The Regenerative Processes Involving the cAMP Unzipping of DNA: The Synthesis of Proteins Integrating Plasticity and Longevity

Alfred Bennun, Ph.D.
Full Professor-Emeritus-Rutgers University Consultant,
CONICET, AR
Rutgers University, NJ, USA

Series: Biochemistry Research Trends
BISAC: SCI049000

Clear

$230.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

This book reviews experimental contributions from many sources to search for a model of structure and molecular function of the blood-astrocytes-neuronal-system. The initial premise involved the dynamics of the hydrated shells of ions and proteins. An oxy-Hb of lower pka compared to deoxy-Hb allows for a higher dissociation of protons. This functioning for the mutual inclusion of O2 and Mg2+ is surrounded by a hydration shell of about 60 molecules. 2,3 DPG-dependent deoxygenation involves the tetramer chains of hydrophobic attractions. Their favorable thermodynamics allows for the dissociation of O2 and Mg2+ by breaking the H-bonds between the protein and the water shell.

The turnover between hydrated versus hydrophobic forms of proteins involved in enzyme kinetics requires energy expenditures during the turnover of [ES], changing the enzyme hydration states into its [EP] form. A divalent metal (Mg++) when chelated by a protein loses its hydration sphere. It then releases its hydration (which is incomplete) and shows an intrinsic stronger charge. This is the denominated Mg2+ nascent, which functions by capturing water from Na+ and K+, allowing for sieve effects operating as intermediates of the physical open system.

The dissipative energy potential is controlled within astrocytes by decreasing the number of H-bonds through rapid circulation. This is made possible by decreasing the number of H-bonds to reach the vapor state associated with air breathing, which could also operate through the vomeronasal organ that experiences direct contact with the brain.

The breakdown of MgATP by the Na+/K+ ATPase of MgATP is involved in the release of ADP3-, and Pi2- and nascent Mg2+ that decrease ATP4-. Mg2+ could be the generator of an action potential via the activation of a Na+/K+ ATPase pump, which opens the gates for Na+ in and K+. The free [Mg2+] up-regulates responsiveness of the post synaptic AC (adenylyl cyclase) NA (noradrenaline) released by the long axons of the corpus coerellus into the synaptic junctions, and also contributes to additional up-regulation by increasing the CAMP. The up-regulation of AC by Mg2+ is turned off by Ca+2. Stressors trigger the Mg2+ response, which results in emotional pain.

The zipping-out of DNA by the CAMP results in an Mg2+-CAMP-DNA complex that up-regulates gene expression for every participant in the synthesis of proteins during development, and eventually the formation of long-term memory occurs. Genes that relate to the synthesis of microtubules may participate in the formation of short-term memory. The regenerative capacity of CAMP could be involved in Alzheimer’s treatment by using the vomeronasal pathway to reach specific brain areas. (Imprint: Nova Biomedical)

Preface

Chapter 1. Methods

Chapter 2. Glycerol technics for modulation of protein state of hydration

Chapter 3. Characterization of the norepinephrine-activation of adenylate cyclase in memory affirmation pathways

Chapter 4. The dynamics of H-bonds on the hydration shells of ions, ATPase and NE-activated adenylyl cyclase on the coupling of energy and signal transduction

Chapter 5. Kosmotropic versus chaotropic tendencies adjust the size of the hydration shells of Na+ and K+ ions for fitting into their gate-dynamical turnover at the Na+-ion-pump

Chapter 6. The H-bonds dissipative thermodynamic potential of cluster water

Chapter 7. The Biological Fundamentals of the Adrenergic System of Brain

Chapter 8. Molecular Details of Ligand Selectivity

Chapter 9. Dynamics of Ligands Exchanges during Hb Deoxygenation

Chapter 10. Enzyme-Membrane Systems

Chapter 11. The Neuronal-Astrocyte-Capillary Coupled System Role in Adrenergic vs Glutamatergic Neurotransmission

Chapter 12. The Dynamic Regulation of the Brain Barrier Permeability by the Neurovascular Unit (NVU)

Chapter 13. The Hypothalamic-Pituitary-Adrenal Axis Control on the Psychosomatic Metabolic Network

Chapter 14. Responses to Stress and Associated Dysfunctions

Chapter 15. The brain-NA-body-adrenaline axis controls the fight-or-flight response in the hypothalamus signals for a multi-hormonal adaptive response shifting levels of oxytocin, serotonin, etc.

Chapter 16. Insulin Role

Chapter 17. Glymphatic system

Chapter 18. Sleep-awake

Chapter 19. Interrelationship between steroidal hormone pathways

Chapter 20. cAMP-Me2+-DNA complex on gene induction and signaling for coupling the environment stimulus to produce variety and its impact on evolution

Chapter 21. Responses to Stress and Associated Dysfunctions

Chapter 22. Conclusion

Acknowledgments

References

Index

[1] Garey L. J. (2006). Brodmann's Localisation in the Cerebral Cortex. New York: Springer. ISBN 978-0387-26917-7.
[2] Amy Bernard et al. (2012) Transcriptional architecture of the primate neocortex. Neuron, vol. 73, n 6, 1083-1099.
[3] Hawrylycz, M. J. et al. (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, vol. 489, 391-399.
[4] Katrin Amunts et al. (2013) BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. Science, Vol. 340 no. 6139 pp. 1472-1475.
[5] Brydon-Golz, S. and Bennun, A. (1975). Postsynthetic stabilized modification of adenylate cyclase by metabolites. Biochemical Society Transactions, 3, 721-724.
[6] Brydon-Golz, S.; Ohanian, H. and Bennun, A. (1977). Effects of noradrenaline on the activation and the stability of brain adenylate cyclase. Biochem. J., 166, 473-483.
[7] Lowry, O. H.; Rosebrough, N. J.; Farr, A. L. and Randall R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275.
[8] Harris, R.; Cruz, R. and Bennun, A. (1979). The effect of hormones on metal and metal-ATP interactions with fat cell adenylate cyclase. BioSystems, 11, 29-46.
[9] Ohanian, H.; Borhanian, K.; De Farias, S. and Bennun, A. (1981) A model for the regulation of brain adenylate cyclase by ionic equilibria. Journal of Bioenergetics and Biomembranes, 13, 5-6, 317-55.
[10] Gilman, A. G. (1970). A protein binding assay for adenosine 3,5-cyclic monophosphate. Proc. Natl. Acad. Sci., 67(1), 305-312.
[11] Rodbell, M. (1964) Metabolism of isolated fat cells. I. effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem., 239, 375-80.
[12] Harris, R. and Bennun, A. (1976). Hormonal control of fat cells adenylate cyclase. Molecular & Cellular Biochemistry, 13 (3), 141-146.
[13] Brown, B. L.; Ekins, R. P. and Albano, J. D. M. (1972). Saturation assay for cyclic AMP using endogenous binding protein. In Advances in Cyclic Nucleotide Research, 2, 25-40.
[14] Bennun, A. and Racker, E. (1969). Partial resolution of the enzymes catalyzing photophospharylation IV. Interaction of coupling factor I from chloroplast with components of the chloroplast membrane. J. Biol. Chem., 244, 1325-1331.
[15] Miyamoto, E.; Kuo, J. F. and Greengard, P. J. (1969). Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3’,5’-monophosphate-dependent protein kinase from bovine brain. J. Biol. Chem., 244 (23), 6395-6402.
[16] Bray, G. A. (1960). A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1, 279-285.
[17] Klein, H. H.; Friedenberg G. R.; Cordera R. and Olefsky J. (1985). Substrate specificities of insulin and epidermal growth factor receptor kinases. Biochem. Biophys. Res. Commun., 127, 254-263.
[18] Vicario, P. P.; Saperstein R. and Bennun, A. (1988). Role of divalent metals in the activation and regulation of insulin receptor tyrosine kinase. Biosystems., 22(1), 55-66.
[19] Pike, L. J.; Kuenzel, E. A.; Casnelli, J. E. and Krebs, E. G. (1984). A comparison of the insulin- and epidermal growth factor-stimulated protein kinases from human placenta. J. Biol. Chem., 259, 9913-9921.
[20] Cleland, W. W. (1963). The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys., Acta, 67, 104-37, 173-87.
[21] Haber E, Koerner T, Page LB, Kliman B, Purnode A. (1969) Application of a radioimmunoassay for angiotensin I to the physiologic measurements of plasma renin activity in normal human subjects. J. Clin. Endocrinol. Metab. 29(10), 1349-55.
[22] Sulner, J.W. and Bennun, A. (1985) Ca2+- dependent control of renin release. Biochem. Soc. Trans. 13, 363-364.
[23] Stoppani, A.O.M.; Bennun, A. and De Pahn, E.M. (1964). Energy requirement for the anaerobic oxidation of acetate in baker's yeast. Biochimica et Biophysica Acta, 92, 176-178.
[24] Bennun, A.; De Pahn, E. M. and Stoppani, A.O.M. (1964). Some properties of particle-bound intracellular ATPase from baker's yeast. Biochimica et Biophysica Acta, 89, 532-539.
[25] Stoppani, A.O.M.; Bennun, A. and De Pahn, E.M. (1964). Effect of 2,4-dinitrophenol on krebs cycle and phosphate metabolism in baker’s yeast. Archives of Biochemistry and Biophysics, 108(2), 258-265.
[26] Bennun A. and Avron M. (1964). Light-dependent and light-triggered adenosine triphosphatases in chloroplasts. Biochim Biophys Acta, 79, 646-648.
[27] Bennun A. and Avron M. (1965). The relation of the light-dependent and light-triggered adenosine triphosphatases to photophosphorylation. Biochim. Biophys. Acta, 109 (1), 117-127.
[28] Farron, F. and Racker, E. (1970) Mechanism of the conversion of coupling factor 1 from chloroplasts to an active ATPase. Biochemistry, 9 (19), pp 3829-3836.
[29] Ernster, L.; Zetterström, R. and Lindberg, R. (1950) A Method for the Determination of Tracer Phosphate in Biological Material. Acta. Chem. Scand., 4, 942-947.
[30] Nishizaki Y, Jagendorf AT. (1969) Role of cations in the activation of hloroplast adenosine triphosphatase by acid-base transition. Arch. Biochem. Biophys. 133(2), 255-62.
[31] Bernhardt, D. N. and Wreath A. R. (1955) Colorimetric Determination of Phosphorus by Modified Phosphomolybdate Method. Anal. Chem., 27(3), 440-441.
[32] Chen Jr., P.S.; Toribara T.Y. and Warner, H. (1956) Microdetermination of Phosphorus Anal. Chem. 28(11), 1756-1758.
[33] Changeux, J. P. (1963) Cold Spring Harbor Symposia Quanti. Biol. 28, 197.
[34] Smith, J.D.; Cappa, C.D.; Wilson, K.R.; Cohen, R.C.; Geissler, P.L. and Saykally, R.J. (2005). Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc. Natl. Acad. Sci. USA 102 (40): 14171-14174.
[35] Markovitch, Omer and Agmon, Noam (2007). Structure and energetics of the hydronium hydration shells. J. Phys. Chem. A 111 (12): 2253–2256.
[36] Jorgensen, W. L. and Madura, J. D. (1985). Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol. Phys. 56 (6): 1381.
[37] Monod, J.; Wyman, J. and Changeux J. P. (1965) On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88-118.
[38] Avron, M. and Jagendorf, A. T. (1959) Interactions of catalytic cofactors for photosynthetic phosphorylation with Hill reaction oxidants. J. Biol. Chem. 234 (5), 1315-20.
[39] Petrack, B. and Lipmann, F. (1961) in W.D. Mcelroy & H.D. Glass, Light and Life, Johns Hopkins Press, Baltimore, 621.
[40] Avron, M. (1962) Light-dependent adenosine triphosphatase in chloroplasts, J. Biol. Chem. 237, 2011-7.
[41] Vambutas, V. K. and Racker, E. (1965) Partial resolution of the enzymes catalyzine photophosphorylation. i. stimulation of photophosphorylation by a preparation of a latent, ca++- dependent adenosine triphosphatase from chloroplasts. J. Biol. Chem. 240, 2660-7.
[42] McCarty and Racker (1968) Partial resolution of the enzymes catalyzing photophosphorylation. 3. Activation of adenosine triphosphatase and 32P-labeled orthophosphate -adeno-sine triphosphate exchange in chloroplasts. J. Biol. Chem. 243(1), 129-37.
[43] Davis, H. P. and Squire, L. R. (1984). Protein synthesis and memory: a review. Psychol. Bull., 96 (3), 518-59.
[44] Kandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science, 294 (5544), 1030-1038.
[45] Goelet, P.; Castellucci, V. F.; Schacher, S. and Kandel, E. R. (1986). The long and the short of long-term memory a molecular framework. Nature, 322(6078), 419-422.
[46] Stahl, N. and Jencks, W. P. (1986). Hydrogen bonding between solutes in aqueous solution. J. Amer. Chem. Soc., 108 (14), 4196.
[47] Dillon, P. F. (2012). Biophysics. Cambridge University Press. p. 37.
[48] Bennun, A. (1974) The unitary hypothesis on the coupling of energy transduction and its relevance to the modeling of mechanisms. Annals of the New York Academy of Sciences, 227, 116-145.
[49] Bennun, A. (1971). Hypothesis for coupling energy transduction with ATP synthesis or ATP hydrolysis. Nature New Biology, 233 (35), 5-8.
[50] Prigogine, I.; Lefever, R.; Goldbeter, A. and Herschkowitz-Kaufman, M. (1969). Symmetry breaking instabilities in biological systems. Nature, 223 (5209), 913-916.
[51] Bennun A. Book: Molecular Aspects of the Psychosomatic-Metabolic Axis and stress. Series: Neurology - Laboratory and Clinical Research Developments. Editorial: Nova Science Publishers, 2015. ISBN: 978-1-63463-912-5.
[52] Greengard P. (1972) Adenosine 3':5'-cyclic monophosphate as a mediator in the action of neurohumoral agents. Biochem J. 128(3), 75P-77P.
[53] Robison, G.A.; Butcher, R.W. and Sutherland, E.W. (1967) Adenyl cyclase as an adrenergic receptor. Ann N Y Acad Sci. 139(3), 703-723.
[54] Kakiuchi, S. and Rall, T.W. (1968) The influence of chemical agents on the accumulation of adenosine 3',5'-Phosphate in slices of rabbit cerebellum. Mol Pharmacol. 4(4), 367-78.
[55] Kakiuchi, S. and Rall, T.W. (1968) Studies on adenosine 3',5'-phosphate in rabbit cerebral cortex. Mol Pharmacol. 4(4), 379-88.
[56] Weller, M. and Rodnight, R. (1970) Stimulation by cyclic AMP of intrinsic protein kinase activity in ox brain membrane preparations. Nature. 225(5228), 187-188.
[57] Pineda, V. V.; Athos J.; Wang H.; Celver, J.; Ippolito, D.; Boulay, G.; Birnbaumer, L. and Storm D. R. (2004) Removal of Gi1 Constraints of adenylyl cyclase in the Hippocampus enhances LTP and Impairs memory formation. Neuron, Vol. 41, 153-163.
[58] Byers, D.; Davis, R. L. and Kiger, J. A., Jr. (1981) Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature, 289, 79–81.
[59] Goleman, D. La Inteligencia Emocional. Editorial Javier Vergara. Buenos Aires, 2000.
[60] Siegil, R.; Conforti, N.; Feldman, S. and Chowers, I. (1974) Effects of neurogenic and systemic stresses on hypothalamic and adenohypophysial cAMP content. Neuroendocrinology 14(1), 24-33.
[61] Prince, W. T.; Berridge, M. J. & Rasmussen, H. (1972) Proc. Natl. Acad. Sci. U.S.A. 69, 553-557.
[62] Rasmussen, H.; Goodman, D. B. P. and Tanenhouse, A. (1972) The role of cyclic AMP and calcium in cell activation. CRC Crit. Rev. Biochem. 1(1), 95-148.
[63] Conway, E.J. and Hingerty D. (1946) The influence of adrenalectomy on muscle constituents. Biochem J. 40(4), 561-8.
[64] McEwen, B. S. (1998) Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 33–44.
[65] Lee, J. (2008) Memory reconsolidation mediates the strengthening of memories by additional learning. Nature neuroscience, 11, 1264–1266.
[66] Eichenbaum, H. (2003) Neurociencia cognitiva de la memoria. Editorial Ariel. Buenos Aires.
[67] Ohanian, H.; Borhanian, K. and Bennun, A. (1978). The effect of manganese on the regulation of brain adenylate cyclase by magnesium and adenosine triphosphate. Biochem. Soc. Trans., 6(6), 1179-82.
[68] Wei, Y. Z.; Kumbharkhane, A. C.; Sadeghi, M.; Sage, J. T.; Tian, W. D.; Champion, P. M.; Sridhar, S. and McDonald, M. J. (1994). Protein hydration investigations with high-frequency dielectric spectroscopy. J. Phys. Chem., 98 (26), 6644-6651.
[69] Nestler, E.J. and Duman, R.S. Neurotransmitter and Signal Transduction. Section 1, Neuropsychopharmacology: The Fifth Generation of Progress, 5th edition. Editorial: Lippincott Williams & Wilkins (LWW) (2002).
[70] Barco, A.; Balley, C. H. and Kandel, E. R. (2006). Common molecular mechanisms in explicit and implicit memory. J. Neurochem., 97 (6), 1520-1533.
[71] Bean, B. P. (2007). The action potential in mammalian central neurons. Nat. Rev. Neurosci., 8 (6), 451-65.
[72] Silva, A. J.; Kogan, J. H.; Frankland, P. W. and Kida, S. (1998). CREB and memory. Annu. Rev. Neurosci., 21, 127-148.
[73] Mayr, B. and Montminy, M. (2001). Transcriptional regulation by the phosphorylation dependent factor CREB. Nat. Rev. Mol. Cell Biol., 2 (8), 599-609.
[74] Kandel, E. R. (2012). The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain, 5, 14.
[75] Pavlov, M.; Siegbahn, P. and Sandström, M. (1998). Hydration of Beryllium, Magnesium, calcium, and zinc ions using density functional theory. J. Phys. Chem. A., 102 (1), 219-228.
[76] Rutishauser U., Ross I.B., Mamelak A.N., Schuman E.M., “Human memory strength is predicted by theta-frequency phase-locking of single neurons,” Nature 464 (7290): 903–907 (2010).
[77] Bennun, A. (2010). Characterization of the norepinephrine-activation of adenylate cyclase suggests a role in memory affirmation pathways. Overexposure to epinephrine inactivates adenylate cyclase, a causal pathway for stress-pathologies. Biosystems, 100(2), 87-93.
[78] Bennun, A. (1975). Hypothesis on the role of liganded states of proteins in energy transducing systems. Bio Sytems, 7, 230-244.
[79] Maheshwary, S., Patel, N., Sathyamurthy, N., Kulkarni, A. D. & Gadre, S. R. Structure and Stability of Water Clusters (H2O)n, n = 8-20: An Ab Initio Investigation. J. Phys. Chem. 105 (46): 10525 (2001).
[80] Fanourgakis, G. S., Aprà, E., de Jong, W.A. & Xantheas, S.S. High-level ab initio calculations for the four low-lying families of minima of (H2O)20. II. Spectroscopic signatures of the dodecahedron, fused cubes, face-sharing pentagonal prisms, and edge-sharing pentagonal prisms hydrogen bonding networks. J. Chem. Phys. 122 (13), 134304 (2005).
[81] Mir, M.H. & Vittal, J.J. Phase Transition Accompanied by Transformation of an Elusive Discrete Cyclic Water Heptamer to a Bicyclic (H2O)7 Cluster. Angew. Chem. Int. Ed. 46 (31), 5925–5928 (2007).
[82] Skou, J. C. (1957). The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta, 23, 394.
[83] Bennun A. (2012). Molecular Mechanisms Integrating Adenylyl Cyclase Responsiveness to Metabolic Control on Long-Term Emotional Memory and Associated Disorders. Nova Science Publishers, Inc. Long-Term Memory: Mechanisms, Types and Disorders (1-44). New York, USA.
[84] Gupta, R.K., Gupta, P., Yushok, W.D. & Rose, Z.B. (1983) Measurement of the dissociation constant of MgATP at physiological nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochemical and Biophysical Research Communications 117, 210–216.
[85] Serrano, R, Kielland-Brandt, MC & Fink, GR. (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319 (6055).
[86] Vicario, P. P.; Saperstein, R. and Bennun, A. (1988). Role of divalent metals in the kinetic mechanism of insulin receptor tyrosine kinase. Arch. Biochem. Biophys., 261(2), 336-345.
[87] Taqui-Khan, M. M. and Martell, A. E. (1962). Metal chelates of adenosine triphosphate. J. Phys. Chem., 66, 10-15.
[88] Taqui-Khan, M. M.; Martell, A. E. (1966). Thermodynamic quantities associated with the interaction of adenosine triphosphate with metal ions. J. Am. Chem. Soc., 88, 668-671.
[89] Tresguerres, M., Levin, L.R. & Buck, J. Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int. 79(12), 1277–1288 (2011).
[90] Fermi, G. and Perutz, M. F. (1982) In: Atlas of molecular structures in Biology, 2 Haemoglobin and Myoglobin, Phillips D.C. and Richards F.M. (Eds.) Clarendon Press, Oxford 4-5.
[91] Petersen, A, Kristensen, S.R., Jacobsen, J.P. & Hørder, M. (1990) 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes. Biochim Biophys Acta 1035(2), 169-74.
[92] Kovalevsky, A.Y., Chatake, T., Shibayama N., Park, S.-Y., Ishikawa, T., Mustyakimov, M., Fisher, S. Z., Langan, P. & Morimoto, Y. (2008) Preliminary time-of-flight neutron diffraction study of human deoxyhemoglobin. Acta Cryst. F64, 270-273.
[93] Bennun, A.; Seidler, N. and De Bari, V. A. (1985). A model for the regulation of haemoglobin affinity for oxygen. Biochemical Society Transactions, 13, 364-366.
[94] Ronda, L., Stefano Bruno, Stefania Abbruzzetti, Cristiano Viappiani, Stefano Bettati, Ligand reactivity and allosteric regulation of hemoglobin-based oxygen carriers. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 1784, Issue 10, 1365–1377 (2008).
[95] Resina, A; Brettoni, M.; Gatteschi, L.; Galvan, P.; Orsi, F. and Rubenni, M.G. (1994) Changes in the concentrations of plasma and erythrocyte magnesium and of 2,3-diphosphoglycerate during a period of aerobic training. Eur J Appl Physiol Occup Physiol. 68(5), 390-4.
[96] Bennun, A.; Needle, M. A. and De Bari, V. A. (1985). Stimulation of the hexose monophosphate pathway in the human erythrocyte by Mn2+: Evidence for a Mn2+-dependent NADPH peroxidase activity. Biochemical Medicine, 33, 17-21.
[97] Gadsby, D. C.; Bezanilla, F.; Rakowski, R. F.; De Weer, P. and Holmgren, M. (2012). The dynamic relationships between the three events that release individual Na+ ions from the Na+/K+-ATPase. Nature Cell Biology, 14, 416-423.
[98] Garrahan P. J. and Glynn I. M. (1966). Driving the sodium pump backwards to form adenosine triphosphate. Nature, 211 (5056), 1414-5.
[99] Guinzel, D. and Schlue, W. R. (1996). Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis. Journal of Physiology, 491 (3), 595-608.
[100] Bennun, A. and Blum, J. J. (1966). Properties of the induced acid phosphatase and of the constitutive acid phosphatase of Euglena. Biochim. Biophys. Acta, 128(1), 106-123.
[101] Atkinson, R.C. & Shiffrin, R.M. Chapter: Human memory: A proposed system and its control processes. In Spence, K.W.; Spence, J.T.. The psychology of learning and motivation (Volume 2). New York: Academic Press. 89–195 (1968).
[102] Brown, G. D. A.; Neath, I. and Chater, N. (2007) A ratio model of scale-invariant memory and identification. Psychological Review, 114, 539–576.
[103] Bennun, A. (2012). The dynamics of H-bonds of the hydration shells of ions, ATPase and NE-activated adenylyl cyclase on the coupling of energy and signal transduction. arXiv:1208.5673v1 [q-bio.OT].
[104] Prigogine I. Etude thermodynamique des phénomenes irréversibles. Acad. Roy. Belg. Bull. Cl. Sc. 31, 600 (1945).
[105] Martyushev L.M., Seleznev V.D. (2006) Maximum entropy production principle in physics, chemistry and biology. Physics Reports 426, 1-45.
[106] Glansdorff, P. and Prigogine, I. (1971) Thermodynamics Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London.
[107] Prigogine, I. (1976) Introduction to thermodynamics of irreversible processes. New York 3th ed. John Wiley & Sons.
[108] Nicolis, G. and Prigogine, I. (1977) Self-Organization in Nonequilibrium Systems. New York: John Wiley and Sons.
[109] Rubin, H. and Sitgreaves, R. (1954) Tech. Rep. No 19A. Appl. Math. Statist. Lab. Stanford University. Stanford, Cal.
[110] Prigogine I. (1978) Time, structure and fluctuations. Science, New Series. Vol. 201, Issue 4358, 777-785.
[111] Gibson, J.F.; Ingram, D.J. and Perutz, M.F. (1956) Orientation of the four haem groups in haemoglobin. Nature. 178(4539), 906-908.
[112] Perutz, M.F.; Rossmann, M.G.; Cullis, A.F.; Muirhead. H.; Will, G. and North A.C.T. (1960) Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis. Nature. 185, 416 – 422.
[113] Perutz, M.F.; Muirhead, H.; Cox, J.M. and Goaman, L.C.G. (1968) Three-dimensional Fourier Synthesis of Horse Oxyhaemoglobin at 2.8 Å Resolution: The Atomic Model, Nature. 219, 131-139.
[114] Perutz, M. F. (1970). Stereochemistry of cooperative effects in heamoglobin. Nature, 228, 726-739.
[115] Benesch, R. and Benesch R. E. (1969). Intracellular organic phosphates as regulators of oxygen release by hemoglobin. Nature, 221, 618-622.
[116] Arnone, A. (1972). X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature, 237, 146-149.
[117] Gerber, G.; Berger, H.; Janig, G. R. and Rapoport, S. M. (1973) Interaction of haemoglobin with ions. Quantitative description of the state of magnesium, adenosine 5'-triphosphate, 2,3-bisphosphoglycerate, and human haemoglobin under simulated intracellular conditions. Eur. J. Biochem., 38, 563-571.
[118] Raftos, J.E.; Lew, V.L. and Flatman P.W. (1999) Refinement and evaluation of a model of Mg2+ buffering in human red cells. Eur. J. Biochem. 263(3), 635-45.
[119] Rifkind, J. M. and Heim, J. M. (1977). Interaction of zinc and hemoglobin: binding of zinc and the oxygen affinity. Biochemistry, 16, 4438-4443.
[120] Perutz, M. F.; Wilkinson, A. J.; Paoli, M. and Dodson, G. G. (1998). The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct., 27, 1-34.
[121] Bennun, A.; Seidler, N. and De Bari, V. A. (1986). Divalent metals in the regulation of hemoglobin affinity for oxygen. Ann. N. Y. Acad. Sci., 463, 76-79.
[122] Bennun, A. (1987). A coupling mechanism to inter-relate regulatory with haem-haem interactions of haemoglobin. Biomed. Biochim. Acta, 46 (2-3), S314-9.
[123] Ackers, G.K. and Holt, J.M.. (2006) Asymmetric Cooperativity in a Symmetric Tetramer: Human Hemoglobin. Published. Journal Biological Chemistry, Vol. 281, No 17, 11441–11443.
[124] Deuticke, B.; Duhm, J. and Dierkesmann, R. (1971). Maximal elevation of 2,3-diphosphoglycerate concentrations in human erythrocytes: Influence on glycolytic metabolism and intracellular Ph. Pflugers Arch., 326 (1), 15-34.
[125] Steinhoff, H.J.; Kramm, B.; Hess, G.; Owerdieck, C. and Redhardt, A. (1993) Rotational and translational water diffusion in the hemoglobin hydration shell: dielectric and proton nuclear relaxation measurements. Biophys J. 65(4), 1486–1495.
[126] Salvay, A.G.; Grigera, J.R. and Colombo, M.F. (2003) The role of hydration on the mechanism of allosteric regulation: in situ measurements of the oxygen-linked kinetics of water binding to hemoglobin. Biophys J. 84(1), 564-70.
[127] Colombo, M.F.; Rau, D.C. and Parsegian, V.A. (1992) Protein solvation in allosteric regulation: a water effect on hemoglobin. Science. Vol. 256, No 5057, 655-659.
[128] Goldbeck, R.A.; Paquette, S.J. and Kliger, D.S. (2001) The effect of water on the rate of conformational change in protein allostery. Biophys J. 81(5), 2919-34.
[129] Antonini, E.and Brunori, M. (1969). On the rate of a conformation change associated with ligand binding in hemoglobin. J. Biol. Chem., 244 (14), 3909-3912.
[130] Gell, D.A.; Feng, L.; Zhou, S.; Jeffrey, P.D.; Bendak, K.; Gow, A.; Weiss, M.J.; Shi, Y. and Mackay, J.P. (2009)A cis-proline in alpha-hemoglobin stabilizing protein directs the structural reorganization of alpha-hemoglobin. J. Biol. Chem. 284(43), 29462-9.
[131] Bunn, H. F.; Ransil, B. J. and Chao, A. (1971). The interaction between erythrocyte organic phosphates, magnesium ion and hemoglobin. J. Biol. Chem. 246, 5273-5279.
[132] Thomas, E. L.; King, L. E. and Morrison, M. (1979). The uptake of cyclic AMP by human erythrocytes and its effect of membrane phosphorylation. Archs. Biochem. Biophys., 196, 459-464.
[133] DeBari, V. A. and Bennun, A. (1982). Cyclic GMP in the human erythrocyte. Intracellular levels and transport in normal subjects and chronic hemodialysis patients. Clin. Biochem., 15, 219-221.
[134] DeBari, V. A.; Novak, N. A. and Bennun, A. (1984). Cyclic Nucleotide Metabolism in the Human Erythrocyte. Clin. Physiol. Biochem., 2, 227-238.
[135] Novembre, P.; Nicotra, J.; DeBari, V. A.; Needle, M. A. and Bennun, A. (1984). Erythrocyte transport of cyclic nucleotides. Annals of the New York Academy of Sciences, 435, 190-194.
[136] Jiang, W.; Wang, Y. and Voth, G.A. (2007) Molecular Dynamics Simulation of Nanostructural Organization in Ionic Liquid/Water Mixtures. J. Phys. Chem. B. 111, 4812-4818.
[137] Moomaw, A.S. and Maguire M.E. (2010) Cation selectivity by the CorA Mg2+ channel requires a fully hydrated cation. Biochemistry. 27; 49(29), 5998-6008.
[138] Ebbinghaus, S.; Kim, S. J.; Heyden, M.; Yu, X.; Heugen, U.; Gruebele, M.; Leitner, D. M. and Havenith, M. (2007). An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA. 104 (52), 20749-20752.
[139] Godec, A. and Merzel F. (2012) Physical Origin Underlying the Entropy Loss upon Hydrophobic Hydration. J. Am. Chem. Soc. 134 (42), 17574–17581.
[140] Teo, I.; Yeow Chin, K; Stephens, C. and Paget, J. (2014). Drugs in Cardiopulmonary Resuscitation. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 177-212.
[141] Chowdhury, T.; Sandu, N. and Schaller, B. (2014). New Insights to the Role of (Nor-) /Adrenaline and Trigeminal Cardiac Reflex. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 71-80.
[142] Baker, C. N.; Katsandris, R.; Van, C. and Ebert, S. N. (2014). Adrenaline and Stress-Induced Cardiomyopathies: Three Competing Hypotheses for Mechanism(s) of Action. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 81-116.
[143] Myslivecek, J.; Valuskova, P. and Varejkova, E. (2014). Adrenaline, Heart Adrenoceptors and Stress. Endocrine Disorders. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 117-148.
[144] Baba, Y.; Hayashi, S.; Ikeda, S. and Nakajo, M. (2014). Adrenalines in adrenal venous sampling. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 1-12, 2014.
[145] Brou, C.; Logeat, F.; Gupta, N; Bessia C.; LeBail, O.; Doedens, J. R.; Cumano, A.; Roux, P.; Black, R. A. and Israël, A. (2000). A novel proteolytic cleavage involved in notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell, 5 (2), 207-16.
[146] Oliva, C. A.; Vargas, J. Y. and Inestrosa, N. C. (2013). Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci. 7, 224.
[147] Dehay, C.; Douglas, R. J.; Martin, K. A. and Nelson, C. (1991). Excitation by geniculocortical synapses is not ‘vetoed’ at the level of dendritic spines in cat visual cortex. J. Physiol., 440, 723-34.
[148] Knott, G. W.; Quairiaux, C.; Genoud, C. and Welker, E. (2002). Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron., 34 (2), 265-273.
[149] Wilson, C. J.; Croves, P. M.; Kitai, S. T. and Linder, J. C. (1983). Three-dimensional structure of dendritic spines in the rat neostriatum. J. Neurosci., 3, 383-388.
[150] Crivellano, E.; Nico, B. and Ribatti, D. (2005) Ultrastructural evidence of piecemeal degranulation in large dense-core vesicles of brain neurons. Anat. Embryol. (Berl), 210 (1), 25-34.
[151] Torrealba, F. and Carrasco, M. A. (2004). A review on electron microscopy and neurotransmitter systems. Brain Res. Brain Res. Rev., 47 (1-3), 5-17.
[152] Ahmari, S. E. and Smith, S. J. (2002). Knowing a nascent synapse when you see it. Neuron, 34 (3), 333-336.
[153] Mejías-Aponte, CA; Drouin, C. and Aston-Jones G. (2009) Adrenergic and noradrenergic innervation of the midbrain ventral tegmental area and retrorubral field: Prominent inputs from medullary homeostatic centers. J Neurosci., 29(11):3613-26.
[154] Oades, R.D. and Halliday, G.M. (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res. 434(2), 117-65.
[155] Nechifor, M (2008) Magnesium in drug dependences. Magnes Res. 21(1), 5–15.
[156] Brischoux, F; Chakraborty, S; Brierley, DI; Ungless, MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4894–9.
[157] Dahlstroem, A. and Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl., 232, 1-55.
[158] Ward, D. G. and Gunn, C. G. (1976). Locus coeruleus complex: elicitation of a pressor response and a brain stem region necessary for its occurrence. Brain Res. 107 (2), 401-406.
[159] Halliday, G. (2004). Substantia nigra and locus Coeruleus. In: Paxinos G, Mai JK, editors. The Human Nervous System - II Edition. San Diego (CA): Elsevier Academic Press; pp. 449-463.
[160] Aston-Jones G. S.; Iba, M.; Clayton, E.; Rajkowski, J. and Cohen, J. (2007). Locus coeruleus and regulation of behavioral flexibility and attention: clinical implications. In: Ordway GA, Schwartz MA, Frazer A, editors. Brain Norepinephrine - Neurobiology and Therapeutics. Cambridge: University Press, pp. 196-235.
[161] Iversen, L. L.; Rossor, M. N.; Reynolds, G. P.; Hills, R.; Roth, M.; Mountjoy, C. Q.; Foote, S. L.; Morrison, J. H. and Bloom, F. E. (1983). Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer's type. Neurosci Lett., 39 (1), 95-100.
[162] Baker, K. G.; Törk, I; Hornung, J. P. and Halasz P. (1989). The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study. Exp Brain Res., 77 (2), 257-270.
[163] Yager, L. M.; Garcia, A. F.; Wunsch, A. M. and Ferguson, S. M. (August 2015). The ins and outs of the striatum: Role in drug addiction. Neuroscience, 301, 529-541.
[164] Taylor, S. B.; Lewis, C. R.; Olive, M. F. (2013). The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Subst Abuse Rehabil, 4, 29-43.
[165] Grall-Bronnec, M. and Sauvaget, A. (2014) The use of repetitive transcranial magnetic stimulation for modulating craving and addictive behaviours: a critical literature review of efficacy, technical and methodological considerations. Neurosci. Biobehav. Rev. 47, 592-613.
[166] Sydor, A. and Brown, R. Y. (2008) Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. New York: McGraw-Hill Medical. pp. 365–366, 376.
[167] Nestler, E. J. (2013). Cellular basis of memory for addiction. Dialogues Clin. Neurosci. 15 (4), 431-443.
[168] Dumitriu, D.; Laplant, Q.; Grossman, Y. S.; Dias, C.; Janssen, W. G.; Russo, S. J.; Morrison, J. H. and Nestler, E. J. (2012) Subregional, dendritic compartment, and spine subtype specificity in cocaine regulation of dendritic spines in the nucleus accumbens. J. Neurosci. 32 (20), 6957-66.
[169] Trantham-Davidson, H.; Neely, L. C.; Lavin, A. and Seamans, J. K.. (2004) Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. The Journal of Neuroscience, 24 (47), 10652-10659.
[170] Colonnier, M. (1968). Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res., 9, 268-287.
[171] Cooney, J. R.; Hurlburt, J. L.; Selig, D. K., Harris, K. M. and Fiala, J. C. (2002) Endosomal compartments serve multiple hippocampal dendritic spines from a widespreas rather than a local store of recycling membrane. J. Neurosci., 22, 2215-24.
[172] Cornell-Bell, A. H.; Thomas, P. G. and Smith, S. J. (1990). The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes. Glia, 3, 322-334.
[173] Gyoneva, S. and Traynelis, S. F. (2013) Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J. Biol. Chem. 288(21), 15291-302.
[174] Vallstedt, A.; Klos, J. M. and Ericson, J. (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron. 45(1), 55-67.
[175] Carlson, N. R. Physiology of Behavior, 10/E, University of Massachusetts, Amherst (2009) ISBN-10: 0205666272. ISBN-13: 978-0205666270. 2010, Pearson, Cloth, 752 pp.
[176] Wright, E. E. and Simpson, E. R. (1981). Inhibition of the lipolytic action of beta-adrenergic agonists in human adipocytes by alpha-adrenergic agonists. J. Lipid Res., 22 (8), 1265-1270.
[177] Samuels, E. R. and Szabadi, E. (2008). Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part I: Principles of Functional Organisation. Curr Neuropharmacol., 6(3), 235-253.
[178] Mouton, P. R.; Pakkenberg, B.; Gundersen, H. J.; Price, D. L. (1994). Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J. Chem. Neuroanat., 7 (3), 185-190.
[179] Kety, S. S. (1970). The biogenic amines in the central nervous system: their possible roles in arousal, emotion and learning. In the neurosciences: second study program, 324-335.
[180] Xie, L.; Kang, H.; Xu, Q.; Chen, M. J.; Liao, Y.; Thiyagarajan, M.; O'Donnell, J.; Christensen, D. J.; Nicholson, C.; Iliff, J. J.; Takano, T.; Deane, R. and Nedergaard M. (2013). Sleep drives metabolite clearance from the adult brain. Science., 342 (6156), 373-377.
[181] Silvetti, M.; Seurinck, R.; van Bochove, M. E. and Verguts, T. (2013). The influence of the noradrenergic system on optimal control of neural plasticity. Front Behav Neurosci., 7, 160.
[182] Shankar, E.; Santhosh, K. T. and Paulose, C. S. (2006). Dopaminergic regulation of glucose-induced insulin secretion through dopamine D2 receptors in the pancreatic islets in vitro. IUBMB Life, 58(3), 157-63.
[183] Rubí, B.; Ljubicic, S.; Pournourmohammadi, S.; Carobbio, S.; Armanet, M.; Bartley, C. and Maechler, P. (2005). Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J. Biol. Chem., 280(44), 36824-32.
[184] Humeau, Y.; Doussau, F.; Grant, N. J. and Poulain, B. (2000). How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie., 82 (5), 427-446.
[185] Devilbiss, D. M. and Waterhouse B. D. (2011) Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. J. Neurophysiol. 105(1), 69-87.
[186] Kaehler, S. T.; Singewald, N. and Philippu, A. (1999). Dependence of serotonin release in the locus coeruleus on dorsal raphe neuronal activity. Naunyn Schmiedebergs Arch Pharmacol., 359 (5), 386-93.
[187] Feinstein, J.S.; Adolphs, R.; Damasio, A. and Tranel, D. (2011) The human amygdala and the induction and experience of fear. Curr Biol. 21(1), 34-8.
[188] Campese, V.D.; Gonzaga, R.; Moscarello, J.M. and LeDoux, J.E. (2015) Modulation of instrumental responding by a conditioned threat stimulus requires lateral and central amygdala. Front Behav Neurosci. 9, 293.
[189] Ramirez S; Liu X; MacDonald, CJ; Moffa A; Zhou J; Redondo RL and Tonegawa S. Activating positive memory engrams suppresses depression-like behaviour. Nature. 2015 Jun 18;522(7556):335-9.
[190] Fuchs, A.; Fuchs, F.; Husslein, P. and Soloff, M. S. (1984) Oxytocin receptors in the human uterus during pregnancy and parturition. Am. J. Obstet. Gynecol., 150, 734-741.
[191] Engstrom, T.; Atke, A. and Vilhardt, H. (1988) Oxytocin receptors and contractile response of the myometrium after long term infusion of prostaglandin F2α, indomethacin, oxytocin and an oxytocin antagonist in rats. Regul. Pept. 20, 65-72.
[192] Maltier, J. P.; Benghan-Eyene, Y. and Legrand, C. (1989) Regulation of myometrial β2-adrenergic receptors by progesterone and estradiol-17β in the late pregnant rats. Biol. Reprod., 40, 531-540.
[193] Cohen-Tannoudji, J.; Vivat, V.; Helimann, J.; Legrand, C. and Maltier, J. P. (1991) Regulation by progesterone of the high-affinity state of myometrial β-adrenergic receptors and of adenylate cyclase activity in the pregnant rat. J. Mol. Endocrinol., 6, 137-145.
[194] Lindeman, K. S.; Hirshman, C. A.; Kuhl, J. S.; Levitsky, H. I. and Emala, C. W. (1998) Chronic oxytocin pretreatment inhibits adenylyl cyclase activity in cultured rat myometrial cells. Biol. Reprod., 59(5), 1108-15.
[195] Fuchs, A. (1995) Plasma membrane receptors regulating myometrial contractility and their hormonal modulation. Semin. Perinatol., 19, 15-30.
[196] Schrey, M. P.; Read, A. M. and Steer, P. J. (1986) Oxytocin and vasopressin stimulate inositol phosphate production in human gestational myometrial and decidual cells. Biosci. Rep., 7, 613-619.
[197] Marc, S.; Lieber, D. and Harbon, S. (1986) Carbachol and oxytocin stimulate the generation of inositol phosphates in the guinea pig myometrium. FEBS Lett., 201, 9-14.
[198] Carlson, N. R. (2012). Physiology of behavior. Pearson, pp. 336.
[199] Solano-Castiella, E.; Anwander, A.; Lohmann, G.; Weiss, M.; Docherty, C.; Geyer, S.; Reimer, E.; Friederici, A. D. and Turner, R. (2010). Diffusion tensor imaging segments the human amygdala in vivo. Neuroimage, 49 (4), 2958–65.
[200] McDannald, M.; Kerfoot, E.; Gallagher, M. and Holland, P. C. (2005). Amygdala central nucleus function is necessary for learning, but not expression of conditioned auditory orienting. Behavioral Neuroscience, 119 (1), 202-212.
[201] Blumberg, H. P.; Kaufman, J; Martin, A; Whiteman, R; Zhang, J. H.; Gore, J. C.; Charney, D. S.; Krystal, J. H. and Peterson, B. S. (2003). Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry, 60 (12), 1201–8.
[202] Blair, R. J. R. (2008). The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy. Philosophical Transactions of the Royal Society, 363 (1503), 2557–2565.
[203] Sheline, Y. I.; Barch, D. M.; Donnelly, J. M.; Ollinger, J. M.; Snyder, A. Z. and Mintun, M. A. (2001). Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biological Psychiatry, 50 (9), 651-658.
[204] Martin, A. and Chao, L. L. (2001). Semantic memory and the brain: structures and processes. Current Opinion in Neurobiology, 11 (2), 194-201.
[205] Szepietowska, B.; Zhu, W.; Chan, O.; Horblitt, A.; Dziura, J. and Sherwin, R. S. (2011). Modulation of -Adrenergic Receptors in the Ventromedial Hypothalamus Influences Counterregulatory Responses to Hypoglycemia. Diabetes., 60 (12), 3154-8.
[206] Bookout, A. L.; de Groot, M. H. M.; Owen, B. M.; Lee, S.; Gautron, L.; Lawrence, H. L.; Ding, X.; Elmquist, J. K.; Takahashi, J. S.; Mangelsdorf, D. J. and Kliewer, S. A. (2013). FGF21 regulates circadian behavior and metabolism by acting on the nervous system. Nat Med., 19 (9), 1147-1152.
[207] Kalat, J. W. (2001). Biological psychology (7th ed.). Belmont, CA: Wadsworth Publishing.
[208] Krupic, J.; Burgess, N. and O'Keefe J. (2012). Neural representations of location composed of spatially periodic bands. Science. 17, 337(6096), 853-7.
[209] Krupic, J.; Bauza, M.; Burton, S.; Lever, C. and O'Keefe, J. (2013). How environment geometry affects grid cell symmetry and what we can learn from it. Philos Trans R Soc Lond B Biol Sci., 23, 369(1635), 20130188.
[210] Bukalo, O.; Campanac, E.; Hoffman, D. A. and Fields, R. D. (2013). Synaptic plasticity by antidromic firing during hippocampal network oscillations. Proc Natl Acad Sci U.S.A., 110(13), 5175-80.
[211] Sadeh, T.; Shohamy, D.; Levy, D.R.; Reggev, N. and Maril, A. (2010). Cooperation between the hippocampus and the striatum during episodic encoding. J. Cogn. Neurosci., 23 (7), 1597-608.
[212] Tulving, E. and Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8 (3), 198-204.
[213] Ziv, N. E.; Garner, C. C. (2004). Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci., 5, 385-99.
[214] Sorra, K. E.; Mishra, A.; Kirov, S. A. and Harris K. M. (2006) Dense core vesicles resemble active-zone transport vesicles and are dimished following synaptogenesis in mature hippocampal slices. Neuroscience, 141, 2097-106.
[215] Shepherd, G. M. and Harris K.M. (1998). Three-dimensional structure and composition of CA3--> CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci. 18, 8300-10.
[216] Sorra, K. E. and Harris, K. M. (1993). Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J. Neurosci., 13, 3736-48.
[217] Yankova, M. and Hart, S. A. (2001). Woolley C.S. Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: a serial electron-microscopic study. Proc. Natl. Acad. Sci. USA, 98, 3525-30.
[218] Corkin, S.; Amaral, D. G.; Gonzalez, R. G.; Johnson, K. A. and Hyman, B. T. (1997). H.M.’s medial temporal lobe lesion: Findings from magnetic resonance imaging. The Journal of Neuroscience, 17, 3964-3979.
[219] Zola-Morgan, S.; Suire, L. R. (1993). Neuroanatomy of memory. Annual Reviews Neuroscience, 16, 547-563.
[220] Mertor, R. (1996). Memory of time may be factor in Parkinson's. Columbia University Record, Vol 21, No. 22.
[221] Forgetfulness is the Key to a Healthy Mind. New Scientist, February 16. 2008.
[222] Cahill, L. and McGaugh, J. L. (1998). Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci., 21, 294-9.
[223] Costa-Mattioli, M. and Sonenberg, N. (2008). Translational control of gene expression: a molecular switch for memory storage. Prog. Brain Res., 169, 81-95.
[224] Grau, C.; Ginhoux, R.; Riera, A.; Nguyen, T. L.; Chauvat, H.; Berg, M.; Amengual, J. L.; Pascual-Leone, A. and Ruffini, G. (2014). Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies. DOI: 10.1371/journal.pone.0105225.
[225] Amunts, K.; Kedo, O.; Kindler, M.; Pieperhoff, P.; Mohlberg, H.; Shah, N.; Habel, U.; Schneider, F. and Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl), 210 (5-6), 343-52.
[226] Carlson, N. R. (1/12/2012). Physiology of Behavior. Pearson. p. 364.
[227] Petrovich, G. D.; Ross, C. A.; Mody, P.; Holland, P. C. and Gallagherw, M. (2009). Central, but not basolateral amygdala, is critical for control of feeding by aversive learned cues. J Neurosci., 29(48), 15205–15212.
[228] Hutcherson, C. A.; Seppala, E. M. and Gross, J. J. (2008). Loving-kindness meditation increases social connectedness. Emotion, 8 (5), 720-4.
[229] Paré, D.; Collins, D. R. and Pelletier, J. G. (2002). Amygdala oscillations and the consolidation of emotional memories. Trends in Cognitive Sciences, 6 (7), 306-14.
[230] Asari, T.; Konishi, S.; Jimura, K.; Chikazoe, J.; Nakamura, N. and Miyashita, Y. (2010). Amygdalar enlargement associated with unique perception. Cortex, 46 (1), 94-99.
[231] Maren, S. (1999). Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci, 22 (12): 561–7.
[232] Mure, H.; Hirano, S.; Tang, C. C.; Isaias, I. U.; Antonini, A.; Ma, Y.; Dhawan, V. and Eidelberg, D. (2011). Parkinson’s Disease Tremor-Related Metabolic Network: Characterization, Progression, and Treatment Effects. Neuroimage., 54(2), 1244-53.
[233] Bennun, A.; Needle, N. A. and De Bari, V. A. (1985). Infrared spectroscopy of erythrocyte plasma membranes. Biochem. Soc. Trans., 13, 127-128.
[234] Yamazaki, S.; Numano, R.; Abe, M.; Hida, A.; Takahashi, R.; Ueda, M.; Block, G. D.; Sakaki, Y.; Menaker, M. and Tei, H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science., 288(5466), 682-5.
[235] Chung, S.; Lee, E. J.; Yun, S.; Choe, H. K.; Park, S. B.; Son, H. J.; Kim, K. S.; Dluzen, D. E.; Lee, I.; Hwang, O.; Son, G. H. and Kim, K. (2014). Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell, 157(4), 858-68.
[236] Schibler, U. and Sassone-Corsi P. (2002) A web of circadian pacemakers. Cell, 111 (7), 919-22.
[237] Toh, K. L.; Jones, C. R.; He, Y.; Eide, E. J.; Hinz, W. A.; Virshup, D. M.; Ptácek, L. J. and Fu, Y. H. (2001). An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 291(5506), 1040-3.
[238] Taheri, S. and Mignot, E. (2002). The genetics of sleep disorders. Lancet Neurol., 1 (4), 242-50.
[239] Martin, S. R.; Masino, L. and Bayley, P. M. (2000) Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences. Protein Sci., 9(12), 2477-88.
[240] Kleene, R.; Mzoughi, M.; Joshi, G.; Kalus, I.; Bormann, U.; Schulze, C.; Xiao, M. F.; Dityatev, A. and Schachner, M. (2010). NCAM-induced neurite outgrowth depends on binding of calmodulin to NCAM and on nuclear import of NCAM and fak fragments. J. Neurosci., 30(32), 10784-98.
[241] Jurado, L. A.; Chockalingam, P. S. and Jarrett, H. W. (1999). Apocalmodulin. Physiol. Rev. 79(3), 661-82.
[242] Malmendal, A.; Linse, S.; Evenäs, J.; Forsén, S. and Drakenberg, T. (1999). Battle for the EF-hands: magnesium-calcium interference in calmodulin. Biochemistry., 38(36), 11844-50.
[243] Guther, T. and Vormann, J. (1992). Na+-dependent Mg2+ efflux from isolated perfused rat hearts. Magnes Bull., 14, 126-129.
[244] Guther, T.; Vormann, J. and Hollriegl, V. (1991) Noradrenaline-induced Na+-dependent Mg2+ efflux from rat liver. Magnes Bull., 13, 122-124.
[245] Romani, A.; Marfella, C. and Scarpa, A. (1993). Regulation of magnesium uptake and release in the heart and in isolated ventricular myocytes. Circ Res., 72, 1139-1148.
[246] Takano, T. and Nedergaard, M. (2007). DM-nitrophen provides physiologically significant increases of intracellular [Ca2+] in the presence of Mg2+. Cell Calcium., 41 (5), 503-4.
[247] Romani, A. M. P.; Matthews, V. D. and Scarpa, A. (2000). Parallel stimulation of glucose and Mg2+ accumulation by insulin in rat hearts and cardiac ventricular myocytes. Circ Res., 86, 326-333.
[248] Romani, A. and Scarpa, A. (1990). Hormonal control of Mg2+ transport in the heart. Nature, 346, 841-844.
[249] Flatman P. W. (1980). The effect of buffer composition and deoxygenation on the concentration of ionized magnesium inside human red blood cells. J. Physiol., 300, 19-30.
[250] Somlyo, A. V.; McClellan, G.; Gonzalaz-Serratos, H. and Somlyo, A. P. (1985). Electron probe X-ray microanalysis of post-tetanic Ca2+ and Mg2+ movements across the sarcoplasmic reticulum in situ. J. Biol. Chem., 260, 6801-6807.
[251] Munshi, P.; Stanley, C. B.; Ghimire-Rijal, S.; Lu, X.; Myles, D. A. and Cuneo, M. J. (2013). Molecular details of ligand selectivity determinants in a promiscuous β-glucan periplasmic binding protein. BMC Struct Biol., 13, 18.
[252] Bennun, A. (1971) Interaction of the chloroplast coupling factor with protons and water, Congreso Argentino de Ciencias Biológicas - 1970, in “Recientes adelantos en Biología” (J.A. Moguilevsky and R. Mejía, eds.), pp. 254-264, University of Buenos Aires Press.
[253] Bennun, A. (1971). Properties of chloroplast's coupling factor-1 and a hypothesis for a mechanism of energy transduction, Proceedings First European Biophysics Congress, Baden, Austria, 1971, in “Photosynthesis, bioenergetics, regulation, origin of life” (E. Broda, A. Locker and H. Sprínger-Lederer, eds.), IV, 85-91, Wiener Medizinischen Akademíe, Vienna.
[254] Bennun, A. (2013). The coupling of thermodynamics with the organizational water-protein intra-dynamics driven by the H-bonds dissipative potential of cluster water. arXiv: 1303.6993 [q-bio.MN].
[255] Belton, P.S.

(2000). Nuclear magnetic resonance studies of the hydration of proteins and DNA. Cell. Mol. Life Sci., 57, 993–998.
[256] Kornblatt, J. and Kornblatt, J. (1997). The role of water in recognition and catalysis by enzymes. The Biochemist, 19 (3), 14–17.
[257] Servantie, J.; Atilgan, C. and Atilgan A. R. (2010). Depth dependent dynamics in the hydration shell of a protein. J. Chem Phys., 133 (8), 085101.
[258] Tournier, A. L.; Xu, J. and Smith, J. C. (2003). Translational hydration water dynamics drives the protein glass transition. Biophys. J., 85 (3), 1871-5.
[259] Chanutin, A. and Curnish, R. R. (1967). Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys., 121(1), 96-102.
[260] Benesch, R. E. (1994). The stability of the heme-globin linkage: measurement of heme exchange. Methods Enzymol., 231, 496-502.
[261] Benesch, R. and Benesch, R. E. (1967). The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun., 26, 162-174.
[262] Vicario, P. P. and Bennun, A. (1990). Separate effects of Mg2+, MgATP, and ATP4- on the kinetic mechanism for insulin receptor tyrosine kinase. Archives of Biochemistry and Biophysics, 278, 99-105.
[263] Panin L. E. (2014). Influence of stress hormones (adrenaline and cortisol) on structure and function of erythrocyte membranes. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 149-176.
[264] Churchill, P. C. and Churchill, M. C. (1982). Ca-dependence of the inhibitory effect of K-depolarization on renin secretion from rat kidney slices. Arch. Int. Pharmacodyn. Ther., 258 (2), 300-312.
[265] Perutz, M. F.; Paoli, M. and Lesk, A. M. (1999). Fix L, a haemoglobin that acts as an oxygen sensor: signalling mechanism and structural basis of its homology with PAS domains. Chem. Biol., 6, 291-7.
[266] Klug, A. and Rhodes, D. (1987). Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb. Symp. Quant. Biol., 52, 473-82.
[267] McGrath, C. F.; Buckman, J. S.; Gagliardi, T. D.; Bosche, W. J.; Coren, L. V. and Gorelick, R. J. (2003). Human cellular nucleic acid-binding protein Zn2+ fingers support replication of human immunodeficiency virus type 1 when they are substituted in the nucleocapsid protein. J. Virol., 77(15), 8524-31.
[268] Brewer, G. J. (1974). General red cell metabolism. In: Surgenor D. ed. The red blood cell. New York: Academic Press, 387-433.
[269] Marie, J.; Tichonicky, L.; Dreyfus, J. C. and Kahn, A. (1979). Endogenous, cyclic 3’,5’ AMP-dependent phosphorylation of Human red cell pyruvate kinase. Bichem. Biophys. Res. Commun., 87, 862-867.
[270] Vicario P. P. and Bennun, A. (1989). Interaction of MnATP and peptide substrate with insulin receptor tyrosine kinase. Biochem. Soc. Trans., 17 (6), 1108-9.
[271] Vicario P. P. and Bennun, A. (1989). Regulation of insulin receptor tyrosine kinase by metabolic intermediates. Biochem. Soc. Trans., 17(6), 1110-1.
[272] Bailey, C. H. and Kandel, E. R. (2008). Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia. Prog Brain Res., 169, 179-98.
[273] Reis, G. F.; Lee, M. B.; Huang, A. S. and Parfitt, K. D. (2005). Adenylate cyclase-mediated forms of neuronal plasticity in hippocampal area CA1 are reduced with aging. J. Neurophysiol., 93(6), 3381-9.
[274] Veloso, D.; Guynn, R. W.; Oskarsson, M. and Veech, R. L. (1973). The concentrations of free and bound magnesium in rat tissues. Relative constancy of free Mg2+ concentrations. J. Biol. Chem., 248 (13), 4811-4819.
[275] Rasmussen, H. (1970). Cell communication, calcium ion, and cyclic adenosine monophosphate. Science, 170 (3956), 404-412.
[276] Rasmussen, H. and Goodman D. B. (1975). Calcium and cAMP as interrelated intracellular messengers. Ann. N.Y. Acad. Sci., 253, 789-796.
[277] León, D.; Castillo, C. A.; Ruiz, M. A.; Albasanz, J. L.and Martín., M. (2007). Metabotropic glutamate receptor/phospholipase C pathway is increased in rat brain at the end of pregnancy. Neurochem Int., 50(5), 681-8.
[278] López-Téllez, J. F.; López-Aranda, M. F.; Navarro-Lobato, I.; Masmudi-Martín, M.; Martín Montañez, E.; Blanco Calvo E. and Khan, Z. U. (2010). Prefrontal Inositol Triphosphate Is Molecular Correlate of Working Memory in Nonhuman Primates. The Journal of Neuroscience, 30(8), 3067-3071.
[279] Strader, C. D.; Dixon, R. A.; Cheung, A. H.; Candelore, M. R.; Blake, A. D. and Sigal, I. S. (1987). Mutations that uncouple the beta-adrenergic receptor from Gs and increase agonist affinity. J. Biol. Chem., 262, 16439-43.
[280] Honore, T.; Lauridsen, J. and Krogsgaard-Larsen P. (1982). The binding of [3H]AMPA, a structural analogue of glutamic acid, to rat brain membranes. Journal of Neurochemistry, 38 (1), 173-178.
[281] Gray E. G. (1959). Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscopic study. J. Anat., 93, 420-33.
[282] Johnston G. A. R. (1996). GABAA Receptor Pharmacology. Pharmacology and Therapeutics, 69 (3), 173-198.
[283] Chen, K.; Li, H. Z.; Ye, N.; Zhang, J. and Wang, J. J. (2005). Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro. Brain Res Bull, 67 (4), 310-8.
[284] Crispino, M.; Kaplan, B. B. and Martin R. (1997). Active polysomes are present in the large presynaptic endings of the synaptosomal fraction from squid brain. J. Neurosci., 17, 7694-702.
[285] Crivellato, E.; Nico, B. and Ribatti, D. (2005). Ultrastructural evidence of piecemeal degranulation in larg dense-core vesicles of brain neurons. Anat. Embryol. (Berl), 210, 25-34.
[286] De Camilli, P.; Slepnev, V. I.; Shupliakov, O. (2000) The estructure of synapses. In: Cowen W. M., Sudhof T. C., Stevens C. F., eds. The structure of synapses. Baltimore, M. D.: The Johns Hopkins University Press, 2000, 89-133.
[287] Deller, T.; Bas Orth, C.; Del Turco, D.; Vlachos, A.; Burbach, G. J.; Drakew, A.; Chabanis, S.; Korte, M.; Schwegler, H.; Haas, C. A. and Frotscher, M. (2007). A role for synaptopodin and the spine apparatus in hippocampal synaptic plasticity. Ann. Anat. 189 (1), 5-16.
[288] Fornai, F. (2007). Norepinephrine in neurological disorders. In: Ordway GA, Schwartz MA, Frazer A, editors. Brain Norepinephrine - Neurobiology and Therapeutics. Cambridge: University Press; pp. 436-71.
[289] Simpson, K. L. and Lin, R. C. S. (2007). Neuroanatomical and chemical organization of the locus Coeruleus. In: Ordway GA, Schwartz MA, Frazer A, editors. Brain Norepinephrine - Neurobiology and Therapeutics. Cambridge: University Press; pp. 9-52.
[290] Brodal, A. (1981). The reticular formation and some related nuclei. The nucleus locus coeruleus. In: Brodal A, editor. Neurological anatomy in relation to clinical medicine. New York: Oxford University Press; pp. 416-419.
[291] Nieuwenhuys, J. V.; Voogd, J. and vanHuijzen, C. The human central nervous system: a synopsis and atlas. Berlin: Springer, 1988.
[292] Fornai, F.; di Poggio, A. B.; Pellegrini, A.; Ruggieri, S. and Paparelli, A. (2007) Norepinephrine in Parkinson’s disease: from disease progression to current therapeutics. Curr. Med. Chem., 14, 2330-2334.
[293] Fornai, F.; Ruffoli, R.; Giorgi, F. S. and Paparelli, A. (2011). The role of locus coeruleus in the antiepileptic activity induced by vagus nerve stimulation. Eur. J. Neurosci., 33, 2169-2178.
[294] Zhou, W.; Qian, Y., Kunjilwar, K., Pfaffinger, P. J., and Choe, S. (2004) Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Neuron. 41 (4), 573-586.
[295] Norris, J. G. and Benveniste, E. N. (1993). Interleukin-6 production by astrocytes: induction by the neurotransmitter norepinephrine. J. Neuroimmunol. 45, 137-145.
[296] Kingham, P. J. and Pocock, J. M. (2000). Microglial apoptosis induced by chromograinin A is mediated by mitochondrial depolarisation and the permeability transition but not by cytochrom C release. J. Neurochem., 74, 1452-1462.
[297] Engelhardt, B. and Sorokin, L. (2009). The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol., 31(4), 497-511.
[298] Buxbaum, J. D.; Choi, E. K.; Luo, Y.; Lilliehook, C.; Crowley, A. C.; Merriam, D. E. and Wasco, W. (1998). Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat. Med., 4 (10), 1177-1181.
[299] An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000). Modulation of A-type potassium channels by a family of calcium sensors. Nature, 403 (6769), 553-556.
[300] Carrion, A. M.; Mellstrom, B. and Naranjo, J. R. (1998). Protein kinase A-dependent derepression of the human prodynorphin gene via differential binding to an intragenic silencer element. Mol. Cell. Biol., 18 (12), 6921-6929.
[301] Ledo, F.; Link, W. A.; Carrion, A. M.; Echeverria, V.; Mellstrom, B. and Naranjo, J. R. (2000). The DREAM-DRE interaction: key nucleotides and dominant negative mutants. Biochim. Biophys. Acta, 1498 (2-3), 162-168.
[302] Osawa, M.; Dace, A.; Tong, K. I.; Valiveti, A.; Ikura, M. and Ames, J. B. (2005). Mg2+ and Ca2+ Differentially Regulate DNA Binding and Dimerization of DREAM. J Biol Chem. 280 (18), 18008-14.
[303] Bekar, L. K.; Wei, H. S. and Nedergaard, M. (2012). The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J. Cereb Blood Flow Metab., 32(12), 2135-45.
[304] Wang, F.; Smith, N.A.; Xu, Q.; Fujita, T.; Baba, A.; Matsuda, T.; Takano, T.; Bekar, L. and Nedergaard, M. (2012). Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci. Signal., 5(218), ra26.
[305] Goldin, A. L.; Barchi, R. L.; Caldwell, J. H.; Hofmann, F.; Howe, J. R.; Hunter, J. C.; Kallen, R. G.; Mandel, G.; Meisler, M. H.; Netter, Y. B.; Noda, M.; Tamkun, M. M.; Waxman, S. G.; Wood. J. N. and Catterall, W. A. (2000). Nomenclature of voltage-gated sodium channels. Neuron., 28(2), 365-8.
[306] Barchi, R. L. (1998). Ion channel mutations affecting muscle and brain. Curr Opin Neurol., 11(5), 461-8.
[307] Sun, W.; Barchi, R. L. and Cohen, S. A. (1995). Probing sodium channel cytoplasmic domain structure. Evidence for the interaction of the rSkM1 amino and carboxyl termini. J. Biol. Chem., 270 (38), 22271-6.
[308] Kleopa, K. A. and Barchi R. L. (2002). Genetic disorders of neuromuscular ion channels. Muscle Nerve., 26 (3), 299-325.
[309] Kraner, S. D.; Rich, M. M.; Sholl, M. A.; Zhou, H.; Zorc, C. S.; Kallen, R. G. and Barchi, R. L. (1999). Interaction between the skeletal muscle type 1 Na+ channel promoter E-box and an upstream repressor element. Release of repression by myogenin. J. Biol Chem., 274 (12), 8129-36.
[310] Barchi, R. L.; Rich, M. M. and Kraner, S. D. (1999). Altered gene expression in steroid-treated denervated muscle. Neurobiol Dis., 6 (6), 515-22.
[311] Bourtchuladze, R.; Frenguelli, B.; Blendy, J.; Cioffi, D.; Schutz, G. and Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79 (1), 59-68.
[312] Mørk, A. and Geisler, A. (1987). Effects of lithium on calmodulin-stimulated adenylate cyclase activity in cortical membranes from rat brain. Pharmacology and Toxicology, 60 (1), 17-23.
[313] Jung, J. S.; Bhat, R. V.; Preston, G. M.; Guggino, W. B.; Baraban, J. M. and Agre, P. (1994). Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci USA, 91 (26), 13052-6.
[314] Neuwelt, E. A.; Bauer, B.; Fahlke, C.; Fricker, G.; Iadecola, C.; Janigro, D.; Leybaert, L.; Molnár, Z.; O'Donnell, M. E.; Povlishock, J. T.; Saunders, N. R.; Sharp, F.; Stanimirovic, D.; Watts, R. J. and Drewes, L. R. (2011). Engaging neuroscience to advance translational research in brain barrier biology. Nat. Rev. Neuroscience, 12 (3), 169-182.
[315] Musa-Aziz, R.; Chen, L. M.; Pelletier, M. F. and Boron, W. F. (2009). Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl. Acad. Sci. USA., 106 (13), 5406-11.
[316] Benfenati, V. and Ferroni, S. (2010). Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience, 168, 926-940.
[317] Cerdan, S. and Seelig, J. (1990). NMR studies of metabolism. Annu. Rev. Biophys. Biophys. Chem., 19, 43-67.
[318] Kunnecke, B. (1995). Application of 13C NMR spectroscopy to metabolic studies on animals, in Carbon-13 NMR Spectroscopy of Biological Systems, ed. N. Beckman (New York: Academic Press, Inc.), 159–267.
[319] Morris, P., and Bachelard, H. (2003). Reflections on the application of C-13-MRS to research on brain metabolism. NMR Biomed. 16, 303-312.
[320] Rodrigues, T. B., and Cerdán, S. (2007). The cerebral tricarboxylic acid cycles. In Handbook of Neurochemistry and Molecular Neurobiology, eds A. Lajtha, G. Gibson, and G. Dienel (New York: Springer), 63-91.
[321] Rodrigues, T. B.; Valette, J. and Anne-Karine Bouzier-Sore. (2013). 13C NMR spectroscopy applications to brain energy metabolism. Front. Neuroenergetics, 5, 9.
[322] Cerdan, S.; Sierra, A.; Fonseca, L. L.; Ballesteros, P. and Rodrigues, T. B. (2009). The turnover of the H3 deuterons from (2-13C) glutamate and (2-13C) glutamine reveals subcellular trafficking in the brain of partially deuterated rats. J. Neurochem. 109(Suppl. 1), 63-72.
[323] Friebolin, H. (1991). Basic One- and Two-dimensional NMR Spectroscopy. Verlagsgesellschaft; New York, NY, USA: VCH Publishers.
[324] Chowdhury, G. M. I.; Patel, A. B.; Mason, G. F.; Rothman, D. L. and Behar K. L. (2007) Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development. J Cereb Blood Flow Metab, 27(12), 1895-1907.
[325] Brekke, E. M.; Walls, A. B.; Schousboe, A.; Waagepetersen, H. S. and Sonnewald, U. (2012) Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons. J Cereb Blood Flow Metab, 32 (9), 1788-1799.
[326] Norenberg, M. D. and Martinez-Hernandez, A. (1979). Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161, 303-310.
[327] Ozkan, E. D., and Ueda, T. (1998). Glutamate transport and storage in synaptic vesicles. Jpn. J. Pharmacol. 77, 1-10.
[328] Amaral, A. I., Teixeira, A. P., Sonnewald, U., and Alves, P. M. (2011). Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J. Neurosci. Res. 89, 700-710.
[329] Birnbaum, S. M.; Levintow, L.; Kingsley, R. B. and Greenstein, J. P. (1952). Specificity of amino acid acylases. J. Biol. Chem. 194: 455-470.
[330] Miller, D. S. (2010). Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol. Sci. 31, 246-254.
[331] Abbott, N. J.; Rönnbäck, L. and Hansson, E. (2006). Astrocyte-endothelial interactions at the blood–brain barrier. Nature Rev. Neurosci., 7 (1), 41-53.
[332] Iadecola, C. and Nedergaard, M. (2007). Glial regulation of the cerebral microvasculature. Nature Neurosci., 10, 1369-1376.
[333] Kimelberg, H. K. and Nedergaard, M. (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics, 7, 338-353.
[334] Simard, M.; Arcuino, G.; Takano, T.; Liu, Q. S. and Nedergaard, M. (2003). Signalling at the gliovascular interface. J. Neurosci., 23, 9254-9262.
[335] Davidson, A. L.; Dassa, E.; Orelle, C. and Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev., 72 (2), 317-64.
[336] Goffeau, A.; de Hertogh, B. and Baret, P. V. (2004). ABC Transporters. In: Encyclopedia of Biological Chemistry, 1, 1-5.
[337] Jones, P. M. and George, A. M. (2004). The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci., 61 (6), 682-99.
[338] Ponte-Sucre, A. (2009). ABC transporters in microorganisms. Caister Academic Press. ISBN 978-1-904455-49-3.
[339] Perea, G.; Navarrete, M. and Araque, A. (2009). Tripartite synapses: astrocytes process and control synaptic information. Trends. Neurosci. 32, 421-431.
[340] Thompson, S. W.; Dray, A. and Urban, L. (1994). Injury-induced plasticity of spinal reflex activity: NK1 neurokinin receptor activation and enhanced A- and C-fiber mediated responses in the rat spinal cord in vitro. J Neurosci., 14(6), 3672-87.
[341] Jardetzky, O. (1966). Simple allosteric model for membrane pumps. Nature, 211, 969-970.
[342] Clausen, J. D.; McIntosh, D. B.; Woolley, D. G. and Andersen, J. P. (2011). Modulatory ATP binding affinity in intermediate states of E2P dephosphorylation of sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem., 286, 11792-11802.
[343] Jensen, A. M.; Sorensen, T. L.; Olesen, C.; Moller, J. V. and Nissen, P. (2006). Modulatory and catalytic modes of ATP binding by the calcium pump. EMBOJ., 25, 2305-2314.
[344] Bublitz, M.; Morth, J. P. and Nissen, P. (2011). P-type ATPases at a glance. J. Cell Sci. 124(Pt 15), 2515-9.
[345] Albers, R. W. (1967). Biochemical aspects of active transport. Annu. Rev. Biochem., 36, 727-756.
[346] Olesen, C.; Picard, M.; Winther, A. M.; Gyrup, C.; Morth, J. P.; Oxvig, C.; Moller, J. V. and Nissen, P. (2007). The structural basis of calcium transport by the calcium pump. Nature, 450, 1036-1042.
[347] Raben, M. S. and Hollemberg, C. H. (1959). Effect of growth hormone on plasma fatty acids. J. Clin. Invest., 38(3), 484-8.
[348] Lefkowitz, R. J. (2007). Seven transmembrane receptors: something old, something New. Acta Physiol. (Oxf.), 190(1), 9-19.
[349] William, R. (2010). Robert Lefkowitz: godfather of G protein-coupled receptors. Circ. Res., 106 (5), 812-4.
[350] Mazzocchi, G.; Malendowicz, L. K.; Gottardo, L.; Aragona, F. and Nussdorfer, G. G. (2001). Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade. J. Clin. Endocrinol. Metab., 86 (2), 778-82.
[351] Sutherland, E. W.; Rall, T. W. and Menon, T. (1962). Adenylyl cyclase. I. Distribution, preparation, and properties. J. Biol. Chem., 237, 1220-7.
[352] Pupim, L. B.; Flakoll, P. J.; Yu, C. and Ikizler, T. A. (2005). Recombinant human growth hormone improves muscle amino acid uptake and whole-body protein metabolism in chronic hemodialysis patients. Am. J. Clin. Nutr., 82 (6), 1235-1243.
[353] Grimm, S.; Pestke, K.; Feeser, M.; Aust, S.; Weigand, A.; Wang, J.; Wingenfeld, K.; Pruessner, J.C.; Böker, H. and Bajbouj, M. (2014). Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress. Soc Cogn Affect Neurosci. Jan 28. [Epub ahead of print].
[354] Taelman, V. F.; Dobrowolski, R.; Plouhinec, J. L.; Fuentealba, L. C.; Vorwald, P. P.; Gumper, I.; Sabatini, D. D. and De Robertis, E. M. (2010). Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell., 143(7), 1136-48.
[355] Zeigerer, A.; Lampson, M. A.; Karylowski, O.; Sabatini, D. D.; Adesnik, M.; Ren, M. and McGraw, T. E. (2002). GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps. Mol. Biol. Cell., 13 (7), 2421-35.
[356] Barbacid, M. (1994). The Trk family of neurotrophin receptors. J. Neurobiol., 25(11), 1386-403.
[357] Rapp, G.; Klaudiny, J.; Hagendorff, G.; Luck, M. R. and Scheit, K. H. (1989). Complete sequence of the coding region of human elongation factor 2 (EF-2) by enzymatic amplification of cDNA from human ovarian granulosa cells. Biol. Chem. Hoppe Seyler., 370 (10), 1071-5.
[358] Vicario, P. P.; Saperstein, R. and Bennun, A. (1988). Regulation of insulin receptor tyrosine kinase by divalent metal cations, metal-ATP substrate and free ATP4-. Biochem. Soc. Trans., 16, 40-42.
[359] Hunter, T. (2009) Tyrosine phosphorylation: thirty years and counting. Current Opinion in Cell Biology, 21(2), 140–146.
[360] Hunter, T. and Sefton, B. M. (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA, 77(3 I), 1311–1315.
[361] Eckhart, W.; Hutchinson, M. A. and Hunter, T. (1979) An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates, Cell, 18(4), 925–933.
[362] Bishop, J. M. (1991) Molecular themes in oncogenesis. Cell, 64(2), 235–248.
[363] Grangeasse, C.; Cozzone, A. J.; Deutscher, J. and Mijakovic, I. (2007) Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends in Biochemical Sciences, 32(2), 86–94.
[364] Pincus, D.; Letunic, I.; Bork, P. and Lim, W. A. (2008) Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc. Natl. Acad. Sci. USA., 105(28), 9680–9684.
[365] Thomas, S. M. and Brugge, J. S. (1997) Cellular functions regulated by SRC family kinases. Annu. Rev. Cell Dev. Biol., 13, 513–609.
[366] Yanagimachi, R. (1994) Mammalian fertilization,” in The Physiology of Reproduction, Knobil, E. and Neil, J. D. Eds., pp. 189–317, Raven Press, New York, NY, USA, 1994.
[367] Wei, G. and Mahowald, A. P. (1994) The germline: familiar and newly uncovered properties. Annual Review of Genetics, 28, 309–324.
[368] Darszon, A.; Nishigaki, T.; Beltran,C. and Treviño, C. L. (2011) Calcium channels in the development, maturation, and function of spermatozoa. Physiological Reviews, 91(4), 1305–1355.
[369] Toshimori, K. (2009) Dynamics of the mammalian sperm head: modifications and maturation events from spermatogenesis to egg activation. Advances in Anatomy, Embryology, and Cell Biology, 204, 5–94.
[370] Voronina, E. and Wessel, G. M. (2003) The regulation of oocyte maturation. Current Topics in Developmental Biology, 58, 53–110.
[371] Ciapa, B. and Chiri, S. (2000) Egg activation: upstream of the fertilization calcium signal. Biology of the Cell, 92(3-4), 215–233.
[372] Whitaker, M. (2006) Calcium at fertilization and in early development. Physiological Reviews, 86(1), 25–88.
[373] Takashi W. Ijiri, A. K. M. Mahbub Hasan and Ken-ichi Sato. (2012) Protein-Tyrosine Kinase Signaling in the Biological Functions Associated with Sperm. Journal of Signal Transduction, 2012, Article ID 181560, 18 pages.
[374] White, D. R. and Aitken, R. J. (1989) Influence of epididymal maturation on cyclic AMP levels in hamster spermatozoa. Int. J. Androl. 12(1), 29-43.
[375] Gavi, S.; Shumay, E.; Wang, H. Y. and Malbon, C. C. (2006) G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends. Endocrinol. Metab., 17(2), 48-54.
[376] Hendriks, W. J.; Elson, A.; Harroch, S.; Pulido, R.; Stoker, A and den Hertog, J. (2013) Protein tyrosine phosphatases in health and disease. FEBS J., 280(2), 708-30.
[377] Sahin, M.; Dowling, J. J. and Hockfield, S. (1995) Seven protein tyrosine phosphatases are differentially expressed in the developing rat brain. J. Comp Neurol., 351(4), 617-31.
[378] Petrone, A.; Battaglia, F.; Wang, C.; Dusa, A.; Su, J.; Zagzag, D.; Bianchi, R.; Casaccia-Bonnefil, P.; Arancio, O. and Sap, J. (2003) Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation. EMBO J., 22(16), 4121-31.
[379] Skelton, M. R.; Ponniah, S.; Wang, D. Z.; Doetschman T.; Vorhees, C. V. and Pallen, C. J. (2003) Protein tyrosine phosphatase alpha (PTP alpha) knockout mice show deficits in Morris water maze learning, decreased locomotor activity, and decreases in anxiety. Brain Res., 984(1-2), 1-10.
[380] Ohnishi, H.; Murata, Y.; Okazawa, H. and Matozaki, T. (2011) Src family kinases: modulators of neurotransmitter receptor function and behavior. Trends Neurosci., 34(12), 629-37.
[381] Takahashi, N.; Nielsen, K. S.; Aleksic, B.; Petersen, S.; Ikeda, M.; Kushima, I.; Vacaresse, N.; Ujike, H.; Iwata, N.; Dubreuil, V.; Mirza, N.; Sakurai, T.; Ozaki, N.; Buxbaum, J. D. and Sap, J. (2011) Loss of function studies in mice and genetic association link receptor protein tyrosine phosphatase α to schizophrenia. Biol. Psychiatry., 70(7), 626-35.
[382] Impey, S.; McCorkle, S. R.; Cha-Molstad, H.; Dwyer, J.M.; Yochum, G. S.; Boss, J. M.; McWeeney, S.; Dunn, J. J.; Mandel, G. and Goodman, R. H. (2004). Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell., 119(7), 1041-54.
[383] Alberini, C. M. (2009) Transcription Factors in Long-Term Memory and Synaptic Plasticity. Physiological Reviews, 89(1), 121-145.
[384] Carlezon, W. A. Jr.; Duman, R. S. and Nestler, E. J. (2005). The many faces of CREB. Trends Neurosci. 28(8), 436-45.
[385] Kisseleva, T.; Bhattacharya, S.; Braunstein, J. and Schindler, C. W. (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene., 285 (1–2), 1–24.
[386] Finkbeiner, S. (2001). New roles for introns: sites of combinatorial regulation of Ca2+- and cyclic AMP-dependent gene transcription. Sci. STKE. 2001(94), pe1.
[387] Pigazzi, M.; Manara, E.; Baron, E. and Basso, G. (2009) miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res. 69(6), 2471-8.
[388] Kornhauser, J. M.; Cowan, C. W.; Shaywitz, A. J.; Dolmetsch, R. E.; Griffith, E. C.; Hu, L. S.; Haddad, C.; Xia, Z. and Greenberg, M. E. (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron. 34(2), 221-33.
[389] Husi, H.; Ward, M. A.; Choudhary, J.S.; Blackstock, W. P. and Grant, S. G. (2000). Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci., 3(7), 661-9.
[390] Chan, C. B.; Liu, X.; He, K.; Qi, Q.; Jung, D. Y.; Kim, J. K. and Ye, K. (2011). The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity. EMBO Rep., 12 (8), 847-54.
[391] Rana, S.; Blowers, E. C. and Natarajan, A. (2015). Small molecule adenosine 5′-monophosphate activated protein kinase (AMPK) modulators and human diseases. J. Med. Chem., 58(1), 2-29.
[392] Lindsley, J. E. and Rutter, J. (2004). Nutrient sensing and metabolic decisions. Comp Biochem Physiol B Biochem Mol Biol., 139 (4), 543-59.
[393] Boudeau J.; Scott, J. W.; Resta, N.; Deak, M.; Kieloch, A.; Komander, D.; Hardie, D. G.; Prescott, A. R.; van Aalten, D. M. and Alessi, D. R. (2004). Analysis of the LKB1-STRAD-MO25 complex. J. Cell Sci., 117(Pt 26), 6365-75.
[394] Hardie, D. G.; Scott, J. W.; Pan, D. A. and Hudson, E. R. (2003). Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546(1), 113-20.
[395] Michiels, C. (2004). Physiological and pathological responses to hypoxia. Am. J. Pathol., 164(6), 1875-82.
[396] Forcet, C.; Etienne-Manneville, S.; Gaude, H.; Fournier, L.; Debilly, S.; Salmi, M.; Baas, A.; Olschwang, S.; Clevers, H. and Billaud, M. (2005). Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet., 14(10), 1283-92.
[397] Atkinson, D. E. (1968). The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry, 7 (11), 4030-4034.
[398] Bennun, A. and Brydon-Golz, S. (1975). Norepinephrine and the Pathophysiology of Neuronal Membranes. Biophysical Journal. 15, No 2, 49a.
[399] Hughes, J. (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res. 88(2), 295-308.
[400] Schaefer, M. L.; Wong, S. T.; Wozniak, D. F.; Muglia, L.M.; Liauw, J.A.; Zhuo Min, Nardi A.; Hartman, R. E.; Vogt, S. K.; Luedke C.E.; Storm, D.R. and Muglia, L.J. (2000) Altered stress-induced anxiety in adenylate cyclase type VIII-Deficient Mice. The Journal of Neuroscience, 20(13), 4809-4820.
[401] Kindt, M.; Soeter, M. and Vervliet, B. (2009) Beyond extinction: erasing human fear responses and preventing the return of fear. Nature Neuroscience 12, 256-258.
[402] Hughes, C. F.; Uhlmann, C. and Pennebaker, J. W. (1994) The body's response to processing emotional trauma: Linking verbal text with autonomic activity. Journal of Personality, 62, 565-585.
[403] Rudy, J. W., (2008) Destroying memories to strengthen them. Nature neuroscience 11, 1241–242.
[404] Wicks WD. (1969) Induction of hepatic enzymes by adenosine 3',5'-monophosphate in organ culture. J. Biol Chem. 244(14), 3941-50.
[405] Thoenen, H. (1972) Neuronally mediated enzyme induction in adrenergic neurons and adrenal chromaffin cells. Biochem Soc Symp. (36), 3-15.
[406] Sharma, S.K.; Klee, W.A. and Nirenberg, M. (1975) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci USA., 72(8), 3092-6.
[407] Wolfgang, D.; Chen, I. and Wand G. S. (1994) Effects of restraint stress on components of adenylyl cyclase signal transduction in the rat hippocampus. Neuropsychopharmacology. 11(3), 187-93.
[408] Wolfgang (2007) Adrenalectomy blocks the effect of stress on rats. Vol. 2007, Issue 413, p. pe64.
[409] Chester J. A. and Watts V. J. (2007) Adenylyl Cyclase 5: A New Clue in the Search for the “Fountain of Youth”? Sci. STKE, 2007(413), pe64.
[410] Danner, D.; Snowdon, D. and Friesen, W. (2001) Positive emotions in early life and longevity: findings from the Nun Study. Journal of Personality and Social Psychology 80(5), 804–813.
[411] Roth, G.; Lane, M. and Ingram, D. (2002) Biomarkers of caloric restriction may predict longevity in humans. Science, 297, 811.
[412] Kumar, A.; Rassoli, A. and Raizada, M. K. (1988) Angiotensinogen gene expression in neuronal and glial cells in primary cultures of rat brain. J. Neurosci. Res., 19(3), 287–290.
[413] Thomas, W. G.; Greenland, K. J.; Shinkel, T. A. and Sernia, C. (1992) Angiotensinogen is secreted by pure rat neuronal cell cultures. Brain Res 588(2), 191–200.
[414] Palkovits, M.; Mezey, E.; Fodor, M.; Ganten, D.; Bahner, U.; Geiger, H. and Heidland, A. (1995) Neurotransmitters and neuropeptides in the baroreceptor reflex arc: connections between the nucleus of the solitary tract and the ventrolateral medulla oblongata in the rat. Clin. Exp. Hypertens., 17, 101–113.
[415] Tham, M.; Sim, M. K. and Tang, F. R. (2001) Location of renin-angiotensin system components in the hypoglossal nucleus of the rat. Regul. Pept., 101, 51–57.
[416] Mungall, B. A.; Shinkel, T. A. and Sernia, C. (1995) Immunocytochemical localization of angiotensinogen in the fetal and neonatal rat brain. Neuroscience, 67, 505–524.
[417] Thomas, W. G. and Sernia, C. (1988) Immunocytochemical localization of angiotensinogen in the rat brain. Neuroscience, 25, 319–341.
[418] Aronsson, M.; Almasan, K.; Fuxe, K.; Cintra, A.; Harfstrand, A.; Gustafsson, J. A. and Ganten, D. (1988) Evidence for the existence of angiotensinogen mRNA in magnocellular paraventricular hypothalamic neurons. Acta Physiol Scand, 132, 585–586.
[419] Yang, G.; Gray, T. S.; Sigmund, C. D. and Cassell, M. D. (1999) The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system. Brain Res., 817, 123–131.
[420] Vinsant, S.; Chappel, M. C.; Ferrario, C. M.; Ganten, D. and Diz, D. I. (2005) Low glial angiotensinogen is not associated with dficits in angiotensin peptides in neuronal pathways in transgenic ASrAogen rats. FASEB J., 19, 674, 4.
[421] Lobo, M. K. and Nestler, E. J. (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat., 5, 41.
[422] Grueter, B. A.; Robison, A. J.; Neve, R. L.; Nestler, E. J. and Malenka, R. C. (2013) ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc. Natl. Acad. Sci. U S A., 110(5), 1923-8.
[423] Swanson, L. W. (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull., 9(1-6), 321-53.
[424] Berger, M.; Gray, J. A and Roth, B. L. (2009). The expanded biology of serotonin. Annu. Rev. Med., 60, 355–66.
[425] Nixon, N. L. et al. (2014) Biological vulnerability to depression: linked structural and functional brain network findings. The British Journal of Psychiatry, 204(4), 283-289.
[426] Young, S. N. (2007). How to increase serotonin in the human brain without drugs. Rev. Psychiatr. Neurosci., 32 (6), 394-99.
[427] Nichols, D. E. and Nichols, C. D. (2008) Serotonin receptors. Chem. Rev. 108 (5), 1614-41.
[428] Petersson, M.; Uvnäs-Moberg, K.; Erhardt, S. and Engberg, G. (1998) Oxytocin increases locus coeruleus alpha 2-adrenoreceptor responsiveness in rats. Neurosci. Lett., 255(2), 115-8.
[429] Ahlquist, R.P. (1948) A study of the adrenotrophic receptors. Am. J. Physiol., 155, 586-600.
[430] Limbird L. E. (2005) Cell Surface Receptors: A Short Course on Theory and Methods. 3rd Edition Springer.
[431] Hicks, C.; Jorgensen, W.; Brown, C.; Fardell, J.; Koehbach, J.; Gruber, C. W.; Kassiou, M.; Hunt, G. E. and McGregor, I. S. (2012) The nonpeptide oxytocin receptor agonist WAY 267,464: receptor-binding profile, prosocial effects and distribution of c-Fos expression in adolescent rats. J. Neuroendocrinol., 24(7), 1012-29.
[432] McGregor, I. S.; Callaghan, P. D. and Hunt, G. E. (2008) From ultrasocial to antisocial: a role for oxytocin in the acute reinforcing effects and long-term adverse consequences of drug use? Br. J. Pharmacol. 154 (2), 358-368.
[433] Caldwell, H. K., and Young W. S. III (2006). Oxytocin and Vasopressin: Genetics and Behavioral Implications. In Lajtha A, Lim R. Handbook of Neurochemistry and Molecular Neurobiology: Neuroactive Proteins and Peptides (3rd ed.). Berlin: Springer. pp. 573–607.
[434] Kiss, A. and Mikkelsen, J. D. (2005) Oxytocin-anatomy and functional assignments: a minireview. Endocr. Regul., 39(3), 97-105.
[435] Veenema, A. H. and Neumann, I. D. (2008) Central vasopressin and oxytocin release: regulation of complex social behaviours. Progress in Brain Research. Progress in Brain Research, 170, 261-76.
[436] Gimpl, G.; Fahrenholz, F. (2001) The oxytocin receptor system: structure, function, and regulation. Physiol. Rev., 81(2), 629-83.
[437] Devost, D.; Wrzal, P. and Zingg, H. H. (2008) Advances in vasopressin and oxytocin from genes to behaviour to disease. Prog. Brain Res., 170, 167-76.
[438] Gimpl, G.; Reitz, J.; Brauer, S. and Trossen, C. (2008) Advances in Vasopressin and Oxytocin from Genes to Behaviour to Disease. Prog. Brain Res., 170, 193-204.
[439] Striepens, N.; Kendrick, K. M.; Hanking, V.; Landgraf, R.; Wüllner, U.; Maier, W. and Hurlemann, R. (2013) Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci. Rep. 3, 3440.
[440] Ku, C. Y.; Qian, A.; Wen, Y.; Anwer, K. and Sanborn B. M. (1995) Oxytocin stimulates myometrial guanosine triphosphatase and phospholipase-C activities via coupling to G alpha q/11. Endocrinology, 136(4), 1509-1515.
[441] Bhalla, R. C.; Sanborn, B. M. and Korenman, S. G. (1972) Hormonal interactions in the uterus: inhibition of isoproterenol-induced accumulation of adenosine 3’:5’-cyclic monophosphate by oxytocin and prostaglandins. Proc. Natl. Acad. Sci. USA, 69(12), 3761–3764.
[442] Anwer, K. and Sanborn, B. M. (1989) Changes in intracellular free calcium in isolated myometrial cells: role of extracellular and intracellular calcium and possible involvement of guanine nucleotide-sensitive protein. Endocrinology, 124, 17–23.
[443] Marieb, E. N. and Hoehn K. N. (2012). Human Anatomy & Physiology 9th edition, chapter:16, page:599. Series: Books a la Carte. Publisher: Pearson.
[444] Lee, H. J.; Macbeth, A. H.; Pagani, J. H. and Young, W. S. (2009). Oxytocin: the great facilitator of life. Prog. Neurobiol., 88 (2), 127-51.
[445] De Dreu, C. K.; Greer, L. L.; Van Kleef G. A.; Shalvi, S. and Handgraaf, M. J. (2011). Oxytocin promotes human ethnocentrism. Proc. Natl. Acad. Sci. U.S.A., 108 (4), 1262-6.
[446] Malik, A. I.; Zai, C. C.; Abu, Z.; Nowrouzi, B. and Beitchman, J. H. (2012). The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes Brain Behav., 11 (5), 545–51.
[447] Shalvia, S. and De Dreub, C. (2014). Oxytocin promotes group-serving dishonesty. Proc. Natl. Acad. Sci. USA, 111(15), 5503-5507.
[448] Bennun A. The Noradrenaline-Adrenaline-Axis of the Fight-or-Flight Exhibits Oxytocin and Serotonin Adaptive Responses. International Journal of Medical and Biological Frontiers. Volume 21, Issue 4, pages: 387-408 (2015).
[449] Bennun A. (2014) NA-Overstimulation of the Hypothalamic-Pituitary Adrenal Axis Turns-On the Fight-or Flight Response but Adrenaline Lacks a Negative Feedback which Could Normalize Psychosomatic Dysfunctions. Books: Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body (pp. 13-70). In Medicine: Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun.
[450] Hawkins, B. T. and Davis, T. P. (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 57(2), 173-85.
[451] Ding, F.; O'Donnell, J.; Thrane, A. S.; Zeppenfeld, D.; Kang, H.; Xie, L.; Wang, F. and Nedergaard, M. (2013). α1-Adrenergic receptors mediate coordinated Ca(2+) signaling of cortical astrocytes in awake, behaving mice. Cell Calcium., 54 (6), 387-94.
[452] Barchi, R. L. (1993). Ion channels and disorders of excitation in skeletal muscle. Curr. Opin. Neurol. Neurosurg., 6 (1), 40-7.
[453] Schotland, D. L.; Fieles, W. and Barchi, R. L. (1991). Expression of sodium channel subtypes during development in rat skeletal muscle. Muscle Nerve, 14(2), 142-51.
[454] Ballabh, P.; Braun, A. and Nedergaard, M. (2004). The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis., 16 (1), 1-13.
[455] Oberheim, N. A.; Goldman, S. A. and Nedergaard, M. (2012) Heterogeneity of Astrocytic Form and Function. Methods Mol Biol., 814, 23-45.
[456] Blake, C. C.; Pulford W. C. and Artymiuk P. J. (1983) X-ray studies of water in crystals of lysozyme. J. Mol Biol., 167(3), 693-723.
[457] Park, S. and Saven, J. G. (2005) Statistical and molecular dynamics studies of buried waters in globular proteins. Proteins. 60(3), 450-63.
[458] Stahl, S. M.; Grady, M. M.; Moret, C. and Briley, M. (2005). SNRIs: their pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr, 10(9), 732-47.
[459] Bruzzone, S.; Guida, L.; Zocchi, E.; Franco, L. and De Flora, A. (2001) Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 15(1), 10-12.
[460] Cherian, P. P.; Siller-Jackson, A. J.; Gu, S.; Wang, X.; Bonewald, L. F.; Sprague, E. and Jiang, J. X. (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 16(7), 3100-6.
[461] Stout, C. E.; Costantin, J. L.; Naus, C. C. and Charles, A. C. (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol Chem. 277 (12), 10482-8.
[462] Ye, Z. C.; Wyeth, M. S.; Baltan-Tekkok, S. and Ransom, B. R. (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci. 23(9), 3588-96.
[463] Quist, A. P.; Rhee, S. K.; Lin, H. and Lal R. (2000) Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J. Cell. Biol. 148(5), 1063-74.
[464] Kristián, T.; Gidö, G.; Kuroda, S.; Schütz, A. and Siesjö, B. K. (1998) Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion. Exp. Brain Res. 120(4), 503-9.
[465] Kristián, T. and Siesjö, B. K. (1998) Calcium in ischemic cell death. Stroke. 29(3), 705-18.
[466] Lin, M. C.; Huang, Y. L.; Liu, H. W.; Yang, D. Y.; Lee, C. P.; Yang, L. L. and Cheng, F. C. (2004) On-line microdialysis-graphite furnace atomic absorption spectrometry in the determination of brain magnesium levels in gerbils subjected to cerebral ischemia/reperfusion. J. Am. Coll. Nutr. 23(5), 561S-565S.
[467] Nicholson, C.; Bruggencate, G. T.; Steinberg, R. and Stöckle, H. (1977) Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc. Natl. Acad. Sci. U S A. 74(3), 1287-90.
[468] Grant, S. J. and Redmond, D. E. Jr. (1981) The neuroanatomy and pharmacology of the nucleus locus coeruleus. Prog Clin Biol Res. 71, 5-27.
[469] Schacter D. L. (2012) Adaptive constructive processes and the future of memory. Am. Psychol. 67(8), 603-13.
[470] Princeton Review (2003). Anatomy Coloring Workbook, Second Edition. The Princeton Review. pp. 120–. ISBN 978-0-375-76342-7. Retrieved 10 January 2013.
[471] Van der Kolk, B.; Greenberg, M.; Boyd, H. and Krystal, J. (1985) Inescapable shock, neurotransmitters, and addiction to trauma: toward a psychobiology of post-traumatic stress. Biol Psychiatry. 20(3), 314-25.
[472] Delaney, R.; Tussi, D. and Gold P. E. (1983) Long-term potentiation as a neurophysiological analog of memory. Pharmacol. Biochem. Behav. 18, 137-139.
[473] Van der Kolk, B.; Blitz, R.; Burr, W.; Sherry, S. and Hartmann, E. (1984) Nightmares and trauma: a comparison of nightmares after combat with lifelong nightmares in veterans. Am. J. Psychiatry. 141(2), 187-90.
[474] Banks, W. A.; Owen, J. B. and Erickson, M. A. (2012) Insulin in the brain: there and back again. Pharmacol. Ther., 136(1), 82-93.
[475] Kamat, P. K.; Kalani, A.; Rai, S.; Tota, S. K.; Kumar, A. and Ahmad, A. S. (2015) Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology. Mol. Neurobiol. [Epub ahead of print].
[476] Mitra, J. K.; Roy, J. and Sengupta, S. (2011) Vasopressin: Its current role in anesthetic practice. Indian. J. Crit. Care. Med. 15(2), 71-7.
[477] Bernal-Mizrachi, E.; Wen, W.; Srinivasan, S.; Klenk, A.; Cohen D. and Permutt, M. A. (2001) Activation of Elk-1, an Ets transcription factor, by glucose and EGF treatment of insulinoma cells. Am. J. Physiol. Endocrinol. Metab., 281(6), E1286-99.
[478] Suh, Y. A.; Arnold, R. S.; Lassegue, B.; Shi, J.; Xu, X.; Sorescu, D.; Chung, A. B.; Griendling, K. K. and Lambeth, J. D. (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature, 401(6748), 79–82.
[479] Ciobica, A.; Bild, W.; Hritcu, L. and Haulica, I. (2009) Brain renin-angiotensin system in cognitive function: pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurol. Belg., 109(3), 171-80.
[480] Fischer-Ferraro, C.; Nahmod, V. E.; Goldstein, D. J. and Finkielman S. (1971) Angiotensin and renin in rat and dog brain. J. Exp. Med., 133, 353-361.
[481] Ganten, D.; Minnich, J. L.; Granger, P.; Hayduk, K.; Brecht, H. M.; Barbeau, A.; Boucher, R. and Genest, J. (1971) Angiotensin-forming enzyme in brain tissue. Science, 173, 64-65.
[482] Dzau, V. J.; Ingelfinger, J.; Pratt, R. E. and Ellison, K. E. (1986) Identification of renin and angiotensinogen messenger RNA sequences in mouse and rat brains. Hypertension, 8, 544-548.
[483] Ganten, D.; Fuxe, K.; Phillips, M. I.; Mann, J. F. E. and Ganten U. (1978) The brain isorenin-angiotensin system: biochemistry, localization, and possible role in drinking and blood pressure regulation. In: Frontiers in Neuroendocrinology, edited by Ganong WF, Martini L. New York: Raven, p. 61-99.
[484] Hermann, K.; Raizada, M. K.; Sumners, C. and Phillips, M. I. (1987) Presence of renin in primary neuronal and glial cells from rat brain. Brain. Res., 437, 205-213.
[485] Speck, G.; Poulsen, K.; Unger, T.; Rettig, R.; Bayer, C.; Scholkens, B. and Ganten, D. (1981) In vivo activity of purified mouse brain renin. Brain Res. 219, 371-384.
[486] Choe, E.S. and Wang, J. Q. (2002). Regulation of transcription factor phosphorylation by metabotropic glutamate receptor-associated signaling pathways in rat striatal neurons. Neuroscience, 114(3),557-65.
[487] Ahmed, T. and Frey J. U. (2005). Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro. Neuropharmacology. 49(4), 477-92.
[488] Li, D.; Jin, L.; Alesi, G. N.; Kim, Y. M.; Fan, J.; Seo, J. H.; Wang, D.; Tucker, M.; Gu, T. L.; Lee, B. H.; Taunton, J.; Magliocca, K. R.; Chen, Z. G.; Shin, D. M.; Khuri, F. R. and Kang, S. (2013) The prometastatic ribosomal S6 kinase 2-cAMP response element-binding protein (RSK2-CREB) signaling pathway up-regulates the actin-binding protein fascin-1 to promote tumor metastasis. J. Biol. Chem., 288(45), 32528-38.
[489] Chawla, S. and Bading, H. (2001). CREB/CBP and SRE-interacting transcriptional regulators are fast on-off switches: duration of calcium transients specifies the magnitude of transcriptional responses. J. Neurochem., 79(4), 849-58.
[490] Nielsen, S.; Chou, C. L.; Marples, D.; Christensen, E. I.; Kishore, B. K. and Knepper, M. A. (1995). Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl. Acad. Sci. U.S.A., 92 (4), 1013-7.
[491] Lind, R. W.; Swanson, L. W. and Ganten D. (1985) Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study. Neuroendocrinology, 40, 2-24.
[492] Fuxe, K.; Ganten, D.; Hoekfelt, T. and Bolme, P. (1980) Immunohistochemical evidence for the existence of angiotensin II-containing nerve terminal in the brain and spinal cord in the rat. Neurosci. Lett., 2, 229-239.
[493] Lind, R. W.; Swanson, L. W. and Ganten, D. Angiotensin II immunoreactive pathways in the central nervous system of the rat: evidence for a projection from the subfornical organ to the paraventricular nucleus of the hypothalamus. Clin. Exp. Hypertens., 6, 1915-1920.
[494] Lind, R. W.; Swanson, L. W. and Ganten, D. (1984) Angiotensin II immunoreactivity in the neural afferents and efferents of the subfornical organ of the rat. Brain Res., 321, 209-215.
[495] Pickel, V. M. and Chan, J. (1995) Co-localization of angiotensin II and gamma-aminobutyric acid in axon terminals in the rat subfornical organ. Neurosci. Lett., 193, 89-92.
[496] Babar, S. M. (2013) SIADH associated with ciprofloxacin. Ann Pharmacother, 47 (10), 1359-63.
[497] McKinley, M. J.; Albiston, A. L.; Allen, A. M.; Mathai, M. L.; May, C. N.; McAllen, R. M.; Oldfield, B. J.; Mendelsohn, F. A. and Chai, S. Y. (2003) The brain renin-angiotensin system: location and physiological roles. Int. J. Biochem. Cell Biol., 35(6), 901-18.
[498] Grobe, J. L.; Xu, D. and Sigmund, C. D. (2008) An Intracellular Renin-Angiotensin System in Neurons: Fact, Hypothesis, or Fantasy. Physiology (Bethesda), 23, 187-193.
[499] Lavoie, J. L.; Cassell, M. D.; Gross, K. W. and Sigmund, C. D. (2004) Localization of renin expressing cells in the brain using a REN-eGFP transgenic model. Physiol. Genomics, 16, 240–246.
[500] Lavoie, J. L.; Cassell, M. D. and Gross, K. W. and Sigmund, C. D. (2004) Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model. Hypertension, 43, 1116-1119.
[501] Morimoto, S.; Cassell, M. D. and Sigmund, C. D. (2002) The brain renin-angiotensin system in transgenic mice carrying a highly regulated human renin transgene. Circ. Res., 90, 80-86.
[502] Emma, J. E.; Cervoni, P.; Sulner, J. W. and Bennun, A. (1986) KCI-stimulated renin release, Ann. New York Acad. Sci., 463, 281-283.
[503] Sulner, J. and Bennun, A. (1984) Ca2+-dependent control of renin release, Biochemical Society Bulletin, 6(3), 30.
[504] Sulner, J. and Bennun, A. (1985) Acachidonic acid stimulation of renin release: Dependence upon calcium, calmodulin and a-adrenergic agonism, Federation Proceedings, 44(4), 1127.
[505] Bennun, A. and Sulner, J. (1985) Tyramine stimulation of renin release: upon calcium, calmodulin and prostaglandins. Federation Proceedings, 44(4), 1128.
[506] Serban, G.; Foldes, C. and Bennun, A. (1985) Electrometric studies in human nails in vivo, 5th International Symposium on Bioengineering and the 5km (8/29-9/2), Hyatt Regency Hotel, Union Square, San Francisco.
[507] Sakima, A.; Averill, D. B.; Kasper, S. O.; Jackson, L.; Ganten, D.; Ferrario, C. M.; Gallagher, P. E. and Diz, D. I. (2007) Baroreceptor reflex regulation in anesthetized transgenic rats with low glial-derived angiotensinogen. Am. J. Physiol. Heart Circ. Physiol., 292(3), H1412-1419.
[508] Allen, A. M.; Dosanjh, J. K.; Erac, M.; Dassanayake, S.; Hannan, R. D. and Thomas, W. G. (2006) Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure. Hypertension., 47(6), 1054–1061.
[509] Epstein, A. N.; Fitzsimons, J. T. and Rolls, B. J. (1970) Drinking induced by injection of angiotensin into the rain of the rat. J. Physiol., 210(2), 457-474.
[510] Lazartigues, E.; Dunlay, S. M.; Loihl, A. K.; Sinnayah, P.; Lang, J. A.; Espelund, J. J.; Sigmund, C. D. and Davisson, R. L. (2002) Brain-selective overexpression of angiotensin (AT1) receptors causes enhanced cardiovascular sensitivity in transgenic mice. Circ. Res., 90(5), 617-624.
[511] Petersen, R. C. (2000) Aging, mild cognitive impairment, and Alzheimer's disease. Neurol. Clin., 18(4), 789-806.
[512] Whitehouse, P. J.; Sciulli, C. G. and Mason, R. M. (1997) Dementia drug development: use of information systems to harmonize global drug development. Psychopharmacol. Bull., 33(1), 129-133.
[513] Cherubini, A.; Lowenthal, D. T.; Paran, E.; Mecocci, P.; Williams, L. S. and Senin, U. (2007) Hypertension and cognitive function in the elderly. Am. J. Ther., 14(6), 533-554.
[514] Mogi, M.; Iwanami, J. and Horiuchi, M. (2012) Roles of brain angiotensin II in cognitive function and dementia. Int. J. Hypertens., 2012, ID 169649, 7 pages.
[515] Wang, Z.; Ying, Z.; Bosy-Westphal, A. et al. (2012) Evaluation of specific metabolic rates of major organs and tissues: comparison between nonobese and obese women. Obesity 20:95–100.
[516] Liao S, Padera TP (2013) Lymphatic function and immune regulation in health and disease. Lymphat Res Biol 11:136–143.
[517] Damkier, H.H.; Brown, P.D. and Praetorius, J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93, 1847–1892.
[518] Johanson, C.E.; Duncan, J.A.; Klinge, P.M. et al. (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10.
[519] Keep, R.F. and Jones, H.C. (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 56, 47–53.
[520] Brown, P.; Davies, S.; Speake, T. and Millar, I (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience, 129, 957–970.
[521] Ames, A.; Higashi, K. and Nesbett, F.B. (1965) Effects of Pco2 acetazolamide and ouabain on volume and composition of choroidplexus fluid. J Physiol. 181, 516–524.
[522] Davson, H. and Segal, M.B. (1970) The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol 209, 131–153.
[523] Alexandre, A. and Lehninger, A.L. (1984) Bypasses of the antimycin a block of mitochondrial electron transport in relation to ubisemiquinone function. Biochim Biophys Acta. 767(1), 120-9.
[524] Ma, X.; Jin, M.; Cai, Y.; Xia, H.; Long, K.; Liu, J.; Yu, Q. and Yuan, J. (2011) Mitochondrial electron transport chain complex III is required for antimycin A to inhibit autophagy. Chem Biol. 18(11), 1474-81.
[525] Oreskovic´, D. and Klarica, M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64, 241-262.
[526] Prince, E. and Ahn, S (2013) Basic vascular neuroanatomy of the brain and spine: what the general interventional radiologist needs to know. Semin Intervent Radiol 30, 234-239.
[527] Kulik, T.; Kusano, Y. and Aronhime, S. (2008) Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 55, 281-288.
[528] Thrane, A.S.; Rangroo Thrane, V. and Nedergaard, M. (2014) Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci 37, 620-628.
[529] Iliff, J. J.; Wang, M.; Liao, Y.; Plogg, B. A.; Peng, W.; Gundersen, G. A.; Benveniste, H.; Vates, G. E.; Deane, R.; Goldman, S. A.; Nagelhus, E. A. and Nedergaard M. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med., 4(147), 147ra111.
[530] Iliff, J.J. and Nedergaard, M (2013) Is there a cerebral lymphatic system? Stroke 44, S93-S95.
[531] Madsen, P.L.; Schmidt, J.F. and Wildschiødtz, G. et al. (1991) Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J. Appl. Physiol. 70, 2597-2601.
[532] Kress, B. T.; Iliff, J. J.; Xia, M.; Wang, M.; Wei, H. S.; Zeppenfeld, D.; Xie, L.; Kang, H.; Xu, Q.; Liew, J. A.; Plog, B. A.; Ding, F.; Deane, R. and Nedergaard, M. (2014). Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol., 76(6), 845-61.
[533] Iliff, J.J.; Chen, M.J.; Plog, B.A. et al. (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 34, 16180-16193.
[534] Ju, Y-ES; McLeland, J.S.; Toedebusch, C.D. et al. (2013) Sleep quality and preclinical Alzheimer disease. JAMA Neurol. 70, 587-593.
[535] O'Donnell, J.; Zeppenfeld, D.; McConnell, E.; Pena, S. and Nedergaard, M. (2012). Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res., 37(11), 2496-512.
[536] O’Donnell, J. et al. (2015) Distinct functional states of astrocytes during sleep and wakefulness: is norepinephrine the master regulator? Current Sleep Medicine Reports. 1(1), 1-8.
[537] Paukert, M. et al. (2014) Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron. 82, 1263-1270.
[538] Mathiisen, T.M. et al. (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 58, 1094-1103.
[539] Oberheim, N.A. et al. (2009) Uniquely hominid features of adult human astrocytes. J Neurosci. 29, 3276-3287.
[540] Neely, J.D. et al. (2001) Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci USA. 98, 14108-14113.
[541] Ren, Z. et al. (2013) ‘Hit&Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab. 33, 834-45.
[542] Stickgold, R. (2005) Sleep-dependent memory consolidation. Nature. 437, 1272-1278.
[543] Gibbs, M.E. and Summers, R.J. (2002) Role of adrenoceptor subtypes in memory consolidation. Prog Neurobiol. 67, 345-391.
[544] Sajikumar, S. and Frey, J.U. (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol Learn Mem. 82, 12-25.
[545] Tonomi, G. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron (Impact Factor: 15.77), 81(1), 12-34.
[546] Tononi, G. and Cirelli, C. (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull. 62, 143-150.
[547] Vyazovskiy, V.V. (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci. 11, 200-208.
[548] Cirelli, C.; Pompeiano, M. and Tononi, G. (1996) Neuronal gene expression in the waking state: a role for the locus coeruleus. Science. 274, 1211–1215.
[549] Cirelli, C. and Tononi, G. (2004) Locus coeruleus control of state-dependent gene expression. J Neurosci. 24, 5410-5419.
[550] Gibbs, M.E. and Bowser, D.N. (2010) Astrocytic adrenoceptors and learning: alpha1-adrenoceptors. Neurochem Int. 57, 404-410.
[551] Chih, B.; Gollan, L. and Scheiffele, P. (2006) Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron., 51(2), 171-178.
[552] Song, J. Y.; Ichtchenko, K.; Südhof, T. C. and Brose, N. (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad. Sci. USA., 96(3), 1100-1105.
[553] Barrow, S. L.; Constable, J. R.; Clark, E.; El-Sabeawy, F.; McAllister, A. K. and Washbourne, P. (2009) Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. Neural. Dev., 4, 17.
[554] Wittenmayer, N.; Körber, C.; Liu, H.; Kremer, T.; Varoqueaux, F.; Chapman, E. R.; Brose, N.; Kuner, T. and Dresbach, T. (2009) Postsynaptic Neuroligin1 regulates presynaptic maturation. Proc. Natl. Acad. Sci. USA., 106(32), 13564-1369.
[555] Jung, S. Y.; Kim, J.; Kwon, O. B.; Jung, J. H.; An, K. and Jeong, A. Y. (2010). Input-specific synaptic plasticity in the amygdala is regulated by neuroligin-1 via postsynaptic NMDA receptors. Proc. Natl. Acad. Sci. USA., 107, 4710-4715.
[556] Kim, J.; Jung, S. Y.; Lee, Y. K.; Park, S.; Choi, J. S.; Lee, C. J.; Kim, H. S.; Choi, Y. B.; Scheiffele, P.; Bailey, C. H.; Kandel, E. R. and Kim, J. H. (2008) Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals. Proc. Natl. Acad. Sci. USA., 105(26), 9087-9092.
[557] Peixoto, R. T.; Kunz, P. A.; Kwon, H.; Mabb, A. M.; Sabatini, B. L.; Philpot, B. D. and Ehlers, M. D. (2012) Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron.,76(2), 396-409.
[558] Blundell, J.; Blaiss, C. A.; Etherton, M. R.; Espinosa, F.; Tabuchi, K.; Walz, C.; Bolliger, M. F.; Südhof, T. C. and Powell, C. M. (2010) Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J. Neurosci., 30(6), 2115-2129.
[559] Wang, H.; Liu, Y.; Briesemann, M. and Yan, J. (2010) Computational analysis of gene regulation in animal sleep deprivation. Physiol. Genomics., 42(3), 427-36.
[560] El Helou, J.; Bélanger-Nelson, E.; Freyburger, M.; Dorsaz, S.; Curie, T.; La Spada, F.; Gaudreault, P. O.; Beaumont, É.; Pouliot, P.; Lesage, F.; Frank, M. G.; Franken, P. and Mongrain, V. (2013) Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc. Natl. Acad. Sci. USA., 110(24), 9974-9979.
[561] Petrzilka, S.; Taraborrelli, C.; Cavadini, G.; Fontana, A. and Birchler, T. (2009) Clock gene modulation by TNF-alpha depends on calcium and p38 MAP kinase signaling. J. Biol. Rhythms., 24(4), 283-94.
[562] Steinmetz, C. C. and Turrigiano, G. G. (2010) Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling. J. Neurosci., 30(44), 14685-90.
[563] Rachalski, A.; Freyburger, M. and Mongrain, V. (2014) Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation. Ann. Med., 46(2), 62-72.
[564] Cohen, S. and Greenberg, M. E. (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev. Cell Dev. Biol., 24, 183-209.
[565] Ishizuka, T. and Yamatodani, A. (2012) Integrative role of the histaminergic system in feeding and taste perception. Front. Syst. Neurosci., 6,44.
[566] Panula, P. and Nuutinen, S. (2013) The histaminergic network in the brain: basic organization and role in disease. Nat. Rev. Neurosci., 14(7), 472-487.
[567] Labrie, F.; Luu-The, V.; Bélanger, A.; Lin, S. X.; Simard, J.; Pelletier, G. and Labrie, C. (2005) Is dehydroepiandrosterone a hormone? J. Endocrinol., 187(2), 169-196.
[568] Arlt, W.; Callies, F.; van Vlijmen, J. C.; Koehler, I.; Reincke, M.; Bidlingmaier, M.; Huebler, D.; Oettel, M.; Ernst, M.; Schulte, H. M. and Allolio, B. (1999) Dehydroepiandrosterone replacement in women with adrenal insufficiency. N. Engl. J. Med., 341(14), 1013-1020.
[569] Mazat, L.; Lafont, S.; Berr, C.; Debuire, B.; Tessier, J. F.; Dartigues, J. F. and Baulieu, E. E. (2001) Prospective measurements of dehydroepiandrosterone sulfate in a cohort of elderly subjects: Relationship to gender, subjective health, smoking habits, and 10-year mortality. Proc. Natl. Acad. Sci. USA., 98(14), 8145-8150.
[570] Ravaglia, G.; Forti, P.; Maioli, F.; Boschi, F.; Bernardi, M.; Pratelli, L.; Pizzoferrato, A. and Gasbarrini, G. (1996) The relationship of dehydroepiandrosterone sulfate (DHEAS) to endocrine-metabolic parameters and functional status in the oldest-old. Results from an Italian study on healthy free-living over-ninety-year-olds. J. Clin. Endocrinol. Metab., 81(3), 1173-1178.
[571] Bennun, A. (2016) cAMP-Me2+-DNA Complex on Gene Induction and Signaling for Coupling the Environment Stimulus to Produce Variety and its Impact on Evolution. Advances in Medicine and Biology. Volume 98, Chapter10.
[572] Binder, E. B. (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology., 34 (Suppl. 1), S186-S195.
[573] Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J. C.; Pariante, C. M.; Pace, T. W.; Mercer, K. B.; Mayberg, H. S.; Bradley, B.; Nemeroff, C. B.; Holsboer, F.; Heim, C. M.; Ressler, K. J.; Rein, T. and Binder, E. B. (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci., 16(1), 33-41.
[574] Slavich, G. M.; O'Donovan, A.; Epel, E. S. and Kemeny, M. E. (2010) Black sheep get the blues: a psychobiological model of social rejection and depression. Neurosci. Biobehav. Rev., 35(1), 39-45.
[575] Carr, C. P.; Martins, C. M.; Stingel, A. M.; Lemgruber, V. B. and Juruena, M. F. (2013) The role of early life stress in adult psychiatric disorders: a systematic review according to childhood trauma subtypes. J. Nerv. Ment. Dis. 201(12), 1007-1020.
[576] Strüber, N.; Strüber, D. and Roth, G. (2014) Impact of early adversity on glucocorticoid regulation and later mental disorders. Neurosci. Biobehav. Rev., 38, 17-37.
[577] Teicher, M. H.; Andersen, S. L.; Polcari, A.; Anderson, C. M.; Navalta, C. P. and Kim, D. M. (2003) The neurobiological consequences of early stress and childhood maltreatment. Neurosci. Biobehav. Rev., 27(1-2), 33-44.
[578] Senbonmatsu, T.; Saito, T.; Landon, E. J.; Watanabe, O.; Price, E. Jr.; Roberts, R. L.; Imboden, H.; Fitzgerald, T. G.; Gaffney, F. A. and Inagami, T. (2003) A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J., 22(24), 6471-6482.
[579] Elton, T. S.; Kuhn, D. E.; Malana, G. E.; Martin, M. M.; Nuovo, G. J.; Pleister, A. P. and Feldman, D. S. (2008) MiR-132 Regulates Angiotensin II Type 1 Receptor Expression Through a Protein Coding Region Binding Site. Circulation, 118 (18), S513.
[580] Fan, Y. S.; Eddy, R. L.; Byers, M. G.; Haley, L. L.; Henry, W. M.; Nowak, N. J. ans Shows, T. B. (1989) The human mineralocorticoid receptor gene (MLR) is located on chromosome 4 at q31.2. Cytogenet. Cell Genet., 52(1-2), 83-84.
[581] Fuller, P. J. and Young, M. J. (2005) Mechanisms of mineralocorticoid action. Hypertension., 46(6), 1227-1235.
[582] Catt, K. J.; Mendelsohn, F. A.; Millan, M. A. and Aguilera, G. (1984) The role of angiotensin II receptors in vascular regulation. J. Cardiovasc. Pharmacol., 6 Suppl 4, S575-586.
[583] Benarroch, E. E. (2009). The locus coeruleus norepinephrine system: functional organization and potential clinical significance. Neurology., 73(20), 1699-704.
[584] Adolphs, R.; Cahill, L.; Schul, R. and Babinsky, R. (1997). Impaired declarative memory for emotional material following bilateral amygdala damage in humans. Learning & Memory, 4, 291-300.
[585] Cahill, L.; Babinsky, R.; Markowitsch, H. J. and McGaugh, J. L. (1995). The amygdala and emotional memory. Nature, 377 (6547), 295-296.
[586] Collingridge, G. L.; Peineau, S.; Howland, J. G. and Wang, Y. T. (2010). Long-term depression in the CNS. Nat Rev Neurosci., 11(7), 459-473.
[587] Salmans, S. (1997). Depression: Questions You Have – Answers You Need. People's Medical Society. ISBN 978-1-882606-14-6.
[588] Pertwee, R. G. (April 2006). The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond), 30 (1), S13-8.
[589] Bluett, R. J.; Gamble-George, J. C.; Hermanson, D. J.; Hartley, N. D.; Marnett, L. J. and Patel, S. (2014). Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation. Translational Psychiatry, 4, e408.
[590] Moreira, F. A.; Grieb, M. and Lutz, B. (2009). Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. Best Pract Res Clin Endocrinol Metab, 23 (1), 133-144.
[591] Carlson, N. (2013). Physiology of Behavior. Pearson. pp. 602-606.
[592] Porterfield, V. M.; Gabella, K. M.; Simmons, M. A. and Johnson, J. D. (2012). Repeated stressor exposure regionally enhances beta-adrenergic receptor-mediated brain IL-1β production. Brain Behav. Immun., 26(8), 1249-1255.
[593] Kulish, N. and Clark, N. (18 April 2015). Germanwings Crash Exposes History of Denial on Risk of Pilot Suicide. The New York Times.
[594] Talbot, K.; Wang, H. Y.; Kazi, H.; Han, L. Y.; Bakshi, K. P.; Stucky, A.; Fuino, R. L.; Kawaguchi, K. R.; Samoyedny, A. J.; Wilson, R. S.; Arvanitakis, Z.; Schneider, J. A.; Wolf, B. A.; Bennett, D. A.; Trojanowski, J. Q. and Arnold, S. E. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest., 122(4), 1316-1338.
[595] Van Assema, D. M.; Goos, J. D.; van der Flier, W. M.; Lubberink, M.; Boellaard, R.; Windhorst, A. D.; Scheltens, P.; Lammertsma, A. A. and van Berckel, B. N. (2012). No evidence for additional blood-brain barrier P-glycoprotein dysfunction in Alzheimer's disease patients with microbleeds. J Cereb Blood Flow Metab., 32(8), 1468-71.
[596] Sahin, K.; Tuzcu, M.; Orhan, C.; Ali, S.; Sahin, N.; Gencoglu, H.; Ozkan, Y.; Hayirli, A.; Gozel, N. and Komorowski, J. R. (2013). Chromium modulates expressions of neuronal plasticity markers and glial fibrillary acidic proteins in hypoglycemia-induced brain injury. Life Sci., 93 (25-26), 1039-1048.
[597] Walter, P. and Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. Science, 334 (6059), 1081-1086.
[598] Mackliff, J.; Sanchez O. and Bennun, A. (2013). Bilateral electrocoagulation of adrenal medulla, a surgical neurotechnology applied to the dysfunctional hypothalamic-pituitary-adrenal axis. Accelerating Translational Neurotechnology Fourth Annual Aspen Brain Forum. Aspen Meadows Resort.
[599] Bennun, A. (2013) A nano-insert silicate Sr-89 applied to decrease the hyper-functionality of micro-sized tissue. Accelerating Translational Neurotechnology. Sept 18-20, 2013 Aspen, CO.
[600] Bennun A. (2012). Recovery of radioisotopes from nuclear waste for radio-scintillator-luminescence energy applications. International Journal of Energy, Environment, and Economics, Nova Science Publishers, Inc., 20 (5), 509-515.
[601] Harris, L. W.; Guest, P. C.; Wayland, M. T.; Umrania, Y.; Krishnamurthy, D.; Rahmoune, H. and Bahn, S. (2013). Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology, 38 (6), 752-66.
[602] Ohki, K.; Chung, S.; Kara, P.; Hübener, M.; Bonhoeffer, T. and Reid, R.C. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442 (7105), 925-8.
[603] Li, F. and Tsien, J. Z. (2009). Memory and the NMDA receptors. N. Engl. J. Med., 361 (3), 302-3.
[604] Slutsky, I.; Sadeghpour, S.; Li, B. and Liu, G. (2004). Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron., 44 (5), 835-49.
[605] Bennun, A. (2012). The dynamics of H-bonds of the hydration shells of ions, ATPase and NE-activated adenylyl cyclase on the coupling of energy and signal transduction. Nova Science Publishers, Inc. International Journal of Medical and Biological Frontiers, 18 (11), 767-782.
[606] Bennun, A. (1974). A model mechanism for coupled phosphorylation. Proc. 3rd Int. Cong. Photosynthesis, Rehovoth (M. Avron, ed.), Vol. 2, 1107-1120, Elsevier Sci. Pub. Co., Amsterdam.
[607] Bennun A. and Bennun, N. Hypothesis for a mechanism of energy transduction. Sigmoidal kinetics of chloroplast's heat-activated ATPase. Proceedings 2nd International Congress on Photosynthesis Research (G. Fortí, M. Avron and A. Melardri, eds.), 2, 1115-1124, Dr. W. Junk N.V. Pub., The Hague (1972).
[608] Lomize A. L.; Pogozheva I. D. and Mosberg, H. I. (2011). Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides and proteins in membranes. J. Chem. Inf. Model., 51 (4), 930-46.
[609] Gibb, C. L. and Gibb, B. C. (2011) Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. J. Am. Chem. Soc., 133 (19), 7344-7.
[610] Schmidt, D. A.; Birer, O.; Funkner, S.; Born B. P.; Gnanasekaran, R.; Schwaab, G. W.; Leitner, D. M. and Havenith, M. (2009). Rattling in the cage: ions as probes of sub-picosecond water network dynamics. J. Am. Chem. Soc., 131 (51), 18512-7.
[611] Purves, D.; Augustine, G. J.; Fitzpatrick, D.; Hall, W. C.; LaMantia, A. S.; McNamara, J. O. and White, L. E. (2008). Neuroscience. 4th ed. Sinauer Associates. pp. 170-6.
[612] Moll, J. R.; Acharya, A.; Gal, J.; Mir A. A. and Vinson C. (2012). Magnesium is required for specific DNA binding of the CREB B-ZIP domain. Nucleic Acids Res., 30(5), 1240-6.
[613] Lawson, C. L.; Swigon, D.; Murakami, K. S.; Darst, S. A.; Berman, H. M. and Ebright, R. H. (2004). Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol., 14(1), 10-20.
[614] Gilman, A. G. (1987). G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56(1), 615-649.
[615] Mashaghi, A. and Katan, A. (2013). A physicist's view of DNA. De Physicus, 24e (3), 59-61. arXiv:1311.2545v1.
[616] Chubb, J. R.; Trcek, T.; Shenoy, S. M. and Singer, R. H. (2006) Transcriptional pulsing of a developmental gene. Current biology: CB, 16 (10), 1018-25.
[617] Raven, P. H. (2011). Biology (9th ed.). New York: McGraw-Hill. pp. 278-301.
[618] Richardson, J. (2002). Rho-dependent termination and ATPases in transcript termination. Biochimica et Biophysica Acta., 1577 (2), 251-260.
[619] Hamady, Z. Z.; Farrar, M. D.; Whitehead, T. R.; Holland, K. T.; Lodge, J.P. and Carding, S. R.(2008) Identification and use of the putative Bacteroides ovatus xylanase promoter for the inducible production of recombinant human proteins. Microbiology., 154(Pt 10), 3165-74.
[620] Lodish, H.; Berk, A.; Matsudaira, P. and Kaiser C. A. (2004). Molecular Cell Biology (5th ed.). New York: W.H. Freeman and Company.
[621] Lykke-Andersen, S. and Jensen, T. H. (2007) Overlapping pathways dictate termination of RNA polymerase II transcription. Biochimie. 89 (10), 1177-82.
[622] Popovych, N.; Tzeng, S. R.; Tonelli, M.; Ebright, R. H. and Kalodimos, C. G. (2009). Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc. Natl. Acad. Sci. USA., 106 (17), 6927-6932.
[623] Kos'ianenko, N. A.; Selman-Housein Sosa, G.; Uverskiĭ, V. N. and Frisman, E. V. Effect of Mn2+ and Mg2+ ions on DNA conformation. (1987) Mol. Biol. (Mosk), 21(1), 140-6.
[624] Emiliano, A. B.; Cruz, T.; Pannoni, V. and Fudge, J. L. (2007) The interface of oxytocin-labeled cells and serotonin transporter-containing fibers in the primate hypothalamus: a substrate for SSRIs therapeutic effects? Neuropsychopharmacology. 32(5), 977-88.
[625] Amsten, A. F. T. (2011) Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. International Journal of Developmental Neuroscience, 29(3), 215-223.
[626] Eccles, J. C. (1983). Calcium in long-term potentiation as a model for memory. Neuroscience, 10(4), 1071-81.
[627] Greenspan, R. J.; Tononi, G.; Cirelli, C. and Shaw, P. J. (2001). Sleep and the fruit fly. Trends Neurosci., 24, 142-145.
[628] Malow, B. A. (2004). Sleep deprivation and epilepsy. Epilepsy Curr., 4(5), 193-5.
[629] Stickgold, R. (2006). Neuroscience: a memory boost while you sleep. Nature, 444(7119), 559-60.
[630] Mendelsohn, A. R. and Larrick, J. W. (2013) Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res., 16(6), 518-23.
[631] Constantinople, C. M. and Bruno, R. M. (2011). Effects and mechanisms of wakefulness on local cortical networks. Neuron., 69(6), 1061-8.
[632] McBain, C. J.; Traynelis, S. F. and Dingledine, R. (1990). Regional variation of extracellular space in the hippocampus. Science., 249(4969), 674-7.
[633] Wang, F.; Smith, N. A.; Xu, Q.; Goldman, S.; Peng, W.; Huang, J. H.; Takano, T. and Nedergaard, M. (2013). Photolysis of caged Ca2+ but not receptor-mediated Ca2+ signaling triggers astrocytic glutamate release. J. Neurosci., 33(44), 17404-12.

You have not viewed any product yet.