The Red Clover: Seed Production, Medicinal Uses, and Health and Environmental Benefits

Krystyna Zuk-Golaszewska
Associate Professor, University of Warmia and Mazury, Olsztyn, Poland

Series: Plant Science Research and Practices
BISAC: TEC003030

Clear

$82.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

Red clover (Trifolium pratense L.) is one of the many species belonging to the genus Trifolium, which are widely cultivated around the world. It is a perennial plant and offers permanence that determines its uses as well as environmental and agronomic requirements. Red clover is grown mainly for seeds and biomass. The most important environmental factors that affect red clover yield are soil conditions, temperature and precipitation during the growing season. Key agronomic factors include sowing date, cultivation regime, fertilization, plant protection and harvesting date. The species can be grown in pure and mixed stands (with alfalfa, cereals and various grass species). Newly bred triploid varieties of red clover are characterized by desirable growth habit traits and yield components as well as high yield.
Red clover has many applications. It is currently experiencing a revival of interest as a traditional folk remedy. The species acts as a rich source of compounds with expectorant, analgesic and antiseptic properties. The callus from Trifolium pratense has been found to exert inhibitory effects on fungal and bacterial strains. Red clover contains isoflavones, anthocyanin pigments and phytoestrogens, which may help reduce the risk of heart disease, breast cancer and endometrial cancer; it also alleviates menopausal symptoms. Red clover lowers blood cholesterol levels and helps prevent prostate cancer. Red clover ointments are used to treat skin diseases, including psoriasis.
Red clover provides biomass for livestock nutrition and/or biogas production. It has high nutritional value and constitutes valuable raw material for silage making. Red clover can be grown with grasses, barley, oats and wheat, thus providing various types of fodder with high biological value and natural high-protein feed. When grown as a cover crop, red clover fixes and supplies nitrogen to cereal crops. It also helps break disease and insect cycles, especially in plantations protected against weeds. The crude protein content of red clover decreases with advancing maturity. Due to its permanence, this perennial plant contributes to environmental protection and anesthetization; it helps prevent soil erosion, and is used in phytoremediation and barren land management schemes. (Imprint: Novinka)

Abstract

Chapter 1. Botanical Description

Chapter 2. Seed Production

Chapter 3. Medicinal Uses and Health Benefits

Chapter 4. Environmental Aspects

Chapter 5. Future Prospects and Strategies

Index

Chapter 1

Acar, Z., Ayan, I., Gulser, C., (2001). Some morphological and nutritional properties of legumes under natural conditions. Pak. J. Biol. Sci. 4, 1312-1315.
Acikgoz, E., (2001). Forage Crops. Uludag University Press, Bursa, Turkey.
Asci O.O., (2011a). Biodiversity in red clover (Trifolium pratense L.) collected from Turkey. I. Morpho-agronomic properties. Afr. J. Biotechnol. 10, 14073-14079.
Bawolski, S., (1982). Porównanie plonowania koniczyny czerwonej i jej mieszanek z trawami w zależności od poziomu nawożenia azotem i warunków siedliskowych. Pam. Puł. 78, 97-109. [A comparison of the yields of red clover and red clover-grass mixtures under different nitrogen fertilization levels and habitat conditions. Pam. Puł. 78, 97-109].
Bowley, S.R., Taylor N.L., Dougherty C.T., (1984). Physiology and morphology of red clover. Adv. Agron. 37, 317-347.
Frame, J., Charlton, J.F.L., Laidlaw, A.S., (1998). Temperate Forage Legumes. CAB International. Wallingford UK. 327.
Gąsowski, A., Ostrowska, D., (1983). Klucz do oznaczania stadiów rozwojowych niektórych gatunków roślin. Wyd SGGW, Warszawa 1-49. [The key to determining of growth stages some species agricultural crops. Wyd. SGGW, Warszawa 1-49].
Hack, H., Bleiholder, H., Buhr, L., Meier, U., Schnock-Fricke, U., Weber, E., Witzenberger, A., (1992). Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und dikotyler Pflanzen - Erweiterte BBCH-Skala. Allgemein - Nachrichtenbl. Deut. Pflanzenschutzd. 44, 265-270. [Standard coding phenological growth stages of mono- and dicotyledonous plants BBCH-Scale. Allgemein - Nachrichtenbl. Deut. Pflanzenschutzd. 44, 265-270].
Hedlund, K., Höglund, S., (1983). Scheme for stages of development in timothy, red clover, and lucerne M.Sc. thesis. Swedish University of Agricultural Sciences, Uppsala Sweden.
Jablonski, B., (2001). A preliminary appreciation of agricultural and beekeeping value of a red clover population with a shortened flower tube. Acta Hortic. 561, 215-217.
Kalu, B.A., Fick, G.W., (1981). Quantifying morphological development of alfalfa for studies of herbage quality. Crop Sci. 21, 267-271.
Matysiak, K., (2015). Fazy rozwojowe koniczyn w skali BBCH. W: Metodyka integrowanej ochrony koniczyn dla producentów (P. Strażyński, M. Mrówczyński, eds.), IOR – PIB Poznań, 49-51. [Phenological growth phases clovers in BBCH scale. In: Integrated pest system clover for agronomists. IOR – PIB Poznań, 49-51].
Meier, U., (2001). Growth stages of mono and dicotyledonous plants. BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry.
Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., Lancashire, P.D., Schnock, U., Stauß, R., van den Boom, T., Weber, E., Zwerger, P., (2009). The BBCH system to coding the phenological growth stages of plants – history and publications. J. Kult. Pflanzen. 61 (2), 41–52.
Meier, U., Langner, R. (1997). BBCH Monograph. Biologische Bundesanstalt für Land- und Forstwirtschaft, 21.
Muntean, L., (2006). The variability of the morphological traits of tetraploid red clover cultivars studied in Cluj-Napoca environmental conditions. Not. Bot. Hort. Agrobot. Cluj. 34, 79-87.
Ohlsson, C., Wedin, W.F., (1989). Phenological staging schemes for predict red clover quality. Crop Sci. 29, 416-420.
Ranst, G.V., Lee, M.R.F., Fievez, V., (2011). Red clover polyphenol oxidase and lipid metabolism. Animal 5, 512-521.
Ryan-Salter, T.P., Black, A.D., (2012). Yield of Italian ryegrass mixed with red clover and balansa clover. Proceedings-N.Z. Grassland Association. 74, 201- 208.
Sądej, W., Kuberska, J., Żuk-Gołaszewska, K., (2005). Ocena stanu pszczołowatych (Hymenoptera. Apoidea) oblatujących koniczynę czerwoną (Trifolium pratense L.) w okolicy Ostródy. Zesz. Prob. Post. Nauk. Rol. 505, 379-384. [Evaluation of bees (Hymenoptera, Apoidea) pollinating red clover (Trifolium pratense L.) in Ostróda area. Zesz. Prob. Post. Nauk. Rol. 505, 379-384].
Spancer, D., Todd, A.G., (2003). The impact of under seeding barley (Hordeum vulgare L.) on thymoty (Phyleum pratense L.) - clover (Trifolium pratense L.) forage production in a cool maritime climate. J. Agron. Crop Sci. 189, 273-279.
Taylor, N. L., Quesenberry, K. H., (1996). Red clover science. Dordrecht, Netherlands 226.
Taylor, N.L., (1985). Clover science and technology. Madison, USA. 616.
Thomas, R.G., (2003). Comparative growth forms of dryland forage legumes. Legumes for Dryland Pastures, 19-26.
Vyn, T.J., Faber J.G., Janovicek, K.J., Beauchamp, E.G., (2000). Cover crop effects on nitrogen availability to corn following wheat. Agron. J. 92, 915-924.
Zadoks, J.C., Chang, T.T., Konzak, C.F., (1974). A decimal code for the growth stages of cereals. Weed Res. 14, 415-421.
Zohary, M., Heller, D., (1984). The Genus Trifolium. The Israel Academy of Sciences and Humanities, Jerusalem Israel.
Żuk-Gołaszewska, K., Bielski, S. Gołaszewski, J., (2006a). Productivity of spring barley grown with red clover as an undersown crop. Pol. J. Natur. Sci. 20, 121-133.
Żuk-Gołaszewska, K., Gołaszewski, J., Sądej, W., Bielski, S., (2006b). Seed yields of diploid and tetraploid varieties of red clover as dependent upon sowing rate. Pol. J. Natur. Sci. 20, 615-628.

Chapter 2

Alford, D.V., (1975). Bumblebees. Davis-Poynter. London.
Al-thahabi, S.A., Colquhoun, J.B., Mallory-Smith, C.A., (2014). Influence of temperature and plant growth stages of red clover and wheat on small broomrape (Orobanche minor) germination. Weed Technol. 28, 266-271.
Amdahl, H., Aamlid, T.S., Ergon, A., Marum, P., Kovi, M.R., Alsheikh, M., Rognli, O.A., (2016). Seed yield potential in tetraploid red clover. Proceedings of the 16th Nordic herbage seed production seminar. NJF seminar 491. 20 – 22 June 2016, Grimstad, Norway, 17-21.
Anderson, N.P., Chastain, T.G., Garbacik, C.J., (2016). Irrigation and Trinexapac-Ethyl Effects on Seed Yield in First- and Second-Year Red Clover Stands. Agron. J. 108, 1116-1123.
Anderson, R.L., (2006). A Rotation Design that aids annual weed management in a semiarid region. In: Handbook of Sustainable Weed Management ed.
Andy, C., (2007). Managing cover crops profitably. 3rd ed. Sustainable Agriculture Network, Beltsville, M.D.
Arseniuk, E., (1989). Effect of induced autotetraploidy on response to Sclerotinia clover rot in Trifolium pratense L. Plant Breed. 103, 310-318.
Asci, O.O., (2011a.) Salt tolerance in red clover (Trifolium pratense L.) seedlings. Afr. J. Biotechnol. 10, 8774-8781.
Asci, O.O., (2011b). Biodiversity in red clover (Trifolium pratense L.) collected from Turkey. I: Morpho-agronomic properties. Afr. J. Biotechnol. 10, 14073-14079.
Atis, I., Atak, M., Can, E., Mavi, K., (2011). Seed coat color effects on seed quality and salt tolerance of red clover (Trifolium pratense). Int. J. Agric. Biol. 13, 363-368.
Awmack, C.S., Mondor, E.B., Lindroth, R.L., (2007). Forest understory clover populations in enriched CO2 and O3 atmospheres: Interspecific, intraspecific, and indirect effects. Environ. Exp. Bot. 59, 340-346.
Badek, B., Duijn,B., Grzesik, M., (2006). Effects of water supply and seed moisture content on germination of China aster (Callistephus chinensis) and tomato (Licopersicon esculentun Mill.) seeds. Eur. J. Agron. 24, 45-51.
Baligar, V.C., Fageria, N.K., (2007). Physiology of tropical cover crops. J. Plant Nutr. 30, 1287-1339.
Bao Ling, H., Cheng Qun, L., Bo, W., Li Qin, F., (2007). A rhizobia strain isolated from root nodule of gymnosperm Podocarpus macrophyllus. Sci. Chin. Ser. C-Life Sci. 50, 1-6.
Barnes, J. D., Wilson, J.M., (1984). Assessment of the frost sensitivity of Trifolium species by chlorophyll fluorescence analysis. Ann. Appl. Biol. 105, 107-116.
Baskin, C.C., Baskin, J.M., (1998). Seeds: Ecology, biogeography, and evolution of dormancy and germination. Academic Press, New York.
Baskin, J.M., Baskin, C.C., Li, X., (2000). Taxonomy, anatomy, and evolution of physical dormancy in seeds. Plant Species Biol. 15, 139-152.
Belzile, L. (l987). Effect of companion timothy on winter survival of red clover. Can. J. Plant Sci. 67, 1101-1103.
Bender, A., (1999). An impact of morphological and physiological transformations of red clover flowers accompanying polyploidization on the pollinators’ working speed, and value as a guarantee for cross pollination. Agraar Teadus. 4, 24-37.
Blaser, B.C., Gibson, L.R., Singer, J.W., Jannink, J.L., (2006). Optimizing seeding rates for winter cereal grains and frost-seeded red clover intercrops. Agron. J. 98, 1041-1049.
Bochenek, A., Żuk-Gołaszewska, K., Gołaszewski, J., Temperature pretreatment effects on Trifolium pratense seed dormancy and germination. Manuscript submitted in 2016.
Boller, B., Schubiger, F.X., Kölliker, R., (2010). Red Clover. In: B. Boller ed. Handbook of Plant Breeding, Springer, Dordrecht, Netherlands 439-455.
Bowley, S. R., Taylor, N.L., (1984). Physiology and morphology of red clover. Adv. Agron. 37, 317-347.
Bowley, S.R., Doughertry, C.T., Tevlon, N.L. Coneliusus, P.L., (1988). Comparison of yield components of red clover and alfalfa. Can. J. Plant Sci. 68, 103-114.
Bowley, S.R., Taylor, N.L, Dougherty, C.T., (1987). Photoperiodic response and heritability of the pre-flowering interval of two red clover (Trifolium pratense) populations. Ann. Appl. Biol. 111, 455-461.
Bradford, K.J., (1990). A water relations analysis of seed germination rates. Plant Physiol. 94, 840-849.
Bradford, K.J., (1995). Water relations in seed germination. In: Seed development and germination ed. Kigel and Galili G. Marcel Dekker, New York, 351-396.
Brogowski, Z., Gawrońska-Kulesza, A., Kozanecka, T., (2002). Red Clover as a Receptor of CO2 from the atmosphere, and some compounds from soil. Pol. J. Environ. Stud. 11, 625-629.
Brown, H.E., Moot, D.J., Pollock, K.M., (2003). Long term growth rates and water extraction patterns of dryland chicory, lucerne, and red clover. Legumes for Dryland Pastures, 11, 91-100.
Bruulsema, T.W., Christie, B.R., 1987. Nitrogen contribution to succeeding corn from alfalfa and red clover. Agron. J. 76, 96-100.
Butler, G.W., Greenwood, R.M., Soper, K., (1959). Effects of shading and defoliation on the turnover of root and nodule tissue of plants of Trifolium repens, Trifolium pratense, and Lotus uliginosus. New Zeal. J. Agr. Res. 2(3), 415-426.


Chastain, T.G., Anderson, N.P., Garbacik, C.J., (2013). Irrigation and PGR effects on red clover seed production. In Hulting A, Anderson N, Walenta D, Flowers M, ed. 2012. Seed Production Research Report. Oregon State University.
Chen, S., Wyse, D.L., Johnson, G.A., Porter, P.M., Stetina, S.R., Miller, D.R., Betts, K.J., Klossner, L.D., Haar, M.J., (2006). Effect of cover crops alfalfa, red clover, and perennial ryegrass on soybean cyst nematode population, and soybean and corn yields in Minnesota. Crop. Sci. 46, 1890-1897.
Christie, B.R., Clark, E.A., Fulkerson, R.S., (1992). Comparative plowdown value of red clover strains. Can. J. Plant Sci. 72, 1207-1213.
Clark, A., (2007). Red clover. Managing Cover Crops Profitably, 3rd ed. Sustainable Agriculture Network: Beltsville, MD.
Clifford, P.T.P., Scott, D., (1989). Inflorescence, bumble bee, and climate interactions in seed crops of a tetraploid red clover (Trifolium pratense L.). J. Appl. Seed Prod. 7, 38-45.
Costa, J., Brant, I.O., (2014). Challenges for integrated weed management implementation in EU crops. NJF Seminar 471. Recent advances in IWM of perennial and annual weeds, with a special emphasis on the role of crop-weed interactions. Uppsala, Sweden, 27-29 January, 39-41.
Crush, J.R., Gerard, P.J., Ouyang, L., Cooper, B.M., Cousins, G., (2010). Effect of clover root weevil larval feeding on growth of clover progenies, from parents selected for tolerance in field trials. New Zeal. J. Agr. Res. 53, 227-234.
Cullen N.A. 1968. Montgomery red clover seed production in New Cullen, N.A. 1968. Montgomery red clover seed production in New Zealand. New Zeal. Agric. Sci. 3, 55-57.
Ćwintal, M., (2010). Wpływ zapraw nasiennych i stymulacji laserowej nasion na wschody oraz strukturę łanu i plonowanie koniczyny czerwonej w roku siewu. Ann. UMCS, EE. 65, 84-93. [Influence of seed dressings and seeds laser stimulation on emergence, canopy structure, and yielding of red clover in the sowing year. Ann. UMCS, EE. 65, 84-93].
Ćwintal, M., Sowa, P., Goliasz, S., (2010). Wpływ mikroelementów (B, Mo) i stymulacji laserowej na wartość siewną nasion koniczyny czerwonej. Acta Agrophys. 15, 65-76. [Influence of microelements (B, Mo) and laser stimulation on sowing value of red clover seeds. Acta Agrophys. 15, 65-76].
Czerniakowski, Z.W., (1993). Dynamika występowania oprzędzików Sitona (Germ.) na koniczynie czerwonej w południowo-wschodniej Polsce. Zesz. Nauk. AR Kraków. Rol. 31, 19-25. [The dynamics of Sitona (Germ.) occurrence on red clover in the south-eastern Poland. Zesz. Nauk. AR Kraków. Rol. 31, 19-25].
Davis, A.S., Hill, J.D., Chase, C.A, Johanns, A.M., Liebman, M., (2012). Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health. PLoS ONE 7, e47149.
Delclos, B., Mousset-Déclas, C., Raynal, G., (1997). A simple method for evaluation of red clover (Trifolium pratense L.) resistance to Sclerotinia trifoliorum. Euphytica 93, 173-179.
Dell’Aqulia, A., (2008). Perspectives in Probing germination and vigour. Seed Sci. Biotechnol. 2, 1-14.
den Hollander, N.C., (2012). Growth characteristics of several clover species and their suitability for weed suppression in a mixed cropping design. Ph D thesis, Wageningen University, NL, 132.
Dias, P.M., Pretz, V.F., M.D., Schifino-Wittmann, M.T., Zuanazzi, J.A., (2008). Analysis of genetic diversity in the core collection of red clover (Trifolium pratense) with isozyme and RAPD markers.

Crop Breed. Appl. Biotechnol. 8, 202-211.
Dilworth, M.J., Parker, C.A., (1969). Development of the nitrogen fixing system in legumes. J. Theor Biol. 25, 208-218.
Dodd, M.B., Orr, S.J., (1995). Seasonal growth, phosphate response, and drought tolerance of 11 perennial legume species grown in a hill-country soil. New. Zeal. J. Agr. Res. 38, 7-20.
Drury, C. F., Tan, C.S., Reynolds, W. D., Welacky, T.W., Weaver, S.E., Hamill, A.S., Vyn, T.J., (2003). Impacts of Zone Tillage and Red Clover on Corn Performance and Soil Physical Quality. Soil Sci. Soc. Am. J. 67, 867-877.
Duke, J. A., (1981). Handbook of legumes of world economic importance. New York: Plenum Press.
Edwards, L., (1998). Comparison of two spring seeding methods to establish forage cover crops with winter cereals. Soil Tillage Res. 45, 227-235.
Ergon, A., Solem, S., Uhlen, A.K., Bakken, A.K., (2016). Generative Development in Red Clover in Response to Temperature and Photoperiod. Breeding in a World of Scarcity Proceedings of the 2015. Meeting of the Section “Forage Crops and Amenity Grasses” of Eucarpia.
Eriksson, M., (1979). The effect of boron on nectar production and seed setting of red clover (Trifolium pratense L.). Swed. J. Agric. Res. 9, 37-41.
Fitter, A.H., (1988). Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J. Exp. Bot. 39, 595-603.
Ford, J.L., Barrett, B.A., (2011). Improving red clover persistence under grazing. Proceedings- NZ Grassland Association. 73, 119-124.
Fordoński, G., (1977). Wpływ rośliny ochronnej na zimotrwałość, plonowanie i wartość pastewną lucerny mieszańcowej i koniczyny czerwonej. Rocz. Nauk Rol. A. 102,155-174. [Effect of cover crop on frost resistance, yielding, and fodder value of hybrid alfaalfa and red clover. Rocz. Nauk Rol. A. 102,155-174].
Frame, J., Harkess, R.D., Hunt, I.L., (1972). The influence of date of sowing and seed rate on the production of pure-sown red clover. J. Br. Grassl. Soc. 31, 117-122.
Franklin, K. A., (2009). Light and temperature signal crosstalk in plant development. Curr. Opin. Plant Biol. 12, 63-68.
Gáborčik, N., Kašper, J., (1988). Chlorophyll concentrations in varieties of red clover (Trifolium pratense) and in the Blanca variety of Dutch clover (Trifolium repens). Rostl. Vyroba. 34, 1181-1186.
Gaudin, A.C.M., Janovicek, K., Martin, R.C., Deen, W., (2014). Approaches to optimizing nitrogen fertilization in a winter wheat—Red clover (Trifolium pratense L.) relay cropping system. Field Crop. Res. 155, 192-201.
Gaudin, A.C.M., Westra, S., Loucks, C., Janovicek, K., Martin, R., Deen, W., (2013). Improving resilience of northern field crop systems, using inter-seeded red clover: A review. Agron. J. 3, 148-180.
Gerard, P.J., Crush, J.R., Hackell, D.L., (2005). Interaction between Sitona lepidus and red clover lines selected for formononetin content. Ann. Appl. Biol. 147, 173-181.
Gołębiowska, J., (1979). Mikrobiologia Rolnicza. PWRiL, Warszawa, 264. [Agricultural Microbiology. PWRiL, Warszawa, 264].
Gordon, J.C., Wheller, C.T., (1983). Biological nitrogen fixation in forest ecosystems: Foundations and applications. Martinus Nijhoff/ Dr W. Junk publishers a member of the Kluwer Aacademic Publishers Group. The Hague/Boston/Lancaster.
Górski, T., Bawolski S., (1979). Agroklimatyczne podstawy rejonizacji uprawy koniczyny czerwonej na nasiona. Zesz. Prob. Post. Nauk Rol. 224, 285 – 289. [Agroclimatic foundations of zoning of red clover cultivation for seed. Zesz. Prob. Post. Nauk Rol. 224, 285-289].
Grove, J.H., Navarro, M.M., (2013). The problem is not N deficiency: Active canopy sensors and chlorophyll meters detect P stress in corn and soybean. Precis. Agric.’13, 9th European Conference on Precision Agriculture, Lleida, Catalonia, Spain 7-11 July, 137- 144. ISBN: 978-90-8686-224-5.
Hajduk, S., Kont, P., (2010). Effect of provenance and ploidity of red clover varieties on productivity, persistence, and growth pattern in mixture with grasses. Plant Soil Environ. 56, 111-119.
Hakala, K., Nikunen, H.M., Sinkko, T., Niemeläinen, O., (2012). Yields and greenhouse gas emissions of cultivation of red clover-grass leys as assessed by LCA when fertilised with organic or mineral fertilisers. Biomass Bioenergy. 46, 111-124.
Hamley, D.H., (1932). Softening of the seeds of Melilotus alba. Bot. Gaz. 93, 345-375.
Hampton, G.L., Hill, M.J., (2002). Seed quality and New Zealand's native plants: an unexplored relationship? New Zeal J. Bot., 40, 357-364.
Harmond, J.E., Brandenburg, N.R., Booster, D.E., (1961). Seed cleaning by electrostatic Separation. Agric. Eng. 42, 22-25.
Harmoney, K.R., Moore, K.J., George, J.R., Brummer, E.Ch., Russell, J.R., (1997). Determination of Pasture Biomass Using Four Indirect Methods. Agron. J. 89, 665-672.
Hartley, R.D., Whitehead, D.C., (1985). Phenolic acids in soils and their influence in growth and soil microbial processes. In: Soil organic matter and Biological Activity, Vaughan D, Malcolm RE (eds). Martinus Nijhoff/Dr W Junk Publishers, Dordretch.
Havstad, T., Aamlid, T.S., Lomholt, A., (2011). Evaluation of vigour tests for determination of seed storage potential in red clover (Trifolium pratensis L.) and timothy (Phleum pratense L.). Seed Sci. Technol. 39, 637-648.
Herrmann, D., Boller, B., Studer, B., Widmer, F., Kölliker, R., (2008). Improving Persistence in Red Clover: Insights from QTL Analysis and Comparative Phenotypic Evaluation Crop Sci. 48, 269-277.
Hesterman, O.B., Griffin. T.S., Williams, P.T., Harris G.H., Christenson, D.R., (1992). Forage Legume-Small Grain Intercrops: Nitrogen Production and Response of Subsequent Corn. J. Prod. Agric. 5, 340-348.
Holter, V., (1978). Nitrogen fixation of four legumes in relation to above ground biomass, root biomass, nodule number, and water content of the soil. Oikos 31, 230-235.
Jabłoński, B., (1974). Badania biologii kwitnienia i zapylania koniczyny czerwonej (Trifolium pratense L.). Pszczel. Zesz. Nauk. XVII, 201-228. [Investigation on biology of blooming and pollination of red clover (Trifolium pratense L.). Pszczel. Zesz. Nauk. XVII, 201-228].
Jakešová, H., Řepková, J., Hampel, D., Čechová, L., Hofbauer, J., (2011). Variation of morphological and agronomic traits in hybrids of Trifolium pratense × T. medium and a comparison with the parental species. Czech J. Genet. Plant Breed. 47, 28-36.
Janovicek, K.J., Stewart, G.A., 2004. Updating general fertilizer nitrogen recommendations for corn in Ontario. In: Proceedings of the 34th North Central Extension-Industry Soil Fertility Conference, Des Moines, IA, USA, November 17–18, 12–19.
Jaranowski, J, Broda, Z., (1986). Hodowla tetraploidalnej koniczyny czerwonej w kierunku zwiększenia plenności nasion. Rocz. AR Poznań, Rol. 31, 89-95. [Breeding tetraploid red clover leading to the increase of seed yielding. Rocz. AR Poznań, Rol. 31, 89-95].
Jasińska, Z., (1973). Aktualne zagadnienia w agrotechnice nasiennej koniczyny czerwonej. MCR, AR, Wrocław, 59-62. [Red clover seed production. MCR, AR, Wrocław, 59-62].
Jastrzębska, M., Kostrzewska, M.K., Wanic, M., Makowski, P., Treder, K., (2015). Phosphorus content in spring barley and red clover plants in pure and mixed sowing. Acta Sci. Pol. Agricultura 14, 21-32.
Jaworska, M., (1999). Entomofauna roślin motylkowatych drobnonasiennych. Zesz. Nauk. AR Kraków. Ses. Nauk. 62, 131-138. [Pest and beneficial insects from legume plantations. Zesz. Nauk. AR Kraków. Ses. Nauk. 62, 131-138].
Jin, C.W., He, Y.F., Tang, C.X., Wu, P., Zheng S.J., (2006). Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant, Cell and Environment 29, 888–897.
Joggi, D., Hofer, U., Nösberger, J., (1983). Leaf area index, canopy structure and photosynthesis of red clover (Trifolium pratense L.). Plant, Cell Environ. 6, 611-616.
Jones, L.G., Osterli, V.P., Bunnelle, R., Reed, A.D., (1953). Red clover seed production. Division of Agricultural Sciences. University of California 432, 1-11.
Justice, O.L., Bass, L.N., (1978). Principles and practices of seed storage. Agriculture Handbook 289.
Kabata-Pendias, A., Pendias, H., (1999). Biogeochemia pierwiastków śladowych. PWN Warszawa 398 [Biogeochemistry of trace elements. PWN Warszawa 398].
Kalaji M. H., Vasilij N. Goltsev V.N., Żuk-Gołaszewska K., Zivcak M., Brestic M., 2017. Chlorophyll Fluorescence: Understanding Crop Performance — Basics and Applications. ed. CRC Press Taylor & Francis Group Boca Raton London New York, 222. ISBN 13: 978-1-4987-6449-0.
Känkänen, H., Eriksson, C., (2007). Effects of undersown crops on soil mineral N and grain yield of spring barley. Eur. J. Agron. 27, 25-34.
Känkänen, H.J., Mikkola, H.J., Eriksson, C.I., (2001). Effect of sowing technique on growth of undersown crop and yield of spring barley. J. Agron. Crop Sci. 187, 127-136.
Katsvairo, T.W., Cox, W.J., (2000). Economics of cropping systems featuring different rotations, tillage, and management. Agron. J. 92, 485-493.
Kendall, W.A., (1958). Persistence of red clover and carbohydrate concentration of the roots at various temperatures. Agron. J. 50, 657-659.
Kiełbasa, P., Juliszewski, T., (2005). Pomiar powierzchni liści wybranych roślin metodą video-komputerową. Inż. Rol. 14, 169-175. [Measurement of the leaf surface for the selected plants using video-computer method. Inż. Rol. 14, 169-175].
Kitczak, T., (1999). Plonowanie trwałych roślin motylkowatych na glebie lekkiej. Zesz. Nauk. AR Kraków. Ses. Nauk. 62, 181-188. [Yields of permanent Papilionaceous plants on a sandy soil. Zesz. Nauk. AR Kraków. Ses. Nauk. 62, 181-188].
Klein L.M., Henderson J., Stoesz, A.D., (1961). Equipment for cleaning seeds. Yearbook of Agriculture. 307-321.
Kopcewicz, J., Lewak, S., (2012). Fizjologia roślin, ed. PWN. 812. [Plant Physiology, ed. PWN. 812].
Korohoda, J. (1970). Problem koniczyny czerwonej w Polsce. Nowe Rol. 7, 13-16. [Red clover cultivation in Poland. Nowe Rol. 7, 13-16].
Korzeniowska, J., Stanislawska-Glubiak, E., (2003). Copper concentration in the top plant tissue as an indicator of cu toxicity. Electron. J. Pol. Agric. Univ., Environ. Dev. 6, available online http://www.ejpau.media.pl
Kunkel, B.N., Brooks, D.M., (2002). Crosstalk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325-331.
Kushida, A., Uehara, T., Momota, Y., (2002). Effect of red clover on hatching and population density of Heterodera glycines (Tylenchida: Heteroderidae). Jpn J. Nematol. 32, 69-76.
Lee, P.C., Paine, D.H., Taylor, A.G., (1998). Detection and removal of off-colored bean seeds by color sorting. Seed Technol. 20, 43-55.
Liatukas, Ż., Bukauskaitë, J., (2012). Differences in yield of diploid and tetraploid red clover in Lithuania. Proc. Latvian Acad. Sci., Sect. B. 66, 163-168.
Licht, M.A., Al-Kaisi M., (2005). Strip-tillage effect on seedbed soil, temperature, and other soil physical properties. Soil Tillage Res. 80, 233-249.
Liebman, M., Dyck, E., (1993). Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3, 92-122.
Liebman, M., Ohno, T., (1997). Crop rotation and legume residue effects on weed emergence and growth: application for weed management. In: Hatfield, J.L., Buhler, D.D., Stewart, B.A. eds. Integrated Weed and Soil Management. Ann. Arbor. Press, Chelsea MI, 181-221.
Lipskaya, G.A., (1972). Accumulation of chlorophyll in chloroplasts of cucumber leaves, under the effect of cobalt and manganese, applied separately and together. Biol. Nauki 15, 90-94.
Lundin, O., Rundlöf, M., Smith, H.G., Bommarco, R., (2012). Towards integrated pest management in red clover seed production. J. Econ. Entomol. 105, 1620-1628.
Lunnan, T., (1989). Effects of photoperiod, temperature, and vernalization on flowering and growth in high-latitude populations of red clover. Norweg. J. Agric. Sci. 3, 201-210.
Maciejewski, T., Sobiech, S., Szukała, J., Grześ, S., (1998). Porównanie rolniczej, ekonomicznej i energetycznej efektywności różnych sposobów uprawy koniczyny czerwonej z życicą mieszańcową. Rocz. AR Poznań 307, Roln. 52, 47-54. [Comparison of agricultural, economical, and energetical effectiveness of different crop management of red clover grown with Italian ryegrass. Rocz. AR Poznań 307, Roln. 52, 47-54].
Makoi, J.H.J.R., Ndakidemi, P.A., (2007). Biological, ecological, and agronomic significance of plant phenolic compounds in the rhizosphere of the symbiotic legumes. Afri J Biotechnol. 6(12), 1358-1368.
Malengier, M., Ghesquiere, A., (2006). Seed yield components in tetraploid red clover (Trifolim pratense L.). Proceedings Breeding and seed production for conventional and organic agriculture. Perugia, Italy, September, 112-114.
Marković, J., Štrbanović, R., Petrović, M., Dinić, B., Blagojević, M., Milić, D., Spasić, N., (2012). Estimation of red clover (Trifolium pratense L.) forage quality parameters depending on the cut, stage of growth, and cultivar. Agroznanje 13, 31-38.
Marks M., (1998). Reakcja koniczyny czerwonej na zróżnicowaną uprawę roli. Rocz. AR Poznań, 307, Roln. 52, 25-31. [Reaction of red clover to the different soil tillage practices. Rocz. AR Poznań, 307, Roln. 52, 25-31].
Marks, M., Makowski, P., Orzech, K., (2009). Assessment of energy requirements for different methods of two-year fallow keeping and cultivation of winter wheat. Pol. J. Natur. Sci. 24, 187–197.
Marley, C.L., Fychan, R., Fraser, M.D., Witners, A., Jones, R., (2003). Effect of sowing ratio and stage of maturity at harvest on yield, persistency and chemical composition of fresh and ensiled red clover/lucerne bi-crops. Grass Forage Sci. 58, 397-406.
Martensson, A.M., (1990). Competitiveness of inoculant strains of Rhizobium leguminosarum bv. trifolii in red clover using repeated inoculation and increased inoculum levels. Can. J. Microbiol. 36, 136-139.
Martyniuk, S., (2002). Systemy biologicznego wiązania azotu. Naw. Nawoż./Fert. Fertil. 1, 264-277. [Systems of biological nitrogen fixation. Naw. Nawoż./Fert. Fertil. 1, 264-277].
Martyniuk, S., (2012). Naukowe i praktyczne aspekty symbiozy roślin strączkowych z bakteriami brodawkowymi. Polish Agron. 9, 17-22. [Scientific and practical aspects of legumes symbiosis with root-nodule bacteria. Polish Agron. 9, 17-22].
Martyniuk, S., Oroń, J., Martyniuk, M., (1999). Interaction between chemical seed dressings and Bradyrhizobium inoculant on lupine seeds. Bot Lith. 3, 95-98.
Mascher, R., Lippmann, B., Holzinger, S., Bergmann, H., (2002). Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 163, 961-969.
Materon, L.A., Hagedorn, C., (1982). Competitiveness of Rhizobium trifolii strains associated with red clover (Trifolium pratense L.) in Mississippi Soils. Appl. Environ. Microbiol. 44(5), 1096-110.
Matsubayashi, M., Takahashi, H., (1958-1959). Studies on Water Economy in Crop Plants: III Water economy in some grass and legume plants with special reference to temperature. Jpn. J. Crop Sci. 27, 238-240.
Maxwell, K., Johnson, G.N., (2000). Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51, 659-668.
McDonald, C.K., (2000). Variation in the rate of hard seed breakdown of twelve tropical legumes, in response to two temperature regimes in the laboratory. Aust. J. Exp. Agric. 40, 387-396.
Meyer-Aurich, A., Weersink, A., Janovicek, K., Deencrop, B., (2006). Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in Eastern Canada. Agric. Ecosyst. Environ. 117, 119–127.
Miller, D.A., Reetz, Jr. H.F., (1995). Forage fertilization. In R.F. Barnes et al. ed. Forages. 1. An introduction to grassland agriculture. Iowa State Univ. Press, Ames, IA. 121-160.
Misra, K.C., Gaur, A.C., (1971). Tolerance of Azotobacter to some herbicides. Indiana J. Weed Sci. 3, 99- 103.
Moot, D.J., Brown, H.E., Pollock, K., Mills, A., (2008). Yield and water use of temperate pastures in summer dry environments. Proceedings-N. Z. Grassland Association. 70, 51-57.
Nadolnik, M., (1999). Wpływ niektórych zabiegów agrotechnicznych na zdrowotność roślin motylkowatych drobnonasiennych. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 237-244. [The effect of some agrotechnical measures on the health state of fine-grained papilionaceous plant. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 237-244].
Narina, S.S., Phatak, S.C., Bhardwaj, H.L., (2014). Chlorophyll fluorescence to evaluate pigeonpea breeding lines and mungbean for drought tolerance. J. Agric. Sci. 6, 238-246.
Niewiadomska, A., (2004). Effect of Carbendazim, Imazetapir and Thiram on Nitrogenase Activity, the Number of Microorganisms in Soil and Yield of Red Clover (Trifolium pratense L.). Pol. J. Environ. Stud. 13(4), 403-410.
Nowak, W., Gospodarczyk, F., Bruździak, M., (1999). Możliwość produkcji nasiennej koniczyny czerwonej i lucerny mieszańcowej w warunkach Dolnego Śląska. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 245-251. [Possibility of growing red clover and hybrid lucerne for seeds in Lower Silesia. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 245-251].
Nowicka, A., Grabowska, K., Banaszkiewicz, B., (1993). Wpływ temperatury powietrza na plonowanie koniczyny czerwonej pierwszego i drugiego pokosu. Fragm. Agron. 4, 215-216 [Influence of air temperature on yield of red clover of the first and second cut. Fragm. Agron. 4, 215-216].
Nutman, P.S., (1954). Symbiotic effectiveness in nodulated red clover. I. Variation in host and in bacteria. Heredity 8, 35–46.
Öhberg, H., (2008). Studies of the persistence of red clover cultivars in Sweden. PhD thesis.
Öhberg, H., Bång, U., (2008). Occurrence of Fusarium root rot complex in various red clover cultivars under different natural climatic conditions. PhD thesis.
Öhberg, H., Bång, U., (2010). Biological control of clover rot on red clover by Coniothyrium minitans under natural and controlled climatic conditions. Biocontrol. Sci. Techn. 20, 25-36.
Öhberg, H., Ruth, P., Bång, U., (2005). Effect of ploidy and flowering type of red clover cultivars, and of isolate origin, on severity of clover rot, Sclerotinia trifoliorum. J. Phytopathol. 153, 505-511.
Öhberg, H., Ruth, P., Bång, U.U., (2008). Differential responses of red clover cultivars to Sclerotinia trifoliorum, under diverse, natural climatic conditions. Plant Pathol. 57, 445-466.
Ohno, T., Doolan, K., Zibilske, L.M., Liebman, M., Gallandt, E.R., Berube, C., (1999). Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agric. Ecosyst. Environ. 78, 187–192.
Oliva, R.N., Steiner, J.J., Young, W.C., III. (1994a). Red clover seed production. I. Crop water requirements, and irrigation timing. Crop Sci. 34, 178-184.
Oliva, R.N., Steiner, J.J., Young, W.C., III. (1994b). Red clover seed production. II. Plant water status on yield, and yield components. Crop Sci. 34, 184-192.
Palit, S., Sharma, A., Talukder, G., (1994). Effects of cobalt on plants. Bot. Rev. 60, 149-173.
Pammel, L.H., King, C.M., (1911). Pollination of clover. Iowa State Col. Bot. Dept. Contrib. 47, 36-45.
Patel, D., Frankiln, K.A., (2009). Temperature-regulation of plant architecture. Plant Signal. Behav. 4, 577-579.
Pawlus, M., Kitczak, T., (1993). Porównanie plonowania koniczyn przy zróżnicowanym terminie sprzętu II i III pokosu. Fragm. Agron. 4, 217-218. [Red, white, and persian clover yield, depending on different cutting time. Fragm. Agron. 4, 217-218].
Peri, P.L., Moot, D.J., McNeil, D.L., Varella, A.C. and Lucas, R.J., (2002). Modelling net photosynthetic rate of field grown cocksfoot leaves under different nitrogen, water, and temperature regimes. Grass Forage Sci. 57, 61-71.
Pessarakli, M., (2014). Handbook plant and crop physiology. ed. CRC Press Taylor and Francis Group Boca Raton London New York, 993. ISBN13:978-1-4665-5328-6.
Peters, E.J., Zbiba, M.B., (1979). Effects of herbicides on nitrogen fixation of alfalfa (Medicago sativa) and red clover (Trifolium pratense). Weed Sci. 2(1), 18-21.
Petrović, M., Dajić-Stevanović, Z., Sokolović, D., Radović, J., Milenković, J., Marković, J., (2014). Study of red clover wild populations from the territory in Serbia, for the purpose of pre-selection. Genetika 46, 471-484.
Pierce, F.J., Fortin, M.C., Staton, M.J., (1992). Immediate and residual effects of zone tillage in rotation with no-tillage on soil, physical properties, and corn performance. Soil Tillage Res. 24,149–165.
Piliksere, D., Legzdiņa, L., Zariņa, L., Zute, S., (2014). Environmentally friendly weed management strategies: selection of competitive crop variety. NJF Seminar 471, Recent advances in IWM of perennial and annual weeds, with a special emphasis on the role of crop-weed interactions. Uppsala, Sweden, 27-29 January, 20-23.
Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, E., Abbett, E., Nandaopal, S., (2004a).Water resources, agriculture, and the environment. Ithaca (NY): New York State College of Agriculture and Life Sciences, Cornell University. Environ. Biol. Rep. 4-10.
Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, E., Abbett. E., Nandaopal, S., (2004b). Water resources: Agricultural and Environmental. BioScience 54

, 909-918.
Pinter, Jr.P.J., Hatfleld, J.L., Schepers, J.S., Barnes, E.M., Moran, M.S., Daughtry, C.S.T., Upchurch, D.R., (2003). Remote Sensing for Crop Management. Photogramm. Eng. Remote Sensing. 69, 647-664.
Porter, R.H., (1944).Testing the quality of seeds for farm and garden.

Res. Bull. 334, 584.
Priestley, D.A., (1986). Morphological, structural, and biochemical changes associated with seed aging. In Priestley D.A. ed. Seed aging, Cornel University Press Ithaca, 125-196.
Purwin, C., Pysera, B., Żuk-Gołaszewska, K., Gołaszewski, J., Fijałkowska, M., Lipiński, K., (2011). Fermentation and proteolysis during the ensilage of wilted and unwilted diploid and tetraploid red clover. J. Cent. Eur. Agric. 12, 179-194.
Queen, A., Earl, H., Deen, W., (2009). Light and moisture competition effects on biomass of red clover underseeded to winter wheat. Agron. J. 101, 1511-1521.
Rao, S., Stephen, W.P., (2009). Bumble bee pollinators in red clover seed production. Crop Sci. 49, 2207-2214.
Rice, W.A., Penney, D.C., Nyborg, M., (1977). Effects of soil acidity on rhizobia numbers, nodulation, and nitrogen fixation by alfalfa and red clover. Can. J. Soil Sci. 57, 197-203.
Ringselle, B., Andersson, L., Aronsson, H., Bergkvist, G., (2014). The effect of cover crops and mowing on the abundance and biomass of Elymus repens. NJF Seminar 471, Recent advances in IWM of perennial and annual weeds, with a special emphasis on the role of crop-weed interactions. Uppsala, Sweden, 27-29 January, 11-12.
Rosa, J.D., Mafra, A.L., Medeiros, J.C., Albuquerque, J.A., Miquelluti, D.J., Nohatto, M.A., Ferreira, E.Z., Pereira de Oliveira, O.L., (2013). Soil physical properties and grape yield influenced by cover crops and management systems. Bras. Ci. Solo. 37, 1352-1360.
Rosenberg, O., Cohen, Y., Saranga, Y., Levi, A., Alchanatis, V., (2013). Comparison of methods for field scale mapping of plant water status, using aerial thermal imagery. Precis. Agric.’13, 9th European Conference on Precision Agriculture, Lleida, Catalonia, Spain 7-11 July 2013. 499-506, ISBN: 978-90-8686-224-5, 185-192.
Ross, S.M., King, G.R., Izaurralde, R.C., O’Donovan, J.T., (2001). Weed suppression by seven clover species. Agron. J. 93, 820-827.
Russel, S., (1974). Drobnoustroje a życie gleby. PWN, Warszawa. 291. [The soiled microorganisms and life. PWN, Warszawa. 291].
Rybak, H., Pudełko, J., Waniorek, W., Różalski, K., (1993). Wpływ terminów terminu zbioru pierwszego pokosu zielonki na plon nasion tetraploidalnych odmian koniczyny czerwonej. Rocz. Nauk Rol., A, 110, 86-91. [The effect of the harvest dates of the first cut of green fodder on the yield of tetraploidal seeds of red clover varieties. Rocz. Nauk Rol., A, 110, 86-91.]
Rybak, R., Pudełko, J., Szukała, J., (1994). Wpływ ilości wysiewu na plon nasion i elementy jego struktury tetraploidalnych odmian koniczyny czerwonej. Rocz. Nauk Rol. A, 110, 75-83. [Effect of the sowing rate on seed yield, and its structure elements of tetraploid red clover varieties. Rocz. Nauk Rol. A, 110, 75-83].
Sądej, W., Kuberska, J., Żuk-Gołaszewska, K., (2005). Ocena stanu pszczołowatych (Hymenoptera. Apoidea) oblatujących koniczynę czerwoną (Trifolium pratense L.) w okolicy Ostródy. Zesz. Probl. Post. Nauk Rol. 505, 379-384. [Evaluation of bees (Hymenoptera. Apoidea) pollinating red clover (Trifolium pratense L.) in Ostróda area. Zesz. Probl. Post. Nauk Rol. 505, 379-384].
Ścibor, H., (1993). Wpływ otoczkowania nasion na dynamikę wschodów i plonowanie koniczyny czerwonej. Znaczenie jakości materiału siewnego w produkcji roślinnej, Mat. Konf. Warszawa, 207-214. [Effect of seed pelleting on the emergence rates and yield of red clover. The importance of seed quality in crop production. Mat. Konf. Warszawa, 207-214].
Sherrell, C.G., (1983). Effect of boron application on seed production of New Zealand herbage legumes. N.Z. J. Exp. Agric. 11, 113-117.
Silow, R.A., (1933). A systemic disease of red clover caused by Botrytis anthophila Bond. Trans. Br. Mycol. Soc. 18, 239-248.
Sowa, S., Ruszkowski, A., Byliński, M., Kosior, A., (1983). Liczebność i skład gatunkowy owadów zapylających koniczynę czerwoną (Trifolium pratense L.) w Polsce w latach 1972-1975. Biul. IHAR, 151, 147-162. [Numbers and species composition of insects pollinating red clover (Trifolium pratense L.) in Poland in 1972-1975 years. Biul. IHAR, 151, 147-162.]Sparks, D.L., (2015). Advances in Agronomy ed. Elsevier Inc. ISBN: 978-12-802137-8, 130, 421.
Stajković-Srbinović, O., Delić, D., Rasulić, N., Cakmak, D., Kuzmanović, D., Sikirić, B., (2015). Mineral composition of red clover under Rhizobium inoculation and lime application in acid soil. Not. Bot. Horti. Agrobo. 43, 554-560.
Steiner, J.J., Alderman, S.C., (1999). Red Clover Seed Production: V. Root health and crop productivity. Crop Sci. 39, 1407-1415.
Steiner, J.J., Leffel, J.A., Gingrich, G., Aldrich-Markham, S., (1995). Red clover seed production: III. Effect of forage removal time under varied environments. Crop Sci. 35, 1667-1675.
Steiner, J.J., S. C. Alderman, S.C., (2003). Seed physiology, production, and technology. Red clover seed production: VI. Effect and economics of soil pH adjusted by lime application. Crop Sci. 43, 624-630.
Steiner, J.J., Smith, R.R., Alderman, S.C., (1997). Red clover seed production: IV. Root rot resistance, under forage, and seed production systems. Crop Sci. 37, 1278-1282.
Steinshamn, H., (2008). The unique properties of red clover in the diet of ruminants. 1st Scientific Conference within the framework of the 8th European Summer Academy on Organic Farming, Lednice na Moravě, Czech Republic, September 3-5.
Stupnicka-Rodzynkiewicz E., Ścigalska B., Kieć J., Pasek T., Puła J., (1999). Plonowanie koniczyny czerwonej w zależności od warunków pogodowych i sposobu uprawy roli pod przedplon. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 279-285. [Yields of red clover as dependent on weather conditions and method of soil cultivation under forecrop. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 279-285].
Taylor, N.L., (1985). Clover science and technology. Madison, USA. 616.
Taylor, N.L., Smith R.R., (1995). Red clover. In: Barnes RF, Miler DA, Nelson CJ ed. Forages. Iowa State University 217–226.
Taylor, N.L., Stroube, W.H., Kendall, W.A., Fergus, E.N., (1962). Variation and relation of clonal persistence and seed production in red clover. Crop Sci. 2, 303–305.
Thapa, R.B., (2006).

Honeybees and other insect pollinators of cultivated plants: a review. J. Inst. Agric. Anim. Sci. 27, 1-23.
Tomaszewski-Junior, Z., (1989). Porównanie produktywności nasiennej diploidalnych i tetraploidalnych odmian i rodów koniczyny czerwonej (Trifolium pratense L.). Biul. IHAR. 169, 3-9. [Comparison of seed productivity of di- and tetraploid red clover (Trifolium pratense L.) varieties and strains. Biul. IHAR. 169, 3-9].
Tomić, D., Stevović, V., Durović, D., Radovanović, M., Lazarević, D., Knežević, J., (2016). The impact of foliar application of mineral nutrients on the chlorophyll content in leaf and nodulation of red clover. Proceedings 51st Croatian and 11th International Symposium on Agriculture. Sec. 5, Field Crop Production 256-260.
Tucak, M., Popović, S., Čupić, T., Španić, V., Meglič, V., (2013). Variation in yield, forage quality, and morphological traits of red clover (Trifolium pratense L.) breeding populations and cultivars. Zemdirb. Agric. 100, 63–70.
Unger, P.W., Merle, F., (1998). Cover crop effects on soil water relationships. J. Soil Water Conserv. 53, 200–207.
Varkoč, F., Vach, M., Veleta, V., (2002). Influence of different cultivation factors on the yield structure and on changes of soil properties. Rostl. Vyroba 48, 208-211.
Vaseva, I., Akiscan, Y., Demirevska, K., Anders, I., Feller, U., (2011). Drought stress tolerance of red and white clover–comparative analysis of some chaperonins and dehydrins. Sci. Hortic. 130, 653–659.
Vattala, H.D., Wratten, S.D., Phillips, C.B., Wäckers, F.L., (2006). The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biol. Control. 39, 179–185.
Vleugels, T., Ceuppens, B., Cnops, G., Lootens, P., van Parijs, F.R.D., Smagghe, G., Roldan-Ruiz, I., (2016). Models with only two predictor variables can accurately predict seed yield in diploid and tetraploid red clover. Euphytica 209, 507–523.
Vleugels, T., Roldán-Ruiz, I., Cnops, G., (2015). Influence of flower and flowering characteristics on seed yield in diploid and tetraploid red clover. Plant Breed. 134, 56–61.
Vyn, T.J., Faber, J. G., Janovicek, K.J., Beauchamp, E.G., (2000). Cover crop effects on nitrogen availability to corn, following wheat. Agron. J. 92, 915–924.
Walsh, U.F., Moenne-Loccoz, Y., Tichy, H.V., Gardner, A., Corkery, D.M., Lorkhe, S., O’Gara, F., (2003). Residual Impact of the Biocontrol Inoculant Pseudomonas fluorescens F113 on the Resident Population of Rhizobia Nodulating a Red Clover Rotation Crop. Microb Ecol. 45,145–155.
Wang, Y.R., Hampton, J.G., (1989). Red clover (Trifolium pratense L.) seed quality. Proceedings Agronomy Society N.Z. 19, 63- 68.
West, S.H., Harris, H.C., (1963). Seed coat colors associated with physiological changes in alfalfa, crimson, and white clovers. Crop Sci. 3, 190-193.
Weston, W.A.R.D., Loveless, A.R., Taylor, R.E., (1946). ‘Clover Rot’. J. Agric. Sci. 36, 18-28.
Westra. S.V., 2015. Non-uniform stands of red clover (Trifolium pratense L.) underseeded to winter wheat (Tritcum aestivum L.): A survey study to identify causes. MSc. Thesis.
Whittington, W.J., (1957). Role of boron in plant growth. I. The effect on general growth, seed production, and cytological behaviour. J. Exp. Bot. 8, 353-35.
Wigge, P.A., (2013). Ambient temperature signalling in plants. Curr. Opin. Plant Biol., 16, 661–666.
Wilczek P., Ceglarek F., Wilczek M., (2000). Wpływ ilości wysiewu, rozstawy rzędów i desykacji na plony nasion tetraploidalnej koniczyny łąkowej (czerwonej). Biul. IHAR. 215, 335 – 345. [Effect of rates of seed sown, row spacing, and desiccation on tetraploid red clover seed yield]. Biul. IHAR. 215, 335 – 345].
Wilczek, M., (1984). Agroekologiczne aspekty rejonizacji plantacji nasiennych koniczyny czerwonej (Trifolium pratense L.) na terenie Lubelszczyzny Cz. I. Rejony produkcji a struktura plonów nasion. Biul. IHAR. 154, 93-101. [Agroecological aspects of zoning of red clover (Trifolium pratense L.) seed plantations in the Lublin region. Part I. Production zones and the seed yield structure. Biul. IHAR. 154, 93-101].
Wilczek, M., (1986). Wpływ terminu i gęstości wysiewu na plon nasion koniczyny czerwonej (Trifolium pratense L.). Biul. IHAR. 159, 57 – 62. [Effect of sowing dates and rates on yields of red clover (Trifolium pratense L.) seed. Biul. IHAR. 159, 57-62].
Wilczek, M., Ćwintal, M., (2002). Uprawa koniczyny czerwonej (łąkowej) na nasiona w trzyletnim użytkowaniu. Pam. Puł. 130, 771-777. [Cultivation of red clover (meadow) for seeds in three-year performance]. Pam. Puł. 130, 771-777].
Wilczek, M., Ćwintal, M., (2011). Wpływ przedsiewnej stymulacji laserowej nasion i dokarmiania mikroelementami (B, Mo) na plonowanie nasiennej, tetraploidalnej koniczyny czerwonej w czteroletnim użytkowaniu. Acta Agrophys. 17, 207-217. [Influence of pre-sowing laser stimulation and microelement nutrition (B, Mo) on yielding of seed of tetraploid red clover during four-year performance. Acta Agrophys. 17, 207-217].
Wilczek, M., Ćwintal, M., Wilczek, P., (1999a). Plonowanie i jakość tetraploidalnej koniczyny łąkowej (czerwonej) w zależności od niektórych czynników agrotechnicznych. Cz. I Ściernianka. Biul. IHAR. 210, 101-108. [Yielding and quality of tetraploid red clover depending on some agrotechnical factors. Part I. Stubble crop. Biul. IHAR. 210, 101-108].
Wilczek, M., Ćwintal, M., Wilczek, P., (1999b). Plonowanie i jakość tetraploidalnej koniczyny łąkowej (czerwonej) w zależności od niektórych czynników agrotechnicznych. Cz. II Plonowanie. Biul. IHAR. 210, 109-118. [Yielding and quality of tetraploid red clover depending on some agrotechnical factors. Part II. Yielding. Biul. IHAR. 210, 109-118].
Wilczek, M., Koper, R., Ćwintal, M., Korniłłowicz-Kowalska, T.,(2004). Germination capacity and the health status of red clover seeds following laser treatment. Int. Agrophys. 18, 289-293.
Wilczek, M., Wilczek, F., (2002). Wpływ terminu zbioru pierwszego pokosu oraz nawożenia makro- i mikroelementami na plon nasion tetraploidalnej koniczyny (łąkowej). Biul. IHAR. 223/224, 237-248. [The influence of term of first cut harvest and macro, and microelements fertilization on seed yield of tetraploid red clover. Biul. IHAR. 223/224, 237-248].
Williams, R.D., (1930). Some of the factors influencing yield and quality of red Clover seeds. Welsh Plant Breed. Sta., Aberystwyth, Bul. Ser. H. 11, 60-91.
Woodrow, A.W., (1952). Pollination of the red clover flower by the honey bee. J. Econ. Ent. 45, 1028-1029.
www.biofood.com.pl
www.coboru.pl


www.eur-lex.europa.eu/pl/index
www.oecd.org/tad/seed - Capacity Building in the OECD Seed Certification Schemes, 2013.
Wyngaarden, S.L., Gaudin, A.C.M., Deen, W., Martin, R.C., (2015). Expanding red clover (Trifolium pratense) usage in the corn–soy–wheat rotation. Sustainability 7, 15487-15509.
Zając, T., (1993). Rozmiary jesiennej samoregulacji zagęszczenia pędów koniczyny czerwonej w zależności od wyjściowej obsady roślin. Fragm. Agron. 4, 213 - 214. [The extent of autumn self regulation of the clover shoot density, depending on the initial plant density. Fragm. Agron. 4, 213 - 214].
Zając, T., Bieniek, J., Gierdziewicz, M., Witkowicz, R., (1999). Wpływ roku uprawy i sposobu siewu na wymiary i zależności między cechami morfologicznymi młodocianych roślin koniczyny czerwonej. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 375-383. [The influence of cultivation year and sowing method on the size and correlations between morphological traits of young clover plants. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 375-383].
Zając, T., Witkowicz, R., (1999). Produkcyjność jęczmienia jarego i jego wartość ochronna dla koniczyny czerwonej w zależności od wybranych czynników agrotechnicznych. Ujęcie syntetyczne. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 385-396. [Productivity of spring barley and its protective value for red clover, as dependent on selected agrotechnical factors. A synthetic view. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 385-396].
Zamanian, M., Siadat, S.A., Fathi, Ch., Chuokan, R., Jafari, A.A., Bakhshandeh, A., Moghaddam, A., (2013). Application of chlorophyll fluorescence attributes in selection for cold tolerance in some clover species. Seed Plant Prod. J. 29, 251-267.


Zheng, S.J., Tang, C.X., Arakawa, Y., Masaoka, Y., (2003). The responses of red clover (Trifolium pratense L.) to iron deficiency: a root Fe (III) chelate reductase. Plant Sci. 164,

679– 687.
Zielińska, M., Zapotoczny, P., Białobrzeski, I., Żuk-Gołaszewska, K., Markowski, M., (2012). Engineering properties of red clover (Trifolium pratense L.) seeds. Ind. Crops Prod. 37, 69-75.
Żuk-Gołaszewska, K., (2008). Produkcyjność i produktywność jęczmienia jarego (Hordeum vulgare L.) uprawianego w różnych warunkach agrotechniki. Dissertations and Monographs, UWM Olszt. 136, 110. [Productivity and productiveness of spring barley (Hordeum vulgare L.) cultivated in different agrotechnical conditions]. Dissertations and Monographs, UWM Olszt. 136, 110.
Żuk-Gołaszewska, K., Bielski, S. Gołaszewski, J., (2006a). Productivity of spring barley grown with red clover as undersown crop. Pol. J. Natur. Sci. 20, 121-133.
Żuk-Gołaszewska, K., Bieniaszewski, T, Fordoński, G., Olszewski, J., (1999). Plonowanie di- i tetraploidalnych odmian koniczyny czerwonej w siewie mieszanym z tymotką łąkową. Zesz. Nauk. AR Krak. Ses. Nauk. 62, 407- 414. [Yielding of di, and tetraploid cultivars of red clover sown in mixture with timothy. Zesz. Nauk. AR Krak. Ses. Nauk. 62, 407- 414].
Żuk-Gołaszewska, K., Bochenek, A., Gołaszewski, J., (2007). Effect of scarification on seed germination of red clover in the hydrotime model terms. Seed Sci. Technol. 35, 326-336.
Żuk-Gołaszewska, K., Gołaszewski, J., Sądej, W., Bielski, S., (2006b). Seed yields of diploid and tetraploid varieties of red clover as dependent upon sowing rate. Pol. J. Natur. Sci. 20, 615-628.
Żuk-Gołaszewska, K., Majewska, K., Gołaszewski, J., (2011). Właściwości mechaniczne pojedynczych nasion koniczyny czerwonej. Acta Agrophys. 17, 229-239. [Mechanical properties of a single red clover seed]. Acta Agrophys. 17, 229-239].
Żuk-Gołaszewska, K., Nasalski, Z., (2006). Economic and energy effectiveness of red clover seed production. Pol. J. Natur. Sci. 20, 605-613.
Żuk-Gołaszewska, K., Purwin, C., Pysera, B., Wierzbowska, J., Gołaszewski, J., (2010). Yields and quality of green forage form red clover di, and tetraploid forms. J. Elem. 15 (9), 757-770.
Żuk-Gołaszewska, K., Wierzbowska, J., Bieńkowski, T., (2015). The effect of potassium fertilization, Rhizobium inoculation and water deficit on the yield and quality of fenugreek seeds. J. Elem. 20 (2), 513-524.

Chapter 3

Adams, N.R., (1995). Detection of the effects of phytoestrogen on sheep and cattle. J. Anim. Sci. 73, 1509-1515.
Asci, O.O., (2012). Biodiversity in red clover (Trifolium pratense L.) collected from Turkey. II: Nutritional values. Afr. J. Biotechnol. 11, 4248-4257.
Atkinson, C., Warren, R.M.L., Sala, E., Dowswtt, M., Dunning, A.M., Healey, C.S., Runswick, S., Day, N.E., Bingham, S.A., (2004). Red clover-derived isoflavones and mammographic breast density: A double-blind, Randomized, Placebo-controlled trial [IS RCTN42940165]. Breast Cancer Res. 6, 170-179.
Beck, V., Rohr, U., Jungbauer, A., (2005). Phytoestrogens derived from red clover: An alternative to estrogen replacement therapy? J. Steroid Biochem. Mol. Biol. 94, 499-518.
Booth, N.L., Overk, C.R., Yao, P., Totura S., Deng, Y., Hedayat, A.S., Bolton, J.L., Pauli, G.F., Farnsworth, N.R., (2006). Seasonal variation of red clover (Trifolium pratense L., Fabaceae) isoflavones and estrogenic activity. J. Agric. Food Chem. 54, 1277-1282.
Brown, H.E., Moot, D. J., Pollock, K.M., (2005). Production, persistence, and water use of perennial forages. New Zeal. J. Agr. Res. 48, 423-439.
Brzozowska, E., Gałązka-Czarnecka, I., Krala, L., (2014). Wpływ rozproszonego promieniowania słonecznego na wybrane właściwości kiełków koniczyny czerwonej (Trifolium pratense L.). Żywność. Nauka. Technologia. Jakość 6, 67-80. [Effect of diffuse solar radiation on selected properties of red cover sprouts (Trifolium pratense L.). Żywność. Nauka. Technologia. Jakość 6, 67-80].
Burda, S., Suchecki Sz. (1996). Zawartość izoflawonów w materiałach hodowlanych koniczyny czerwonej (Trifolium pratense L.). Acta Agrobot. 49, 89-94. [The content of izofloavones breeding stocks of red clover. Acta Agrobot. 49, 89-94].
Chillemi, S., Chillemi, M.D.C., (2013). The complete herbal guide: A natural approach to healing the body - Heal your body naturally and maintain optimal health using alternative medicine, herbals, vitamins, fruits, and vegetables. (ebook), 488.
Clifton-Bligh, P.B., Baber, R.J., Fulcher, G.R., Nery, M.L., Moreton, T., (2001). The effect of isoflavones extracted from red clover (Rimostil) on lipid and bone metabolism. Menopause 8, 259-265.
Dasci, M., Gullap, M.K, Erkovan, H.I, Koc, A., (2010). Effects of phosphorus fertilizer and phosphorus solubilizing bacteria applications on clover dominant meadow. II. Chemical composition. Turk. J. Field Crops. 15, 18-24.
Dickson, I.A., Frame, J., MaCleod, N.S.M., Kelly, M., (1977). The effect of short-term grazing of red clover on ewes at mating. Grass Forage Sci. 32, 135-140.
Dinić, B., Đorđević, N., Terzić, D., Blagojević, M., Marković, J., Jevtić, G., Vukić- Vranješ, M., (2013). The effect of carbohydrate additive and Inoculation on quality of red clover silage. Biotechnol. Anim. Husb. 29,105-114.
Du, W.H., Yue Y., Tian, X., (2012). Variation of isoflavone production in red clover, as related to environment, growth stage, and year. Acta Aliment. 41, 211-220.
Esmaeili, A.K., Taha, R.M., Banisalam, B., Mohajer, S., Mahmood, N.Z., (2013). Antimicrobial activities of extracts derived from in vivo and in vitro grown Trifolium pratense (red clover). Int. J. Environ. Sci. Dev. 4, 475-478.
Eteraf-Oskouei, T., Najafi, M., (2013). Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 16, 713-742.
Flythe, M., Kagan, I., (2010). Antimicrobial effect of red clover (Trifolium pratense) phenolic extract on the ruminal hyper ammonia-producing bacterium, Clostridium sticklandii. Curr. Microbiol. 61, 125-131.
Geller, S.E., Shulman, L.P., van Breemen, R.B., Banuvar, S., Zhou, Y., Epstein, G., Hedayat, S., Nikolic D., Krause, E.C., Piersen, C.E., Bolton, J.L., Pauli, G.F., Farnsworth, N.R., (2009). Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms: a randomized, controlled trial. Menopause 16, 1156-1166.
Grabber, J.H., (2009). Forage management effects on protein and fiber fractions, protein degradability, and dry matter yield of red clover conserved as silage. Anim. Feed Sci. Technol. 154, 284-291.
Kimble S. 2016. Herbal hormones. Version 1.0.8713, 636.
Kolodziejczyk, C.J., (2012). Trifolium species-derived substances and extracts--biological activity and prospects for medicinal applications. J. Ethnopharmacol. 143, 14-23.
Kroyer, G., Hatzl, C., Pfannhauser, W., Fenwick, G.F., Khokhar, S., (2001). Evaluation of isoflavones as functional bioactive phytochemicals in food. Chem. Soc. Rev. 3, 495-497.
Livingston, A.L., Smith, D., Carnahan, H.L., Knowles, R.E., Nelson, J.W.,Kohler, G.O., (1968). Variation in the xanthophyll and carotene content of lucerne, clovers, and grasses. J. Sci. Food Agr. 19, 632-636.
Marek-Kozaczuk, M., Skorupska, A., (2001). Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267, and the importance of vitamins in the colonization and nodulation of red clover. Biol. Fertil. Soils. 33, 146-151.
Marković, J., Štrbanović, R, Terzić, D., Pojić, M., Vasić, T., Babić, S., (2010). Relative feed value of alfalfa (Medicago sativa L) and red clover (Trifolium pratense L.) at different stage of growth. Biotech. Anim. Husbandry. 26, 469-474.
Marković, J., Štrbanović, R., Petrović, M., Dinić, B., Blagojević, M., Milić, D., Spasić, N., (2012). Estimation of red clover (Trifolium pratense L.) forage quality parameters, depending on the cut, stage of growth, and cultivar. Agroznanje 13, 31-38.
Marley, C.L., Fraser, M.D., Fychan, R., Theobald, V.J., Jones, R., (2005). Effect of forage legumes and anthelmintic treatment on the performance, nutritional status, and nematode parasites of grazing lambs. Vet. Parasitol. 131, 267-282.
Marley, C.L., Mc Calman, H., Buckingham, S., Downes, D., Abberton, M.T., (2011). A review of the Effect of Legumes on Ewe and Cow Fertility. IBERS Legumes and Fertility Review. 1-30. on line 17 October 2016.
Mikołajczak, Z., Koźlik, D., (1999). Zawartość składników pokarmowych w organach koniczyny łąkowej (Trifolium pratense L.). Zesz. Nauk. AR Kraków. Ses. Nauk. 62, 227-235. [Nutrient content of meadow clover (Trifolium pratense L.) tissues. Zesz. Nauk. AR Kraków. Ses. Nauk. 62, 227-235].
Petrović, M., Dajić-Stevanović, Z., Sokolović, D., Radović, J., Milenković, J., Marković, J., (2014). Study of red clover wild populations from the territory in Serbia, for the purpose of pre-selection. Genetika 46, 471-484.
Rinne, M., Nykänen, A., (2000). Timing of primary growth harvest effects of yield nutritive value of timothy –red clover mixtures. Agr. Food Sci. Finland 9, 121-134.
Sabudak, T., Guler, N., (2009). Trifolium L. - A review on its phytochemical and pharmacological profile. Phytother. Res. 23, 439-446.
Sivesind, E., Seguin, P., (2005). Effects of the environment, cultivar, maturity, and preservation method on red clover isoflavone concentration. J. Agric. Food Chem. 53, 6397-6402.
Spagnuolo, P., Rasini, E., Luini, A., Legnaro, M., Luzzani, M., Casareto, E., Carreri, M., Paracchini, S., Marino, F., Cosentino, M., (2014). Isoflavone content and estrogenic activity of different batches of red clover (Trifolium pratense L.) extracts: An in vitro study in MCF-7 cells. Fitoterapia 94, 62-69.
Steinshamn, H., (2008). The unique properties of red clover in the diet of ruminants. 1st Scientific Conference within the framework of the 8th European Summer Academy on Organic Farming. Lednice na Moravě, Czech Republic, September 3-5.
Tava, A., Stochmal, A., Pecetti, L., (2016). Isoflavone content in subterranean clover germplasm from Sardinia. Chem. Biodivers. 13, 1038-1045.
Tsao, R., Papadopoulos, Y., Yang, R., Young, J.C., McRae, K., (2006). Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. J. Agric. Food Chem. 54, 5797-5805.
Vallianou, N.G., Gounari, P., Skourtis, A., Panagos, J., Kazazis, Ch., (2014). Honey and its anti-inflammatory, anti-bacterial, and anti-oxidant properties. Gen. Med. (Los Angel) 2, 1-5.
van de Weijer, P.H.M., Barentsen, R., (2002). Isoflavones from red clover (Promensil®) significantly reduce menopausal hot flash symptoms compared with a placebo. Maturitas 42, 187-193.
Van Soest, P.J., Robertson, J.B., Levis, B.A., (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Vattala, H.D., Wratten, S.D., Phillips, C.B., Wäckers, F.L., (2006). The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biol. Control. 39, 179-185.
Wong, E., (1963). Isoflavone contents of red clover and subterranean clovers. J. Sci. Fd. Agric. 14, 376-379.
Wu, Q., Wang, M., Simon, J. E., (2003). Determination of isoflavones in red clover and related species by high-performance liquid chromatography, combined with ultraviolet and mass spectrometric detection. J. Chromatogr. A 1016, 195-209.
Yu, L.P., Li, F.D., Cheng, W.D., Chen, X.R., Wang, W.Z., (2009). Influence of Mo, seeding rate, and row spacing on yield and isoflavone content in Trifolium pratense in Minshan. Chin. J. Grassl. 31, 52-57.

Chapter 4

Abberton, M.T., Marshall, A.H., (2005). Progress in breeding perennial clovers for temperate agriculture. J. Agric. Sci. 143, 117-135.
Ahlgren, S., Bernesson, S., Nordberg, A., Hansson, P., (2010). Nitrogen fertiliser production based on biogas—Energy input, environmental impact, and land use. Bioresour. Technol. 101, 7181-7184.
Brentrup, F., Küsters, J., Kuhlmann, H., Lammel, J., (2004). Environmental impact assessment of agricultural production system using the life cycle assessment methodology I. Theoretical concept of a LCA method tailored to crop production. Europ. J. Agron. 20, 247-264.
Brentrup, F., Palliere, C., (2008). GHG emissions and energy efficiency in European nitrogen fertiliser production and use. Proc. International Fertiliser Society December 11, York, UK.
Brogowski, Z., Gawrońska-Kulesza, A., Kozanecka, T., (2002). Red clover as a receptor of CO2 from the atmosphere and some compounds from soil. Pol. J. Environ. Stud. 11, 625-629.
Călina, A., Călina, J., (2015). Research on the production of forage for the agro -touristic farms in Romania by cultivating perennial leguminous plants. Environ. Eng. Manag. J. 14, 657-663.
Drobna, J., (2009). Yield and forage quality of Romanian red clover (Trifolium pratense L.) varieties studied in Slovakia. Not. Bot. Horti Agrobot. Cluj-Napoca. 37, 204–208.
Duer, I., (1999). Plon suchej masy kilku odmian koniczyny czerwonej uprawianej w ekologicznym i integrowanym systemie produkcji oraz akumulacja azotu w glebie. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 69-77 [Dry matter yields of some clover varieties cultivated in ecological and integrated crop production systems, and nitrogen accumulation in soil. Zesz. Nauk. AR Kraków, Ses. Nauk. 62, 69-77].
Gaweł, E., (2011). Rola roślin motylkowatych drobnonasiennych w gospodarstwie rolnym. Woda-Środowisko-Obszary Wiejskie. 11, 73-91. [The role of fine-grained legume plants in a farm. Water-Environment-Rural Areas. 11, 73-91].
Glendining, M. J., Dailey, A. G., Williams, A. G., van Evert, F. K., Goulding, K. W. T., Whitmore, A. P., (2009). Is it possible to increase the sustainability of arable and ruminant agriculture by reducing inputs? Agric. Sys. 99, 117-125.
Grzesik, K., (2006). Wprowadzenie do oceny cyklu życia (LCA) – nowej techniki w ochronie środowiska. Inż. Środ. 11, 101-113. [Introduction to Life Cycle Assessment - new technique in the environmental protection. Inż. Środ. 11, 101-113].
Hakala, K., Nikunen, H.M., Sinkko, T., Niemeläinen, O., (2012). Yields and greenhouse gas emissions of cultivation of red clover-grass leys as assessed by LCA when fertilised with organic or mineral fertilisers. Biomass Bioenergy. 46, 111-124.
Harris, S., Narayanaswamy, V., (2009). A Literature Review of Life Cycle Assessment in Agriculture. Rural Industries Research and Development Corporation.
Hartwig, N.L., Ammon, H.U., (2002). Cover crops and living mulches. Weed Sci. 50, 688-699.
Hass, G., Geier, U., Frieben, B., Köpke, U., (2005). Estimation of environmental impact of conversion to organic agriculture in Hamburg using the LCA method. On line 1-11.
Hass, G., Wetterich, F., Geier, U., (2000). Framework in Agriculture on the Farm Level. Int. J. Life Cycle Assess. 5, 1-4.
Hauggaard-Nielsen, H., Lachouani, P., Knudsen, M.T., Ambus, P., Boelt, B., Gislum, R., (2016). Productivity and carbon footprint of perennial, grass-forage legume intercropping strategies, with high or low nitrogen fertilizer input. Sci. Total Environ. 15, 1339-1347.
Ingram, D.L., Hall Ch. R., (2013). Carbon Footprint and Related Production Costs of System Components of a Field-Grown Cercis canadensis L. ‘Forest Pansy’ Using Life Cycle Assessment. J. Environ. Hort. 31, 169–176.
International Organization for Standardization (ISO). (2006). Life cycle assessment, requirements, and guidelines. ISO Rule 14044.
Jin, C.W., He, Y.F., Tang, C.X., Wu, P., Zheng, S.J., (2006). Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ. 29, 888-897.
Knudsen, M.T., Meyer-Aurich, A., Olesen, J.E., Chirinda, N., Hermansen J.E., (2013). Carbon footprints of crops from organic and conventional arable crop rotations - a using a life cycle assessment approach. J. Clean. Prod. 64, 609-618.
Koellner, T., de Baan, L., Beck, T., Brandao, M., Civit, B., Goedkoop, M., Margni, M., Mila, L, Müller-Wenk, R., Weidema, B., Wittstock, B., (2013).

Principles for life cycle inventories of land use on a global scale. Int. J. Life Cycle Assess. 18, 1203-1215.
Kopiński, J., (2012).

Realization of environmental and economic objectives by the farms of various specialization directions. Problems Agric. Eng. 2, 37-45.
Kostuch, R., Janowski, B., (1999). Ekologiczna rola roślin motylkowatych. Zesz. Nauk. AR Kraków. Ses. Nauk. 62, 203-212. [Ecological role of papilionaceous plants. Zesz. Nauk. AR Kraków. Ses. Nauk. 62, 203-212].
Mattsson, B., Coderberg, C., Blix, L., (2000). Agricultural land use in life cycle assessment (LCA): case studies of three vegetable oil crops. J. Clean. Prod. 8, 283-292.
Meisterling, K., Samaras, C., Schweizer, V., (2009). Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J. Clean. Prod. 17, 222-230.
Ndakidemi, P.A., Bambara, S., Makoi, J.H.J.R., (2011). Micronutrient uptake in common bean (Phaseolus vulgaris L.), as affected by Rhizobium inoculation, and the supply of molybdenum and lime. Plant OMICS 4, 40-52.
Peoples, M.B., Herridge, D.F., Ladha, J.K., (1995). Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil. 174, 3-28.
Peyraud, J.L., Le Gall, A., Lüscher, A., (2009). Potential food production from forage, legume-based-systems in Europe: an overview. Irish J. Agr. Food Res. 48, 115-135.
Quesenberry, K.H., Baltensperger, D.D., Dunn, R.A., Wilcox, C.J., Harry, S.R., (1989). Selection for tolerance to root-knot nematodes in red clover. Crop Sci. 29, 62-65.
Rosa, J.D., Mafra, A.L., Medeiros, J.C., Albuquerque, J.A., Miquelluti, D.J., Nohatto, M.A., Ferreira, E.Z., de Oliveir, O.L.P., (2013). Soil physical properties and grape yield influenced by cover crops and management systems. R. Bras. Ci. Solo. 3, 1352-1360.
Rundlöf, M., Persson, A.S., Smith, H.G., Bommarco, R., (2014). Late-season, mass-flowering red clover increases bumble bee queen and male densities. Biol. Conserv. 172, 138-145.
Salter, A., Holliday, L., Banks, C., Chesshire, M., Mulliner, R., (2006). Plant biomass as an energy efficient feedstock in the production of renewable energy. 14th European Conference Biomass and Exhibition, Proceedings.
Skowrońska, M., Filipek, T., (2014). Life cycle assessment of fertilizers: a review. Int. Agrophys. 28, 101-110.
Snapp, S.S., Swinton, S.M., Labarta, R., Mutch, D., Black, R.J., Leep, R., Nyiraneza, J., O’Neil, K., (2005). Evaluating Cover Crops for Benefits, Costs, and Performance within Cropping System Niches. Agron. J. 97, 322-332.
Stanger, J.J., Leffel, J.A., Gingrich, G., Aldrich-Markham, S., (1995). Red clover seed production: III. Effect of forage removal time under varied environments. Crop Sci. 35, 1667-1675.
Stanger, T. F., Lauer, J. G., (2008). Corn Grain Yield Response to Crop Rotation and Nitrogen over 35 Years. Agron. J. 100, 643-650.
Steiner, J.J., Leffel, J.A., Gingrich, G., Aldrich-Markham, S., (1995). Red clover seed production: III. Effect of forage removal time under varied environments. Crop Sci. 35, 1667-1675.
Taylor, N. L. (2008). A Century of clover breeding developments in the United States. Crop Sci. 48, 1-13.
van Berkel, R., (2002). The application of Life Cycle Assessment for Improving the Eco-Efficiency for Supply Chains. Proceedings of the Muresk 75th Anniversary Conference, Perth (WA), 3-4 October.
von Richthofen, J.S., (2006). Agro-economic benefits of grain legumes in cropping system. In: Benefits of grain legumes for European agriculture and environment: new results and prospects. GL-Pro Dissemination Event, Brussels 17-26.
West, T.O., Marland, G., (2003). Net carbon flux from agriculture: Carbon emissions, carbon sequestration, crop yield, and land-use change. Biogeochemistry 63, 73-83.
Zając, T., (1993). Rozmiary jesiennej samoregulacji zagęszczenia pędów koniczyny czerwonej w zależności od wyjściowej obsady roślin. Fragm. Agron. 4, 213-214. [The extent of autumn self regulation of the clover shoot density, depending on the initial plant density]. Fragm. Agron. 4, 213-214].


You have not viewed any product yet.