The Neurochemical Organization and Adult Neurogenesis in the Masu Salmon Brain

Evgeniya Pushchina, Ph.D.
National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Science, Russia

Anatoly Varaksin, Ph.D.
Professor and Leader Researcher of Laboratory Cell Differentiation of National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences

Sachin Shukla, Ph.D.
Department of Cytology and Histology of St. Petersburg State University

Dmitry Obukhov, Ph.D.
Department of Cytology and Histology of St. Petersburg State University

Series: Neuroscience Research Progress
BISAC: SCI089000

Clear

$230.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Browse Wishlist
Browse Wishlist

Details

This monograph presents the results of long-term research on the neurochemical structure of the brain and spinal cord of Masu salmon Oncorhynchus masou, as well as cellular, molecular and physiological mechanisms of adult neurogenesis. Salmon are a phylogenetically ancient branch of ray-finned fish, the brain of which retains a large number of matrix zones with high proliferative activity involved in adult neurogenesis. The presence of large proliferative zones in the brain of juvenile salmonids signifies a high reparative potential in the brain. The results of investigations presented in the book to improve the understanding of cellular and molecular mechanisms of the fish’s CNS structure during postembrionic ontogeny. The objective of this monograph is to investigate the organization, projection features and relationships of a signal transductor system, producing classic neurotransmitters (catecholamines, acetylcholine and gamma-aminobutyric acid) and gaseous intermediates (nitric oxide and hydrogen sulfide) in the Oncorhynchus masou brain, and to evaluate their participation in the processes of postembryonic morphogenesis of the CNS.

Identified particular structural and neurochemical characteristics of CNS organization and basic histogenetic processes (proliferation, migration and differentiation of nerve cells) after the completion of brain formation in fishes with signs of fetalization expand existing notions of histogenesis in these structures during adulthood. It is expected that during the post-embryonic ontogenesis in fish, several neurotransmitters and gaseous intermediaries can be considered as factors in triggering and regulating cellular and tissue processes of genetic programs concerning brain development. The content of the study determined the range of experimental models for the study of reparative processes and adult neurogenesis. A new in vitro model system of cultured neural cells from O. masou was reported. Morphological data and some cellular characterization supporting the use of this novel in vitro tool in investigations of neurochemical properties, axonal growth and neurogenesis in CNS were presented. For a more detailed study of the properties of H2S-expressing cells, their cellular relationships with different neurochemical specialization in the central nervous system, their characteristics of the processes of proliferation and differentiation, and the features of participation of hydrogen sulfide in reparative neurogenesis, the primary culture of the brain and spinal cord from the O. masou was set up, and properties of proliferation and differentiation were analyzed with the specific markers. (Imprint: Nova)

Preface

Acknowledgements

Introduction

Abbreviations

PART I. Structure of Central nervous system of the Oncorhynchus masou

Chapter 1. Morphological structure of Oncorhynchus masou brain

PART II. Neurochemical structure of O. masou brain

Chapter 2. Acetylcholinergic system

Chapter 3. Catecholaminergic system

Chapter 4. GABA-ergic system

Chapter 5. NO-ergic system

Chapter 6. H2S in the Central Nervous System

PART III. Adult neurogenesis of the Oncorhynchus masou brain

Chapter 7. Markers of radial glia

Chapter 8. Neurochemical signaling in adult neurogenesis and differentiation of cells

PART IV. Primary culture of salmonid cells

Chapter 9. Primary culture of brain cells of O. masou

About the Authors

Index

Chapter 1

Andreeva N. G. and Obukhov D. K. Evolutionary morphology of the vertebrate central nervous system. St. Petersburg: Lane Publ., 1999.
Arévalo R., Alonso J. R., García-Ojeda E., Briñón J. G , Crespo C., Aijón J. NADPH-diaphorase in the central nervous system of the tench (Tinca tinca L., 1758). J Comp Neurol., 1995, 352(3):398-420.
Braford M. R. Comparative aspect of forebrain organization in the ray-finned fishes: Touchstones or not? Brain Behav. Evol., 1995, 46, 259-274.
Brantley R. K. and Bass A. H. Cholinergic neurons in the brain of a teleost fish (Porichthys notatus) located with a monoclonal antibody to choline acetyltransferase. J. Comp. Neurol., 1988, 275, 87-105.
Butler A. B. and Hodos W. Comparative Vertebrate Neuroanatomy. New Jersey: John Wiley and Sons Inc; Hoboken, USA, 2005.
Ekström P., Reschke M., Steinbusch H. W. and Veen T. Distribution of noradrenaline in the brain of the teleost Gasterosteus aculeatus L.: An immunohistochemical analysis. J. Comp. Neurol., 1986, 254, 297-313.
Fritzsch B., Nicols D. and Gaufo G. Evolution of the Hindbrain. In: Encyclopedia of Neuroscience. Eds. Binder M. D., Hirokawa, N., Windhorst, U., Springer-Verlag, Berlin, Heidelberg, 2009. P. 1351-1356.
Kah O. and Chambolle P. Serotonin in the brain of the goldfish Carassius auratus. An immunocytochemical study. Cell Tissue Res., 1983, 234, 319-333.
Maler L., Sas E., Johnston S. and Ellis W. An atlas of the brain of the electric fish Apteronotus leptorhynchus. J. Chem. Neuroanat., 1991, 4, 1-38.
Manso M. J. and Anadon R. Golgi study of the telencephalon of the small-spotted dogfish Scyliorhinus canicula L. J. Comp. Neurol., 1993, 333, 485-502.
Murakami T., Morita Y. and Ito H. Extrinsic and intrinsic fiber connections of the telecephalon in a teleost, Sebasticus marmoratus. J. Comp. Neurol., 1983, 216, 115-131.
Nieuwenhuys R. and Meek J. The Telencephalon of actinopterygian fishes. In: Cerebral Cortex. New York: Plenum Press, 1990, vol. 8A, pp. 31-73.
Nieuwenhyus R. A. The comparative anatomy of the actinopterygian forebrain. J. Hirnforsch., 1963, 6, 172-179.
Northcutt R. G. and Braford M. R. Jr. New observations on the organization and evolution of the telencephalon or actinopterygian fishes. In: Comparative Neurology of the Telencephalon, New York: Plenum Press, 1980, pp. 41-98.
Northcutt R. G. and Davis R. E. Telencephalic organization in ray-finned fishes In: Fish Neurobiology. Brain Stem and Sense Organs. Ann Arbor: Univ. Michigan Press, 1983, vol. 2, pp. 203-236.
Obukhov D. K. Cytoarchitectonics of the telencephalon in the teleost Cyprinus carpio. Vestn. LGU, 1975, no. 9, 41-46.
Obukhov D. K. Neuronal organization of the pallium of the telencephalon in the shark Squalus acanthias. In: Morfologicheskie osnovy funktsional’noi evolutsii (Morphological Principles of Functional Evolution), Leningrad: Nauka, 1978, pp. 51-57.
Peter R. E. and Gill V. E. A stereotaxic atlas and technique for forebrain nuclei of the goldfish Carassius auratus. J. Comp. Neurol., 1975, 159, 69-102.
Peter R. E., Macey M. J. and Gill V. E. A stereotaxic atlas and technique for forebrain nuclei of the killifish, Fundulus heteroclitus. J. Comp. Neurol., 1975, 159, 103-128.
Puschina E. V. Neurochemical organization and connections of the cerebral preglomerular complex of the masu salmon. Neurophysiology, 2012, 43, 437-451.
Pushchina E. V., Varaksin A. A. and Romanov N. S. Neuronal organization of the telencephalon in the chum salmon Oncorhynchus keta. Rus. J. Mar. Biol., 2003, 29, 362-367.
Rink E. and Wullimann M. F. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res., 2001, 889, 316-30.
Vanegas H. and Ebbesson S. O. Telencephalic projections in two teleost species. J. Comp. Neurol., 1976, 165, 181-195.
Vernier P. and Wullimann M. F. Evolution of the posterior tuberculum and preglomerular nuclear complex. In: Encyclopedia of Neuroscience. Eds. Binder M. D., Hirokawa N., Windhorst U. Berlin, Heidelberg: Springer-Verlag, 2009.
Wullimann M. F. The Central Nervous System. In: The Physiology of Fishes. Boca Raton, New York: CRC Press. 1998, pp. 245-282.

Chapter 2

Adrio F., Anadón R. and Rodríguez-Moldes I. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the central nervous system of a chondrostean, the siberian sturgeon (Acipenser baeri). J. Comp. Neurol., 2000, 426, 602-621.
Anadón R., Molist P., Rodríguez-Moldes I., López J. M., Quintela I., Cerviño M. C., Barja P. and González A. Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J. Comp. Neurol., 2000, 420, 139-170.
André C., Guillet J. G., De Backer J. P., Vanderheyden P., Hoebeke J. and Strosberg A. D. Monoclonal antibodies against the native or denatured forms of muscarinic acetylcholine receptors. EMBO J., 1984, 3, 17-21.
Armstrong D. M., Saper C. B., Levey A. I., Wainer B. H. and Terry R. D. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J. Comp Neurol., 1983, 216, 53-68.
Arvidsson U., Riedl M., Elde R. and Meister B. Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J. Comp. Neurol., 1997, 378, 454-467.
Bagnoli P., Fontanesi G., Alesci R. and Erichsen J. T. Distribution of neuropeptide Y, substance P and choline acetyltransferase in the developing visual system of the pigeon and effects of unilateral retina removal. J. Comp. Neurol., 1992, 318, 392-414.
Batten T. F., Cambre M. L., Moons M. L. and Vandesande F. Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna. J. Comp. Neurol., 1990, 302, 893-919.
Bazer G. T. and Ebbesson S. O. Retinal projections in the chain pickerel (Esox niger Lesueur). Cell Tissue Res., 1987, 248, 227-229.
Becerra M., Manso M. J., Rodríguez-Moldes I. and Anadón R. Ontogeny of somatostatin-immunoreactive systems in the brain of the brown trout (Teleostei). Anat. Embryol. (Berl.), 1995, 191, 119-137.
Becerra M., Manso M. J., Rodriguez-Moldes I. and Anadón R. Primary olfactory fibres project to the ventral telencephalon and preoptic region in trout (Salmo trutta): a developmental immunocytochemical study. J. Comp. Neurol., 1994, 342, 131-143.
Beninato M. and Spencer R. F. A cholinergic projection to the rat superior colliculus demonstrated by retrograde transport of horseradish peroxidase and choline acetyltransferase immunohistochemistry. J. Comp. Neurol., 1986, 253, 525-538.
Brandstätter R., Fait E. and Hermann A. Acetylcholine modulates ganglion cell activity in the trout pineal organ. Neuroreport, 1995, 6, 1553-1556.
Brandstätter R. and Hermann A. Modulation of ganglion cell activity in the pineal gland of the rainbow trout: effects of cholinergic, catecholaminergic, and GABAergic receptor agonists. J. Pineal. Res., 1996, 21, 59-72.
Brantley R. K. and Bass A. H. Cholinergic neurons in the brain of a teleost fish (Porichthys notatus) located with a monoclonal antibody to choline acetyltransferase. J. Comp. Neurol., 1988, 275, 87-105.
Brauth S. E., Kitt C. A., Price D. L. and Wainer B. H. Cholinergic neurons in the telencephalon of the reptile Caiman crocodilus. Neurosci Lett., 1985, 58, 235-240.
Bridges T. E, Hillhouse E. W and Jones M. T. The effect of dopamine on neurohypophysial hormone release in vivo and from rat neural lobe and hypothalamus in vitro. J. Neurophysiol., 1976, 260, 647-666.
Butcher L. L. Cholinergic neurons and networks. In: The Rat Nervous System. Ed. Paxinos G. San Diego: Acad. Press, 1995, pp. 1003-1015.
Butler

A. B. and Northcutt R. G. Retinal projections in the bowfin, Amia calva: cytoarchitectonic and experimental analysis. Brain Behav. Evol., 1992, 39, 169-194.
Butler A. B., Wullimann M. F. and Northcutt R. G. Comparative cytoarchitectonic analysis of some visual pretectal nuclei in teleosts. Brain Behav Evol., 1991, 38, 92-114.
Castro

A., Becerra M., Manso M. J. and Anadón R.

Development of immunoreactivity to neuropeptide Y in the brain of brown trout (Salmo trutta fario). J. Comp. Neurol., 1999, 414, 13-32.
Danielson P. D., Zottoli S. J., Corrodi J. G., Rhodes K. J. and Mufson E. J. Localization of choline acetyltransferase to somata of posterior lateral line efferents in the goldfish. Brain Res., 1988, 448, 158-161.
Demski L. S. Feeding and aggressive behavior evoked by hypothalamic stimulation in a cichlid fish. Comp. Biochem. Physiol. A Comp. Physiol., 1973, 44, 685-692.
Desan P. H., Gruberg E. R., Grewell K. M. and Eckenstein F. Cholinergic innervation of the optic tectum in the frog Rana pipiens. Brain Res., 1987, 413, 344-349.
Deutsch J. A. The cholinergic synapse and the site of memory. Science, 1971, 174, 788-794.
Dunn-Meynell A. A. and Sharma S. C. Changes in the topographically organized connections between the nucleus isthmi and the optic tectum after partial tectal ablation in adult goldfish. J. Comp. Neurol., 1984, 227, 497-510.
Ekström P. and Korf H. W. Putative cholinergic elements in the photosensory pineal organ and retina of a teleost, Phoxinus phoxinus L. (Cyprinidae). Distribution of choline acetyltransferase immunoreactivity, acetylcholinesterase-positive elements and pinealofugally projecting neurons. Cell Tissue Res., 1986, 246, 321-329.
Ekström P. Distribution of choline acetyltransferase-immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinus L.). J. Comp. Neurol., 1987, 256, 494-515.
Finger T. E. and Kanwal J. S. Ascending general visceral pathways within the brainstems of two teleost fishes: Ictalurus punctatus and Carassius auratus. J. Comp. Neurol., 1992, 320, 509-520.
Follenius E. Demonstration with electron microscope of innervation of the hypophysis of Gasterosteus aculeatus L. by using the Maillet technic. C. R. Acad. Sci. Hebd Seances Acad. Sci. D, 1970, 271, 1034-1037.
Geffard M., McRae-Degueurce A. and Souan M. L. Immunocytochemical detection of acetylcholine in the rat central nervous system. Science, 1985, 229, 77-79.
Gomez-Segade P., Segade L. A. and Anadon R. Ultrastructure of the organum vasculosum laminae terminalis in the advanced teleost Chelon labrosus (Risso, 1826). J. Hirnforsch., 1991, 32, 69-77.
Gregg C. M. The compartmentalized hypothalamo-neurohypophysial system: evidence for a neurohypophysial action of acetylcholine on vasopressin release. Neuroendocrinology, 1985, 40, 423-429.
Grover B. G. and Sharma S. C. Organization of extrinsic tectal connections in goldfish (Carassius auratus). J. Comp. Neurol., 1981, 196, 471-488.
Gruberg E. R. and Udin S. B. Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipiens. J. Comp. Neurol., 1978, 179, 487-500.
Hagan J. J. and Morris R. G. The cholinergic hypothesis of memory: a review of animal experiments. In: Handbook of Psychopharmacology. Eds. Iversen L. L. and Iversen S. D. New York: Plenum Press, 1988, pp. 237-323.
Halsell C. B. Organization of parabrachial nucleus efferents to the thalamus and amygdala in the golden hamster. J. Comp. Neurol., 1992, 317, 57-78.
Hendry S. H., Jones E. G., Killackey H. P. and Chalupa L. M. Choline acetyltransferase-immunoreactive neurons in fetal monkey cerebral cortex. Brain Res., 1987, 465, 313-317.
Holmqvist B. I. and Ekström P. Hypophysiotrophic systems in the brain of the Atlantic salmon. Neuronal innervation of the pituitary and the origin of pituitary dopamine and nonapeptides identified by means of combined carbocyanine tract tracing and immunocytochemistry. J. Chem. Neuroanat., 1995, 8, 125-145.
Hoogland P. V. and Vermeulen-Vander Zee E. Distribution of choline acetyltransferase immunoreactivity in the telencephalon of the lizard Gekko gecko. Brain Behav. Evol., 1990, 36, 378-390.
Houser C. R., Crawford G. D., Barber R. P., Salvaterra P. M. and Vaughn J. E. Organization and morphological characteristic of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res., 1983, 266, 97-119.
Hunt S. P.,

Streit P., Künzle H. and Cuénod M. Characterization of the pigeon isthmo-tectal pathway by selective uptake and retrograde movement of radioactive compounds and by Golgi-like horseradish peroxidase labeling. Brain Res., 1977, 129, 197-212.
Ichikawa T., Ajiki K., Matsuura J. and Misawa H. Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry. J. Chem. Neuroanat., 1997, 13, 23-39.

Ito H., Sakamoto N. and Takatsuji K. Cytoarchitecture, fiber connections, and ultrastructure of nucleus isthmi in a teleost (Navodon modestus) with a special reference to degenerating isthmic afferents from optic tectum and nucleus pretectalis. J. Comp. Neurol., 1982, 205, 299-311.
Ito H., Tanaka H., Sakamoto N. and Morita Y. Isthmic afferent neurons identified by the retrograde HRP method in a teleost, Navodon modestus. Brain Res., 1981, 207, 163-169.
Jacobowitz D. M. and Palkovits M. Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon). J. Comp. Neurol., 1974, 157, 13-28.
Karnovsky M. J. and Roots L. A “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem., 1964, 12:219-221.
Karten H. J., Hodos W., Nauta W. J and Revzin A. M. Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the piegon (Columba livia) and owl (Speotyto cunicularia). J. Comp. Neurol., 1973, 150, 253-278.
Kása P. The cholinergic systems in brain and spinal cord. Prog. Neurobiol., 1986, 26, 211-272.
Kimura H., Mc Geer P. L. and Peng J. H. Choline Acetyltransferase Containing Neurons in the Rat Brain. In: Handbook of chemical neuroanatomy. Eds Björklund A., Hökfelt T. and Tohyama M. Vol 10. Ontogeny of Transmitters and Peptides in the CNS. Amsterdam: Elsevier, 1984, pp. 51-67.
King W. M. and Schmidt J. T.

A cholinergic circuit intrinsic to optic tectum modulates retinotectal transmission via presynaptic nicotinic receptors. Ann. NY. Acad. Sci., 1991, 627, 363-367.
Künzle H. and Schnyder H. The isthmus-tegmentum complex in the turtle and rat: a comparative analysis of its interconnections with the optic tectum. Exp. Brain Res., 1984, 56, 509-522.
Lamb C. F. and Finger T. E.

Axonal projection patterns of neurons in the secondary gustatory nucleus of channel catfish. J. Comp. Neurol., 1996, 365, 585-593.
Lauder G. V. and Liem K. F. The evolution and interrelationships of the actinopterygian fishes. Bull. Mus. Comp. Zool., 1983, 150, 95-197.
Leonhardt H. Ependym and circumventriculare organe. In: Handbuch der Mikroskopische Anatomie des Menschen, vol 4. Neuroglia. Berlin: Springer-Verlag, 1980, pp. 177-544.
Levey A. I., Armstrong D. M., Atweh S. F., Terry R. D. and Wainer B. H. Monoclonal antibodies to choline acetyltransferase: production, specificity, and immunohistochemistry. J. Neurosci., 1983b, 3, 1-9.
Levey

A. I., Wainer B. H., Mufson E. J. and Mesulam M. M. Co-localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum. Neuroscience, 1983a, 9, 9-22.
Liao J., Heider H., Sun M. C., Stieger S. and Brodbeck U. The monoclonal antibody 2G8 is carbohydrate-specific and distinguishes between different forms of vertebrate cholinesterases. Eur. J. Biochem., 1991, 198, 59-65.
Maley B. E., Frick M. L., Levey A. I., Wainer B. H. and Elde R. P. Immunohistochemistry of choline acetyltransferase in the guinea pig brain. Neurosci. Lett., 1988, 84:137-142.
Manso M. J., Becerra M., Molist P., Rodriguez-Moldes I. and Anadon R. Distribution and development of catecholaminergic neurons in the brain of the brown trout. A tyrosine hydroxylase immunohistochemical study. J. Hirnforsch., 1993, 34, 239-260.
Marín O. and González A. Origin of tectal cholinergic projections in amphibians: a combined study of choline acetyltransferase immunohistochemistry and retrograde transport of dextran amines. Vis. Neurosci., 1999, 16, 271-283.
Marín O., Smeets W. J and González A. Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians. J. Comp. Neurol., 1997, 382, 449-534.
Medina L. and Reiner A. Distribution of choline acetyltransferase immunoreactivity in the pigeon brain. J. Comp. Neurol., 1994, 342, 497-537.
Medina L., Smeets W. J., Hoogland P. V and Puelles L. Distribution of choline acetyltransferase immunoreactivity in the brain of the lizard Gallotia galloti. J. Comp. Neurol., 1993, 331, 261-285.
Meek J. and Schellart N. A. A Golgi study of goldfish optic tectum. J. Comp. Neurol., 1978, 182, 89-122.
Mesulam M. M, Mufson E. J., Levey A. I. and Wainer B. H. Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience, 1984, 12:669-686.
Migani P., Contestabile A., Cristini G. and Labanti V. Evidence of intrinsic cholinergic circuits in the optic tectum of teleosts. Brain Res., 1980, 194, 125-135.
Molist P., Maslam S., Velzing E. and Roberts B. L. The organization of cholinergic neurons in the mesencephalon of the eel, Anguilla anguilla, as determined by choline acetyltransferase immunohistochemistry, and acetylcholinesterase enzyme histochemistry. Cell Tissue Res., 1993, 271, 555-566.
Morita Y., Ito H. and Masai H. Central gustatory paths in the crucian carp, Carassius carassius. J. Comp. Neurol., 1980, 191, 119-132.
Motavkin P. A. and Okhotin V. E. Histochemistry of choline acetyltransferase in the spinal cord and spinal ganglia of the cat. Neurosci. Behav. Physiol., 1980, 10, 307-310.
Mufson E. J. and Cunningham M. G. Observations on choline acetyltransferase containing structures in the CD-1 mouse brain. Neurosci. Lett., 1988, 84, 7-12.
Mufson E. J., Martin T. L., Mash D. C., Wainer B. H. and Mesulam M. M. Cholinergic projections from the parabigeminal nucleus (Ch8) to the superior colliculus in the mouse: a combined analysis of horseradish peroxidase transport and choline acetyltransferase immunohistochemistry. Brain Res., 1986, 370, 144-148.
Murakami T., Morita Y. and Ito H. Cytoarchitecture and fiber connections of the superficial pretectum in a teleost, Navodon modestus. Brain Res., 1986, 373, 213-221.
Murakami T., Morita Y. and Ito H. Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus. J. Comp. Neurol., 1983, 216, 115-131.
Nieuwenhuys R. and Pouwels E. The brainstem of actinopterygian fishes. In: Fish Neurobiology. Eds Davis R. E. and Northcutt R. G., vol 1. Ann Arbor: Univ. Michigan Press. 1983, pp. 25-88.
Norgren R.

Taste pathways to hypothalamus and amygdala. Comp. Neurol., 1976, 166, 17-30.
Northcutt R. G. and Davis R. E. Telencephalic organization in ray-finned fishes. In: Fish Neurobiology. Eds Davis R. E. and Northcutt R. G. Vol. 2. Ann Arbor: Univ. Michigan Press. 1983, pp. 203-236.
Pérez S. E., Yáñez J., Marín O., Anadón R., González A. and Rodríguez-Moldes I. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the adult trout and tract-tracing observations on the connections of the nuclei of the isthmus. J. Comp. Neurol., 2000, 428, 450-474.
Perry E., Walker M., Grace J. and Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci., 1999, 22, 273-280.
Polenov A. L. and Belenky M. A. Electron microscope observations of neurosecretory elements in the neurointermediate lobe in skates. Nature, 1965, 208, 94-95.
Pombal M. A., El Manira A. and Grillner S. Organization of the lamprey striatum - transmitters and projections. Brain Res., 1997, 766, 249-254.
Pombal M. A. Marín O. and González A. Choline acetyltransferase immunoreactivity in the hypothalamoneurohypophysial system of the lamprey. Eur. J. Morphol., 1999, 37, 103-106.
Powers A. S. and Reiner A. The distribution of cholinergic neurons in the central nervous system of turtles. Brain Behav. Evol., 1993, 41, 326-345.
Pushchina E. V and Karpenko A. A. Distribution of cholineacetyltransferase histochemistry in isthmus and medulla of Oncorhynchus masu. Tract-tracing observation on the ascending meso-pontine cholinergic system. Tsitologiia, 2007, 49, 581-593.
Rakonczay Z. and Brimijoin S. Monoclonal antibodies to rat brain acetylcholinesterase: comparative affinity for soluble and membrane-associated enzyme and for enzyme from different vertebrate species. J. Neurochem., 1986, 46, 280-287.
Rhodes K. J., Zottoli S. J., Mufson E. J. Choline acetyltransferase immunohistochemical staining in the goldfish (Carassius auratus) brain: evidence that the Mauthner cell does not contain choline acetyltransferase. Brain Res., 1986, 381, 215-224.
Roberts B. L., Maslam S., Los I. and van der Jagt B. Coexistence of calcitonin gene-related peptide and choline acetyltransferase in eel efferent neurons. Hear Res., 1994, 74, 231-237.
Rodríguez-Moldes I., Molist P., Adrio F., Pombal M. A., Yáñez S. E., Mandado M., Marín O., López J. M., González A. and Anadón R. Organization of cholinergic systems in the brain of different fish groups: a comparative analysis. Brain Res. Bull., 2002, 57, 331-334.
Rodrıguez-Moldes I., Pérez S., Adrio F., Rodríguez M. A., Sueiro C., Caruncho H. J., Sieghart W. and Anadón R. Immunohistochemical evidence of a dual control of neurohypophysis by GABAergic and holinergic systems in fishes. Soc. Neurosci Abstr 1999. 25:1194.
Röhlich P. and Wenger T. Electron microscopical investigation of the organon vasculosum laminae terminalis in the rat. Z. Zellforsch. Mikrosk. Anat., 1969, 102, 483-506.
Sakamoto N., Ito H. and Ueda S. Topographic projections between the nucleus isthmi and the optic tectum in a teleost, Navodon modestus. Brain Res., 1981, 224, 225-234.
Samejima M., Happe H. K., Murrin L. C., Pfeiffer R. F. and Ebadi M. Distribution of cholinergic and dopaminergic receptors in rainbow trout pineal gland. J. Pineal Res., 1994, 16, 37-43.
Saper C. B. and Loewy A. D. Efferent connections of the parabrachial nucleus in the rat. Brain Res., 1980, 197, 291-317.
Saper C. B. The spinoparabrachial pathway: shedding new light on an old path. J. Comp. Neurol., 1995, 353, 477-479.
Satoh K. and Fibiger

H. C. Distribution of central cholinergic neurons in the baboon (Papio papio). I. General morphology. J. Comp. Neurol., 1985, 236, 197-214.
Schellart N. A., Prins M. and Kroese A. B. The pattern of trunk lateral line afferents and efferents in the rainbow trout (Salmo gairdneri). Brain Behav. Evol., 1992, 39, 371-380.
Shiga T., Oka Y., Satou M., Okumoto N. and Ueda K. Neuronal organization of the supracommissural ventral telencephalon and the nucleus preopticus periventricularis in the himé salmon (landlocked red salmon, Oncorhynchus nerka): a Golgi study. J. Hirnforsch., 1989, 30, 153-161.
Shimizu M., Yamamoto N., Yoshimoto M. and Ito H. Fiber connections of the inferior lobe in a percomorph teleost, Thamnaconus (Navodon) modestus. Brain Behav. Evol., 1999, 54, 127-146.
Sorenson E. M., Parkinson D., Dahl J. L. and Chiappinelli V. A. Immunohistochemical localization of choline acetyltransferase in the chicken mesencephalon. J. Comp. Neurol., 1989, 281, 641-657.
Striedter G. F. The diencephalon of the channel catfish, Ictalurus punctatus. I. Nuclear organization. Brain Behav. Evol., 1990a, 36, 329-354.
Striedter GF. The diencephalon of the channel catfish, Ictalurus punctatus. II. Retinal, tectal, cerebellar and telencephalic connections. Brain Behav. Evol., 1990b, 36, 355-377.
Tago H., McGeer P. L., McGeer E. G., Akiyama H. and Hersh L. B. Distribution of choline acetyltransferase immunopositive structures in the rat brainstem. Brain Res.,

1989, 495, 271-297.
Theodosis D. T. and Mason W. T. Choline acetyltransferase immunocytochemical staining of the rat supraoptic nucleus and its surroundings. A light- and electron-microscopic study. Cell Tissue Res., 1988, 254, 119-124.
Tumosa N., Stell W. K., Johnson C. D. and Epstein M. L. Putative cholinergic interneurons in the optic tectum of goldfish. Brain Res., 1986, 370, 365-369.
Van de Kamer J. C. and Zandbergen M. A. The hypothalamic-hypophyseal system and its evolutionary aspects in Scyliorhinus caniculus. Cell Tissue Res., 1981, 214, 575-582.
Van den Dungen H. M., Buijs R. M., Pool C. W. and Terlou M. The distribution of vasotocin and isotocin in the brain of the rainbow trout. J. Comp. Neurol., 1982, 212, 146-157.
Vanegas H. and Ito H. Morphological aspects of the teleostean visual system: a review. Brain Res., 1983, 287, 117-137.
Villani L., Guarnieri T. and Zironi I. Choline acetyltransferase and NADPH-diaphorase localization in the goldfish habenulo-interpeduncular system. Neurosci. Lett., 1994, 173, 67-70.
Vincent S. R. and Reiner P. B. The immunohistochemical localization of choline acetyltransferase in the cat brain. Brain Res. Bull., 1987, 18, 371-415.
Weindl A., Schwink A. and Wetzstein R. The fine structure of the vascular organ of the lamina terminalis in rabbits. II. The neuronal and glial tissue. Z. Zellforsch. Mikrosk. Anat., 1968, 85, 552-600.
Wenger T. and Törk I. Studies on the organon vasculosum laminae terminalis. II. Comparative morphology of the organon vasculosum laminae terminalis of fishes, amphibia, reptilia, birds and mammals. Acta Biol. Acad. Sci. Hung., 1968, 19, 83-96.
Wenthold R. J., Altschuler R. A. and Hampson D. R. Immunocytochemistry of neurotransmitter receptors. J. Electron Microsc. Tech., 1990, 15, 81-96.
Woolf N. J. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol., 1991, 37, 475-524.
Wullimann M. F. and Roth G. Is the nucleus corticalis of teleosts a new cholinergic central nervous system for vertebrates? Neuroreport, 1992, 3, 33-35.
Wullimann M. F. The tertiary gustatory center in sunfishes in not nucleus glomerulosus. Neurosci Lett., 1988, 86, 6-10.
Yañez J. and Anadón R. Afferent and efferent connections of the habenula in the rainbow trout (Oncorhynchus mykiss): An indocarbocyanine dye (DiI) study. J. Comp. Neurol., 1996, 372, 529-543.
Yoshimoto M.,

Albert J. S., Sawai N., Shimizu M., Yamamoto N. and Ito H. Telencephalic ascending gustatory system in a cichlid fish, Oreochromis (Tilapia) niloticus. J. Comp. Neurol., 1998, 392, 209-226.
Zottoli S. J., Rhodes K. J., Corrodi J. G. and Mufson E. J. Putative cholinergic projections from the nucleus isthmi and the nucleus reticularis mesencephali to the optic tectum in the goldfish (Carassius auratus). J. Comp. Neurol., 1988, 273, 385-398.
Zottoli S. J., Rhodes K. J. and Mufson E. J. Comparison of acetylcholinesterase and choline acetyltransferase staining patterns in the optic tectum of the goldfish Carassius auratus. A histochemical and immunocytochemical analysis. Brain Behav. Evol., 1987, 30, 143-159.

Chapter 3

Anadón R., Rodríguez-Moldes I. and González A. Tyrosine hydroxylase immunoreactive neurons in the forebrain of the trout: organization, cellular features and innervation. Brain Res. Bull., 2002, 57, 389-392.
Anglade P., Tsuji S., Hirsch E. C., Javoy-Agid F. and Agid Y. Ultrastructural relations between nigrostriatal dopaminergic neurons and cholinergic nerve endings in the human brain. Histol. Histopathol., 1993, 8, 501-504.
Ball J. N. Hypothalamic control of the pars distalis in fishes, amphibians, and reptiles. Gen. Comp. Endocrinol., 1981, 44, 135-170.
Balleine B. W., Delgado M. R. and Hikosaka O. The role of the dorsal striatum in reward and decision-making. J. Neurosci., 2007, 27, 8161-8165.
Bartelmez G. W. Mauthner’s cell and the nucleus motorius tegmenti. J. Comp. Neurol., 1915, 25, 87-128.
Batten T. F., Cambre M. L., Moons L. and Vandesande F. Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna. J. Comp. Neurol., 1990, 302, 893-919.
Becerra M., Manso M. J., Rodriguez-Moldes M. I. and Anadón R. The structure and development of dopaminergic interplexiform cells in the retina of the brown trout, Salmo trutta fario: a tyrosine hydroxylase immunocytochemical study. J. Anat., 1994, 185(Pt 2), 377-385.
Bellipanni G., Rink E. and Bally-Cuif L. Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. Gene Expr. Patterns, 2002, 2, 251-256.
Berridge K. C. and Robinson T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev., 1998, 28, 309-369.
Bertler A. and Rosengren E. Occurrence and distribution of catecholamines in brain. Acta Physiol. Scand., 1959, 47, 350-351.
Bjoörklund A. and Lindvall O. Dopamine-containing systems in the CNS. In: Handbook of Chemical Neuroanatomy. Eds. Björklund A. and Hökfelt T. Vol. 2, Classical Transmitters in the CNS, Part 1. Amsterdam: Elsevier, 1984, pp. 55-122.
Braford M. R. and Northcutt R. G. Organization of the diencephalon and pretectum of the rayfinned fishes. In: Fish Neurobiology. Eds. Northcutt R. G. and. Davis R. E. Vol. 2, Ann Arbor, MI: Univ. Michigan Press, 1983, pp. 117-163.
Brodin E., Linderoth B., Goiny M., Yamamoto Y., Gazelius B., Millhorn D. E., Hökfelt T. and Ungerstedt U. In vivo release of serotonin in cat dorsal vagal complex and cervical ventral horn induced by electrical stimulation of the medullary raphe nuclei. Brain Res., 1990, 535, 227-236.
Carlsson A. Occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev., 1959, 11, 490-493.
Castonguay M., Dutil J. D., Audet C. and Miller R. Locomotor activity and concentration of thyroid hormones in migratory and sedentary juvenile American eels. Trans. Amer. Fish. Soc., 1990, 119: 946–956.
Chang J. P., Cook A. F. and Peter R. E. Influence of catecholamines on gonadotropin secretion in goldfish, Carassius auratus. Gen. Comp. Endocrinol., 1983, 49, 22-31.
Chang J. P. and Peter R. E. Influences of norepinephrine and alpha-adrenergic mechanisms on gonadotropin secretion in female goldfish, Carassius auratus. Gen. Comp. Endocrinol., 1984, 55, 89-95.
Chang J. P., Peter R. E., Nahorniak C. S. and Sokolowska M. Effects of catecholaminergic agonists and antagonists on serum gonadotropin concentrations and ovulation in goldfish: evidence for specificity of dopamine inhibition of gonadotropin secretion. Gen. Comp. Endocrinol., 1984, 55, 351-360.
Dahlstrom A. and Fuxe K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl., 1964, 232, 1-55.
de Leeuw R., Conn P. M., Van’t Veer C., Goos H. J. and van Oordt P. G. Characterization of the receptor for gonadotropin-releasing hormone in the pituitary of the African catfish, Clarias gariepinus. Fish Physiol. Biochem., 1988, 5, 99-107.
de Leeuw R., Goos H. J. and van Oordt P. G. The dopaminergic inhibition of the gonadotropin-releasing hormone-induced gonadotropin release: an in vitro study with fragments and cell suspensions from pituitaries of the African catfish, Clarias gariepinus (Burchell). Gen. Comp. Endocrinol., 1986, 63, 171-177.
Diaz-Regueira S. and Anadón R. Calretinin expression in specific neuronal systems in the brain of an advanced teleost, the grey mullet (Chelon labrosus). J. Comp. Neurol., 2000, 426, 81-105.
Doyle L. M. and Roberts B. L. Functional recovery and axonal growth following spinal cord transection is accelerated by sustained L-DOPA administration. Eur. J. Neurosci., 2004, 20, 2008-2014.
Dubé L. and Parent A. The monoamine-containing neurons in avian brain: I. A study of the brain stem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry. J. Comp. Neurol., 1981, 196, 695-708.
Dufour S., Weltzien F. A., Sebert M. E., Le Belle N., Vidal B., Vernier P. and Pasqualini C. Dopaminergic inhibition of reproduction in teleost fishes: ecophysiological and evolutionary implications. Ann. NY Acad. Sci., 2005, 1040, 9-21.
Edeline E., Bardonnet A., Bolliet V., Dufour S. and Elie P. Endocrine control of Anguilla anguilla glass eel dispersal: effect of thyroid hormones on locomotor activity and rheotactic behavior. Horm. Behav., 2005, 48, 53-63.
Ekström P., Honkanen T. and Borg B. Development of central catecholaminergic neurons in teleosts. In: Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates. Eds. Smeets W. J. and Reiner A. Cambridge: Cambridge Univ. Press, 1994, pp. 325-342.
Ekström P., Honkanen T. and Borg B. Development of tyrosine hydroxylase-, dopamine- and dopamine-b-hydroxylase-immuno-reactive neurons in a teleost, the three-spined stickleback. J. Chem. Neuroanat., 1992, 5, 481-501.
Eränkö O. The practical histochemical demonstration of catecholamines by formaldehyde-induced fluorescence. J. R. Microsc. Soc., 1967, 87, 259-276.
Eränkö O. Histochemistry of the adrenal medulla in rats and mice. Endocrinology, 1955, 57, 363-368.
Falck B., Hillarp N. A., Thieme G. and Thorp A. Fluorescence of catecholamines and related compounds with formaldehyde. J. Histochem. Cytochem., 1962, 10, 348-354.
Fearnley J. M. and Lees A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain, 1991, 114(Pt 5), 2283-2301.
Finger T. E. The gustatory system in teleost fish. In: Fish Neurobiology. Eds. Northcutt R. G and Davis R. E. Vol. 1, Ann Arbor, MI: Univ. Michigan Press, 1983, pp. 285-309.
Gonzalez A. and Smeets, W. J. Catecholamine systems in the CNS of amphibians. In: Phylogeny and evolution of catecholamine systems in the CNS of vertebrates. Eds. Smeets W. J. and Reiner A. Cambridge: Cambridge Univ. Press. 1994, 77-102.
Grimm J., Mueller A., Hefti F. and Rosenthal A.

Molecular basis for catecholaminergic neuron diversity. Proc. Natl. Acad. Sci. USA, 2004, 101, 13891-13896.
Herrick, C. J. On the commissura infima and its nuclei in the brains of fishes. J. Comp. Neurol., 1908, 18, 409-431.
Hökfelt T., Johansson O. and Goldstein M. Chemical anatomy of the brain. Science, 1984, 225, 1326-1334.
Hornby P. J. and Piekut D. T. Distribution of catecholamine-synthesizing enzymes in goldfish brains: presumptive dopamine and norepinephrine neuronal organization. Brain Behav. Evol., 1990, 35, 49-64.
Hornby P. J. and Piekut D. T. Immunoreactive dopamine-b-hydroxylase in neuronal groups in the goldfish brain. Brain Behav. Evol., 1988, 32, 252-256.
Huang Y. C. and Hessler N. A. Social modulation during songbird courtship potentiates midbrain dopaminergic neurons. PLoS One, 2008;3(10): e3281. doi: 10.1371/journal.pone.0003281.
Hyman S. E., Malenka R. C. and Nestler E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci., 2006, 29, 565-598.
Iwata M. Downstream migratory behaviour of salmonids and its relationship with cortisol and thyroid hormones: a review. Aquaculture, 1995, 135, 131-139.
Johansson V., Winberg S. and Björnsson B. T. Growth hormone-induced stimulation of swimming and feeding behaviour of rainbow trout is abolished by the D1 dopamine antagonist SCH23390. Gen. Comp. Endocrinol., 2005, 141, 58-65.
Johansson V., Winberg S., Jönsson E., Hall D. and Björnsson B. T. Peripherally administered growth hormone increases brain dopaminergic activity and swimming in rainbow trout. Horm. Behav., 2004, 46, 436-443.
Joshua M., Adler A., Bergman H. The dynamics of dopamine in control of motor behavior. Curr. Opin. Neurobiol., 2009, 19, 615-620.
Kah O., Dubourg P., Chambolle P. and Calas A. Ultrastructural identification of catecholaminergic fibers in the goldfish pituitary. A high-resolution radioautographic study after in vitro 3H-dopamine administration. Cell Tissue Res., 1984, 238, 621-626.
Kah O., Dulka J. G., Dubourg P., Thibault J. and Peter R. E. Neuroanatomical substrate for the inhibition of gonadotrophin secretion in goldfish: existence of a dopaminergic preoptico-hypophyseal pathway. Neuroendocrinology, 1987, 45, 451-458.
Kah O., Lethimonier C. and Lareyre J. J. Gonadotrophin-releasing hormone (GnRH) in the animal kingdom. J. Soc. Biol., 2004, 198, 53-60.
Kappers Ariens C. U., Huber G. C. and Crosby E. C. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. New York: Macmillan, 1936.
Kapsimali M., Dumond H., Le Crom S., Coudouel S., Vincent J. D. and Vernier P. Evolution and development of dopaminergic neurotransmitter systems in vertebrates. J. Soc. Biol., 2000, 194, 87-93.
Kapsimali M., Bourrat, F. and Vernier, P. Distribution of the orphan nuclear receptor Nurr1 in medaka (Oryzias latipes): cues to the definition of homologous cell groups in the vertebrate brain. J. Comp. Neurol., 2001, 431, 276-292.
Kemnitz C. P., Strauss T. R., Hosford D. M. and Buchanan J. T. Modulation of swimming in the lamprey, Petromyzon marinus, by serotonergic and dopaminergic drugs. Neurosci. Lett., 1995, 201, 115-118.
Kimmel C. B., Metcalfe W. K. and Schabtach E. T reticular interneurons: a class of serially repeating cells in the zebrafish hindbrain. J. Comp. Neurol., 1985, 233, 365-376.
Kimmel C. B. Reticulospinal and vestibulospinal neurons in the young larva of a teleost fish, Brachydanio rerio. In: Anatomy of Descending Pathways to the Spinal Cord. Eds. Kuypers H. G. and Martin G. F. Amsterdam: Elsevier, 1982, pp. 1-23.
Knigge K. M., Joseph S. A., Sladek J. R., Notter M. F., Morris M., Sundberg D. K, Holzwarth M. A., Hoffman G. E. and O’Brien L. Uptake and transport activity of the median eminence of the hypothalamus. Int. Rev. Cytol., 1976, 45, 283-408.
Koob G. F. and Volkow N. D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35, 217-238.
Lee R. K. and Eaton R. C. Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio. J. Comp. Neurol., 1991, 304, 34-52.
Lin H. R., Van der Kraak G., Zhou X. J., Liang J. Y., Peter R. E., Rivier J.E. and Vale W. W. Effects of [D-rg6, Trp7, Leu8, Pro9Net]-luteinizing hormone releasing hormone (sGnRH-a) and [D-Ala6, Pro9Net]-luteinizing hormone-releasing hormone (LHRH-a), in combination with pimozide or domperidone, on gonadotropin release and ovulation in the Chinese loach and common carp. Gen. Comp. Endocrinol., 1988, 69, 31-40.
Lodge D. J. and Grace A. A. Divergent activation of ventromedial and ventrolateral dopamine systems in animal models of amphetamine sensitization and schizophrenia. Int. J. Neuropsychopharmacol., 2012, 15, 69-76.
Ma P. M. Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J. Comp. Neurol., 1994a, 344, 242-255.
Ma P. M. Catecholaminergic systems in the zebrafish. II. Projection pathways and pattern of termination of the locus coeruleus. J. Comp. Neurol., 1994b, 344, 256-569.
Ma P. M. Catecholaminergic systems in the zebrafish. III. Organization and projection pattern of medullary dopaminergic and noradrenergic neurons. J. Comp. Neurol., 1997, 381, 411-427.
Maler L. and Ellis W. G. Inter-male aggressive signals in weakly electric fish are modulated by monoamines. Behav. Brain Res., 1987, 25, 75-81.
Manso M. J., Becerra M., Molist P., Rodriguez-Moldes I. and Anadón R. Distribution and development of catecholaminergic neurons in the brain of the brown trout. A tyrosine hydroxylase immunohistochemical study. J. Hirnforsch., 1993, 34, 239-260.
Mason S. T. Catecholamines and Behaviour. Cambridge: Cambridge Univ. Press, 1984.
McCormick C. A. Central lateral line mechanosensory pathways in bony fish. In: The Mechanosensory Lateral Line. Neurobiology and Evolution. Eds. Coombs S., Görner P. and Munz H. New York: SpringerVerlag. 1989, pp. 341-364.
McGeer P., Eccles J. C. and McGeer E. G. Molecular Neurobiology of the Mammalian Brain. New York: Plenum Press, 1978.
Meek J., Joosten H. W. and Hafmans T. G. Distribution of noradrenaline-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J. Comp. Neurol., 1993, 328, 145-160.
Meek J., Joosten H. W. and Steinbusch H. W. Distribution of dopamine immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J. Comp. Neurol., 1989, 281, 362-383.
Meek J. Catecholamines in the brains of Osteichthyes (bony fishes). In: Phylogeny and Evolution of Catecholamine Systems in the CNS of Vertebrates. Eds. Smeets W. J. and Reiner, A. Cambridge: Cambridge Univ. Press, 1994, 49-76.
Mok E. Y. and Munro A. D. Effects of dopaminergic drugs on locomotor activity in teleost fish of the genus Oreochromis (Cichlidae): involvement of the telencephalon. Physiol. Behav., 1998, 64, 227-234.
Morita Y. and Finger T. E. Area postrema of the goldfish, Carassius auratus: ultrastructure, fiber connections, and immunocytochemistry. J. Comp. Neurol., 1987, 256, 104-116.
Nieuwenhuys R. Trends in the evolution of the actinopterygian forebrain. J. Morphol., 1962, 111, 69-88.
Nieuwenhuys R., ten Donkelaar H. J. and Nicholson C. The central Nervous System of Vertebrates. Vol. 2. Berlin: Springer, 1998.
Nieuwenhuys R. and Pouwels E. The brain stem of actinopterygian fishes. In: Fish Neurobiology. Eds. Northcutt R. G. and Davis R. E. Vol. 1, Ann Arbor, MI: Univ. Michigan Press, 1983, pp. 25-87.
O’Connell L. A. and Hofmann H. A. Evolution of a vertebrate social decision-making network. Science, 2012, 336, 1154-1157.
O’Connell L. A. and Hofmann H. A. Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior. Front. Neuroendocrinol., 2011b, 32, 320-335.
O’Connell L. A. and Hofmann H. A. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J. Comp. Neurol., 2011a, 519, 3599-3639.
Omeljaniuk R. J., Habibi H. R. and Peter R. E. Alterations in pituitary GnRH and dopamine receptors associated with the seasonal variation and regulation of gonadotropin release in the goldfish (Carassius auratus). Gen. Comp. Endocrinol., 1989, 74, 392-399.
Omeljaniuk R. J., Shih S. H. and Peter R. E. In-vivo evaluation of dopamine receptor-mediated inhibition of gonadotrophin secretion from the pituitary gland of the goldfish, Carassius auratus. J. Endocrinol., 1987, 114, 449-458.
Pant K. and Chandola-Saklani A. Effects of thyroxine on avian moulting may not involve prior conversion to tri-iodothyronine. J. Endocrinol., 1993, 137, 265-270.
Parent A., Dube L., Braford M. R. Jr and Northcutt R. G. The organization of monoamine-containing neurons in the brain of the sunfish (Lepomis gibbosus) as revealed by fluorescence microscopy. J. Comp. Neurol., 1978, 182, 495-516.
Parent A. The monoamine-containing neuronal systems in the teleostean brain. In: Fish Neurobiology. Eds. Davis R. E. and Northcutt R. G. vol. 2, Ann Arbor, MI: Univ. Michigan Press, 1983, pp. 285-316.
Parent A. Functional anatomy and evolution of monoaminergic systems. Am. Zool., 1984, 24, 783-790.
Parent A. and Dubé L. The anatomy of monoamine-containing neurons in the amphibian brain. In: Progress in Nonmammalian Brain Research. Eds. Nistoco G. and Bolis L. Vol. I. Boca Raton, FL: CRC Press, 1983, pp. 25-45.
Pathak V. K. and Chandola A. Variations in circulating thyroxine and triiodothyronine concentration in relation to spring migration in rosy pastor, Sturnus roseus. Horm. Behav., 1984, 18, 111-116.
Peng C., Humphries S., Peter R. E., Rivier J. E., Blomqvist A. G. and Larhammar D. Actions of goldfish neuropeptide Y on the secretion of growth hormone and gonadotropin-II in female goldfish. Gen. Comp. Endocrinol., 1993, 90, 306-317.
Peter R. E., Chang J. P., Nahorniak C. S., Omeljaniuk R. J., Sokolowska M., Shih S. H. and Billard R. Interactions of catecholamines and GnRH in regulation of gonadotropin secretion in teleost fish. Recent Prog. Horm. Res., 1986, 42, 513-48.
Peter R. E., Crim L. W. and Billard R. A stereotaxic atlas and implantation technique for nuclei of the diencephalon of Atlantic salmon (Salmo salar) parr. Reprod. Nutr. Dev., 1991, 31, 167-186.
Peter R. E. and McKeown B. A. Effects of hypothalamic and thalamic lesions on prolactin secretion in goldfish (Carassius auratus). Gen. Comp. Endocrinol., 1974, 23, 438-452.
Peter R. E. and Fryer J. Endocrine functions of the hypothalamus of actinopterygians. In: Fish Neurobiology. Eds. Davis R. F. and Northcutt R. G. Vol. 2. Ann Arbor, MI: Univ. Michigan Press, 1983, pp. 165-201.
Platt M. L. Neural correlates of decisions. Curr. Opin. Neurobiol., 2002, 12, 141-148.
Plowman E. K. and Kleim J. A. Behavioral and neurophysiological correlates of striatal dopamine depletion: a rodent model of Parkinson’s disease. J. Commun. Disord., 2011, 44, 549-556.
Pombal M. A., El Manira A. and Grillner S. Afferents of the lamprey striatum with special reference to the dopaminergic system: a combined tracing and immunohistochemical study. J. Comp. Neurol., 1997, 386, 71-91.
Pombal M. A. and Puelles L. Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers. J. Comp. Neurol., 1999, 414, 391-422.
Preuschoff K. and Bossaerts P. Adding prediction risk to the theory of reward learning. Ann. N Y Acad. Sci., 2007, 1104, 135-146.
Puelles L. and Medina L. Development of neurons expressing tyrosine hydroxylase and dopamine in the chicken brain: A comparative segmental analysis. In: Phylogeny and Evolution of Catecholamine Systems in the CNS of Vertebrates. Eds. Smeets W. J. and Reiner A. Cambridge: Cambridge Univ. Press, 1994, 381-404.
Puelles L. and Rubenstein J. L. Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci., 1993, 16, 472-479.
Puschina E. V. and Obukhov D. K. Catecholaminergic system of the medulla oblongata of the Amur bitterling (Bony Fishes, Family Cyprinidae). Neurophysiology, 2012, 44, 279-291.
Pushchina Y. V., Obukhov D. K. and Varaksin A. A. Neurochemical markers of cells of the periventricular brain area in the masu salmon Oncorhynchus masou (Salmonidae). Rus. J. Dev. Biol., 2012, 43, 35-48.
Pushchina E. V., Varaksin A. A., Shukla S. and Obukhov D. K. Undifferentiated catecholaminergic and NO-producing cells of forebrain matrix zones and intercellular relationships in periventricular diencephalon of juvenile Oncorhynchus masou. Amer. J. BioSci., 2015, 3, 1-11.
Rink E. and Wullimann M. F. Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Res. Bull., 2002, 57, 385-387.
Rink E. and Wullimann M. F. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res., 2001, 889, 316-330.
Roberts B. L., Meredith G. E. and Maslam S. Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla. Anat. Embryol. (Berl.), 1989, 180, 401-412.
Roberts B. L., Maslam S., Scholten G. and Smit W. Dopaminergic and GABAergic cerebrospinal fluid-contacting neurons along the central canal of the spinal cord of the eel and trout. J. Comp. Neurol., 1995, 354, 423-437.
Saligaut C., Linard B., Mañanos E. L., Kah O., Breton B. and Govoroun M. Release of pituitary gonadotrophins GtH I and GtH II in the rainbow trout (Oncorhynchus mykiss): modulation by estradiol and catecholamines. Gen. Comp. Endocrinol., 1998, 109, 302-309.
Santer R. M. Monoaminergic nerves in the central and peripheral nervous systems of fishes. Gen. Pharmacol., 1977, 8, 157-172.
Sas E., Maler L. and Tinner B. Catecholaminergic systems in the brain of a gymnotiform teleost fish: an immunohistochemical study. J. Comp. Neurol., 1990, 292, 127-162.
Sasaki A., Sotnikova T. D., Gainetdinov R. R. and Jarvis E. D. Social context-dependent singing-regulated dopamine. J. Neurosci., 2006, 26, 9010-9014.
Schultz W.

Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80, 1-27.
Schweitzer J., Lohr H., Filippi A. and Driever W. Dopaminergic and noradrenergic circuit development in zebrafish. Dev. Neurobiol., 2011, 72, 256-268.
Shulman J. M., De Jager P. L. and Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu. Rev. Pathol., 2011, 6, 193-222.
Smeets W. J. and González A. Catecholamine systems in the brain of vertebrates: new perspectivesthrough a comparative approach. Brain Res. Brain Res. Rev., 2000, 33, 308-379.
Somoza G. M. and Peter R. E. Effects of serotonin on gonadotropin and growth hormone release from in vitro perifused goldfish pituitary fragments. Gen. Comp. Endocrinol., 1991, 82, 103-110.
Sotres-Bayón F., Torres-López E., López-Avila A., del Angel R. and Pellicer F. Lesion and electrical stimulation of the ventral tegmental area modify persistent nociceptive behavior in the rat. Brain Res., 2001, 898, 342-349.
Specker J. L., Eales J. G., Tagawa M. and Tyler W. A. Parr-smolt transformation in Atlantic salmon: thyroid deiodination in liver and brain and endocrine correlates of change in rheotactic behavior. Can. J. Zool., 2000, 78, 696-705.
Sugrue L. P., Corrado G. S. and Newsome W. T.

Choosing the greater of two goods: neural currencies for valuation and decision making. Nat. Rev. Neurosci., 2005, 6, 363-375.
Tobler P. N., Fiorillo C. D. and Schultz W. Adaptive coding of reward value by dopamine neurons. Science, 2005, 307, 1642-1645.
Trudeau V. L., Sloley B. D. and Peter R. E. Testosterone enhances GABA and taurine but not N-methyl-D,L-aspartate stimulation of gonadotropin secretion in the goldfish: possible sex steroid feedback mechanisms. J. Neuroendocrinol., 1993, 5, 129-136.
Trudeau V. L., Spanswick D., Fraser E. J., Larivière K., Crump D., Chiu S., MacMillan M. and Schulz R. W. The role of amino acid neurotransmitters in the regulation of pituitary gonadotropin release in fish. Biochem. Cell Biol., 2000, 78, 241-259.
Ugrumov M. V. Hypothalamic monoaminergic systems in ontogenesis: development and functional significance. Int. J. Dev. Biol., 1997, 41, 809-816.
Ugrumov M. V., Sapronova A. Y., Melnikova V. I., Proshlyakova E. V., Adamskaya E. I., Lavrentieva A. V., Nasirova D. I. and Babichev V. N. Brain is an important source of GnRH in general circulation in the rat during prenatal and early postnatal ontogenesis. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2005, 141, 271-279.
Ugrumov M. V. Developing brain as an endocrine organ: a paradoxical reality. Neurochem. Res., 2010, 35, 837-850.


Ugrumov M. V. Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J. Chem. Neuroanat., 2009, 38, 241-256.
Vidal B., Pasqualini C., Le Belle N., Holland M. C., Sbaihi M., Vernier P., Zohar Y. and Dufour S. Dopamine inhibits luteinizing hormone synthesis and release in the juvenile European eel: a neuroendocrine lock for the onset of puberty. Biol. Reprod., 2004, 71, 1491-500.
Vidal-Gadea A.,

Topper S., Young L., Crisp A., Kressin L., Elbel E., Maples T., Brauner M., Erbguth K., Axelrod A., Gottschalk A., Siegel D. and Pierce-Shimomura J. T. Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc. Natl. Acad. Sci. USA, 2011, 108, 17504-17509.
Vigh B. and Vigh-Teichmann I. Comparative ultrastructure of the cerebrospinal fluid-contacting neurons. Int. Rev. Cytol., 1973, 35, 189-251.
Weiner R. I., Findell P. R. and Kordon C. Role of classic and peptide neuromediators in the neuroendocrine regulation of LH, Prolactin. In: The Physiology of Reproduction. Eds. Knobil E. and Neill J. New York: Raven Press, 1989, pp. 1235-1281.
Wilson, C. J. Basal ganglia. In: The Synaptic Organization of the Brain. Ed. Shepherd G. M. New York: Oxford Univ. Press, 1998, pp. 329-375.
Winberg S., Myrberg A. A. Jr and Nilsson G. E. Predator exposure alters brain serotonin metabolism in bicolour damselfish. Neuroreport, 1993, 4, 399-402.
Winberg S., Nilsson A., Hylland P., Söderstöm V. and Nilsson G. E. Serotonin as a regulator of hypothalamic-pituitary-interrenal activity in teleost fish. Neurosci Lett., 1997, 230, 113-116.
Winberg S. and Nilsson G. E. Induction of social dominance by L-dopa treatment in Arctic charr. Neuroreport, 1992, 3, 243-246.
Wirdefeldt K., Gatz M., Reynolds C. A., Prescott C. A. and Pedersen N. L.

Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol. Aging, 2011, 32(10):1923.e1-8. doi: 10.1016/ j.neurobiolaging.
Wullimann M. F. and Mueller T.

Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J. Comp. Neurol., 2004, 475, 143-162.
Yamamoto K. and Vernier P. The evolution of dopamine systems in chordates. Front. Neuroanat., 2011, 5:21. doi: 10.3389/fnana.2011. 00021.
Yaron Z., Gur G., Melamed P., Rosenfeld H., Elizur A. and Levavi-Sivan B. Regulation of fish gonadotropins. Int. Rev. Cytol., 2003, 225, 131-185.
Yu K. L. and Peter R. E. Adrenergic and dopaminergic regulation of gonadotropin-releasing hormone release from goldfish preoptic-anterior hypothalamus and pituitary in vitro. Gen. Comp. Endocrinol., 1992, 85, 138-146.

Chapter 4

Anglade I., Mazurais D., Douard V., Le Jossic-Corcos C., Mañanos E. L., Michel D. and Kah O. Distribution of glutamic acid decarboxylase mRNA in the forebrain of the rainbow trout as studied by in situ hybridization. J. Comp. Neurol., 1999, 410, 277-289.
Anglade I., Pakdel F., Bailhache T., Petit F., Salbert G., Jego P., Valotaire Y. and Kah O. Distribution of estrogen receptor-immunoreactive cells in the brain of the rainbow trout (Oncorhynchus mykiss). J. Neuroendocrinol., 1994, 6, 573-583.
Anglade I., Zandbergen T. and Kah O. Origin of the pituitary innervation in the goldfish. Cell Tissue Res., 1993, 273, 345-355.
Anzelius M., Ekström P., Möhler H. and Richards J. G. Immunocytochemical localization of the GABAA/benzodiazepine receptor beta2/beta3 subunits in the optic tectum of the salmon. J. Recept. Signal Transduct., 1995b, 15, 413-425.
Anzelius M., Ekström P., Möhler H. and Richards J. G. Immunocytochemical localization of GABAA receptor beta 2/beta 3-subunits in the brain of Atlantic salmon (Salmo salar L). J. Chem. Neuroanat., 1995a, 8, 207-221.
Bailhache T., Arazam A., Klungland H., Aleström P., Breton B. and Jego P. Localization of salmon gonadotropin-releasing hormone mRNA and peptide in the brain of Atlantic salmon and rainbow trout. J. Comp. Neurol., 1994, 347, 444-454.
Barker J. L., Behar T., Li Y. X., Liu Q. Y., Ma W., Maric D., Maric I., Schaffner A. E., Serafini R., Smith S. V., Somogyi R., Vautrin J. Y., Wen X. L. and Xian H. GABAergic cells and signals in CNS development. Perspect. Dev. Neurobiol., 1998, 5, 305-322.
Bekar L. K. and Walz W. Intracellular chloride modulates A-type potassium currents in astrocytes. Glia, 2002, 39, 207-216.
Ben Ari Y., Tseeb V., Raggozzino D., Khazipov R. and Gaiarsa J. L. Gamma-aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life. Prog. Brain Res., 1994, 102, 261-273.
Bolteus A. and Bordey A. GABA release and uptake orchestrate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci., 2004, 24, 7623-7631.
Borden L. A. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem. Int., 1996, 29, 335-356.
Braford M. R. Jr. Comparative aspects of forebrain organization in the ray-finned fishes: touchstones or not? Brain Behav. Evol., 1995, 46, 259-274.
Braun K., Scheich H., Schachner M. and Heizmann C. W. Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. I. Auditory and vocal motor systems. Cell Tissue Res., 1985, 240, 101-115.
Breckenridge R. J., Nicholson S. H., Nicol A. J., Suckling C. J., Leigh B. and Iversen L. Inhibition of neuronal GABA uptake and glial beta-alanine uptake by synthetic GABA analogues. Biochem. Pharmacol., 1981, 30, 3045-3049.
Bu D. F., Erlander M. G., Hitz B. C., Tillakaratne N. J., Kaufman D. L., Wagner-McPherson C. B., Evans G. A. and Tobin A. J. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc. Natl. Acad. Sci. USA, 1992, 89, 2115-2119.
Butler A. B., Wullimann M. F. and Northcutt G. R. Comparative cytoarchitectonic analysis of some visual pretectal nuclei in teleosts. Brain Behav. Evol., 1991, 38, 92-114.
Buznikov G. A., Kost A. N., Kucherova N. F., Mndzhoyan A. L., Suvorov N. N. and Berdysheva L. V. The role of neurohumours in early embryogenesis. 3. Pharmacological analysis of the role of neurohumours in cleavage divisions. J. Embryol. Exp. Morphol., 1970, 23, 549-569.
Carleton A., Petreanu L. T., Lansford R., Alvarez-Buylla A. and Lledo P. M. Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci., 2003, 6, 507-518.
Celio M. R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, 1990, 35, 375-475.
Chebib M. and Johnston G. A. The ‘ABC’ of GABA receptors: a brief review. Clin. Exp. Pharmacol. Physiol., 1999, 26, 937-940.
Conover J. C. and Allen R. L. The subventricular zone: new molecular and cellular developments. Cell Mol. Life Sci., 2002, 59, 2128-2135.
Crespo C., Porteros A., Arévalo R., Briñón J. G., Aijón J. and Alonso J. R. Distribution of parvalbumin immunoreactivity in the brain of the tench (Tinca tinca L., 1758). J. Comp. Neurol., 1999, 413, 549-571.
Dale N., Roberts A., Ottersen O. P. and Storm-Mathisen J. The morphology and distribution of Kolmer-Agduhr cells,’ a class of cerebrospinal fluid-contacting neurons revealed in the frog embryo spinal cord by GABA immunocytochemistry. Proc. R. Soc. Lond. B Biol. Sci., 1987, 232, 193-203.
Davies B., Hannah L. T., Randall C. F., Bromage N. and Williams L. M. Central melatonin binding sites in rainbow trout (Onchorhynchus mykiss). Gen. Comp. Endocrinol., 1994, 96, 19-26.
De Bias A. L. Monoclonal antibodies to specific astroglial and neuronal antigens reveal the cytoarchitecture of the Bergmann glia fibers in the cerebellum. J. Neurosci., 1984, 4, 265-273.
Decavel C. and van den Pol A. N. GABA: a dominant neurotransmitter in the hypothalamus. J. Comp. Neurol., 1990, 302, 1019-1037.
Demarque M., Represa A., Becq H., Khalilov I., Ben Ari Y. and Aniksztejn L. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron, 2002, 36, 1051-1061.
Doetsch E. The glial identity of neural stem cells. Nat. Neurosci., 2003, 6, 1127-1134.
Doetsch F., Caille I., Lim D. A., Garcia-Verdugo J. M. and Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 1999a, 97:703-716.
Doetsch F., Garcia-Verdugo J. M. and Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci., 1997, 17, 5046-5061.
Doetsch F., Garcia-Verdugo J. M. and Alvarez-Buylla A. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl. Acad. Sci. USA, 1999b, 96, 11619-11624.
Donoso A. O., Seltzer A. M., Navarro C. E., Cabrera R. J., López F. J. and Negro-Vilar A. Regulation of luteinizing hormone-releasing hormone and luteinizing hormone secretion by hypothalamic amino acids. Braz. J. Med. Biol. Res., 1994, 27, 921-932.
Ekström P. and Ohlin L. M. Ontogeny of GABA-immunoreactive neurons in the central nervous system in a teleost, Gasterosteus aculeatus L. J. Chem. Neuroanat., 1995, 9, 271-288.
Ekström P. and Vanĕcek J. Localization of 2-[125I]iodomelatonin binding sites in the brain of the Atlantic salmon, Salmo salar L. Neuroendocrinology, 1992, 55, 529-537.
Erlander M. G., Tillakaratne N. J., Feldblum S., Patel N. and Tobin A. J. Two genes encode distinct glutamate decarboxylases. Neuron, 1991, 7, 91-100.
Erlander M. G. and Tobin A. J. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem. Res., 1991, 16, 215-226.
Esclapez M., Tillakaratne N. J., Tobin A. J. and Houser C. R. Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. J. Comp. Neurol., 1993, 331, 339-362.
Feldblum S., Erlander M. G. and Tobin A. J. Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J. Neurosci. Res., 1993, 34, 689-706.
Finger T. E. Organization of the teleost cerebellum. In: Fish Neurobiology. Eds. Northcutt R. J. and Davis R. E. Ann Arbor: Univ. Michigan Press, 1983, pp. 261-284.
Flügge G., Oertel W. H. and Wuttke W. Evidence for estrogen-receptive GABAergic neurons in the preoptic/anterior hypothalamic area of the rat brain. Neuroendocrinology, 1986, 43, 1-5.
Garcia-Verdugo J. M., Doetsch F., Wichterle H., Lim D. A. and Alvarez-Buylla A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J. Neurobiol., 1998, 36, 234-248.
Harper C. E. and Roberts A. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1993, 340, 141-160.
Haydar T. F., Wang E., Schwartz M. L. and Rakic E. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J. Neurosci., 2000, 20, 5764-5774.
Herbison A. E., Robinson J. E. and Skinner D. C. Distribution of estrogen receptor-immunoreactive cells in the preoptic area of the ewe: co-localization with glutamic acid decarboxylase but not luteinizing hormone-releasing hormone. Neuroendocrinology, 1993, 57, 751-759.
Holmqvist B. I. and Ekström P. Hypophysiotrophic systems in the brain of the Atlantic salmon. Neuronal innervation of the pituitary and the origin of pituitary dopamine and nonapeptides identified by means of combined carbocyanine tract tracing and immunocytochemistry. J. Chem. Neuroanat., 1995, 8, 125-145.
Hu H. and Rutishauser U. A septum-derived chemorepulsive factor for migrating olfactory interneuron precursors. Neuron, 1996, 16, 933-940.
Jansen K., Fabro C., Artero C., Feuilloley M., Vaudry H., Fasolo A. and Franzoni M. F. Characterization of pars intermedia connections in amphibians by biocytin tract tracing and immunofluorescence aided by confocal microscopy. Cell Tissue Res., 1997, 287, 297-304.
Kah O., Anglade I., Leprêtre E., Dubourg P. and de Monbrison D. The reproductive brain in fish. Fish Physiol. Biochem., 1993, 11, 85-98.
Kah O., Dubourg P., Martinoli M. G., Geffard M. and Calas A. Morphological evidence for a direct neuroendocrine GABAergic control of the anterior pituitary in teleosts. Experientia, 1987b, 43, 300-302.
Kah O., Dubourg P., Martinoli M. G., Rabhi M., Gonnet F., Geffard M. and Calas A. Central GABAergic innervation of the pituitary in goldfish: a radioautographic and immunocytochemical study at the electron microscope level. Gen. Comp. Endocrinol., 1987а, 67, 324-332.
Kah O., Trudeau V. L., Sloley B. D., Chang J. P., Dubourg P., Yu K. L. and Peter R. E. Influence of GABA on gonadotrophin release in the goldfish. Neuroendocrinology, 1992, 55, 396-404.
Kao H. T., Porton B., Czernik A. J., Feng J., Yiu G., Häring M., Benfenati F. and Greengard P. A third member of the synapsin gene family. Proc. Natl. Acad. Sci. USA, 1998, 95, 4667-4672.
Kaufman D. L., Houser C. R. and Tobin A. J. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem., 1991, 56, 720-723.
Kinney G. A. and Spain W. J. Synaptically evoked GABA transporter currents in neocortical glia. J. Neurophysiol., 2002, 88, 2899-2908.
Larsson O. M., Griffiths R., Allen I. C. and Schousboe A. Mutual inhibition kinetic analysis of gamma-aminobutyric acid, taurine, and beta-alanine high-affinity transport into neurons and astrocytes: evidence for similarity between the taurine and beta-alanine carriers in both cell types. J. Neurochem., 1986, 47, 426-432.
Lauder J. M., Han V. K., Henderson P., Verdoorn T. and Towle A. C. Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neuroscience, 1986, 19, 465-493.
Leranth C., MacLusky N. J., Sakamoto H., Shanabrough M. and Naftolin F. Glutamic acid decarboxylase-containing axons synapse on LHRH neurons in the rat medial preoptic area. Neuroendocrinology, 1985, 40, 536-539.
Liu X., Wang Q., Haydar T. F. and Bordey A. Nonsynaptic GABAergic signaling in the postnatal subventricular zone controls GFAP-expressing cell proliferation. Nat. Neurosci., 2005, 8, 1179-1187.
Lois C., Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science, 1994, 264:1145-1148.
Lois C., Garcia-Verdugo J. M. and Alvarez-Buylla A. Chain migration of neuronal precursors. Science, 1996, 271, 978-981.
Lopez-Corcuera B., Liu Q. R., Mandiyan S., Nelson H. and Nelson N. Expression of a mouse brain cDNA encoding novel gamma-aminobutyric acid transporter. J. Biol. Chem., 1992, 267, 17491-17493.
LoTurco J. J., Owens D. E. Heath M. J., Davis M. B. and Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron, 1995, 15, 1287-1298.
Luskin M. B. Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate. J. Neurobiol., 1998, 36, 221-233.
Madtes P. Jr and Redburn D. A. GABA as a trophic factor during development. Life Sci., 1983, 33, 979-984.
Madtes P. C. Ontogeny of the GABA receptor complex. In: Neurotrophic Activity of GABA During Development. Eds Redburn D. A. and Schousboe A., pp. 161-187. Neurology and Neurobiology. Vol. 32. Alan R. Liss, New York, 1987.
Mananos E. L, Anglade I, Saligaut C, Breton B. and Kah O. Role of gamma-amino-butyric acid (GABA) on GTH-I and GTH-II secretion in rainbow trout. In: Proc. 19th Conference of European Comparative Endocrinologists, Nijmegen, The Netherlands. 1998. p. 46.
Maric D., Liu Q. Y., Maric I., Chaudry S., Chang Y. H., Smith S. V., Sieghart W., Fritschy J. M. and Barker J. L. GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl-channels. J. Neurosci., 2001, 21, 2343-2360.
Martinoli M. G., Dubourg P., Geffard M., Calas A. and Kah O. Distribution of GABA-immunoreactive neurons in the forebrain of the goldfish, Carassius auratus. Cell Tissue Res., 1990, 260, 77-84.
Martinoli M. G., Williams L. M., Kah O., Titchener L. T. and Pelletier G. Distribution of central melatonin binding sites in the goldfish (Carassius auratus). Mol. Cell. Neurosci., 1991, 2, 78-85.
Marty S., Berninger B., Carroll P. and Thoenen H. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron, 1996, 16, 565-570.
McCann S. M. and Rettori V. The role of gamma aminobutyric acid in the control of anterior pituitary hormone secretion. In: GABA and Benzodiazepine Receptors. Ed. Squires R. F. Boca Raton: CRC Press, 1988, pp. 123-134.
McCann S. M., Vijayan E., Negro-Vilar A., Mizunuma H. and Mangat H. Gamma aminobutyric acid (GABA), a modulator of anterior pituitary hormone secretion by hypothalamic and pituitary action. Psychoneuroendocrinology, 1984, 97-106.
McCarthy M. M., Kaufman L. C., Brooks P. J., Pfaff D. W. and Schwartz-Giblin S. Estrogen modulation of mRNA levels for the two forms of glutamic acid decarboxylase (GAD) in female rat brain. J. Comp. Neurol., 1995, 360, 685-697.
McCarthy M. M., Pfaff D. W. and Schwartz-Giblin S. The role of steroid modulation of aminoacid neurotransmitter in the regulation of female reproduction. Am. Zool., 1993, 33, 275-284.
Médina M., Repérant J., Dufour S., Ward R., Le Belle N. and Miceli D. The distribution of GABA-immunoreactive neurons in the brain of the silver eel (Anguilla anguilla L.). Anat. Embryol. (Berl.), 1994, 189, 25-39.
Meek J. and Nieuwenhuys R. Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study. J. Comp. Neurol., 1991, 306, 156-192.
Meier E., Belhage B., Drejer J. and Sehousboe, A. The expression of GABA receptors on cultured cerebeilar granule cells is influenced by GABA. In: Neurotrophic Activity of GABA during Developmen. Eds Redburn D. A. and Schousboe A., pp. 139-159. Neurology and Neurohiology. Vol. 32, Alan R. Liss, New York, 1987.
Michler A. and Wolff J. R. Modulation of neurite growth by GABA in culture. In: Neural Development and Regeneration. Ed. Giorio A., pp. 112-124. NATO ASI Series, Vol. 22. Springer-Verlag, Berlin, 1988.
Michler-Stuke A. and Wolff J. R. Facilitation and inhibition of neurite elongation by GABA in chick tectal neurons. In: Neurotrophic Activity of GABA during Development. Eds Redburn D. A. and Sehousboe A., pp. 253-266. Neurology and Neurobiology. Vol. 32. Alan R. Liss, New York, 1987.
Mueller T. and Guo S. The distribution of GAD67-mRNA in the adult zebrafish (Teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods. J. Comp. Neurol., 2009, 516, 553-568.
Navas J. M., Anglade I., Bailhache T., Pakdel F., Breton B., Jégo P. and Kah O. Do gonadotrophin-releasing hormone neurons express estrogen receptors in the rainbow trout? A double immunohistochemical study. J. Comp. Neurol., 1995, 363, 461-474.
Nguyen L., Malgrange B., Breuskin I., Bettendorff L., Moonen G., Belachew S. and Rigo J. M. Autocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatnm. J. Neurosci., 2003, 23, 3278-3294.
Nguyen-Ba-Charvet K. T., Picard-Riera N., Tessier-Lavigne M., Baron-Van Evercooren A., Sotelo C. and Chédotal A. Multiple roles for slits in the control of cell migration in the rostral migratory stream. J. Neurosci., 2004, 24, 1497-1506.
Nielson D. A. and Shapiro D. J. Insights into hormonal control of messenger RNA stability. Mol. Endocrinol., 1990, 4, 953-957.
Northcutt R. G. Forebrain evolution in bony fishes. Br. Res. Bull., 2008, 75, 191-205.
Northcutt R. G. and Braford M. R. Jr. New observations on the organization and evolution of the telencephalon of actinopterygian fishes. In: Comparative Neurology of the Telencephalon. Ed. Ebbesson S. O. Plenum Press, New York, 1980, pp. 41-98.
Northcutt R. G. The forebrain of gnathostomes: in search of a morphotype. Brain Behav. Evol., 1995, 46, 275-318.
Owens D. E. and Kriegstein A. R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci., 2002, 3, 715-727.
Palay S. L. and Chan-Palay V. Cerebellar Cortex, Cytology and Organization. New York: Springer-Verlag, 1974.
Pencea V., Bingaman K. D., Wiegand S. J. and Luskin M. B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci., 2001, 21, 6706-6717.
Peretto R., Merighi A., Fasolo A. and Bonfanti L. The subependymal layer in rodents:a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res. Bull., 1999, 49, 221-243.
Pieribone V. A., Porton B., Rendon B., Feng J., Greengard P. and Kao H. T. Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. J. Comp. Neurol., 2002, 454, 105-114.
Pinganaud G. and Clairambault P. The visual system of the trout Salmo irideus Gibb. A degeneration and radioautographic study. J. Hirnforsch., 1979, 20, 413-431.
Porteros A., Arévalo R., Briñón J. G., Crespo C., Aijón J. and Alonso J. R. Parvalbumin immunoreactivity during the development of the cerebellum of the rainbow trout. Brain Res. Dev. Brain Res., 1998, 109, 221-227.
Puelles L. and Rubenstein J. L. Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci., 1993, 16, 472-479.
Puschina E. V. Neurochemical organization and connections of the cerebral preglomerular complex of the masu salmon. Neurophysiology, 2012, 43, 437-451.
Puschina E. V. and Varaksin A. A. Hydrogen sulfide-, parvalbumin-, and GABA-producing systems in the masu salmon brain. Neurophysiology, 2011, 43, 90-102.
Pushchina E. V., Varaksin A. A. and Obukhov D. K. Cystathionine β-synthase in the CNS of masu salmon Oncorhynchus masou (Salmonidae) and carp Cyprinus carpio (Cyprinidae). Neurochem. J., 2011, 5, 24-34.
Redburn D. A. and Sehousboe A. Neurotrophic activity of GABA during development. Neurology and Neurobiology. Vol. 32. Alan R. Liss, New York, 1987.
Roberts A., Dale N., Ottersen, O. P. and Storm-Mathisen J. The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos. J. Comp. Neurol., 1987, 261, 435-449.
Salbert G., Bonnec G., Le Goff P., Boujard D., Valotaire Y. and Jego P. Localization of the estradiol receptor mRNA in the forebrain of the rainbow trout. Mol. Cell. Endocrinol., 1991, 76, 173-180.
Sas E., Maler L. and Weld M. Connections of the olfactory bulb in the gymnotiform fish, Apteronotus leptorhynchus. J. Comp. Neurol., 1993, 335, 486-507.
Stankov B., Fraschini F. and Reiter R. J. Melatonin binding sites in the central nervous system. Brain Res. Brain Res. Rev., 1991, 16, 245-256.
Stewart R. R., Hoge G. J., Zigova T. and Luskin M. B. Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. J. Neurobiol., 2002, 50, 305-322.
Stichel C. C., Singer W. and Heizmann C. W. Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: evidence for coexistence with GABA. J. Comp. Neurol., 1988, 268, 29-37.
Tanaka M., Matsuda T., Shigeyoshi Y., Ibata Y. and Okamura H. Peptide expression in GABAergic neurons in rat suprachiasmatic nucleus in comparison with other forebrain structures: a double labeling in situ hybridization. J. Histochem. Cytochem., 1997, 45, 1231-1237.
Tappaz M. L., Oertel W. H., Wassef M. and Mugnaini E. Central GABAergic neuroendocrine regulations: pharmacological and morphological evidence. Prog. Brain Res., 1982, 55, 77-96.
Temple S. and Alvarez-Buylla A. Stem cells in the adult mammalian central nervous system. Curr. Opin. Neurobiol., 1999, 9, 135-141.
Thind K. K. and Goldsmith P. C. Expression of estrogen and progesterone receptors in glutamate and GABA neurons of the pubertal female monkey hypothalamus. Neuroendocrinology, 1997, 65, 314-324.
Tirassa P., Triaca V., Amendola T., Fiore M. and Aloe L. EGF and NGF injected into the brain of old mice enhance BDNF and ChAT in proliferating subventricular zone. J. Neurosci. Res., 2003, 72, 557-564.
Tramontin A. D., Garcia-Verdugo J. M., Lim D. A. and Alvarez-Buylla A. Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb. Cortex, 2003, 13, 580-587.
Trudeau V. L., Sloley B. D. and Peter R. E. GABA stimulation of gonadotropin-II release in goldfish: involvement of GABA(A) receptors, dopamine, and sex steroids. Am. J. Physiol., 1993b, 265, R348-355.
Trudeau V. L., Sloley B. D. and Peter R. E. Testosterone enhances GABA and taurine but not N-methyl-D,L-aspartate stimulation of gonadotropin secretion in the goldfish: possible sex steroid feedback mechanisms. J. Neuroendocrinol., 1993a, 129-136.
Trudeau V. L. Neuroendocrine regulation of gonadotrophin II release and gonadal growth in the goldfish, Carassius auratus. Rev. Reprod., 1997, 2, 55-68.
Ubink R., Tuinhof R., Roubos E. W. Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study. J. Comp. Neurol., 1998, 397, 60-68.
Virmani M. A., Stojilković S. S. and Catt K. J. Stimulation of luteinizing hormone release by γ-aminobutyric acid (GABA) agonists: mediation by GABAA-type receptors and activation of chloride and voltage-sensitive calcium channels. Endocrinology, 1990, 126, 2499-2505.
von Bartheld C. S., Code R. A. and Rubel E. W. GABAergic neurons in brainstem auditory nuclei of the chick: distribution, morphology, and connectivity. J. Comp. Neurol., 1989, 287, 470-483.
Wagner E. J., Ronnekleiv O. K., Bosch M. A. and Kelly M. J. Estrogen biphasically modifies hypothalamic GABAergic function concomitantly with negative and positive control of luteinizing hormone release. J. Neurosci., 2001, 21, 2085-2093.
Wagner S., Castel M., Gainer H. and Yarom Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rythmicity. Nature, 1997, 387, 598-603.
Wall M. J. and Usowicz M. M. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur. J. Neurosci., 1997, 9, 533-548.
Wang D. D. and Bordey A. Cell-attached measurement of the resting potential of neuronal progenitors in the subventricular zone of postnatal mice. Soc. Neurosci. Abstr., 2003, 564, 17.
Wang D. D., Krueger D. D. and Bordey A. GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABA(A) receptor activation. J. Physiol. (Lond.), 2003, 550, 785-800.
Wolff J. R., Balcar V. J., Zetsche T., Bfttcher H., Sehmediei D.E. and Chronwall B. M. Development of GABAergic system in rat visual cortex. In: Gene Expression and Cell-Cell Interactions in the Developing Nervous System. Eds Lauder J. M. and Nelson P. G.). New York: Plenum Press, 1984, pp. 215-246.
Wolff J. R., Joo F. and Kasa P. Modulation by GABA of neuroplasticity in the central and peripheral nervous system. Neurochem. Res., 1993, 18, 453-461.
Wullimann M. F. and Vernier P. Evolution of the nervous system in fishes. In: Evolution of Nervous Systems. Vol. 2, Non-Mammalian Vertebrates. Eds. Kaas J. H. and Bullock T. H. Oxford: Elsevier, 2007, pp. 39-60.
Wullimann M. F., Hofmann M. H. and Meyer D. L. Histochemical, connectional and cytoarchitectonic evidence for a secondary reduction of the pretectum in the European eel, Anguilla anguilla: a case of parallel evolution. Brain Behav. Evol., 1991, 38, 290-301.
Wullimann M. F. and Meyer D. L. Phylogeny of putative cholinergic visual pathways through the pretectum to the hypothalamus in teleost fish. Brain Behav. Evol., 1990, 36, 14-29.
Wullimann M. F. and Northcutt R. G. Connections of the corpus cerebelli in the green sunfish and the common goldfish: a comparison of perciform and cypriniform teleosts. Brain Behav. Evol., 1988, 32, 293-316.
Zohar Y., Muñoz-Cueto J. A., Elizur A. and Kah O. Neuroendocrinology of reproduction in teleost fish. Gen. Comp. Endocrinol., 2010, 165, 438-455.

Chapter 5

Alderton W. K., Cooper C. E. and Knowles R. G. Nitric oxide synthases: structure, function and inhibition. Biochem J., 2001, 357(Pt 3), 593-615.
Angotzi A. R., Hirano J., Vallerga S. and Djamgoz M. B. Role of nitric oxide in control of light adaptive cone photomechanical movements in retinas of lower vertebrates: a comparative study. Nitric Oxide, 2002, 6, 200-204.
Anken R. H. and Rahmann H. An atlas of the distribution of NADPH-diaphorase in the brain of the highly derived swordtail fish Xiphophorus helleri (Atherinoformes: Teleostei). J. Hirnforsch., 1996, 37, 421-449.
Anken R. H., Sorger I., Bremen D. and Rahmann H. NADPH-diaphorase reactivity in the Mauthner cells of the swordtail fish, Xiphophorus helleri. Neurosci Lett., 1996, 206, 49-52.
Arévalo R., Alonso J. R., García-Ojeda E., Briñón J. G., Crespo C. and Aijón J. NADPH-diaphorase in the central nervous system of the tench (Tinca tinca L., 1758). J. Comp. Neurol., 1995, 352, 398-420.
Baader S. L., Bucher S. and Schilling K. The developmental expression of neuronal nitric oxide synthase in cerebellar granule cells is sensitive to GABA and neurotrophins. Dev. Neurosci., 1997, 19, 283-290.
Boldyrev A. A., Yeshchenko N. D., Ilukha V. A. Neurochemistry. M.: Drofa. 2010.
Bon C. L. and Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation. J. Neurosci., 2003, 23, 1941-1948.
Bordieri L., Bonaccorsi di Patti M. C., Miele R. and Cioni C. Partial cloning of neuronal nitric oxide synthase (nNOS) cDNA and regional distribution of nNOS mRNA in the central nervous system of the Nile tilapia Oreochromis niloticus. Brain Res. Mol. Brain Res., 2005, 142, 123-33.
Bordieri L. and Cioni C. Co-localization of neuronal nitric oxide synthase with arginine-vasotocin in the preoptic-hypothalamo-hypophyseal system of the teleost Oreochromis niloticus. Brain Res., 2004, 1015, 181-185.
Bordieri L., Persichini T., Venturini G. and Cioni C. Expression of nitric oxide synthase in the preoptic-hypothalamo-hypophyseal system of the teleost Oreochromis niloticus. Brain Behav. Evol., 2003, 62, 43-55.
Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R. and Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature, 1991, 351, 714-718.
Bredt D. S. and Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA, 1990, 87, 682-685.
Bredt D. S. and Snyder S. H. Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium, Neuron, 1994, 13, 301-413.
Bredt D. S. and Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem., 1994, 63, 175-95.
Bredt D. S., Hwang P. M. and Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature, 1990, 347, 768-770.
Brenman J. E., Chao D. S., Gee S. H., McGee A. W., Craven S. E., Santillano D. R., Wu Z., Huang F., Xia H., Peters M. F., Froehner S. C. and Bredt D. S. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell, 1996a, 84, 757-767.
Brenman J. E., Christopherson K. S., Craven S. E., McGee A. W. and Bredt D. S. Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J. Neurosci., 1996b, 16, 7407-7415.
Bruel-Jungerman E., Rampon C. and Laroche S. Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev. Neurosci., 2007, 18, 93-114.
Brüning G., Hattwig K. and Mayer B. Nitric oxide synthase in the peripheral nervous system of the goldfish, Carassius auratus. Cell Tissue Res., 1996, 284, 87-98.
Brüning G. and Mayer B. Localization of nitric oxide synthase in the brain of the frog, Xenopus laevis. Brain Res., 1996, 741 331-343.
Brüning G., Katzbach R. and Mayer B. Histochemical and immunocytochemical localization of nitric oxide synthase in the central nervous system of the goldfish, Carassius auratus. J. Comp. Neurol., 1995, 358, 353-382.
Brüning G. Localization of NADPH-diaphorase in the brain of the chicken. J. Comp. Neurol., 1993, 334, 192-208.
Brüning G., Wiese, S. and Mayer B. Nitric oxide synthase in the brain of the turtle Pseudemys scripta elegans. J. Comp. Neurol., 1994, 348, 183-206.
Brüning G. and Mayer B. Histochemical and immunocytochemical localization of nitric oxide synthase in the central nervous system of the goldfish, Carassius auratus. J. Comp. Neurol., 1995, 358, 353-382.
Ciani E., Severi S., Contestabile A., Bartesaghi R. and Contestabile A. Nitric oxide negatively regulates proliferation and promotes neuronal differentiation through N-Myc downregulation. J. Cell Sci., 2004, 117(Pt 20), 4727-4737.
Chen Y. and Rosazza J. P. Purification and characterization of nitric oxide synthase (NOSNoc) from a Nocardia species. J. Bacteriol., 1995, 177, 5122-3128.
Chen J., Tu Y., Moon C., Matarazzo V., Palmer A. M. and Ronnett, G. V. The localization of neuronal nitric oxide synthase may influence its role in neuronal precursor proliferation and synaptic maintenance. Dev. Biol., 2004, 269, 165-182.
Cox R. L., Mariano T., Heck D. E., Laskin J. D. and Stegeman J. J. Nitric oxide synthase sequences in the marine fish Stenotomus chrysops and the sea urchin Arbacia punctulata, and phylogenetic analysis of nitric oxide synthase calmodulin-binding domains. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2001, 130, 479-491.
Crespo C., Gracia-Llanes F. J., Blasco-Ibáñez J. M., Gutièrrez-Mecinas M., Marqués-Marí A. I. and Martínez-Guijarro F. J. Nitric oxide synthase containing periglomerular cells are GABAergic in the rat olfactory bulb. Neurosci. Lett., 2003, 349, 151-154.
Crespo C, Gracia-Llanes F. J., Blasco-Ibáñez J. M., Gutièrrez-Mecinas M., Marqués-Marí A. I. and Martínez-Guijarro F. J. Nitric oxide synthase containing periglomerular cells are GABAergic in the rat olfactory bulb. Neurosci. Lett., 2003, 349, 151-154.
Denninger J. W. and Marletta M. A. Guanylate cyclase and the ⋅NO/cGMP signaling pathway. Biochim. Biophys. Acta, 1999, 1411, 334-350.
Devadas M., Liu Z., Kaneda M., Arai K., Matsukawa T. and Kato S. Changes in NADPH diaphorase expression in the fish visual system during optic nerve regeneration and retinal development. Neurosci Res., 2001, 40, 359-365.
Ehninger D. and Kempermann G. Neurogenesis in the adult hippocampus. Cell Tissue Res., 2008, 331, 243-250.
Ekström P., Johnsson C. M. and Ohlin L. M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J. Comp. Neurol., 2001, 436, 92-110.
Eliasson M. J., Blackshaw S., Schell M. J. and Snyder S. H. Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc. Natl. Acad. Sci. USA, 1997, 94, 3396-401.
Enikolopov G., Banerji J. and Kuzin B. Nitric oxide and Drosophila development. Cell Death Differ., 1999, 6, 956-963.
Finger T. E. Nonolfactory sensory pathway to the telencephalon in a teleost fish. Science, 1980, 210, 671-673.
Foran C. M. and Bass A. H. Preoptic GnRH and AVT: axes for sexual plasticity in teleost fish. Gen. Comp. Endocrinol., 1999, 116, 141-152.
Fritsche R.,

Schwerte T. and Pelster B. Nitric oxide and vascular reactivity in developing zebrafish, Danio rerio. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279, R2200-2207.
Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur. J. Neurosci., 2008, 27, 2783-2802.
Gibbs S. M., Becker A., Hardy R. W. and Truman J. W. Soluble guanylate cyclase is required during development for visual system function in Drosophila. J. Neurosci., 2001, 21, 7705-7714.
Gibbs S. M. Regulation of neuronal proliferation and differentiation by nitric oxide. Mol. Neurobiol., 2003, 27, 107-120.
Gibbs S. M. and Truman J. W. Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe in Drosophila. Curr. Biol., 2000, 10, 459-462.
González A., Moreno N., Lopez J. M. Distribution of NADPH-diaphorase/nitric oxide synthase in the brain of the caecilian Dermophis mexicanus (Amphibia: Gymnophiona): comparative aspects in amphibians. Brain Behav. Evol., 2002, 60, 80-100.
Gouge R. C., Marshburn P., Gordon B. E., Nunley W. and Huet-Hudson Y. M. Nitric oxide as a regulator of embryonic development. Biol. Reprod., 1998, 58, 875-879.
Grillner S., Georgopoulos A. P. and Jordan L. M. Selection and initiation of motor behavior. In: Neurons, Networks and Motor Behavior. Eds. Stein J. P., Grillner S., Selverston, A. I. and Stuart, D. G. The MIT Press, Cambridge, 1997, pp. 1-25.
Hatakeyama S., Kawai Y., Ueyama T. and Senba E. Nitric oxide synthase-containing magnocellular neurons of the rat hypothalamus synthesize oxytocin and vasopressin and express Fos following stress stimuli. J. Chem. Neuroanat., 1996, 11, 243-256.
Holmqvist B. and Ekström P. Subcellular localization of neuronal nitric oxide synthase in the brain of a teleost; an immunoelectron and confocal microscopical study. Brain Res., 1997, 745, 67-82.
Holmqvist B., Ellingsen B., Alm P., Forsell J., Oyan A. M., Goksøyr A., Fjose A. and Seo H. C. Identification and distribution of nitric oxide synthase in the brain of adult zebrafish. Neurosci. Lett., 2000, 292, 119-22.
Holmqvist B., Ellingsen B., Forsell J., Zhdanova I. and Alm P. The early ontogeny of neuronal nitric oxide synthase systems in the zebrafish. J. Exp. Biol., 2003, 207, 923-935.
Holmqvist B., Goksøyr A. and Øyan A. M. Detailed expression of molecular evolution and tissue evolution demonstrated by tissue neuronal nitric oxide synthase mRNA in the brain of Atlantic salmon during developmental life stages. Jpn. J. Genet., 1994, 69, 473-480.
Holmqvist B. I., Östholm T., Alm P. and Ekström P. Nitric oxide synthase in the brain of a teleost. Neurosci Lett., 1994, 171, 205-208.
Hua Y., Huang X. Y., Zhou L., Zhou Q. G., Hu Y., Luo C. X., Li F. and Zhu D. Y. DETA/NONOate, a nitric oxide donor, produces antidepressant effects by promoting hippocampal neurogenesis. Psychopharmacology (Berl.), 2008, 200, 231-242.
Hubschle T., Kuchenmeister I. and Gerstberger R. Central action of nitric oxide in the saltwater-acclimated duck: modulation of extrarenal sodium excretion and vasotocin release. Brain Res., 1999, 825, 22-35.
Hylland P. and Nilsson G. E. Evidence that acetylcholine mediates increased cerebral blood flow velocity in carp through a nitric oxide-dependent mechanism. J. Cereb. Blood Flow Metab., 1995, 15, 519-524.
Islam A. T., Kuraoka A. and Kawabuchi M. Morphological basis of nitric oxide production and its correlation with the polysialylated precursor cells in the dentate gyrus of the adult guinea pig hippocampus. Anat. Sci. Int., 2003, 78. 98-103.
Islam A. T., Nakamura K., Seki T., Kuraoka A., Hirata K., Emson P. C. and Kawabuchi M. Expression of NOS, PSA-N-CAM and S100 protein in the granule cell migration pathway of the adult guinea pig forebrain. Brain Res. Dev. Brain Res., 1998, 107, 191-205.
Ito H. and Kishida R. Afferent and efferent fiber connections of the carp torus longitudinalis. J. Comp. Neurol., 1978, 181, 465-475.
Iwase K., Iyama K., Akagi K., Yano S., Fukunaga K., Miyamoto E., Mori M. and Takiguchi M. Precise distribution of neuronal nitric oxide synthase mRNA in the rat brain revealed by non-radioisotopic in situ hybridization. Brain Res. Mol. Brain Res., 1998, 53, 1-12.
Jablonka-Shariff A., Basuray R. and Olson L. M. Inhibitors of nitric oxide synthase influence oocyte maturation in rats. J. Soc. Gynecol. Investig., 1999, 6, 95-101.
Jadhao A. G. and Malz C. R. Localization of the neuronal form of nitric oxide synthase (bNOS) in the diencephalon and pituitary gland of the catfish, Synodontis multipunctatus: an immunocytochemical study. Gen. Comp. Endocrinol., 2003, 132, 278-283.
Jadhao A. G. and Malz C. R. Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in the brain of a cichlid fish, with remarkable findings in the entopeduncular nucleus: a histochemical study. J. Chem. Neuroanat., 2004, 27, 75-86.
Jadhao A. G., Wilke I. and Meyer D. L. NADPH-diaphorase expression in the hypothalamo-hypophysial system of different catfish. J. Hirnforsch., 1999, 39, 513-523.
Jin K., Minami M., Lan J. Q., Mao X. O., Batteur S., Simon R. P. and Greenberg D. A. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl. Acad. Sci. USA, 2001, 98, 4710-4715.
Jüch M., Smalla K. H., Kähne T., Lubec G., Tischmeyer W., Gundelfinger E. D. and Engelmann M. Congenital lack of nNOS impairs long-term social recognition memory and alters the olfactory bulb proteome. Neurobiol. Learn Mem., 2009, 92, 469-484.
Judas M., Sestan N. and Kostović I. Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals. Microsc. Res. Tech., 1999, 45, 401-419.
Kadekaro M. and Summy-Long J. Y. Centrally produced nitric oxide and the regulation of body fluid and blood pressure homeostasis. Clin. Exp. Pharmacol. Physiol., 2000, 27, 450-459.
Kawaguchi Y., Wilson C. J., Augood S. J. and Emson P. C. Striatal interneurons: chemical, physiological and morphological characterization. Trends Neurosci., 1995, 18, 527-535.
Knowles G. and Moncada S. Nitric oxide synthase in mammals. Biochem. J., 1994, 298, 249-258.
Krukoff T. L. Central actions of nitric oxide in regulation of autonomic functions. Brain Res. Rev., 1999, 30, 52-65.
Kuzin B., Roberts I., Peunova N. and Enikolopov G. Nitric oxide regulates cell proliferation during Drosophila development. Cell, 1996, 87, 639-649.
Kuzin B.

, Regulski M., Stasiv Y., Scheinker V., Tully T. and Enikolopov G. Nitric oxide interacts with the retinoblastoma pathway to control eye development in Drosophila. Curr. Biol., 2000, 10, 459-462.
Lee M. A., Cai L., Hubner N., Lee Y. A. and Lindpainter K. Tissue- and development-specific expression of multiple alternatively spliced transcripts of rat neuronal nitric oxide synthase. Clin. Invest., 1997, 100, 1507-1512.
Li H. and Poulos T. L. Structure-function studies on nitric oxide synthases. J. Inorg. Biochem., 2005, 99, 293-305.
Ma P. M. Tanycytes in the sunfish brain: NADPH-diaphorase histochemistry and regional distribution. J. Comp. Neurol., 1993, 336, 77-95.
Matarredona E. R., Murillo-Carretero M., Moreno-López B. and Estrada C. Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Res., 2004, 995 274-284.
Madhusoodanan K. S. and Murad F. NO-cGMP signaling and regenerative medicine involving stem cells. Neurochem. Res., 2007, 32, 681-694.
Mize

R. R., Wu H. H., Cork R. J. and Scheiner C. A. The role of nitric oxide in development of the patch-cluster system and retinocollicular pathways in the rodent superior colliculus. Prog. Brain Res., 1998, 118, 133-152.
Moncada S., Palmer R. M. and Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 1991, 43, 109-142.
Moncada S. Role of nitric oxide in cell respiration. Medicina (B Aires), 1998, 58, 357-360.
Moncada S., Palmer R. M. J. and Higgs E. A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev., 1991, 43, 109-142.
Moreno-López B., Noval J. A., González-Bonet L. G. and Estrada C. Morphological bases for a role of nitric oxide in adult neurogenesis. Brain Res., 2000, 869, 244-250.
Nieuwenhuys R., Ten Donkelaar H. J. and Nicholson C. The Central Nervous System of Vertebrates. Berlin: Springer Verlag, 1998.
Northcutt R. G. The forebrain of gnathostomes: in search of a morphotype. Brain Behav. Evol., 1995, 46, 275-318.
Nylén A., Skagerberg G., Alm P., Larsson B. Holmqvist B. and Andersson K. E. Nitric oxide synthase in the hypothalamic paraventricular nucleus of the female rat; organization of spinal projections and coexistence with oxytocin or vasopressin. Brain Res., 2001a, 908, 10-24.
Nylén A., Skagerberg G., Alm P., Larsson B., Holmqvist B. and Andersson K. E. Detailed organization of nitric oxide synthase, vasopressin and oxytocin immunoreactive cell bodies in the supraoptic nucleus of the female rat. Anat. Embryol. (Berl.), 2001b, 203, 309-321.
Ogura T., Nakayama K., Fujisawa H. and Esumi H. Neuronal nitric oxide synthase expression in neuronal cell differentiation. Neurosci. Lett., 1996, 204, 89-92.
Øyan A. M., Nilsen F., Goksoyr A. and Holmqvist B. Partial cloning of constitutive and inducible nitric oxide synthases and detailed neuronal expression of NOS mRNA in the cerebellum and optic tectum of adult Atlantic salmon (Salmo salar). Brain Res. Mol. Brain Res., 2000, 78, 38-49.
Packer M. A., Stasiv Y., Benraiss A., Chmielnicki E., Grinberg A., Westphal H., Goldman S. A. and Enikolopov G. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl. Acad. Sci. USA, 2003, 100, 9566-9571.
Parent J. M., Elliott R. C., Pleasure S. J., Barbaro N. M. and Lowenstein D. H. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann. Neurol., 2006, 59, 81-91.
Park C., Gianotti C., Park R. and Krishna G. Neuronal isoforms of nitric oxide synthase is expressed at low levels in human retina. Cell. Mol. Neurobiol., 1996, 16 499-515.
Pelster B, Grillitsch and S, Schwerte T. NO as a mediator during the early development of the cardiovascular system in the zebrafish. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2005, 142, 215-220.
Peunova N. and Enikolopov G. Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature, 1995, 375, 68-73.
Prasada Rao P. D., Sato T. and Ueck M. Distribution of NADPH-diaphorase activity in the hypothalamo-hypophysial system of the frog, Rana esculenta. Neurosci. Lett., 1997, 235, 61-64.
Prechtl J. C., von der Emde G., Wolfart J., Karamürsel S., Akoev G. N., Andrianov Y. N. and Bullock T. H. Sensory processing in the pallium of a mormyrid fish. J. Neurosci., 1998, 18, 7381-7393.
Puenova N., Enikolopov, G. Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature, 1995, 375, 68-73.
Puenova N., Scheinker V., Cline H. and Enikolopov G. Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain. J. Neurosci., 2001, 21, 8809-8818.
Puschina

E. V. and Varaksin A. A. Structural organization and neurochemical properties of the periglomerular complex in perch-like fishes. In: Modern Problems of Physiology and Ecology of Marine Animals (Fishes, Birds, and Mammals). Apatity: Russ. Acad. Sci., Kol’skii Sci. Center, 2003, pp. 117-131.
Puschina E. V. Nitric oxideergic organization of medullar cranial nuclei in teleost fishes. Tcitologiya, 2007, 49, 471-483.
Puschina E. V. Neurochemical organization and connections of the cerebral preglomerular complex of the masu salmon. Neurophysiology, 2012, 43, 437-451.
Pushchina E. V., Varaksin A. A., Shukla S. and Obukhov D. K. Undifferentiated catecholaminergic and NO-producing cells of forebrain matrix zones and intercellular relationships in periventricular diencephalon of juvenile Oncorhynchus masou. Amer. J. BioSci., 2015, 3, 1-11.
Pushchina E. V. and Diuyzen I. V. Structure and neurochemistry of the raphe nuclei in teleosts. Morfologiia, 2004, 125, 32-37.
Ribera J., Marsal J., Casanovas A., Hukkanen M. and Tarabal O. Nitric oxide synthase in rat neuromuscular junctions and in nerve terminals of Torpedo electric organ: Its role as regulator of acetylcholine release. J. Neurosci. Res., 1998, 51, 90-102.
Romero-Grimaldi C., Moreno-López B., Estrada C. Age-dependent effect of nitric oxide on subventricular zone and olfactory bulb neural precursor proliferation. J. Comp. Neurol., 2008, 506, 339-346.
Sánchez F., Alonso J. R., Arévalo R., Brüning G. and Panzica G. C. Absence of coexistence between NADPH-diaphorase and antidiuretic hormone in the hypothalamus of two galliformes: Japanese quail (Coturnix japonica) and chicken (Gallus domesticus). Neurosci. Lett., 1996, 216, 155-158.
Saeij J. P., Stet R. J., Groeneveld A., Verburg-van Kemenade L. B., van Muiswinkel W. B. and Wiegertjes G. F. Molecular and functional characterization of a fish inducible-type nitric oxide synthase. Immunogenetics, 2000, 51, 339-346.
Schober A., Malz C. R. and Meyer D. L. Enzyme histochemical demonstration of nitric oxide synthase in the diencephalon of the rainbow trout (Oncorhynchus mykiss). Neurosci. Lett., 1993, 151, 67-70.
Sengupta J., Dhawan L., Lalitkumar P. G. and Ghosh D. Nitric oxide in blastocyst implantation in the rhesus monkey. Reproduction, 2005, 130, 321-332.
Serfözö Z. and

Elekes K. Nitric oxide level regulates the embryonic development of the pond snail Lymnaea stagnalis: pharmacological, behavioral, and ultrastructural studies. Cell Tissue Res., 2002, 310, 119-130.
Shindler K. S. and Roth K. A. Double immunoflourescent staining using two unconjugated primary antisera raised in the same species. J. Histochem. Cytochem., 1996, 44, 1331-1335.
Shigeyoshi Y., Ogua T., Esumi H., Chihara K., Ibata Y. and Okamura H. Lesion-induced neuronal nitric oxide synthase in Purkinje cells of rat cerebellar cortex: histochemical and in situ hybridization study. Brain Res. Mol. Brain Res., 1997, 44, 229-237.
Shoham S., Norris P. J., Baker W. A. and Emson P. C. Nitric oxide synthase in ventral forebrain grafts and in early ventral forebrain development. Brain Res. Dev. Brain Res., 1997, 99, 155-166.
Torres G., Lee S. and Rivier C. Ontogeny of the rat hypothalamic nitric oxide synthase and colocalization with neuropeptides. Mol. Cell. Neurosci., 1993, 4, 155-163.
Tranguch S., Steuerwald N. and Huet-Hudson Y. M. Nitric oxide synthase production and nitric oxide regulation of preimplantation embryo development. Biol. Reprod., 2003, 68, 1538-1544.
Uretsky A. D. and Chang J. P. Evidence that nitric oxide is involved in the regulation of growth hormone secretion in goldfish. Gen. Comp. Endocrinol., 2000, 118, 461-470.
Villani L. and Guarnieri T. Localization of NADPH-diaphorase in the goldfish brain. Brain Res., 1995, 679, 261-266.
Villani L. Development of NADPH-diaphorase activity in the central nervous system of the cichlid fish, Tilapia mariae. Brain Behav. Evol., 1999a, 54, 147-158.
Villani L. Developmental pattern of NADPH-diaphorase activity in the peripheral nervous system of the cichlid fish Tilapia mariae. Eur. J. Histochem., 1999b, 43, 301-310.
Villani L., Zironi I. and Guarnieri T. Telencephalo-habenulo-interpeduncular connections in the goldfish. Brain Behav. Evol., 1996, 48, 205-212.
Wang Y., Newton D. C. and Marsden P. A. Neuronal NOS: gene structure, mRNA diversity, and functional relevance. Crit. Rev. Neurobiol., 1999, 13, 21-43.
Wiltrout C., Lang B., Yan Y., Dempsey R. J. and Vemuganti R. Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochem. Int., 2007, 50, 1028-1041.
Wulliman M. and Puelles L. Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anat. Embryol., 1999, 329 329-348.
Wullimann M. F. and Vernier P. Evolution of the nervous system in fishes. In: Evolution of Nervous Systems in Nonmammalian Vertebrates. Ed. Kaas J. Vol. 3. Amsterdam: Elsevier, 2007, pp. 39-60.
Wullimann M. F. and Knipp S. Proliferation pattern changes in the zebrafish brain from embryonic through early postembryonic stages. Anat. Embryol. (Berl.), 2000, 202, 385-400.
Yañez J. and Anadón R. Afferent and efferent connections of the habenula in the rainbow trout (Oncorhynchus mykiss): an indocarbocyanine dye (DiI) study. J. Comp. Neurol., 1996, 372, 529-543.
Zemel E., Eyal O., Lei B. and Perlman, I. NADPHd activity in mammalian retinas is modulated by the state of visual adaptation. Vis. Neurosci., 1996, 13, 863-871.
Zhang R., Zhang L., Zhang Z., Wang Y., Lu M., Lapointe M. and Chopp M. A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann. Neurol., 2001, 50, 602-611.
Zhou L. and Zhu D. Y. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide, 2009, 20, 223-230.
Zhou Q. G., Hu Y., Hua Y., Hu M., Luo C. X., Han X., Zhu X. J., Wang B., Xu J. S. and Zhu D. Y. Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J. Neurochem., 2007, 103, 1843-1854.
Zhu X. J., Hua Y., Jiang J., Zhou Q. G., Luo C. X., Han X., Lu Y. M. and Zhu D. Y. Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation. Neuroscience, 2006, 141, 827-836.

Chapter 6

Abe K. and Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996, 16, 1066-1071.
Abel T., Nguyen P. V., Barad M., Deuel T. A., Kandel E. R. and Bourtchouladze R. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell, 1997, 88, 615-626.
Araque A., Parpura V., Sanzgiri R. P. and Haydon P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci., 1999, 22(5), 208-215.
Awata S., Nakayama K, Suzuki I, Sugahara K. and Kodama H. Changes in cystathionine gamma-lyase in various regions of rat brain during development. Biochem. Mol. Biol. Int., 1995, 35, 1331-1338.
Braet K., Cabooter L., Paemeleire K. and Leybaert L. Calcium signal communication in the central nervous system. Biol. Cell, 2004, 96, 79-91.
Braun K., Scheich H., Schachner M. and Heizmann C. W. Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. I. Auditory and vocal motor systems. Cell Tissue Res., 1985, 240, 101-115.
Butler A. B. and Hodos W. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation, New York: Wiley-Liss, 1996.
Cameron H. A., McEwen B. S. and Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J. Neurosci., 1995, 15, 4687-4692.
Celio M. R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, 1990, 35, 375-475.
Chen L., Ingrid S., Ding Y. G., Liu Y., Qi J. G., Tang C. S. and Du J. B. Imbalance of endogenous homocysteine and hydrogen sulfide metabolic pathway in essential hypertensive children. Chin. Med. J. (Engl), 2007, 120, 389-393.
Chen X., Jhee K. H. and Kruger W. D. Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J. Biol. Chem., 2004, 279, 52082-52086.
Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S. and Smith S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science, 1990, 247, 470-473.
Crespo C., Porteros A., Arévalo R., Briñón J. G., Aijón J., Alonso J. R. Distribution of parvalbumin immunoreactivity in the brain of the tench (Tinca tinca L., 1758). J. Comp. Neurol., 1999, 413, 549-571.
Dani J. W., Chernjavsky A. and Smith S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron, 1992, 8(3), 429-440.
Dawe G. S., Han S. P., Bian J. S. and Moore P. K. Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience, 2008, 152, 169-177.
Dedman J. R. and Kaetzel M. A. Calcium as an intracellular second messenger: mediation by calcium binding proteins. In: Cell Physiology Source Book, London: Acad. Press, 1995, pp. 128-136.
Dingledine R., Borges K., Bowie D. and Traynelis S. F. The glutamate receptor ion channels. Pharmacol. Rev., 1999, 51, 7-61.
Doeller J. E., Isbell T. S., Benavides G., Koenitzer J., Patel H., Patel R. P., Lancaster J. R. Jr., Darley-Usmar V. M., Kraus D. W. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues Anal. Biochem., 2005, 341, 40-51.
Dombkowski R. A., Russell M. J. and Olson K. R. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am. J. Physiol. Regul. Integr Comp. Physiol., 2004 286, R678-685.
Dombkowski R. A., Russell M. J., Schulman A. A., Doellman M. M. and Olson K. R. Vertebrate phylogeny of hydrogen sulfide vasoactivity. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, 288, R243-252.
Ekström P., Johnsson C. M. and Ohlin L. M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J. Comp. Neurol., 2001, 436, 92-110.
Enokido Y., Suzuki E., Iwasawa K., Namekata K., Okazawa H. and Kimura H. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J., 2005, 19, 1854-1856.
Eto K., Asada T., Arima K., Makifuchi T. and Kimura H. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2002, 293, 1485-1488.
Farber K. and Kettenmann H. Physiology of microglial cells. Brain Res. Brain Res. Rev., 2005, 48, 133-143.
Finger T. E. Organization of the teleost cerebellum. In: Fish Neurobiology, R. J. Northcutt and R. E. Davis (eds.), Ann Arbor: Univ. Michigan Press, 1983, pp. 261-284.
Furne J., Springfield J., Koenig T., DeMaster E. and Levitt M. D. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem. Pharmacol., 2001, 6, 255-259.
García-Bereguiaín M. A., Samhan-Arias A. K, Martín-Romero F. J. and Gutiérrez-Merino C. Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid. Redox. Signal., 2008, 10, 31-42.
García-Bereguiaín M. A., Samhan-Arias A. K., Martín-Romero F. J. and Gutiérrez-Merino C. Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid. Redox Signal., 2008, 10, 31-42.
Gerasimova E. V., Sitdikova G. F. and Zefirov A. L. Hydrogen sulfide as an endogenous modulator of the release of transmitter into the neuromuscular junction of the frog. Neirokhimiya, 2008, 25(1-2), 138-145.
Guthrie P. B., Knappenberger J., Segal M., Bennett M. V, Charles A. C. and Kater S. B. ATP released from astrocytes mediates glial calcium waves. J. Neurosci., 1999, 19(2):520-528.
Han Y., Qin J., Chang X., Yang Z., Bu D. and Du J. Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci. Res., 2005, 53, 216-219.
Hoffmann A., Kann O., Ohlemeyer C., Hanisch U. K. and Kettenmann H. Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J. Neurosci., 2003, 23, 4410-4419.
Hosoki R., Matsuki N. and Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun., 1997, 237, 527-531.
Hu L. F., Wong P. T., Moore P. K. and Bian J. S. Hydrogen sulfide attenuates lipopolysaccharide induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J. Neurochem., 2007, 100, 1121-1128.
Jones E. G. and Hendry S. H. Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur. J. Neurosci., 1989, 1, 222-246.
Jones E. G. and Hendry S. H. Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur. J. Neurosci., 1989, 1, 222-246.
Kage S., Kashimura S., Ikeda H., Kudo K. and Ikeda N. Fatal and nonfatal poisoning by hydrogen sulfide at an industrial waste site. J. Forens. Sci., 2002, 47, 652-655.
Kang J., Jiang L., Goldman S. A. and Nedergaard M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci., 1998, 1, 683-692.
Kim Y. S. and Joh T. H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp. Mol. Med., 2006, 38, 333-347.
Kimura H. Hydrogen sulfide as a neuromodulator. Mol. Neurobiol., 2002, 26, 13-19.
Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys. Res. Commun., 2000, 267, 129-133.
Kimura Y., Dargusch R., Schubert D. and Kimura H. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Redox Signal., 2006, 8, 661-670.
Koehler R. C., Gebremedhin D. and Harder D. R. Role of astrocytes in cerebrovascular regulation. J. Appl. Physiol., 2006, 100, 307-317.
Korn H., Faber D. S. and Triller A. Convergence of morphological, physiological, and immunocytochemical techniques for the study of single Mauthner cells. In: Handbook of Chemical Neuroanatomy, A. Björklund, T. Hökfelt, F. G. Wouterlood, and A. N. van der Pol (eds.), Amsterdam: Elsevier. 1990, pp. 403-480.
Lee S. W., Hu Y. S., Hu L. F., Lu Q., Dawe G. S., Moore P. K., Wong P. T. and Bian J. S. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia, 2006, 54, 116-124.
Lee S. W., Hu Y. S., Hu L. F., Lu Q, Dawe G. S., Moore P. K., Wong P. T. and Bian J. S. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia, 2006, 54, 116-124
Leffler C. W., Parfenova H., Basuroy S., Jaggar J. H., Umstot E. S. and Fedinec A. L. Hydrogen sulfide and cerebral microvascular tone in newborn pigs. Am. J. Physiol. Heart. Circ. Physiol., 2011, 300: H440-H447.
Łowicka E. and Bełtowski J. Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. Pharmacol. Rep., 2007, 59, 4-24.
Ma P. M. Catecholaminergic systems in the zebrafish. III. Organization and projection pattern of medullary dopaminergic and noradrenergic neurons. J. Comp. Neurol., 1997, 381, 411-427.
Martinoli M. G., Dubourg P., Geffard M., Calas A. and Kah O. Distribution of GABA-immunoreactive neurons in the forebrain of the goldfish, Carassius auratus. Cell Tissue Res., 1990, 260, 77-84.
Médina M., Repérant J., Dufour S., Ward R., Le Belle N., Miceli D. The distribution of GABA-immunoreactive neurons in the brain of the silver eel (Anguilla anguilla L.). Anat. Embryol., 1994, 189, 25-39.
Meek J. and Nieuwenhuys R. Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study. J. Comp. Neurol., 1991, 306, 156-192.
Menuet A., Pellegrini E., Brion F., Gueguen M. M., Anglade I., Pakdel F., Kah O. Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. J. Comp. Neurol., 2005, 485, 304-320.
Moore P. K., Bhatia M. and Moochhala S. Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol. Sci., 2003, 24, 609-611.
Morale M. C., Serra P. A., L’episcopo F., Tirolo C., Caniglia S., Testa N., Gennuso F., Giaquinta G., Rocchitta G., Desole M. S., Miele E., Marchetti B. Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience, 2006, 138, 869-878.
Nagai Y., Tsugane M., Oka J. and Kimura H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J., 2004, 18, 557-559.
Obukhov D. K., Obukhov E. V., Puschina E. V. and Koroleva T. V. Comparative analysis of structure functional organization of the brain of salmon fishes. Communication II. The structure and development of the brain of the masu Oncorhynchus masou Brev, Vestn. SPbGU., Ser. 3, Issue 4, 13-22 (2010).
Obukhov D. K., Obukhova E. V. and Pushchina, E. V. Problemy regulyatsii vistseral’nykh funktsii (Problems of Regulation of Visceral Functions), Minsk: RIVSh, 2008, vol. 1, pp. 122-126.
Olson K. R. and Donald J. A. Nervous control of circulation – the role of gaseous transmitters, NO, CO, and H2S. Acta Histochem., 2009, 111, 244-256.
Olson K. R and Donald J. A. Nervous control of circulation – the role of gasotransmitters, NO, CO, and H2S. Acta Histochem., 2009, 111, 244-256.
Olson K. R. Vascular actions of hydrogen sulfide in nonmammalian vertebrates. Antioxid. Redox Signal., 2005, 7, 804-812.
Olson K. R., Healy M. J., Qin Z., Skovgaard N., Vulesevic B., Duff D. W., Whitfield N. L., Yang G., Wang R., Perry S. F. Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295, R669-680.
Parpura V., Basarsky T. A., Liu F., Jeftinija K., Jeftinija S. and Haydon PG. Glutamate-mediated astrocyte-neuron signalling. Nature, 1994, 369, 744-747.
Pellegrini E., Mouriec K., Anglade I., Menuet A., Le Page Y., Gueguen M. M., Marmignon M. H., Brion F., Pakdel F. and Kah O. Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J. Comp. Neurol., 2007, 501, 150-167.
Platel J. C., Stamboulian S., Nguyen I. and Bordey A. Neurotransmitter signaling in postnatal neurogenesis: the first leg. Brain Res. Rev., 2010, 63, 60-71.
Porteros A., Arévalo R., Briñón J. G., Crespo C., Aijón J. and Alonso J. R. Parvalbumin immunoreactivity during the development of the cerebellum of the rainbow trout. Dev. Brain Res., 1998, 109, 221-227.
Puschina E. V. and Obukhov D. K. Neurochemical plasticity of GABA- and parvalbuminergic cerebral systems in bony fishes. In: Modern Directions in Investigation of Functional Interhemisphere Asymmetry and Cerebral Plasticity. Moscow: Nauchnyi Mir, 2010, pp. 452-457.
Puschina E. V. and Varaksin A. A. Hydrogen sulfide-, parvalbumin-, and GABA-producing systems in the masu salmon brain. Neurophysiology, 2011, 43, 90-102.
Puschina E. V., Varaksin A. A. and Obukhov D. K. Cystathionine β-synthase in the CNS of masu salmon Oncorhynchus masou (Salmonidae) and carp Cyprinus carpio (Cyprinidae). Neurochem. J., 2011, 5, 24-34.
Pushchina E. V. and Obukhov D. K. Is the brain Cherri salmon Oncorhynchus masou a new model for investigation of postembryonic neurogenesis? Engineering. 2012. Vol. 4. Suppl.: 2012. World Congress on Engineering and Technology. P. 76-79.
Pushchina E. V., Varaksin A. A., Obukhov D. K. Gaseous transmitters in the brain of the masu salmon, Oncorhynchus masou (Salmoniformes, Salmonidae). J. Evol. Biochem. Physiol. 2012, 48(1), 101-114.
Pushchina E. V., Obukhov D. K. and Varaksin A. A. The features of adult neurogenesis and neurochemical signaling in the Cherry salmon Oncorhynchus masou brain (Teleostea, Salmonidae). Neural Regen. Res., 2013, 2, 13-23.
Pushchina Y. V., Obukhov D. K. and Varaksin A. A. Neurochemical markers of cells of the periventricular brain area in the masu salmon Oncorhynchus masou (Salmonidae). Rus. J. Dev. Biol., 2012, 43, 35-48.
Qu K., Lee S. W., Bian J. S., Low C. M., Wong P. T. Hydrogen sulfide: neurochemistry and neurobiology. Neurochem. Int., 2008, 52, 155-165.
Robert K., Vialard F., Thiery E., Toyama K., Sinet P. M., Janel N. and London J. Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J. Histochem. Cytochem., 2003, 51, 363-371.
Searcy D. G. HS-:O2 oxidoreductase activity of Cu, Zn superoxide dismutase. Arch. Biochem. Biophys., 1996, 334, 50-58.
Stichel C. C., Singer W. and Heizmann C. W. Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: evidence for coexistence with GABA. J. Comp. Neurol., 1988, 268, 29-37.
Stipanuk M. H. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr., 2004, 24, 539-577.
Ugrumov M. V. Developing brain as an endocrine organ: a paradoxical reality. Neurochem. Res., 2010, 35(6):837-850.
Ugrumov M. V. Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J. Chem. Neuroanat., 2009, 38(4), 241-256.
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev., 2012, 92, 791–896,
Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J., 2002, 16, 1792-1798.
Warenycia M. W., Goodwin L. R., Benishin C. G., Reiffenstein R. J., Francom D. M., Taylor J. D. and Dieken F. P. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem. Pharmacol., 1989, 38, 973-981.
Wojtera M., Sikorska B., Sobow T., and Liberski P. P. Microglial cells in neurodegenerative disorders. Folia Neuropathol., 2005, 43, 311-321.
Wu G., Fang Y. Z., Yang S., Lupton J. R., Turner N. D. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134, 489-492.
Wullimann M. F. and Rink E. The teleostean forebrain: a comparative and developmental view based on early proliferation, Pax6 activity and catecholaminergic organization. Brain Res Bull., 2002, 57, 363-370.
Yang G.-D. and Wang R. H2S and cellular proliferation and apoptosis. Acta Physiol. Sin., 2007, 59, 133-140.
Zhao W., Zhang J., Lu Y. and Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J., 2001, 20, 6008-6016.
Zhao W. and Wang R. H2S -induced vasorelaxation and underlying cellular and molecular mechanisms. Am. J. Physiol. Heart Circ. Physiol., 2002, 283, H474-H480.

Chapter 7

Adolf B., Chapouton P., Lam C. S., Topp S., Tannhäuser B., Strähle U., Götz M. and Bally-Cuif L. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev. Biol., 2006, 295, 278-293.
Alvarez-Buylla A. and Garcia-Verdugo J. M. Neurogenesis in adult subventricular zone. J. Neurosci., 2002, 22, 629-634.
Alvarez-Buylla A. and Lim D. A. For the long run: maintaining germinal niches in the adult brain. Neuron, 2004, 41, 683-686.
Alvarez-Buylla A., Buskirk D. R. and Nottebohm F. Monoclonal antibody reveals radial glia in adult avian brain. J. Comp. Neurol., 1987, 264, 159-170.
Aniol V. A. and Stepanichev M. Yu. Nitric oxide and gamma-aminobutyric acid as regulators of neurogenesis in the brain of adult mammals: models of seizure activity. Neurochem. J., 2007, 1, 265-274.
Araki K. Y., Sims J. R. and Bhide P. G. Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre- and postnatal development. Brain Res., 2007, 1156, 31-45.
Baker H., Liu N., Chun H. S., Saino S., Berlin R., Volpe B. and Son J. H. Phenotypic differentiation during migration of dopaminergic progenitor cells to the olfactory bulb. J. Neurosci., 2001, 21, 8505-8513.
Baker S. A., Baker K. A. and Hagg T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur. J. Neurosci., 2004, 20, 575-579.
Bicker G. Stop and go with no: nitric oxide as a regulator of cell motility in simple brains. BioEssays, 2005, 27, 495-505.
Bolteus A. J. and Bordey A. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci., 2004, 24, 7623-7631.
Bonnert T. P., McKernan R. M., Farrar S., le Bourdellès B., Heavens R. P., Smith D. W., Hewson L., Rigby M. R., Sirinathsinghji D. J., Brown N., Wafford K. A. and Whiting P. J. θ, a novel gamma-aminobutyric acid type A receptor subunit. Proc. Natl. Acad. Sci. USA, 1999, 96, 9891-9896.
Borta A. and Höglinger G. U. Dopamine and adult neurogenesis. J. Neurochem., 2007, 100, 587-595.
Byrd C. A. and Brunjes P. C. Neurogenesis in the olfactory bulb of adult zebrafish. Neuroscience, 2001, 105, 793-801.
Callier S., Snapyan M., Le Crom S., Prou D., Vincent J. D. and Vernier P. Evolution and cell biology of dopamine receptors in vertebrates. Biol. Cell., 2003, 95, 489-502.
Cameron D. A. Cellular proliferation and neurogenesis in the injured retina of adult zebrafish. Vis. Neurosci., 2000, 17, 789-797.
Carleton A., Rochefort C., Morante-Oria J., Desmaisons D., Vincent J. D., Gheusi G. and Lledo P. M. Making scents of olfactory neurogenesis. J. Physiol. Paris, 2002, 96, 115-122.
Chapouton P., Gärtner A. and Götz M. The role of Pax6 in restricting cell migration between developing cortex and basal ganglia. Development, 1999, 126, 5569-5579.
Chen J., Zacharek A., Zhang C., Jiang H., Li Y., Roberts C., Lu M., Kapke A. and Chopp M. Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J. Neurosci., 2005, 25, 2366-2375.
Cheng A., Wang S., Cai J., Rao M. S. and Mattson M. P. Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev. Biol., 2003, 258, 319-333.
Coronas V., Bantubungi K., Fombonne J., Krantic S., Schiffmann S. N. and Roger M. Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone. J. Neurochem., 2004, 91, 1292-1301.
Craig C. G., Tropepe V., Morshead C. M., Reynolds B. A., Weiss S. and van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci., 1996, 16, 2649-2658.
De Marchis S., Temoney S., Erdelyi F., Bovetti S., Bovolin P., Szabo G. and Puche A. C. GABAergic phenotypic differentiation of a subpopulation of subventricular derived migrating progenitors. Eur. J. Neurosci., 2004, 20, 1307-1317.
Deng W., Aimone J. B. and Gage F. H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci., 2010, 11, 339-350.
D’Hulst C., Atack J. R and Kooy R. F. The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov. Today, 2009, 14, 866-875.
Diaz J., Ridray S., Mignon V., Griffon N., Schwartz J. C. and Sokoloff P. Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J. Neurosci., 1997, 17, 4282-4292.
Ekström P. and Ohlin L. M. Ontogeny of GABA-immunoreactive neurons in the central nervous system in a teleost, Gasterosteus aculeatus L. J. Chem. Neuroanat., 1995, 9, 271-288.
Ekström P., Johnsson C. M. and Ohlin L. M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J. Comp. Neurol., 2001, 436, 92-110.
Episkopou V. SOX2 functions in adult neural stem cells. Trends Neurosci., 2005, 28, 219-221.
Ever L. and Gaiano N. Radial ‘glial’ progenitors: neurogenesis and signaling. Curr. Opin. Neurobiol., 2005, 15, 29-33.
Ferri A. L., Cavallaro M., Braida D., Di Cristofano A., Canta A., Vezzani A., Ottolenghi S., Pandolfi P. P., Sala M., DeBiasi S. and Nicolis S. K. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 2004, 131, 3805-3819.
Freundlieb N., François C., Tandé D., Oertel W. H., Hirsch E. C. and Höglinger G. U. Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J. Neurosci., 2006, 26, 2321-2325.
Gascon E., Dayer A. G., Sauvain M. O., Potter G., Jenny B., De Roo M., Zgraggen E., Demaurex N., Muller D. and Kiss J. Z. GABA regulates dendritic growth by stabilizing lamellipodia in newly generated interneurons of the olfactory bulb. J. Neurosci., 2006, 26, 12956-12966.
Ge S., Goh E. L., Sailor K. A., Kitabatake Y., Ming G. L. and Song, H. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 2006, 439, 589-593.
Goldman D., Hankin M., Li Z., Dai X. and Ding J. Transgenic zebrafish for studying nervous system development and regeneration. Transgenic Res., 2001, 10, 21-33.
Goldman S. A. Adult neurogenesis: from canaries to the clinic. J. Neurobiol., 1998, 36, 267-286.
Götz M. and Barde Y. A. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron, 2005, 46, 369-372.
Götz M. Glial cells generate neurons-master control within CNS regions: developmental perspectives on neural stem cells. Neuroscientist, 2003, 9, 379-397.
Götz M., Stoykova A. and Gruss P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron, 1998, 21, 1031-1044.
Grandel H., Kaslin J., Ganz J., Wenzel I. and Brand M. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev. Biol., 2006, 295, 263-277.
Hack M. A., Saghatelyan A., de Chevigny A., Pfeifer A., Ashery-Padan R., Lledo P. M. and Götz M. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat. Neurosci., 2005, 8, 865-872.
Heins N., Malatesta P., Cecconi F., Nakafuku M., Tucker K. L., Hack M. A., Chapouton P., Barde Y. A. and Götz M. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci., 2002, 5, 308-315.
Hevers W. and Lüddens H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABA(A) channel subtypes. Mol. Neurobiol., 1998, 18, 35-86.
Höglinger G. U., Rizk P., Muriel M. P., Duyckaerts C., Oertel W. H., Caille I. and Hirsch E. C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci., 2004, 7, 726-735.
Kampen van J. M., Hagg T. and Robertson H. A. Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. Eur. J. Neurosci., 2004, 19, 2377-2387.
Kapsimali M., Vidal B., Gonzalez A., Dufour S. and Vernier P. Distribution of the mRNA encoding the four dopamine D(1) receptor subtypes in the brain of the European eel (Anguilla anguilla): comparative approach to the function of D(1) receptors in vertebrates. J. Comp. Neurol., 2000, 419, 320-343.
Kim Y., Wang W. Z., Comte I., Pastrana E., Tran P. B., Brown J., Miller R. J., Doetsch F., Molnar Z. and Szele F. G. Dopamine stimulation of postnatal murine subventricular zone neurogenesis via the D3 receptor. J. Neurochem., 2010, 114, 750-760.
Kippin T. E., Kapur S. and van der Kooy D. Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J. Neurosci., 2005, 25, 5815-5823.
Kohwi M., Osumi N., Rubenstein J. L. and Alvarez-Buylla A. Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J. Neurosci., 2005, 25, 6997-7003.
Kuhn H. G., Winkler J., Kempermann G., Thal L. J., and Gage F. H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci., 1997, 17, 5820-5829.
Liu X., Wang Q., Haydar T. F. and Bordey A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci., 2005, 8, 1179-1187.
Lledo P. M., Alonso M. and Grubb M. S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci., 2006, 7, 179-193.
Ma P. M. Tanycytes in the sunfish brain: NADPH-diaphorase histochemistry and regional distribution. J. Comp. Neurol., 1993, 336, 77-95.
Madtes P. Jr and Redburn D. A. GABA as a trophic factor during development. Life Sci., 1983, 33, 979-984.
Maekawa M., Takashima N., Arai Y., Nomura T., Inokuchi K., Yuasa S. and Osumi N. Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells, 2005, 10, 1001-1014.
Martinoli M. G., Dubourg P., Geffard M., Calas A. and Kah O. Distribution of GABA-immunoreactive neurons in the forebrain of the goldfish, Carassius auratus. Cell Tissue Res., 1990, 260, 77-84.
Matarredona E. R., Murillo-Carretero M., Moreno-López B. and Estrada C. Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Res. 2004, 995, 274-284.
Médina M., Repérant J., Dufour S., Ward R., Le Belle N. and Miceli D. The distribution of GABA-immunoreactive neurons in the brain of the silver eel (Anguilla anguilla L.). Anat. Embryol. (Berl.), 1994, 189, 25-39.
Meek J. Catecholamines in the brains of Osteichtyes (Bony Fishes). In: Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates. Eds. Smetts W. J. and Reiner A. Cambridge: Cambridge Univ. Press, 1994, pp. 49-76.
Merkle F. T., Mirzadeh Z. and Alvarez-Buylla A. Mosaic organization of neural stem cells in the adult brain. Science, 2007, 317, 381-384.
Merkle F. T., Tramontin A. D., García-Verdugo J. M. and Alvarez-Buylla A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl. Acad. Sci. USA, 2004, 101, 17528-17532.
Merlo S., Canonico P. L. and Sortino M. A. Distinct effects of pramipexole on the proliferation of adult mouse sub-ventricular zone-derived cells and the appearance of a neuronal phenotype. Neuropharmacology, 2011, 60, 892-900.
Michler A. and Wolff J. R. Modulation of neurite growth by GABA in culture. In: Neural Development and Regeneration. Ed. Glorio A. Berlin: Springer-Verlag, NATO ASI Series, 1988, vol. 22, pp. 112-124.
Michler-Stuke A. and Wolff J. R. Facilitation and inhibition of neurite elongation by GABA in chick tectal neurons. In: Neurotrophic Activity of GABA during Development. Eds. Redburn D. A. and Schousboe A. Neurology and Neurobiology. New York: Alan R. Liss., 1987, vol. 32, pp. 253-266.
Molofsky A. V., He S., Bydon M., Morrison S. J. and Pardal R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev., 2005, 19, 1432-1437.
Molofsky A. V., Pardal R., Iwashita T., Park I. K., Clarke M. F. and Morrison S. J. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 2003, 425, 962-697.
Moreno-López B., Noval J. A., González-Bonet L. G. and Estrada C. Morphological bases for a role of nitric oxide in adult neurogenesis. Brain Res., 2000, 869, 244-250.
Moreno-López B., Romero-Grimaldi C., Noval J. A., Murillo-Carretero M., Matarredona E. R. and Estrada C. Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. J. Neurosci., 2004, 24, 85-95.
Mori T., Buffo A. and Gotz M. The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr. Top. Dev. Biol., 2005, 69, 67-99.
Murillo-Carretero M., Torroglosa A., Castro C., Villalobo A. and Estrada C. S-Nitrosylation of the epidermal growth factor receptor: a regulatory mechanism of receptor tyrosine kinase activity. Free Radic. Biol. Med., 2009, 46, 471-479.
Nguyen L., Malgrange B., Breuskin I., Bettendorff L., Moonen G., Belachew S. and Rigo J. M. Autocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J. Neurosci., 2003, 23, 3278-3294.
Noctor S. C, Martínez-Cerdeño V., Ivic L. and Kriegstein A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci., 2004, 7, 136-144.
Noctor S. C., Flint A. C., Weissman T. A., Dammerman R. S. and Kriegstein A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature, 2001, 409, 714-720.
Noctor S. C., Flint A. C., Weissman T. A., Wong W. S., Clinton B. K. and Kriegstein A. R. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci., 2002, 22, 3161-3173.
O’Keeffe G. C., Barker R. A. and Caldwell M. A. Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle, 2009, 8, 2888-2894.
Onteniente B., Kimura H. and Maeda T. Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J. Comp. Neurol., 1983, 215, 427-436.
Osumi N., Shinohara H., Numayama-Tsuruta K. and Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells, 2008, 26, 1663-1672.
Overstreet Wadiche L., Bromberg D. A., Bensen A. L. and Westbrook G. L. GABAergic signaling to newborn neurons in dentate gyrus. J. Neurophysiol., 2005, 94, 4528-4532.
Owens D. F. and Kriegstein A. R. Developmental neurotransmitters? Neuron, 2002, 36, 989-991.
Packer M. A., Stasiv Y., Benraiss A., Chmielnicki E., Grinberg A., Westphal H., Goldman S. A. and Enikolopov G. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl. Acad. Sci. USA, 2003, 100, 9566-9571.
Pellegrini E., Mouriec K., Anglade I., Menuet A., Le Page Y., Gueguen M. M., Marmignon M. H, Brion F., Pakdel F. and Kah O. Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J. Comp. Neurol., 2007, 501, 150-167.
Platel J. C., Lacar B. and Bordey A. GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J. Mol. Histol., 2007, 38, 303-311.
Platel J. C., Stamboulian S., Nguyen I. and Bordey A. Neurotransmitter signaling in postnatal neurogenesis: The first leg. Brain Res. Rev., 2010, 63, 60-71.
Puelles L. and Rubenstein J. L. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci., 2003, 26, 469-476.
Pushchina E. V. Tyrosine hydroxylase in telencephalon and diencephalon of Rhodeus sericeus (Cyprinidae), Tsitologiia, 2009, 51, 61-75.
Pushchina Y. V., Obukhov D. K. and Varaksin A. A. Neurochemical markers of cells of the periventricular brain area in the masu salmon Oncorhynchus masou (Salmonidae). Rus. J. Dev. Biol., 2012, 43, 35-48.
Rakic P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J., 1978, 54(Suppl. 1), 25-40.
Rakic P. The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res. Rev., 2007, 55, 204-219.
Richter W and Kranz D. Radioautographic studies on the dependence of the 3H-thymidine index on age in the matrix-layers of the telencephalon of Lebistes reticulatus (Teleostei). Z. Mikrosk. Anat. Forsch., 1970b, 81, 530-554.
Richter W. and Kranz D. Dependence of DNA synthesis in the matrix zones of the mesencephalon on the age of the experimental animal (Lebistes reticulatus - Teleostae). Autoradiographic studies. Z. Mikrosk. Anat. Forsch., 1970a, 82, 76-92.
Romero-Grimaldi C., Gheusi G., Lledo P. M. and Estrada C. Chronic inhibition of nitric oxide synthesis enhances both subventricular zone neurogenesis and olfactory learning in adult mice. Eur. J. Neurosci., 2006, 2461-2470.
Romero-Grimaldi C., Moreno-López B. and Estrada C. Age-dependent effect of nitric oxide on subventricular zone and olfactory bulb neural precursor proliferation. J. Comp. Neurol., 2008, 506, 339-346.
Seri B., García-Verdugo J. M., McEwen B. S. and Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci., 2001, 21, 7153-7160.
Shi X., Bosenko D. V., Zinkevich N. S., Foley S., Hyde D. R., Semina E. V. and Vihtelic T. S. Zebrafish pitx3 is necessary for normal lens and retinal development. Mech. Dev., 2005, 122, 513-527.
Shibui Y., He X. J., Uchida K. and Nakayama H. MPTP-induced neuroblast apoptosis in the subventricular zone is not regulated by dopamine or other monoamine transporters. Neurotoxicology, 2009, 30, 1036-1044.
Sinkkonen S. T., Hanna M. C., Kirkness E. F. and Korpi E. R. GABA(A) receptor epsilon and theta subunits display unusual structural variation between species and are enriched in the rat locus ceruleus. J. Neurosci., 2000, 20, 3588-3595.
Spassky N., Merkle F. T., Flames N., Tramontin A. D., García-Verdugo J. M. and Alvarez-Buylla A. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J. Neurosci., 2005, 25, 10-18.
Stewart R. R., Hoge G. J., Zigova T. and Luskin M. B. Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. J. Neurobiol., 2002, 50, 305-322.
Stoykova A., Treichel D., Hallonet M. and Gruss P. Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. J. Neurosci., 2000, 20, 8042-8050.
Sun Y., Jin K., Childs J. T., Xie L., Mao X. O. and Greenberg D. A. Neuronal nitric oxide synthase and ischemia-induced neurogenesis. J. Cereb. Blood Flow Metab., 2005, 25, 485-492.
Taupin P. Neural progenitor and stem cells in the adult central nervous system. Ann. Acad. Med. Singapore, 2006, 35, 814-820.
Ugrumov M. V. Developing brain as an endocrine organ: a paradoxical reality. Neurochem. Res., 2010, 35, 837-850.
Ugrumov M. V. Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J. Chem. Neuroanat., 2009, 38, 241-256.
Vandenbosch R., Borgs L., Beukelaers P., Belachew S., Moonen G., Nguyen L. and Malgrange B. Adult neurogenesis and the diseased brain. Curr. Med. Chem., 2009, 16, 652-666.
Wang D. D., Krueger D. D. and Bordey A. Biophysical properties and ionic signature of neuronal progenitors of the postnatal subventricular zone in situ. J. Neurophysiol., 2003a, 90, 2291-2302.
Wang D. D., Krueger D. D. and Bordey A. GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J. Physiol., 2003b, 550, 785-800.
Whiting P. J., Bonnert T. P., McKernan R. M., Farrar S., Le Bourdellès B., Heavens R. P., Smith D. W., Hewson L., Rigby M. R., Sirinathsinghji D. J., Thompson S. A. and Wafford K. A. Molecular and functional diversity of the expanding GABA-A receptor gene family. Ann. N-Y. Acad. Sci., 1999, 868, 645-653.
Whitman M. C. and Greer C. A. Adult neurogenesis and the olfactory system. Prog. Neurobiol., 2009, 89, 162-175.
Winner B., Desplats P., Hagl C., Klucken J., Aigner R., Ploetz S., Laemke J., Karl A., Aigner L., Masliah E., Buerger E. and Winkler J. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp. Neurol., 2009, 219, 543-552.
Winner B., Geyer M., Couillard-Despres S., Aigner R., Bogdahn U., Aigner L., Kuhn G. and Winkler J. Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp. Neurol., 2006, 197, 113-121.
Wullimann M. F. and Mueller T. Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J. Comp. Neurol., 2004, 475, 143-162.
Wullimann M. F. and Rink E. Detailed immunohistology of Pax6 protein and tyrosine hydroxylase in the early zebrafish brain suggests role of Pax6 gene in development of dopaminergic diencephalic neurons. Brain Res. Dev. Brain Res., 2001, 131, 173-191.
Yang P., Arnold S. A., Habas A., Hetman M. and Hagg T. Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J. Neurosci., 2008, 28, 2231-2241.
Young S. Z., Platel J. C., Nielsen J. V., Jensen N. A. and Bordey A. GABAA increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels. Front. Cell. Neurosci., 2010, 4:8. doi:10.3389/
fncel.2010.00008.
Zhao N., Zhong C., Wang Y., Zhao Y., Gong N., Zhou G., Xu T. and Hong Z. Impaired hippocampal neurogenesis is involved in cognitive dysfunction induced by thiamine deficiency at early preathological lesion stage. Neurobiol. Dis., 2008, 29, 176-185.
Zupanc G. K. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav. Evol., 2001, 58, 250-275.
Zupanc G. K. and Clint S. C. Potential role of radial glia in adult neurogenesis of teleost fish. Glia, 2003, 43, 77-86.
Zupanc G. K. and Horschke I. Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J. Comp. Neurol., 1995, 353, 213-233.
Zupanc G. K. Neurogenesis and neuronal regeneration in the adult fish brain. J. Comp. Physiol. A, 2006, 192, 649-670.
Zupanc G. K., Hinsch K. and Gage F. H. Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J. Comp. Neurol., 2005, 488, 290-319.

Chapter 8

Anken R. H. and Rahmann H. An atlas of the distribution of NADPH-diaphorase in the brain of the highly derived swordtail fish Xiphophorus helleri (Atherinoformes: Teleostei). J. Hirnforsch., 1996, 37, 421-449.
Arévalo R., Alonso J. R., García-Ojeda E., Briñón J. G., Crespo C. and Aijón J. NADPH-diaphorase in the central nervous system of the tench (Tinca tinca L., 1758). J. Comp. Neurol., 1995, 352, 398-420.
Artyukhin E. N. Sturgeons (Ecology, Geographic Distribution and Phylogeny). SPb.: Izd-vo SPbGU, 2008.
Boldyrev A. A., Yeshchenko N. D. and Ilukha V. A. Neurochemistry. M: Drofa, 2010.
Bordieri L., Persichini T., Venturini G. and Cioni C. Expression of nitric oxide synthase in the preoptic-hypothalamo-hypophyseal system of the teleost Oreochromis niloticus. Brain Behav. Evol., 2003, 62, 43-55.
Brandstätter R. and Kotrschal K. Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei): roach (Rutilus rutilus), bream (Abramis brama), common carp (Cyprinus carpio) and sabre carp (Pelecus cultratus). Brain Behav. Evol., 1990, 35, 195-211.
Braun K., Scheich H. and Schachner M. Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose up-take in the brain of the zebra fish. I. Auditory and vocal motor systems. Cell Tissue Res., 1985, 240, 101-115.
Brüning G., Katzbach R. and Mayer B. Histochemical and immunocytochemical localization of nitric oxide synthase in the central nervous system of the goldfish, Carassius auratus. J. Comp. Neurol., 1995, 358, 353-382.
Dedman J. R. and Kaetzel M. A. Calcium as an intracellular second messenger: mediation by calcium binding proteins. Cell Physiology Source Book. London: Acad. Press, 1995.
Diaz J., Ridray S., Mignon V., Griffon N., Schwartz J. C. and Sokoloff P. Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J. Neurosci., 1997, 17, 4282-4292.
Dorofeeva E. A. Modern controversial issues in systematics of salmon. In: Modern Problems of Systematics of Fishes. Eds. Balushkin A. V. and Voskoboynikova O. S. SPb., 1998.
Extröm P., Johnsson C. M. and Ohlin L. M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J. Comp. Neurol., 2001, 436, 92-110.
Giraldez-Perez R. M., Gaytan S. P., Ruano D., Torres B. and Pasaro R. Distribution of NADPH-diaphorase and nitric oxide synthase reactivity in the central nervous system of the goldfish (Carassius auratus). J. Chem. Neuroanat., 2008, 35, 12-32.
Grandel H., Kaslin J., Ganz J., Wenzel I. and Brand M. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev. Biol., 2006, 295, 263-277.
Grillner S. Motor control systems of fish. In: Encyclopediya of Fish. Fisiology from Genom to Environment. Ed.-in-Chi. Farrel A. P. Elsevier: Acad. Press, 2011, pp. 56-65.
Han Y., Qin J., Chang X., Yang Z., Bu D. and Du J. Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci. Res., 2005, 53, 216-219.
Hebsgaard J. B., Nelander J., Sabelström H., Jönsson M. E., Stott S. and Parmar M. Dopamine neuron precursors within the developing human mesencephalon show radial glial characteristics. Glia, 2009, 57, 1648-1658.


Horsberg T. E. Avermectin use in Aquaculture. Curr. Pharm. Biotechnol., 2012, 13, 1095-1102.
Ikenaga T., Yoshida M. and Uematsu K. Cerebellar efferent neurons in teleost fish. Cerebellum, 2006, 5, 268-274.
Isaeva V. V., Puschina E. V. and Karetin Yu. A. Changes of the morphometric indices and fractal dimension of the spinal cord neurons during ontogenesis of the cherry salmon Oncorhynchus masou. Rus. J. Mar. Biol., 2006, 32, 106-114.
Islam A. T., Kuraoka A. and Kawabuchi M. Morphological basis of nitric oxide production and its correlation with the polysialylated precursor cells in the dentate gyrus of the adult guinea pig hippocampus. Anat. Sci. Int., 2003, 78, 98-103.
Kapsimali M., Vidal B., Gonzalez A., Dufour S. and Vernier P. Distribution of the mRNA encoding the four dopamine D(1), receptor subtypes in the brain of the European eel (Anguilla anguilla): comparative approach to the function of D(1), receptors in vertebrates. J. Comp. Neurol., 2000, 419, 320-343.
Kaslin J., Ganz J. and Brand M. Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Phil. Trans. R. Soc. B, 2008, 363, 101-122.
Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem. Biophys. Res. Commun., 2000, 267, 129-133.
Kiss J. P. Role of nitric oxide in the regulation of monoaminergic neurotransmition. Brain Res. Bull., 2000, 52, 459-466.
Korn H., Faber D. S. and Triller A. Convergence of morphological, physiological, and immunocytochemical techniques for the study of single Mauthner cells. In: Handbook of Chemical Neuroanatomy. Eds. Björklund A., Hökfelt T., Wouterlood F. G. and van der Pol A. N. Amsterdam: Elsevier, 1990.
Lee S. W., Hu Y. S., Hu L. F., Lu Q., Dawe G. S., Moore P. K., Wong P. T. and Bian J. S. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia, 2006, 54, 116-124.
Lledo P. M., Alonso M. and Grubb M. S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci., 2006, 7, 179-193.
Ма P. K. Catecholaminergic systems in the zebrafish. III. Organization and projection pattern of medullary dopaminergic and noradrenergic neurons. J. Comp. Neurol., 1997, 381, 411-427.
Meek J. Catecholamines in the brains of Osteichtyes (Bony Fishes). In: Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates. Cambridge: Cambridge Univ. Press, 1994.
Moreno-López B., Noval J. A., González-Bonet L. G. and Estrada C. Morphological bases for a role of nitric oxide in adult neurogenesis. Brain Res., 2000, 869, 244-250.
Mueller T. and Guo S. The distribution of GAD67-mRNA in the adult zebrafish (Teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods. J. Comp. Neurol., 2009, 516, 553-568.
Noctor S. C., Martínez-Cerdeño V., Ivic L. and Kriegstein A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci., 2004, 7, 136-144.
Northcutt R. G. Forebrain evolution in bony fishes. Br. Res. Bull., 2008, 75, 191-205.
Platel J. C., Stamboulian S., Nguyen I. and Bordey A. Neurotransmitter signaling in postnatal neurogenesis: the first leg. Brain Res. Rev., 2010, 63, 60-71.
Puschina E. V. and Varaksin A. A. Hydrogen sulfide-, parvalbumin-, and GABA-producing systems in the masu salmon brain. Neurophysiology, 2011, 43, 90-102.
Puschina E. V. Neurochemical organization and connections of the cerebral preglomerular complex of the masu salmon. Neurophysiology, 2012, 43, 437-451.
Puschina E. V., Varaksin A. A. and Obukhov D. K. Cystathionine β-synthase in the CNS of masu salmon Oncorhynchus masou (Salmonidae) and carp Cyprinus carpio (Cyprinidae). Neurochem. J., 2011, 5, 30-41.
Pushchina E. V., Varaksin A. A., Shukla S. and Obukhov D. K. Undifferentiated catecholaminergic and NO-producing cells of forebrain matrix zones and intercellular relationships in periventricular diencephalon of juvenile Oncorhynchus masou. Amer. J. BioSci., 2015, 3, 1-11.
Pushchina E. V., Fleishman M. Yu. and Timoshin S. S. Proliferative zones in the brain of the amur sturgeon fry. Interactions with neuromeres and migration of secondary matrix zones. Rus. J. Devel. Biol., 2007, 38, 286-293.
Pushchina E. V., Obukhov D. K. and Varaksin A. A. Neurochemical markers of cells of the periventricular brain area in the masu salmon Oncorhynchus masou (Salmonidae), Ontogenez, 2012, 43, 39-53.
Pushchina E. V., Varaksin A. A. and Obukhov D. K. Gaseous transmitters in the brain of the masu salmon, Oncorhynchus masou (Salmoniformes, Salmonidae). J. Evol. Bioch. Physiol., 2012, 48, 101-114.
Pushchina E. V. and Varaksin A. A. Argyrophilic and nitric oxidergic bipolar neurons in cerebellum of the opisthocentrus Pholidapus dybowskii. J. Evol. Biochem. Physiol., 2001, 37, 569-575.
Pushchina E. V., Оbukhov D. K. and Varaksin A. A. Features of adult neurogenesis and neurochemical signaling in the cherry salmon Oncorhynchus masou brain. Neural. Regen. Res., 2013, 8, 13-23.
Pushchina E. V. and Diuyzen I. V. Structure and neurochemistry of the raphe nuclei in teleosts. Morfologiia, 2004, 125, 32-37.
Pushchina Е. V. and Obukhov D. К. Nitric oxide-factor, which regulates proliferation and apoptosis in the adult brain of amur sturgeon Acipenser schrenckii. Adv. Biosci. Biotechnol., 2012, 3, 778-804.
Rakic P. Elusive radial glial cells: historical and evolutionary perspective. Glia, 2003, 43, 19-32.
Rodríguez-Díaz M. A., Candal E., Santos-Durán G. N., Adrio F. and Rodríguez-Moldes I. Comparative analysis of Met-enkephalin, galanin and GABA immunoreactivity in the developing trout preoptic-hypophyseal system. Gen. Comp. Endocrinol., 2011, 173, 148-158.
Romero-Grimaldi C., Moreno-López B. and Estrada C. Age-dependent effect of nitric oxide on subventricular zone and olfactory bulb neural precursor proliferation. J. Comp. Neurol., 2008, 506, 339-346.
Song H., Kempermann G., Overstreet Wadiche L., Zhao C., Schinder A. F. and Bischofberger J. New neurons in the adult mammalian brain: synaptogenesis and functional integration. J. Neurosci., 2005, 25, 10366-10368.
Trudeau V. L. Neuroendocrine regulation of gonadotropin. II Release and gonadal growth in the goldfish, Carassius auratus. Rev. Reprod., 1997, 2, 55-68.
Ugrumov M. V. Developing brain as an endocrine organ: a paradoxical reality. Neurochem. Res., 2010, 35, 837-850.
Vernier P. and Wullimann M. F. Evolution of the posterior tuberculum and preglomerular nuclear complex. In: Encyclopedia of Neurosciences. Part 5. Eds. Binder M. D, Hirokawa N. and Windhorst U. Berlin: Springer- Verlag, 2009.
Villani L. Development of NADPH-diaphorase in the central nervous system of the cichlid fish Tilapia mariae. Brain Behav. Evol., 1999, 54, 147-158.
Villani L. and Guarnieri T. Localization of NADPH-diaphorese in the goldfish brain. Brain Res., 1995, 679, 261-266.
Wullimann M. F. The central nervous system. In: The Physiology of Fishes. Boca Raton, New York: CRS Press, 1998.
Zhou L. and Zhu D. Y. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide, 2009; 20, 223-230.
Zupanc G. K. Neurogenesis and neuronal regeneration in the adult fish brain. J. Comp. Physiol., A Neuroethol. Sens. Neural Behav. Physiol., 2006, 192, 649-670.
Zupanc G. K. Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J. Exp. Biol., 1999, 202(Pt 10), 1435-1446.
Zupanc G. K. Towards brain repair: insights from teleost fish. Semin. Cell Dev. Biol., 2009, 20, 683-690.

Chapter 9

Andral R., Hurard C., Elziere-Papayanni P., Vivares C. P. Establishment and characterization of a rainbow trout kidney cell-line, RTK montpellier. In: Pathology in Marine Science (Perkins FO, Cheng CC, eds), San Diego: Academic Press. 1990, pp. 33-42.
Becker T., Wullimann M. F., Becker C. G., Bernhardt R. R. and Schachner M. Axonal regrowth after spinal cord transection in adult zebrafish. J. Comp. Neurol., 1997, 377, 577-595.
Blackmore M. G., Moore D. L., Smith R. P., Goldberg J. L., Bixby J. L. and Lemmon V. P. High content screening of cortical neurons identifies novel regulators of axon growth. Mol. Cell. Neurosci., 2010, 44, 43-54.
Bravo R. and Macdonald-Bravo H. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J. Cell Biol., 1987, 105, 1549-1554.
Burrill J. D., Moran L., Goulding M. D. and Saueressig H. Pax2 is expressed in multiple spinal cord interneurons, including a population of EN1+ interneurons that require Pax6 for their development. Development, 1997, 124, 4493-4503.
Candal E., Anadon R. DeGrip W. J. and Rodriguez-Moldes I. Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout. Dev. Brain Res., 2005, 154, 101-119.
Cheng L., Bowser P. R. and Spitsbergen J. M. Development of cell cultures derived from lake trout liver and kidney in a hormone-supplemented, serum-reduced medium. J. Aquat. Anim. Health, 1993, 5:119-126.
Doe C. Q., Fuerstenberg, S. and Peng C. Y. Neural stem cells: from fly to vertebrates. J. Neurobiol., 1998, 36, 111-127.
Fernandez R. D., Yoshimizu M., Kimura T. and Ezura Y. Establishment and characterization of seven continuous cell lines from freshwater fish. J. Aquat. Anim. Health, 1993, 5:137-147.
Hinsch K. and Zupanc G. K. Isolation, cultivation, and differentiation of neural stem cells from adult fish brain. J. Neurosci. Methods, 2006, 158:75-88.
Kizil, C., Kaslin J., Kroehne V. and Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev. Neurobiol., 2012, 72, 429-461.
Kroehne V., Freudenreich D., Hans S., Kaslin J. and Brand M. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development, 2011, 138, 4831-4841.
Lannan C. N., Winton J. R. and Fryer J. L. Fish cell lines: establishment and characterization of nine cell lines from salmonids. In Vitro, 1984, 20, 671-676.
Larke W. S., Swaminathan T. R. and Joy K. P. Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol. Biochem., 2011, 37, 1-20.
Marquardt T., Ashery-Padan R., Andrejewski N., Scardigli R., Guillemot F. and Gruss P. Pax6 is required for the multipotent state of retinal progenitor cells. Cell, 2001, 105, 43-55.
Puschina E. V. and Varaksin A. A. Hydrogen sulfide-, parvalbumin-, and GABA-producing systems in the masu salmon brain. Neurophysiology, 2011, 43, 90-102.
Pushchina E. V., Shukla S. and Varaksin A. A. Cell proliferation and differentiation in primary cultures of the juvenile brain of the masu salmon Oncorhynchus masou. Rus. J. Mar. Biol., 2015a, 41, 499-502.
Pushchina E. V., Shukla S. and Varaksin A. A. Hydrogen sulfide in proliferating and differentiated cells in primary cultures of juvenile brain of masu salmon Oncorhynchus masou. Adv. Biosci. Biotechnol., 2015b, 6, 539-545.
Puschina E. V., Varaksin A. A. and Obukhov D. K. Cystathionine β-synthase in the CNS of masu salmon Oncorhynchus masou (Salmonidae) and carp Cyprinus carpio (Cyprinidae). Neurochem. J., 2011, 5, 30-41.
Pushchina E. V., Shukla S., Varaksin A. A. and Obukhov D. K. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury. Neural Regen. Res., 2016, 11, 578-590.
Pushchina E. V., Obukhov D. K. and Varaksin A. A. Features of adult neurogenesis and neurochemical signaling in the cherry salmon Oncorhynchus masou brain. Neural Regen. Res., 2013, 8, 13-23.
Sakowski S. A., Lunn J. S., Busta A. S., Palmer M., Dowling J. J. and Feldman E. L. A novel approach to study motor neurons from zebrafish embryos and larvae in culture, J. Neurosci. Methods, 2012, 205, 277-282.
Shukla S. and Mishra R. Functional analysis of missense mutations G36A and G51A in Pax6, and Pax6(5a) causing ocular anomalies. Exp. Eye Res., 2011, 93, 40-49.
Shukla S. and Mishra R. Predictions on impact of missense mutations on structure function relationship of PAX6 and its alternatively spliced isoform Pax6(5a). Interdiscip. Sci., 2012, 4, 54-73.
Thompson J. A. and Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog. Neurobiol., 2011, 95, 334-351.
Tuoc T. C., Radyushkin K., Tonchev A. B., Pinon M. C., Ashery-Padan R., Molnar Z., Davidoff M. S. and Stoykova A. Selective cortical layering abnormalities and behavioral deficits in cortex-specific Pax6 knock-out mice. J. Neurosci., 2009, 29, 8335-8349.
Vriz S., Lemaitre J. M., Leibovici M., Thierry N. and Méchali M. Comparative analysis of the intracellular localization of c-Myc, c-Fos, and replicative proteins during cell cycle progression. Mol. Cell. Biol., 1992, 12, 3548-3555.
Waseem N. H. and Lane D. P. Monoclonal antibody analysis of the proliferating cell nuclear antigen (PCNA). Structural conservation and the detection of a nucleolar form. J. Cell Sci., 1990, 96(part 1), 121-129.
Watanabe T., Kobayashi N., Sato Y. and Ishizaki Y. Continuous cell line derived from the kidney of yamame, Oncorhynchus masou. Bull. Jap. Soc. Sci. Fish., 1978, 44, 415-418.
Wolf K. and Mann J. A. Poikilotherm vertebrate cell lines and viruses: a current listing for fishes. In Vitro, 1980, 16, 168-179.
Wolf K. and Quimby M. C. Established eurythermic line of fish cells in vitro. Science, 1962, 135, 1065-1066.
Zupanc G. K. Adult neurogenesis and neuronal regeneration in the teleost fish brain: implications for the evolution of a primitive vertebrate trait. In: The Evolution of Nervous Systems in Non-mammalian Vertebrates (Bullock TH, Rubenstein LR, Zupanc GK, Sîrbulescu RF, eds). Oxford: Acad. Press. 2006, pp. 485-520.
Zupanc G. K. Adult neurogenesis in teleost fish In: Neurogenesis in the Adult Brain (Seki T., Sawa-moto K., Parent J. M., Alvarez-Buylla A., eds). Tokyo: Springer. 2011, pp. 137-168.
Zupanc G. K. and Sîrbulescu R. F. Teleost fish as a model system to study successful regeneration of the central nervous system. Curr. Top. Microbiol. Immunol., 2013, 367, 193-233.

You have not viewed any product yet.