papermaking Science and Technology. Book 3: Forest Products Chemistry. Fapet Oy, Helsinki.
Han, B., Li, J., Chen, C., Xu, C. & Wickramasinghe, S. R. (2003). Effects of degree of formaldehyde acetal treatment and maleic acid crosslinking on solubility and diffusivity of water in PVA membranes. Chemical Engineering Research and Design, 81(10), 1385–1392.
Hannu, P. (2000). Paper and Board Grades, Papermaking Science and Technology, Book 18. Jyväskylä, Finland: Published in cooperation with the Finnish Paper Engineers’ Association and TAPPI.
Herron, C. M. & Cooper, D. J. (1992, August). Absorbent Structure Containing Individualized, Polycarboxylic Acid Crosslinked Wood Pulp Cellulose Fibers. Google Patents.
Heydari, S., Ghasemian, A. & Afra, E. (2013). Effects of Refining and Cationic Polyacrylamide on Strength Properties of Paper Made from Old Corrugated Container (OCC). World Sci. J. Special Issue.
Heydarifard, S., Pan, Y., Xiao, H. & Nazhad, M. M. (2017). Water-resistant cellulosic filter containing non-leaching antimicrobial starch for water purification and disinfection. Carbohydrate Polymers, 163, 146–152. https://doi.org/10.1016/ j.carbpol.2017. 01.063.
Hill, C. G., Hedren, A. M., Myers, G. E. & Koutsky, J. A. (1984). Raman spectroscopy of urea–formaldehyde resins and model compounds. Journal of Applied Polymer Science, 29(9), 2749–2762.
Hinds, W. C. (1999). Aerosol Technology: Properties. Behavior, and Measurement of Airborne Particles (2nd), 42–74.
Hiraki, J. (2000). ε-Polylysine, its development and utilization. Fine Chem, 29(1), 18–25.
Hjelt, T., Kinnunen, K., Lehmonen, J., Beletski, N., Hellén, E., Liljeström, V. & Kataja, M. (2011). Intriguing structural and strength behavior in foam forming. In Progress in Paper Physics seminar. Helsinki, Finland.
Horie, D. (1993). The Application Of Durable Press treatment To Bleached Softwood Kraft Handsheets. Oregon state University.
Huang, Y. & Paul, D. R. (2010). Water Purification by Mebranes: the Role of Polymer Science. Journal of Polymer Science Part B: Polymer Physics, 48, 1685–1718.
Hubbe, M. A., Rojas, O. J., Sulic, N. & Sezaki, T. (2007). Unique behaviour of polyampholytes as drystrength additives. Appita Journal, 60(2), 106.
Israelachvili, J. N. (1985). Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems. Academic Press.
Jahangiri, P., Korehei, R., Zeinoddini, S. S., Madani, A., Sharma, Y., Phillion, A. & Olson, J. A. (2014). On filtration and heat insulation properties of foam formed cellulose based materials. Nordic Pulp {and} Paper Research Journal, 29(4), 584–591.
Jain, P. & Pradeep, T. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 90(1), 59–63. doi: http://doi.org/ 10.1002/ bit.20368.
Jaschinski, T., Gunnars, S., Besemer, A. C., Bragd, P., Jetten, J. M., Van Den Dool, R. & Van Hartingsveldt, W. (2004, November). Oxidized cellulose-containing fibrous materials and products made therefrom. Google Patents.
Kang, J., Choi, G. & Kwon, Y. (2012). An Innovative Foam Insulation Produced from Cellulose.
Katja, H. & Mika, S. (2007). Flocculation in Paper and Pulp Mill Sludge Process. Research Journal Of Chemistry And Environment, 11(3), 96–103.
Kenawy, E. R., Worley, S. D. & Broughton, R. (2007). The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules, 8(5), 1359–1384. doi: http://doi.org/ 10.1021/bm061150q.
Ketola, H. & Andersson, T. (1999). Dry-strenth additives. In L. Neimo (Ed.), Papermaking Chemistry, Book 4, (p. 285). Helsinki, Finland: Fapet Oy.
Kinnunen, K., Lehmonen, J., Beletski, N., Jetsu, P. & Hjelt, T. (2013). Benefits of foam forming technology and its applicability in high MFC addition structures. In Advances in pulp and paper research. Cambridge.
Klemm, D., Heublein, B., Fink, H. & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.
Kong, M., Chen, X. G., Xing, K. & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 144(1), 51–63. doi: http://doi.org/10.1016/j.ijfoodmicro.2010.09.012.
Krajewska, B. (2005). Membrane-based processes performed with use of chitin/chitosan materials. Separation and Purification Technology, 41(3), 305–312. doi: http://doi.org/10.1016/ j.seppur. 2004.03.019.
Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1).
Kwon, Y. (2012). An Innovative Foam Insulation Produced from Cellulose. In BEST3 2012 Conference, (pp. 3–10). Atlanta, USA.
Lappalainen, T. & Lehmonen, J. (1999). Determinations of bubble size distribution of foam-fibre mixture using circular hough transform.
LeChevallier, M. W. & Au, K. K. (2004). Water Treatment and Pathogen Control World. Health Organization Titles with IWA Publishing.
Li, Y. Q., Han, Q., Feng, J. L., Tian, W. L. & Mo, H. Z. (2014). Antibacterial characteristics and mechanisms of ɛ-poly-lysine against Escherichia coli and Staphylococcus aureus. Food Control, 43, 22–27.
Lindström, T. & Floren, T. (1987). The effect of filler particle size on the dry-strengthening effect of cationic starch wet-end addition [fine paper, fillers]. Nordic Pulp and Paper Research Journal (Sweden).
Linhart, F. (2005). Some thoughts on the mode of action of paper strength agents. Wochenblatt Fur Papierfabrikation, 133(11-12), 662–+.
Lv, Y., Liu, H., Wang, Z., Liu, S., Hao, L., Sang, Y. & Boughton, R. I. (2009). Silver nanoparticle-decorated porous ceramic composite for water treatment. Journal of Membrane Science, 331(1-2), 50–56. doi: http://doi.org/10.1016/j.memsci.2009.01.007.
Mamiński, M. L., Pawlicki, J., Zado, A. & Parzuchowski, P. (2007). Glutaraldehyde-modified MUF adhesive system–Improved hot water resistance. Holz Als Roh-Und Werkstoff, 65(3), 251–253.
Mao, J., Grgic, B., Finlay, W. H., Kadla, J. F. & Kerekes, R. J. (2008). Wood pulp based filters for removal of sub-micrometer aerosol particles. Nordic Pulp {and} Paper Research Journal, 23(4), 420–425.
Marques-marinho, F. D. & Vianna-soares, C. D. (2013). Cellulose and Its Derivatives Use in the Pharmaceutical Compounding Practice. InTech, 140–162.
Maslat, A. O., Al-Hamdany, R., Fataftah, Z., Mahrath, A. J. & Abussaud, M. J. (2003). Genotoxicity, antifungal and antibacterial activity of newly synthesized N -(3-phthalidyl)amines and o -benzoyl benzamide derivatives. Toxicological and Environmental Chemistry, 85(4-6), 149–157. doi: http://doi.org/10.1080/ 02772240 410001665490.
Mattelet, C. (2006). Household Ceramic Water Filter Evaluation Using Three Simple Low-Cost Methods : Membrane Filtration , 3rd Petrifilm And Hydrogen Sulfide Bacteria In Accepted By Three Simple Low-Cost Methods : Membrane Filtration,. Massachusette Institute of Technology.
Migneault, I., Dartiguenave, C., Bertrand, M. J. & Waldron, K. C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, 37(5).
Munerelle, C., Harper, F. D., Schroeder, G. L., Awofeso, A. D. & Ostrowski, H. S. (2000, August). Foaming with ethoxylated alcohol; wet and dry tensile strength; paper towels. Google Patents.
Myllytie, P. (2009). Interactions of polymers with fibrillar structure of cellulose fibres: a new approach to bonding and strength in paper. Teknillinen korkeakoulu.
Najjar, B., Kashtanov, M. D. & Chikindas, M. L. (2009). Natural Antimicrobials ε-Poly-l-lysine and Nisin A for Control of Oral Microflora. Probiotics and Antimicrobial Proteins, 1(2), 143–147. doi: http://doi.org/10.1007/s12602-009-9020-0.
Neogi, A. N. & Jensen, J. R. (1980). Wet strength improvement via [cellulose] fiber surface modification. TAPPI-Journal of the Technical Association of the Pulp and Paper Industry (USA).
Ngai, T. K. K., Shrestha, R. R., Dangol, B., Maharjan, M. & Murcott, S. E. (2007). Design for sustainable development—household drinking water filter for arsenic and pathogen treatment in Nepal. Journal of Environmental Science and Health Part A, 42(12), 1879–1888.
Nishikawa, M. & Ogawa, K. (2006). Inhibition of epsilon-poly-L-lysine biosynthesis in Streptomycetaceae bacteria by short-chain polyols. Applied and Environmental Microbiology, 72(4), 2306–2312.
Obokata, T., Yanagisawa, M. & Isogai, A. (2005). Characterization of polyamideamine-epichlorohydrin (PAE) resin: Roles of azetidinium groups and molecular mass of PAE in wet strength development of paper prepared with PAE. Journal of Applied Polymer Science, 97(6), 2249–2255.
Page, D. H. (1969). A theory for tensile strength of paper. Tappi, 52(4), 674.
Parsons, S. R. (1942). Optical characteristics of paper as a function of fiber classification. Paper Trade J, 115(25), 314–322.
Patel, M. B., Patel, S. A., Ray, A. & Patel, R. M. (2003). Synthesis, characterization, and antimicrobial activity of acrylic copolymers. Journal of Applied Polymer Science, 89(4), 895–900.
Petersen, H. (1983). Cross-linking with Formaldehyde-containing Reactants. Handbook of Fiber Science and Technology, 2.
Podgórski, A., Bałazy, A. & Gradoń, L. (2006). Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering Science, 61(20), 6804–6815. doi: http://doi.org/ 10.1016/j.ces.2006.07.022.
Poletto, M., Pistor, V. & Zattera, A. J. (2013). Structural characteristics and thermal properties of native cellulose. Cellulose-Fundamental Aspects. Ed. Van de Ven, T. and Gdbout, L. InTech, 45–68.
Poranen, J., Kiiskinen, H., Salmela, J., Asikainen, J., Keränen, J. & Paakkonen, E. (2013). Breakthrough in papermaking resource efficiency with foam forming. TAPPI PaperCon, 2013.
Punton, V. W. (1975). The use of an aqueous foam as a fibresuspending medium in quality papermaking. In A. R.J. (Ed.), Proceedings of a symposium organized by the Society of the Chemical Industry, Colloid and surface chemistry Group, and held at Brunel University., September 8-10.
Purchas, D. & Sutherland, K. (2002). Handbook of filter media. Elsevier.
Qian, L., Guan, Y., Ziaee, Z., He, B., Zheng, A. & Xiao, H. (2009). Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose, 16(2), 309–317.
Radvan, B. & Gatward, A. P. J. (1972). Formation Of Wet-Laid Webs By A Foaming Process. Tappi, 55(5), 748.
Robertson, N. G. D. (1975). Manufacture of non-woven fibrous material from a foamed furnish. England.
Rojas, J. & Azevedo, E. (2011). Functionalization and crosslinking of microcrystalline cellulose in aqueous media: A safe and economic approach. Int. J. Pharm. Sci. Res, 8, 28–36.
Rowell, R. M., Sanadi, A. R., Caulfield, D. F. & Jacobson, R. E. (1997). Utilization of natural fibers in plastic composites: problems and opportunities. Lignocellulosic-plastic composites, 23-51.
Roy, D., Knapp, J. S., Guthrie, J. T. & Perrier, S. (2007). Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules, 9(1), 91–99.
Sagle, A. & Freeman, B. (2004). Fundamentals of Membranes for Water Treatment. The Future of Desalination in Texas, 2, 137–154.
Saito, T. & Isogai, A. (n.d.). A novel method to improve wet strength of paper. Tappi Journal, 4(3), 3–8. Retrieved from http:// cat.inist.fr/ ?aModele=afficheNandcpsidt=16722044.
Šauperl, O., Stana-Kleinschek, K. & Ribitsch, V. (2009). Cotton Cellulose 1, 2, 3, 4 Buthanetetracarboxylic Acid (BTCA) Crosslinking Monitored by some Physical—chemical Methods. Textile Research Journal, 79(9), 780–791.
Scott, W. E. (1996). Principles of wet end chemistry. Progress In Paper Recycling, 6, 77–79.
Seth, R. S. & Page, D. H. (1983). The stress-strain curve of paper in “Role of Fundamental Research in Papermaking”. Mechanical Engineering Publications, Ltd., London.
Shieh, K. J., Li, M., Lee, Y. H., Sheu, S. D., Liu, Y. T. & Wang, Y. C. (2006). Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light. Nanomedicine : Nanotechnology, Biology, and Medicine, 2(2), 121–6. doi: http:// doi.org/10.1016/j.nano.2006.04.001.
Skovronek, H. (1976). Environmental considerations of selected energy conserving manufacturing process options, (Vol. 5).
Smith, M. J., Kaun, J. M. & Gentile, V. R. (1999, November). Method of applying permanent wet strength agents to impart temporary wet strength in absorbent tissue structures. Google Patents.
Smith, M. K., Punton, V. W. & Rixson, A. G. (1974). Structure and properties of paper formed by a foaming process. Tappi, 57(1), 107–111.
Smith, M. & Punton, V. (1975). The role of the forming process in determining the structure and properties of paper. Pulp {and} Paper Canada, 76(2), 114–117.
Solberg, D. & Wågberg, L. (2003). Adsorption and flocculation behavior of cationic polyacrylamide and colloidal silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219(1-3), 161–172. doi: http://doi.org/10.1016/S0927-7757(03)00029-3.
Stange, A. M. W. (1992). Wet-strength paper and additives in Europe. Wet-Strength Resins and Their Application”, Ll Chan Ed., TAPPI Press, Atlanta.
Stratton, R. A. (1991). Characterization of fiber-fiber bond strength from paper mechanical properties.
Su, J., Garvey, C. J., Holt, S., Tabor, R. F., Winther-Jensen, B., Batchelor, W. & Garnier, G. (2015). Adsorption of cationic polyacrylamide at the cellulose–liquid interface: A neutron reflectometry study. Journal of Colloid and Interface Science, 448, 88–99.
Tang, F., Zhang, L., Zhang, Z., Cheng, Z. & Zhu, X. (2009). Cellulose filter paper with antibacterial activity from surface-initiated ATRP. Journal of Macromolecular Science®, Part A: Pure and Applied Chemistry, 46(10), 989–996.
Tankhiwale, R. & Bajpai, S. K. (2009). Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids and Surfaces B: Biointerfaces, 69(2), 164–168.
Tao, H., Chieffo, L. R., Brenckle, M. A., Siebert, S. M., Liu, M., Strikwerda, A. C. & Averitt, R. D. (2011). Metamaterials on paper as a sensing platform. Advanced Materials, 23(28), 3197–3201.
Thiessen, R. J. (2006). Filtration of respired gases: theoretical aspects. Respiratory Care Clinics of North America, 12(2), 183–201. doi: http://doi.org/10.1016/j.rcc.2006.03.001.
Torvinen, K., Kiiskinen, H., Hellén, E. & Koponen, A. (2014). Foam forming gives bulky board at a high dry solids content.
VanReis, R. & Zydney, A. (2007). Bioprocess membrane technology. Journal of Membrane Science, 297(1-2), 16–50. doi: http://doi.org/ 10.1016/j.memsci.2007.02.045.
Vitt, A., Sofrata, A., Slizen, V., Sugars, R. V., Gustafsson, A., Gudkova, E. I. & Buhlin, K. (2015). Antimicrobial activity of polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the quantitative suspension method. Annals of Clinical Microbiology and Antimicrobials, 14(1), 36.
Wågberg, L. & Björklund, M. (1993). On the mechanism behind wet strength development in papers containing wet strength resins. Nordic Pulp and Paper Research Journal (Sweden).
Wang, B., Liu, B., Peng, G., Meng, X., Jiang, Z. & Chen, H. (2013). Synthesis and antimicrobial properties of a guanidine - based oligomer grafted with a reactive cationic surfactant through Michael addition. Journal of Applied Polymer Science, 130(5), 3489–3497.
Wang, H., Wei, D., Ziaee, Z., Xiao, H., Zheng, A. & Zhao, Y. (2015). Preparation and Properties of Nonleaching Antimicrobial Linear Low-Density Polyethylene Films. Industrial and Engineering Chemistry Research, 54(6), 1824–1831. doi: http://doi.org/ 10. 1021/ie504393t.
Wang, Y., Chen, K., Mo, L. & Hu, H. (2011). A Cationic Polyacrylamide Dispersion Synthesis By Dispersion Polymerization In Aqueous Solution. BioResources, 6(3), 3087–3095.
Wei, D., Ma, Q., Guan, Y., Hu, F., Zheng, A., Zhang, X. & Jiang, H. (2009). Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride). Materials Science and Engineering: C, 29(6), 1776–1780.
Wong, S. S., Teng, T. T., Ahmad, a. L., Zuhairi, a. & Najafpour, G. (2006). Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. Journal of Hazardous Materials, 135(1-3), 378–88. doi: http:// doi.org/ 10.1016/j.jhazmat.2005.11.076.
Worley, S. & Sun, G. (1996). Biocidal polymer. Trends in Polymer Science, 4(11).
Yangali-Quintanilla, V. A., Holm, A. H., Birkner, M., D´Antonio, S., Stoltze, H. W. C., Ulbricht, M. & Zheng, X. (2016). A fast and reliable approach to benchmark low pressure hollow fibre filtration membranes for water purification. Journal of Membrane Science, 499, 515–525. doi: http://doi.org/10.1016/j.memsci.2015.10.048.
Yoshida, T. & Nagasawa, T. (2003). ε-Poly-L-lysine: microbial production, biodegradation and application potential. Applied Microbiology and Biotechnology, 62(1), 21–26.
Zakaria, S. (2004). Development of wet-strength paper with dianhydride and diacid. Materials Chemistry and Physics, 88(2), 239–243.
Zhang, Y., Jiang, J. & Chen, Y. (1999). Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer, 40(22), 6189–6198. doi: http://doi.org/10.1016/S0032-3861(98) 00828-3.
Zhou, C., Li, P., Qi, X., Sharif, A. R. M., Poon, Y. F., Cao, Y. & Chan-Park, M. B. (2011). A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials, 32(11), 2704–2712.
Zhou, Y. J., Luner, P. & Caluwe, P. (1995). Mechanism of crosslinking of papers with polyfunctional carboxylic acids. Journal of Applied Polymer Science, 58(9), 1523–1534.

Chapter 3

Andresen, M., Stenstad, P., Møretrø, T., Langsrud, S., Syverud, K., Johansson, L. S. & Stenius, P. (2007). Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules, 8(7), 2149–2155.
Castle, L., Kelly, J., Jickells, S. M., Johns, S. M. & Mountfort, K. A. (2012). Exploring the sensitivity of the zone of inhibition test for leachable biocides from paper and board food contact materials, and improvements thereof. Food Additives {and} Contaminants: Part A, 29(1), 139–148.
Chung, R. (1974, September). Method of controlling the orientation of fibers in a foam formed sheet. Google Patents.
Qian, L., Guan, Y., Ziaee, Z., He, B., Zheng, A. & Xiao, H. (2009). Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose, 16(2), 309–317.
Wang, H., Wei, D., Ziaee, Z., Xiao, H., Zheng, A. & Zhao, Y. (2015). Preparation and Properties of Nonleaching Antimicrobial Linear Low-Density Polyethylene Films. Industrial and Engineering Chemistry Research, 54(6), 1824–1831. doi: http://doi.org/10.1021/ ie504393t.
Wei, D., Ma, Q., Guan, Y., Hu, F., Zheng, A., Zhang, X. & Jiang, H. (2009). Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride). Materials Science and Engineering: C, 29(6), 1776–1780.
Ye, W., Xin, J. H., Li, P., Lee, K. D. & Kwong, T. (2006). Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. Journal of Applied Polymer Science, 102(2), 1787–1793.

Chapter 4

Andresen, M., Stenstad, P., Møretrø, T., Langsrud, S., Syverud, K., Johansson, L. S. & Stenius, P. (2007). Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules, 8(7), 2149–2155.
Figueiredo, K., Alves, T. L. M. & Borges, C. P. (2009). Poly (vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. Journal of Applied Polymer Science, 111(6), 3074–3080.
Gharehkhani, S., Sadeghinezhad, E., Kazi, S. N., Yarmand, H., Badarudin, A., Safaei, M. R. & Zubir, M. N. M. (2015). Basic effects of pulp refining on fiber properties--a review. Carbohydrate Polymers, 115, 785–803. doi: http://doi.org/10.1016/ j.carbpol. 2014.08.047.
Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005). Coordination chemistry of acrylamide. Coordination Chemistry Reviews, 249(11-12), 1283–1293. http://doi.org/10.1016/ j.ccr.2005. 01.028.
Grigoriev, V., Mäkinen, M. & Zulian, R. (2013). Squeezing more profits out of your sheet using novel and conventional strength technologies. In Tissue World. Barcelona, Spain.
Hubbe, M. A. (1999). Difficult furnishes. Proceedings, Proceedings TAPPI. Atlanta, GA: TAPPI, (99), 1353–1367.
Hubbe, M. A., Rojas, O. J., Sulic, N. & Sezaki, T. (2007). Unique behaviour of polyampholytes as drystrength additives. Appita Journal, 60(2), 106.
Ketola, H. & Andersson, T. (1999). Dry-strenth additives. In L. Neimo (Ed.), Papermaking Chemistry, Book 4, (p. 285). Helsinki, Finland: Fapet Oy.
Li, Z., Zhuang, X. P., Liu, X. F., Guan, Y. L. & Yao, K. De. (2002). Study on antibacterial O-carboxymethylated chitosan/cellulose blend ® lm from LiCl/N , N-dimethylacetamide solution. Polymer Communication, 43, 1541–1547.
Lindström, T., Wågberg, L. & Larsson, T. (2005). On the nature of joint strength in paper—a review of dry and wet strength resins used in paper manufacturing. In 13th Fundamental research symposium, (Vol. 1, pp. 457–562). The Pulp and Paper Fundamental Research Society Cambridge, UK.
Myllytie, P. (2009). Interactions of polymers with fibrillar structure of cellulose fibres: a new approach to bonding and strength in paper. Teknillinen korkeakoulu.
Taipale, T., Österberg, M., Nykänen, A., Ruokolainen, J. & Laine, J. (2010). Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose, 17(5), 1005–1020.
Taipale, T., Österberg, M., Nykänen, A., Ruokolainen, J. & Laine, J. (2010). Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose, 17(5), 1005–1020.
Thiessen, R. J. (2006). Filtration of respired gases: theoretical aspects. Respiratory Care Clinics of North America, 12(2), 183–201. doi: http://doi.org/10.1016/j.rcc.2006.03.001.
Wang, H., Wei, D., Ziaee, Z., Xiao, H., Zheng, A. & Zhao, Y. (2015). Preparation and Properties of Nonleaching Antimicrobial Linear Low-Density Polyethylene Films. Industrial and Engineering Chemistry Research, 54(6), 1824–1831. doi: http://doi.org/10.1021/ ie504393t.
Yang, C. Q. & Xu, G. (2002, April 30). Polymer-aldehyde additives to improve paper properties. Google Patents.
Yang, R., He, J., Xu, L. & Yu, J. (2009). Bubble-electrospinning for fabricating nanofibers. Polymer, 50(24), 5846–5850.

You have not viewed any product yet.