The Metabolic-Psychosomatic Axis, Stress and Oxytocin Regulation

Alfred Bennun, Ph.D.
Full Professor-Emeritus-Rutgers University Consultant,
CONICET, AR
Rutgers University, NJ, USA

Series: Biochemistry and Molecular Biology in the Post Genomic Era
BISAC: SCI007000

Clear

$210.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

Sensorial neurons activate the locus coeruleus long axons for a presynaptic Ca2+-dependent release of noradrenaline (NA). Postsynaptic adenylyl cyclase (AC) of several areas of the brain shows Mg2+-dependent responsiveness to the neurotransmitter in the absence of Ca2+ when the free Mg2+ is present in excess of substrate Mg-ATP.

The brain capillary glucose uptake by red-cells leads to the endogenous generation of 2,3-DPG, and promotes the oxyHb-deoxygenation to discharge Mg2+ at the noradrenergic synapses.

Since adrenaline cannot cross the blood brain barrier, it could not have a feedback; however, cortisol does.

cAMP controls the activation of the initial voltage-gated state of the action potential, configuring nerve impulse, transcription-plasticity mechanism and long-term memory.

Overall, this molecular mechanism could be used to propose a model linking environmental stimulus resulting in cAMP and the rate of gene expression.

DNA-dependent RNA polymerase activation is inducible, expressed under the conditions of adaptive value by cAMP. The zipper-closure role of the enzyme functions with divalent metal for inclusion of the cyclic nucleotide cAMP and cGMP in DNA. cAMP by binding to Mg2+ ion interacts with the negatively charged phosphate groups. The latter chelated by Mg2+ opens the double chain in DNA for binding DNA-dependent RNA polymerase. The greater activity of cAMP-Me2+-DNA complex with regard to a stabilized double helix allows for the introduction of a mechanism for genetic induction vs constitutive state.

The cAMP-Me2+-DNA complex by increasing a turn-on activity could consolidate cAMP stimulus, allowing genetic variance by insertion of cAMP, by adhesion of cAMP to stimulate a similar area of the DNA at different stages on the overall evolutionary/adaptive response to environmental stress.

Charles Darwin discovers evolution relating the adaptive strength of the birds’ beaks conditioned by the hardness of environmental nuts.
The nutritional stress increases free Mg2+. Noradrenaline-stimulated adenylyl cyclase stimulates the hypothalamus, which involves additional metabolic resources to increase the strength of the bird beak. Specific stimulus for the DNA location controlling the bird’s beak development allows for a complementary configuration for cAMP insertion into the near specific bird-beak-DNA segment involved in beak growing and development. cAMP-Me2+-DNA complex inserted in the DNA complex is continuously open for DNA transcript involved in developing a new, stronger beak.

A genetic link between the induction mechanism and a transitory modification of DNA expression could enrich the relationship of induced vs constitutive templates in the reproductive cells.

The balance would favor the tendency toinduce activation and increase the DNA response to external stimuli over the constitutive remaining and more stable DNA. (Imprint: Nova)

Preface

Chapter 1. Methods

Chapter 2. The Biological Fundamentals of the Adrenergic System of the Brain

Chapter 3. Molecular Details of Ligand Selectivity

Chapter 4. Dynamics of Ligands Exchanges during Hb Deoxygenation

Chapter 5. Enzyme-Membrane Systems

Chapter 6. The Neuronal-Astrocyte-Capillary Coupled System Role in Adrenergic vs Glutamatergic Neurotransmission

Chapter 7. The Dynamic Regulation of the Blood-Brain Barrier Permeability by the Neurovascular Unit (NVU)

Chapter 8. The Hypothalamic-Pituitary-Adrenal Axis Control on the Psychosomatic Metabolic Network

Chapter 9. The Brain-NA-adrenaline Axis Controls the Fight-or-flight Response in the Hypothalamus Signals for a Multi-hormonal Adaptive Response Shifting Levels of Oxytocin, Serotonin, etc.

Chapter 10. Insulin Role

Chapter 11. Sleep-Wake

Chapter 12. Interrelationship Between Steroidal Hormone Pathways

Chapter 13. Responses to Stress and Associated Dysfunctions

Chapter 14. Conclusion

Acknowledgments

References

Index

[1] Garey L. J. 2006. Brodmann’s Localisation in the Cerebral Cortex. New York: Springer. ISBN 978-0387-26917-7.
[2] Amy Bernard et al. 2012. “Transcriptional architecture of the primate neocortex.” Neuron 73(6):1083-1099.
[3] Hawrylycz, M. J. et al. 2012. “An anatomically comprehensive atlas of the adult human brain transcriptome.” Nature 489:391-399.
[4] Katrin Amunts et al. 2013. “BigBrain: An Ultrahigh-Resolution 3D Human Brain Model.” Science 340(6139):1472-1475.
[5] Brydon-Golz, S. and Bennun, A. 1975. “Postsynthetic stabilized modification of adenylate cyclase by metabolites.” Biochemical Society Transactions (3):721-724.
[6] Brydon-Golz, S.; Ohanian, H. and Bennun, A. 1977. “Effects of noradrenaline on the activation and the stability of brain adenylate cyclase.” Biochem. J. 166:473-483.
[7] Lowry, O. H.; Rosebrough, N. J.; Farr, A. L. and Randall R. J. 1951. “Protein measurement with the Folin phenol reagent.” J. Biol. Chem. 193:265-275.
[8] Ohanian, H.; Borhanian, K.; De Farias, S. and Bennun, A. 1981. “A model for the regulation of brain adenylate cyclase by ionic equilibria.” Journal of Bioenergetics and Biomembranes 13(5/6):317-55.
[9] Gilman, A. G. 1970. “A protein binding assay for adenosine 3,5-cyclic monophosphate.” Proc. Natl. Acad. Sci. 67(1):305-312.
[10] Harris, R.; Cruz, R. and Bennun, A. 1979. “The effect of hormones on metal and metal-ATP interactions with fat cell adenylate cyclase.” BioSystems 11:29-46.
[11] Rodbell, M. 1964. “Metabolism of isolated fat cells. I. effects of hormones on glucose metabolism and lipolysis.” J. Biol. Chem. 239:375-80.
[12] Harris, R. and Bennun, A. 1976. “Hormonal control of fat cells adenylate cyclase.” Molecular & Cellular Biochemistry 13(3):141-146.
[13] Brown, B. L.; Ekins, R. P. and Albano, J. D. M. 1972. “Saturation assay for cyclic AMP using endogenous binding protein.” In Advances in Cyclic Nucleotide Research 2:25-40.
[14] Bennun, A. and Racker, E. 1969. “Partial resolution of the enzymes catalyzing photophospharylation IV. Interaction of coupling factor I from chloroplast with components of the chloroplast membrane.” J. Biol. Chem. 244:1325-1331.
[15] Miyamoto, E.; Kuo, J. F. and Greengard, P. J. 1969. “Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3’,5’-monophosphate-dependent protein kinase from bovine brain.” J. Biol. Chem. 244(23):6395-6402.
[16] Bray, G. A. 1960. “A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter.” Anal. Biochem. 1:279-285.
[17] Klein, H. H.; Friedenberg G. R.; Cordera R. and Olefsky J. 1985. “Substrate specificities of insulin and epidermal growth factor receptor kinases.” Biochem. Biophys. Res. Commun. 127:254-263.
[18] Vicario, P. P.; Saperstein R. and Bennun, A. 1988. “Role of divalent metals in the activation and regulation of insulin receptor tyrosine kinase.” Biosystems. 22(1):55-66.
[19] Pike, L. J.; Kuenzel, E. A.; Casnelli, J. E. and Krebs, E. G. 1984. “A comparison of the insulin- and epidermal growth factor-stimulated protein kinases from human placenta.” J. Biol. Chem. 259:9913-9921.
[20] Cleland, W. W. 1963. “The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations.” Biochim. Biophys. Acta 67:104-37, 173-87.
[21] Haber E, Koerner T, Page LB, Kliman B, Purnode A. 1969. “Application of a radioimmunoassay for angiotensin I to the physiologic measurements of plasma renin activity in normal human subjects.” J. Clin. Endocrinol. Metab. 29(10):1349-55.
[22] Sulner, J.W. and Bennun, A. 1985. “Ca2+-dependent control of renin release.” Biochem. Soc. Trans. 13:363-364.
[23] Teo, I.; Yeow Chin, K; Stephens, C. and Paget J. 2014. Drugs in Cardiopulmonary Resuscitation. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 177-212.
[24] Chowdhury, T.; Sandu, N. and Schaller, B. 2014. New Insights to the Role of (Nor-)/Adrenaline and Trigeminal Cardiac Reflex. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 71-80.
[25] Baker, C. N.; Katsandris, R.; Van, C. and Ebert, S. N. 2014. Adrenaline and Stress-Induced Cardiomyopathies: Three Competing Hypotheses for Mechanism(s) of Action. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 81-116.
[26] Myslivecek, J.; Valuskova, P. and Varejkova, E. 2014. Adrenaline, Heart Adrenoceptors and Stress. Endocrine Disorders. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 117-148.
[27] Baba, Y.; Hayashi, S.; Ikeda, S. and Nakajo, M. 2014. Adrenalines in adrenal venous sampling. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 1-12, 2014.
[28] Brou, C.; Logeat, F.; Gupta, N; Bessia C.; LeBail, O.; Doedens, J. R.; Cumano, A.; Roux, P.; Black, R. A. and Israël, A. 2000. “A novel proteolytic cleavage involved in notch signaling: the role of the disintegrin-metalloprotease TACE.” Mol. Cell. 5(2):207-16.
[29] Oliva, C. A.; Vargas, J. Y. and Inestrosa, N. C. 2013. “Wnts in adult brain: from synaptic plasticity to cognitive deficiencies.” Front. Cell. Neurosci. 7:224.
[30] Dehay, C.; Douglas, R. J.; Martin, K. A. and Nelson, C. 1991. “Excitation by geniculocortical synapses is not ‘vetoed’ at the level of dendritic spines in cat visual cortex.” J. Physiol. 440:723-34.
[31] Knott, G. W.; Quairiaux, C.; Genoud, C. and Welker, E. 2002. “Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice.” Neuron. 34(2):265-273.
[32] Wilson, C. J.; Croves, P. M.; Kitai, S. T. and Linder, J. C. 1983. “Three-dimensional structure of dendritic spines in the rat neostriatum.” J. Neurosci. 3:383-388.
[33] Crivellano, E.; Nico, B. and Ribatti, D. 2005. “Ultrastructural evidence of piecemeal degranulation in large dense-core vesicles of brain neurons.” Anat. Embryol. (Berl) 210(1):25-34.
[34] Torrealba, F. and Carrasco, M. A. 2004. “A review on electron microscopy and neurotransmitter systems.” Brain Res. Brain Res. Rev. 47(1-3):5-17.
[35] Ahmari, S. E. and Smith, S. J. 2002. “Knowing a nascent synapse when you see it.” Neuron 34(3):333-336.
[36] Dahlstroem, A. and Fuxe, K. 1964. “Evidence for the existence of monoamine-containing neurons in the central nervous system. I. demonstration of monoamines in the cell bodies of brain stem neurons.” Acta Physiol. Scand. Suppl. 232:1-55.
[37] Ward, D. G. and Gunn, C. G. 1976. “Locus coeruleus complex: elicitation of a pressor response and a brain stem region necessary for its occurrence.” Brain Res. 107(2):401-406.
[38] Halliday, G. 2004. Substantia nigra and locus Coeruleus. In: Paxinos G, Mai JK, editors. The Human Nervous System - II Edition. San Diego (CA): Elsevier Academic Press; pp. 449-463.
[39] Aston-Jones G. S.; Iba, M.; Clayton, E.; Rajkowski, J. and Cohen, J. 2007. Locus coeruleus and regulation of behavioral flexibility and attention: clinical implications. In: Ordway GA, Schwartz MA, Frazer A, editors. Brain Norepinephrine - Neurobiology and Therapeutics. Cambridge: University Press, pp. 196-235.
[40] Iversen, L. L.; Rossor, M. N.; Reynolds, G. P.; Hills, R.; Roth, M.; Mountjoy, C. Q.; Foote, S. L.; Morrison, J. H. and Bloom, F. E. 1983. “Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer‘s type.” Neurosci Lett. 39(1):95-100.
[41] Baker, K. G.; Törk, I; Hornung, J. P. and Halasz P. 1989. “The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study.” Exp Brain Res. 77 (2): 257-270.
[42] Yager, L. M.; Garcia, A. F.; Wunsch, A. M. and Ferguson, S. M. 2015. “The ins and outs of the striatum: Role in drug addiction.” Neuroscience 301:529-541.
[43] Taylor, S. B.; Lewis, C. R.; Olive, M. F. 2013. “The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans.” Subst Abuse Rehabil 4:29-43.
[44] Grall-Bronnec, M. and Sauvaget, A. 2014. “The use of repetitive transcranial magnetic stimulation for modulating craving and addictive behaviours: a critical literature review of efficacy, technical and methodological considerations.” Neurosci. Biobehav. Rev. 47:592-613.
[45] Sydor, A. and Brown, R. Y. 2009. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. New York: McGraw-Hill Medical. 365–366, 376.
[46] Nestler, E. J. 2013. “Cellular basis of memory for addiction.” Dialogues Clin. Neurosci. 15(4):431-443.
[47] Dumitriu, D.; Laplant, Q.; Grossman, Y. S.; Dias, C.; Janssen, W. G.; Russo, S. J.; Morrison, J. H. and Nestler, E. J. 2012. “Subregional, dendritic compartment, and spine subtype specificity in cocaine regulation of dendritic spines in the nucleus accumbens.” J. Neurosci. 32(20):6957-66.
[48] Trantham-Davidson, H.; Neely, L. C.; Lavin, A. and Seamans, J. K.. 2004. “Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex.” The Journal of Neuroscience 24(47): 10652-10659.
[49] Colonnier, M. 1968. “Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study.” Brain Res. 9:268-287.
[50] Cooney, J. R.; Hurlburt, J. L.; Selig, D. K., Harris, K. M. and Fiala, J. C. 2002. “Endosomal compartments serve multiple hippocampal dendritic spines from a widespreas rather than a local store of recycling membrane.” J. Neurosci. 22:2215-24.
[51] Cornell-Bell, A. H.; Thomas, P. G. and Smith, S. J. 1990. “The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes.” Glia 3:322-334.
[52] Wright, E. E. and Simpson, E. R. 1981. “Inhibition of the lipolytic action of beta-adrenergic agonists in human adipocytes by alpha-adrenergic agonists.” J. Lipid Res. 22(8):1265-1270.
[53] Samuels, E. R. and Szabadi, E. 2008. “Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part I: Principles of Functional Organisation.” Curr Neuropharmacol. 6(3):235-253.
[54] Mouton, P. R.; Pakkenberg, B.; Gundersen, H. J.; Price, D. L. 1994. “Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals.” J. Chem. Neuroanat. 7(3):185-190.
[55] Kety, S. S. 1970. “The biogenic amines in the central nervous system: their possible roles in arousal, emotion and learning.” In the neurosciences: second study program 324-335.
[56] Xie, L.; Kang, H.; Xu, Q.; Chen, M. J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D. J.; Nicholson, C.; Iliff, J. J.; Takano, T.; Deane, R. and Nedergaard M. 2013. “Sleep drives metabolite clearance from the adult brain.” Science. 342(6156):373-377.
[57] Silvetti, M.; Seurinck, R.; van Bochove, M. E. and Verguts, T. 2013. “The influence of the noradrenergic system on optimal control of neural plasticity.” Front Behav Neurosci. 7:160.
[58] Shankar, E.; Santhosh, K. T. and Paulose, C. S. 2006. “Dopaminergic regulation of glucose-induced insulin secretion through dopamine D2 receptors in the pancreatic islets in vitro.” IUBMB Life 58(3):157-63.
[59] Rubí, B.; Ljubicic, S.; Pournourmohammadi, S.; Carobbio, S.; Armanet, M.; Bartley, C. and Maechler, P. 2005. “Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion.” J. Biol. Chem. 280(44):36824-32.
[60] Humeau, Y.; Doussau, F.; Grant, N. J. and Poulain, B. 2000. “How botulinum and tetanus neurotoxins block neurotransmitter release.” Biochimie. 82(5):427-446.
[61] Devilbiss D. M. and Waterhouse B. D. 2011. “Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat.” J. Neurophysiol. 105(1):69-87.
[62] Kaehler, S. T.; Singewald, N. and Philippu, A. 1999. “Dependence of serotonin release in the locus coeruleus on dorsal raphe neuronal activity.” Naunyn Schmiedebergs Arch Pharmacol. 359(5):386-93.
[63] Fuchs, A.; Fuchs, F.; Husslein, P. and Soloff, M. S. 1984. “Oxytocin receptors in the human uterus during pregnancy and parturition.” Am. J. Obstet. Gynecol. 150:734-741.
[64] Engstrom, T.; Atke, A. and Vilhardt, H. 1988. “Oxytocin receptors and contractile response of the myometrium after long term infusion of prostaglandin F2α, indomethacin, oxytocin and an oxytocin antagonist in rats.” Regul. Pept. 20:65-72.
[65] Maltier, J. P.; Benghan-Eyene, Y. and Legrand, C. 1989. “Regulation of myometrial β2-adrenergic receptors by progesterone and estradiol-17β in the late pregnant rats.” Biol. Reprod. 40:531-540.
[66] Cohen-Tannoudji, J.; Vivat, V.; Helimann, J.; Legrand, C. and Maltier, J. P. 1991. “Regulation by progesterone of the high-affinity state of myometrial β-adrenergic receptors and of adenylate cyclase activity in the pregnant rat.” J. Mol. Endocrinol. 6:137-145.
[67] Lindeman, K. S.; Hirshman, C. A.; Kuhl, J. S.; Levitsky, H. I. and Emala, C. W. 1998. “Chronic oxytocin pretreatment inhibits adenylyl cyclase activity in cultured rat myometrial cells.” Biol. Reprod. 59(5):1108-15.
[68] Fuchs, A. 1995. “Plasma membrane receptors regulating myometrial contractility and their hormonal modulation.” Semin. Perinatol. 19:15-30.
[69] Schrey, M. P.; Read, A. M. and Steer, P. J. 1986. “Oxytocin and vasopressin stimulate inositol phosphate production in human gestational myometrial and decidual cells.” Biosci. Rep. 7:613-619.
[70] Marc, S.; Lieber, D. and Harbon, S. 1986. “Carbachol and oxytocin stimulate the generation of inositol phosphates in the guinea pig myometrium.” FEBS Lett. 201:9-14.
[71] Carlson, N. R. 2012. “Physiology of behavior.” Pearson 336.
[72] Solano-Castiella, E.; Anwander, A.; Lohmann, G.; Weiss, M.; Docherty, C.; Geyer, S.; Reimer, E.; Friederici, A. D. and Turner, R. 2010. “Diffusion tensor imaging segments the human amygdala in vivo.” Neuroimage 49(4):2958–65.
[73] McDannald, M.; Kerfoot, E.; Gallagher, M. and Holland, P. C. 2005. “Amygdala central nucleus function is necessary for learning, but not expression of conditioned auditory orienting.” Behavioral Neuroscience 119(1):202-212.
[74] Blumberg, H. P.; Kaufman, J; Martin, A; Whiteman, R; Zhang, J. H.; Gore, J. C.; Charney, D. S. ; Krystal, J. H. and Peterson, B. S. 2003. “Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder.” Arch Gen Psychiatry 60(12):1201–8.
[75] Blair, R. J. R. 2008. The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy. Philosophical Transactions of the Royal Society, 363 (1503), 2557–2565.
[76] Sheline Y. I.; Barch, D. M.; Donnelly, J. M.; Ollinger, J. M.; Snyder, A. Z. and Mintun, M. A. 2001. “Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study.” Biological Psychiatry 50(9):651-658.
[77] Martin, A. and Chao, L. L. 2001. “Semantic memory and the brain: structures and processes.” Current Opinion in Neurobiology 11(2):194-201.
[78] Szepietowska, B.; Zhu, W.; Chan, O.; Horblitt, A.; Dziura, J. and Sherwin, R. S. 2011. “Modulation of b-Adrenergic Receptors in the Ventromedial Hypothalamus Influences Counterregulatory Responses to Hypoglycemia.” Diabetes. 60(12):3154-8.
[79] Bookout, A. L.; de Groot, M. H. M.; Owen, B. M.; Lee, S.; Gautron, L.; Lawrence, H. L.; Ding, X.; Elmquist, J. K.; Takahashi, J. S.; Mangelsdorf, D. J. and Kliewer, S. A. 2013. “FGF21 regulates circadian behavior and metabolism by acting on the nervous system.” Nat Med. 19(9):1147-1152.
[80] Kalat, J. W. 2001. Biological psychology (7th ed.). Belmont, CA: Wadsworth Publishing.
[81] Krupic, J.; Burgess, N. and O’Keefe J. 2012. “Neural representations of location composed of spatially periodic bands.” Science. 337(6096):853-7.
[82] Krupic, J.; Bauza, M.; Burton, S.; Lever, C. and O’Keefe, J. 2013. “How environment geometry affects grid cell symmetry and what we can learn from it.” Philos Trans R Soc Lond B Biol Sci. 369(1635):20130188.
[83] Bukalo, O.; Campanac, E.; Hoffman, D. A. and Fields, R. D. 2013. “Synaptic plasticity by antidromic firing during hippocampal network oscillations.” Proc Natl Acad Sci U.S.A. 110(13):5175-80.
[84] Sadeh, T.; Shohamy, D.; Levy, D.R.; Reggev, N. and Maril, A. 2010. “Cooperation between the hippocampus and the striatum during episodic encoding.” J. Cogn. Neurosci. 23(7):1597-608.
[85] Tulving, E. and Markowitsch, H. J. 1998. “Episodic and declarative memory: role of the hippocampus.” Hippocampus 8(3):198-204.
[86] Ziv, N. E.; Garner, C. C. 2004. “Cellular and molecular mechanisms of presynaptic assembly.” Nat. Rev. Neurosci. 5:385-99.
[87] Sorra, K. E.; Mishra, A.; Kirov, S. A. and Harris K. M. 2006. “Dense core vesicles resemble active-zone transport vesicles and are dimished following synaptogenesis in mature hippocampal slices.” Neuroscience 141:2097-106.
[88] Shepherd, G. M. and Harris K.M. 1998. “Three-dimensional structure and composition of CA3--> CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization.” J. Neurosci. 18:8300-10.
[89] Sorra, K. E. and Harris, K. M. 1993. “Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1.” J. Neurosci., 13, 3736-48.
[90] Yankova, M. and Hart, S. A. 2001. “Woolley C.S. Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: a serial electron-microscopic study.” Proc. Natl. Acad. Sci. USA 98:3525-30.
[91] Corkin, S.; Amaral, D. G.; Gonzalez, R. G.; Johnson, K. A. and Hyman, B. T. 1997. “H.M.’s medial temporal lobe lesion: Findings from magnetic resonance imaging.” The Journal of Neuroscience 17:3964-3979.
[92] Zola-Morgan, S.; Suire, L. R. 1993. “Neuroanatomy of memory.” Annual Reviews Neuroscience 16:547-563.
[93] Mertor, R. 1996. “Memory of time may be factor in Parkinson’s.” Columbia University Record 21(22).
[94] Forgetfulness is the Key to a Healthy Mind. New Scientist, February 16. 2008.
[95] Bennun, A. 1974. “The unitary hypothesis on the coupling of energy transduction and its relevance to the modeling of mechanisms.” Annals of the New York Academy of Sciences 227:116-145.
[96] Bennun, A. 1971. “Hypothesis for coupling energy transduction with ATP synthesis or ATP hydrolysis.” Nature New Biology 233(35):5-8.
[97] Bennun, A. 1975. “Hypothesis on the role of liganded states of proteins in energy transducing systems.” BioSytems 7:230-244.
[98] Cahill, L. and McGaugh, J. L. 1998. “Mechanisms of emotional arousal and lasting declarative memory.” Trends Neurosci. 21:294-9.
[99] Costa-Mattioli, M. and Sonenberg, N. 2008. “Translational control of gene expression: a molecular switch for memory storage.” Prog. Brain Res. 169, 81-95.
[100] Grau, C.; Ginhoux, R.; Riera, A.; Nguyen, T. L.; Chauvat, H.; Berg, M.; Amengual, J. L.; Pascual-Leone, A. and Ruffini, G. 2014. “Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies.” PLoS One 9(8):e105225.
[101] Amunts, K.; Kedo, O.; Kindler, M.; Pieperhoff, P.; Mohlberg, H.; Shah, N.; Habel, U.; Schneider, F. and Zilles, K. 2005. “Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps.” Anat Embryol (Berl) 210(5-6):343-52.
[102] Carlson, N. R. 2012. Physiology of Behavior. Pearson. p. 364.
[103] Petrovich, G. D.; Ross, C. A.; Mody, P.; Holland, P. C. and Gallagherw, M. 2009. “Central, but not basolateral amygdala, is critical for control of feeding by aversive learned cues.” J Neurosci., 29(48):15205–15212.
[104] Hutcherson, C. A.; Seppala, E. M. and Gross, J. J. 2008. “Loving-kindness meditation increases social connectedness.” Emotion 8(5):720-4.
[105] Paré, D.; Collins, D. R. and Pelletier, J. G. 2002. “Amygdala oscillations and the consolidation of emotional memories.” Trends in Cognitive Sciences 6(7):306-14.
[106] Asari, T.; Konishi, S.; Jimura, K.; Chikazoe, J.; Nakamura, N. and Miyashita, Y. 2010. “Amygdalar enlargement associated with unique perception.” Cortex, 46 (1), 94-99.
[107] Maren, S. 1999. “Long-term potentiation in the amygdala: a mechanism for emotional learning and memory.” Trends Neurosci. 22(12): 561–7.
[108] Bennun, A.; Seidler, N. and De Bari, V. A. 1985. “A model for the regulation of haemoglobin affinity for oxygen.” Biochemical Society Transactions 13:364-366.
[109] Bennun, A. 2010. “Characterization of the norepinephrine-activation of adenylate cyclase suggests a role in memory affirmation pathways. Overexposure to epinephrine inactivates adenylate cyclase, a causal pathway for stress-pathologies.” Biosystems 100(2):87-93.
[110] Mure, H.; Hirano, S.; Tang, C. C.; Isaias, I. U.; Antonini, A.; Ma, Y.; Dhawan, V. and Eidelberg, D. 2011. “Parkinson’s Disease Tremor-Related Metabolic Network: Characterization, Progression, and Treatment Effects.” Neuroimage. 54(2):1244-53.
[111] Pavlov, M.; Siegbahn, P. and Sandström, M. 1998. “Hydration of Beryllium, Magnesium, calcium, and zinc ions using density functional theory.” J. Phys. Chem. A. 102(1):219-28.
[112] Bennun, A.; Seidler, N. and De Bari, V. A. 1986. “Divalent metals in the regulation of hemoglobin affinity for oxygen.” Ann. N. Y. Acad. Sci. 463:76-79.
[113] Bennun, A.; Needle, N. A. and De Bari, V. A. 1985. “Infrared spectroscopy of erythrocyte plasma membranes.” Biochem. Soc. Trans. 13:127-128.
[114] Bennun, A. and Blum, J. J. 1966. “Properties of the induced acid phosphatase and of the constitutive acid phosphatase of Euglena.” Biochim. Biophys. Acta 128(1):106-123.
[115] Stoppani, A.O.M.; Bennun, A. and De Pahn, E.M. 1964. “Energy requirement for the anaerobic oxidation of acetate in baker’s yeast.” Biochimica et Biophysica Acta 92:176-178.
[116] Bennun, A.; De Pahn, E. M. and Stoppani, A.O.M. 1964. “Some properties of particle-bound intracellular ATPase from baker’s yeast.” Biochimica et Biophysica Acta 89:532-539.
[117] Stoppani, A.O.M.; Bennun, A. and De Pahn, E.M. 1964. “Effect of 2,4-dinitrophenol on krebs cycle and phosphate metabolism in baker’s yeast.” Archives of Biochemistry and Biophysics 108(2):258-265.
[118] Yamazaki, S.; Numano, R.; Abe, M.; Hida, A.; Takahashi, R.; Ueda, M.; Block, G. D.; Sakaki, Y.; Menaker, M. and Tei, H. 2000. “Resetting central and peripheral circadian oscillators in transgenic rats.” Science. 288(5466), 682-5.
[119] Chung, S.; Lee, E. J.; Yun, S.; Choe, H. K.; Park, S. B.; Son, H. J.; Kim, K. S.; Dluzen, D. E.; Lee, I.; Hwang, O.; Son, G. H. and Kim, K. 2014. “Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation.” Cell 157(4):858-68.
[120] Schibler, U. and Sassone-Corsi P. 2002. “A web of circadian pacemakers.” Cell 111(7):919-22.
[121] Toh, K. L.; Jones, C. R.; He, Y.; Eide, E. J.; Hinz, W. A.; Virshup, D. M.; Ptácek, L. J. and Fu, Y. H. 2001. “An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome.” Science. 291(5506):1040-3.
[122] Taheri, S. and Mignot, E. 2002. “The genetics of sleep disorders.” Lancet Neurol. 1(4):242-50.
[123] Martin, S. R.; Masino, L. and Bayley, P. M. 2000. “Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences.” Protein Sci. 9(12):2477-88.
[124] Kleene, R.; Mzoughi, M.; Joshi, G.; Kalus, I.; Bormann, U.; Schulze, C.; Xiao, M. F.; Dityatev, A. and Schachner, M. 2010. “NCAM-induced neurite outgrowth depends on binding of calmodulin to NCAM and on nuclear import of NCAM and fak fragments.” J. Neurosci. 30(32):10784-98.
[125] Jurado, L. A.; Chockalingam, P. S. and Jarrett, H. W. 1999. “Apocalmodulin.” Physiol. Rev. 79(3):661-82.
[126] Malmendal, A.; Linse, S.; Evenäs, J.; Forsén, S. and Drakenberg, T. 1999. “Battle for the EF-hands: magnesium-calcium interference in calmodulin.” Biochemistry. 38(36):11844-50.
[127] Guther, T. and Vormann, J. 1992. “Na+-dependent Mg2+ efflux from isolated perfused rat hearts.” Magnes Bull. 14:126-129.
[128] Guther, T.; Vormann, J. and Hollriegl, V. 1991. “Noradrenaline-induced Na+-dependent Mg2+ efflux from rat liver.” Magnes Bull. 13:122-124.
[129] Romani, A.; Marfella, C. and Scarpa, A. 1993. “Regulation of magnesium uptake and release in the heart and in isolated ventricular myocytes.” Circ Res. 72:1139-1148.
[130] Takano, T. and Nedergaard, M. 2007. “DM-nitrophen provides physiologically significant increases of intracellular [Ca2+] in the presence of Mg2+.” Cell Calcium. 41(5):503-4.
[131] Romani, A. M. P.; Matthews, V. D. and Scarpa, A. 2000. “Parallel stimulation of glucose and Mg2+ accumulation by insulin in rat hearts and cardiac ventricular myocytes.” Circ Res. 86:326-333.
[132] Romani, A. and Scarpa, A. 1990. “Hormonal control of Mg2+ transport in the heart.” Nature 346:841-844.
[133] Flatman P. W. 1980. “The effect of buffer composition and deoxygenation on the concentration of ionized magnesium inside human red blood cells.” J. Physiol. 300:19-30.
[134] Bunn, H. F.; Ransil, B. J. and Chao, A. 1971. “The interaction between erythrocyte organic phosphates, magnesium ion and hemoglobin.” J. Biol. Chem. 246:5273-5279.
[135] Somlyo, A. V.; McClellan, G.; Gonzalaz-Serratos, H. and Somlyo, A. P. 1985. “Electron probe X-ray microanalysis of post-tetanic Ca2+ and Mg2+ movements across the sarcoplasmic reticulum in situ.” J. Biol. Chem. 260:6801-6807.
[136] Munshi, P.; Stanley, C. B.; Ghimire-Rijal, S.; Lu, X.; Myles, D. A. and Cuneo, M. J. 2013. “Molecular details of ligand selectivity determinants in a promiscuous β-glucan periplasmic binding protein.” BMC Struct Biol. 13:18.
[137] Skou, J. C. 1957. “The influence of some cations on an adenosine triphosphatase from peripheral nerves.” Biochim. Biophys. Acta 23:394.
[138] Garrahan P. J. and Glynn I. M. 1966. “Driving the sodium pump backwards to form adenosine triphosphate.” Nature 211(5056):1414-5.
[139] Bennun, A. 1971. Interaction of the chloroplast coupling factor with protons and water. Congreso Argentino de Ciencias Biológicas - 1970, in "Recientes adelantos en Biología" (J.A. Moguilevsky and R. Mejía, eds.), pp. 254-264, University of Buenos Aires Press.
[140] Bennun, A. 1971. Properties of chloroplast’s coupling factor-1 and a hypothesis for a mechanism of energy transduction. Proceedings First European Biophysics Congress, Baden, Austria, 1971, in “Photosynthesis, bioenergetics, regulation, origin of life” (E. Broda, A. Locker and H. Sprínger-Lederer, eds.), IV, 85-91, Wiener Medizinischen Akademíe, Vienna.
[141] Bennun, A. 2013. “The coupling of thermodynamics with the organizational water-protein intra-dynamics driven by the H-bonds dissipative potential of cluster water.” arXiv: 1303.6993 [q-bio.MN].
[142] Belton, P.S.

2000. “Nuclear magnetic resonance studies of the hydration of proteins and DNA.” Cell. Mol. Life Sci. 57:993–998.
[143] Kornblatt, J. and Kornblatt, J. 1997. “The role of water in recognition and catalysis by enzymes.” The Biochemist 19(3):14–17.
[144] Servantie, J.; Atilgan, C. and Atilgan A. R. 2010. “Depth dependent dynamics in the hydration shell of a protein.” J. Chem Phys. 133(8):085101.
[145] Tournier, A. L.; Xu, J. and Smith, J. C. 2003. “Translational hydration water dynamics drives the protein glass transition.” Biophys. J. 85(3):1871-5.
[146] Chanutin, A. and Curnish, R. R. 1967. “Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes.” Arch. Biochem. Biophys. 121(1):96-102.
[147] Arnone, A. 1972. “X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin.” Nature 237:146-149.
[148] Antonini, E.and Brunori, M. 1969. “On the rate of a conformation change associated with ligand binding in hemoglobin.” J. Biol. Chem. 244(14):3909-3912.
[149] Benesch, R. E. 1994. “The stability of the heme-globin linkage: measurement of heme exchange.” Methods Enzymol. 231:496-502.
[150] Benesch, R. and Benesch, R. E. 1967. “The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin.” Biochem. Biophys. Res. Commun. 26:162-174.
[151] Gerber, G.; Berger, H.; Janig, G. R. and Rapoport, S. M. 1973. “Interaction of haemoglobin with ions. Quantitative description of the state of magnesium, adenosine 5’-triphosphate, 2,3-bisphosphoglycerate, and human haemoglobin under simulated intracellular conditions.” Eur. J. Biochem. 38:563-571.
[152] Vicario, P. P. and Bennun, A. 1990. “Separate effects of Mg2+, MgATP, and ATP4- on the kinetic mechanism for insulin receptor tyrosine kinase.” Archives of Biochemistry and Biophysics 278:99-105.
[153] Fermi, G. and Perutz, M. F. 1982. In: Atlas of molecular structures in Biology, 2 Haemoglobin and Myoglobin D.C., Phillips and Richards F.M. (Eds.) Clarendon Press, Oxford.
[154] Rifkind, J. M. and Heim, J. M. 1977. “Interaction of zinc and hemoglobin: binding of zinc and the oxygen affinity.” Biochemistry, 16, 4438-4443.
[155] Benesch, R. and Benesch R. E. 1969. “Intracellular organic phosphates as regulators of oxygen release by hemoglobin.” Nature, 221, 618-622.
[156] Perutz, M. F. 1970. “Stereochemistry of cooperative effects in heamoglobin.” Nature 228:726-739.
[157] Perutz, M. F.; Wilkinson, A. J.; Paoli, M. and Dodson, G. G. 1998. “The stereochemical mechanism of the cooperative effects in hemoglobin revisited.” Annu. Rev. Biophys. Biomol. Struct. 27:1-34.
[158] Panin L. E. 2014. Influence of stress hormones (adrenaline and cortisol) on structure and function of erythrocyte membranes. Book of Medicine, Endocrine Disorders. Editorial Nova Science Publishers. Editor: Alfred Bennun. Adrenaline: Production, Role in Disease and Stress, Effects on the Mind and Body, pp. 149-176.
[159] Churchill, P. C. and Churchill, M. C. 1982. “Ca-dependence of the inhibitory effect of K-depolarization on renin secretion from rat kidney slices.” Arch. Int. Pharmacodyn. Ther. 258(2):300-312.
[160] Perutz, M. F.; Paoli, M. and Lesk, A. M. 1999. “Fix L, a haemoglobin that acts as an oxygen sensor: signalling mechanism and structural basis of its homology with PAS domains.” Chem. Biol. 6:291-7.
[161] Ebbinghaus, S.; Kim, S. J.; Heyden, M.; Yu, X.; Heugen, U.; Gruebele, M.; Leitner, D. M. and Havenith, M. 2007. “An extended dynamical hydration shell around proteins.” Proc. Natl. Acad. Sci. USA. 104(52):20749-20752.
[162] Bennun, A. 1987. “A coupling mechanism to inter-relate regulatory with haem-haem interactions of haemoglobin.” Biomed. Biochim. Acta, 46(2-3):S314-9.
[163] Klug, A. and Rhodes, D. 1987. “Zinc fingers: a novel protein fold for nucleic acid recognition.” Cold Spring Harb. Symp. Quant. Biol. 52:473-82.
[164] McGrath, C. F.; Buckman, J. S.; Gagliardi, T. D.; Bosche, W. J.; Coren, L. V. and Gorelick, R. J. 2003. “Human cellular nucleic acid-binding protein Zn2+ fingers support replication of human immunodeficiency virus type 1 when they are substituted in the nucleocapsid protein.” J. Virol. 77(15): 8524-31.
[165] Deuticke, B.; Duhm, J. and Dierkesmann, R. 1971. “Maximal elevation of 2,3-diphosphoglycerate concentrations in human erythrocytes: Influence on glycolytic metabolism and intracellular Ph.” Pflugers Arch., 326(1):15-34.
[166] Brewer, G. J. 1974. General red cell metabolism. In: Surgenor D. ed. The red blood cell. New York: Academic Press, 387-433.
[167] Thomas, E. L.; King, L. E. and Morrison, M. 1979. “The uptake of cyclic AMP by human erythrocytes and its effect of membrane phosphorylation.” Archs. Biochem. Biophys. 196:459-464.
[168] DeBari, V. A. and Bennun, A. 1982. “Cyclic GMP in the human erythrocyte. Intracellular levels and transport in normal subjects and chronic hemodialysis patients.” Clin. Biochem. 15:219-221.
[169] DeBari, V. A.; Novak, N. A. and Bennun, A. 1984. “Cyclic Nucleotide Metabolism in the Human Erythrocyte.” Clin. Physiol. Biochem. 2:227-238.
[170] Novembre, P.; Nicotra, J.; DeBari, V. A.; Needle, M. A. and Bennun, A. 1984. “Erythrocyte transport of cyclic nucleotides.” Annals of the New York Academy of Sciences 435:190-194.
[171] Marie, J.; Tichonicky, L.; Dreyfus, J. C. and Kahn, A. 1979. “Endogenous, cyclic 3’,5’ AMP-dependent phosphorylation of Human red cell pyruvate kinase.” Bichem. Biophys. Res. Commun. 87:862-867.
[172] Bennun, A.; Needle, M. A. and De Bari, V. A. 1985. “Stimulation of the hexose monophosphate pathway in the human erythrocyte by Mn2+: Evidence for a Mn2+-dependent NADPH peroxidase activity.” Biochemical Medicine 33:17-21.
[173] Vicario P. P. and Bennun, A. 1989. “Interaction of MnATP and peptide substrate with insulin receptor tyrosine kinase.” Biochem. Soc. Trans. 17(6):1108-9.
[174] Vicario P. P. and Bennun, A. 1989. “Regulation of insulin receptor tyrosine kinase by metabolic intermediates.” Biochem. Soc. Trans. 17(6):1110-1.
[175] Vicario, P. P.; Saperstein, R. and Bennun, A. 1988. “Role of divalent metals in the kinetic mechanism of insulin receptor tyrosine kinase.” Arch. Biochem. Biophys. 261(2):336-45.
[176] Bennun A. 2012. Molecular Mechanisms Integrating Adenylyl Cyclase Responsiveness to Metabolic Control on Long-Term Emotional Memory and Associated Disorders. Nova Science Publishers, Inc. Long-Term Memory: Mechanisms, Types and Disorders (1-44). New York, USA.
[177] Ohanian, H.; Borhanian, K. and Bennun, A. 1978. “The effect of manganese on the regulation of brain adenylate cyclase by magnesium and adenosine triphosphate.” Biochem. Soc. Trans. 6(6):1179-82.
[178] Taqui-Khan, M. M. and Martell, A. E. 1962. “Metal chelates of adenosine triphosphate.” J. Phys. Chem. 66:10-15.
[179] Taqui-Khan, M. M.; Martell, A. E. 1966. “Thermodynamic quantities associated with the interaction of adenosine triphosphate with metal ions.” J. Am. Chem. Soc. 88:668-671.
[180] Bailey, C. H. and Kandel, E. R. 2008. “Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia.” Prog Brain Res. 169:179-98.
[181] Reis, G. F.; Lee, M. B.; Huang, A. S. and Parfitt, K. D. 2005. “Adenylate cyclase-mediated forms of neuronal plasticity in hippocampal area CA1 are reduced with aging.” J. Neurophysiol. 93(6):3381-9.
[182] Veloso, D.; Guynn, R. W.; Oskarsson, M. and Veech, R. L. 1973. “The concentrations of free and bound magnesium in rat tissues. Relative constancy of free Mg2+ concentrations.” J. Biol. Chem. 248(13):4811-4819.
[183] Rasmussen, H. 1970. “Cell communication, calcium ion, and cyclic adenosine monophosphate.” Science 170(3956):404-412.
[184] Rasmussen, H. and Goodman D. B. 1975. “Calcium and cAMP as interrelated intracellular messengers.” Ann. N.Y. Acad. Sci. 253:789-796.
[185] León, D.; Castillo, C. A.; Ruiz, M. A.; Albasanz, J. L.and Martín., M. 2007. “Metabotropic glutamate receptor/phospholipase C pathway is increased in rat brain at the end of pregnancy.” Neurochem Int. 50(5):681-8.
[186] López-Téllez, J. F.; López-Aranda, M. F.; Navarro-Lobato, I.; Masmudi-Martín, M.; Martín Montañez, E.; Blanco Calvo E. and Khan, Z. U. 2010. “Prefrontal Inositol Triphosphate Is Molecular Correlate of Working Memory in Nonhuman Primates.” The Journal of Neuroscience, 30(8):3067-3071.
[187] Strader, C. D.; Dixon, R. A.; Cheung, A. H.; Candelore, M. R.; Blake, A. D. and Sigal, I. S. 1987. “Mutations that uncouple the beta-adrenergic receptor from Gs and increase agonist affinity.” J. Biol. Chem. 262:16439-43.
[188] Honore, T.; Lauridsen, J. and Krogsgaard-Larsen P. 1982. “The binding of [3H]AMPA, a structural analogue of glutamic acid, to rat brain membranes.” Journal of Neurochemistry 38(1):173-178.
[189] Gray E. G. 1959. “Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscopic study.” J. Anat. 93:420-33.
[190] Johnston G. A. R. 1996. “GABAA Receptor Pharmacology.” Pharmacology and Therapeutics, 69 (3), 173-198.
[191] Chen, K.; Li, H. Z.; Ye, N.; Zhang, J. and Wang, J. J. 2005. “Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro.” Brain Res Bull 67(4):310-8.
[192] Crispino, M.; Kaplan, B. B. and Martin R. 1997. “Active polysomes are present in the large presynaptic endings of the synaptosomal fraction from squid brain.” J. Neurosci. 17:7694-702.
[193] Crivellato, E.; Nico, B. and Ribatti, D. 2005. “Ultrastructural evidence of piecemeal degranulation in larg dense-core vesicles of brain neurons.” Anat. Embryol. (Berl) 210:25-34.
[194] De Camilli, P.; Slepnev, V. I.; Shupliakov, O. 2000. The estructure of synapses. In: Cowen W. M., Sudhof T. C., Stevens C. F., eds. The structure of synapses. Baltimore, M. D.: The Johns Hopkins University Press, 2000, 89-133.
[195] Deller, T.; Bas Orth, C.; Del Turco, D.; Vlachos, A.; Burbach, G. J.; Drakew, A.; Chabanis, S.; Korte, M.; Schwegler, H.; Haas, C. A. and Frotscher, M. 2007. “A role for synaptopodin and the spine apparatus in hippocampal synaptic plasticity.” Ann. Anat. 189(1):5-16.
[196] Fornai, F. 2007. Norepinephrine in neurological disorders. In: Ordway GA, Schwartz MA, Frazer A, editors. Brain Norepinephrine - Neurobiology and Therapeutics. Cambridge: University Press; pp. 436-71.
[197] Simpson, K. L. and Lin, R. C. S. 2007. Neuroanatomical and chemical organization of the locus Coeruleus. In: Ordway GA, Schwartz MA, Frazer A, editors. Brain Norepinephrine - Neurobiology and Therapeutics. Cambridge: University Press; pp. 9-52.
[198] Brodal, A. 1981. The reticular formation and some related nuclei. The nucleus locus coeruleus. In: Brodal A, editor. Neurological anatomy in relation to clinical medicine. New York: Oxford University Press; pp. 416-419.
[199] Nieuwenhuys, J. V.; Voogd, J. and vanHuijzen, C. 1988. The human central nervous system: a synopsis and atlas. Berlin: Springer.
[200] Fornai, F.; di Poggio, A. B.; Pellegrini, A.; Ruggieri, S. and Paparelli, A. 2007. “Norepinephrine in Parkinson’s disease: from disease progression to current therapeutics.” Curr. Med. Chem. 14:2330-2334.
[201] Fornai, F.; Ruffoli, R.; Giorgi, F. S. and Paparelli, A. 2011. “The role of locus coeruleus in the antiepileptic activity induced by vagus nerve stimulation.” Eur. J. Neurosci. 33:2169-2178.
[202] Zhou, W.; Qian, Y., Kunjilwar, K., Pfaffinger, P. J., and Choe, S. 2004. “Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels.” Neuron. 41(4):573-586.
[203] Norris, J. G. and Benveniste, E. N. 1993. “Interleukin-6 production by astrocytes: induction by the neurotransmitter norepinephrine.” J. Neuroimmunol. 45:137-145.
[204] Kingham, P. J. and Pocock, J. M. 2000. “Microglial apoptosis induced by chromograinin A is mediated by mitochondrial depolarisation and the permeability transition but not by cytochrom C release.” J. Neurochem. 74:1452-1462.
[205] Engelhardt, B. and Sorokin, L. 2009. “The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction.” Semin Immunopathol. 31(4):497-511
[206] Buxbaum, J. D.; Choi, E. K.; Luo, Y.; Lilliehook, C.; Crowley, A. C.; Merriam, D. E. and Wasco, W. 1998. “Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment.” Nat. Med. 4(10):1177-1181.
[207] An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. 2000. “Modulation of A-type potassium channels by a family of calcium sensors.” Nature 403(6769):553-556.
[208] Carrion, A. M.; Mellstrom, B. and Naranjo, J. R. 1998. “Protein kinase A-dependent derepression of the human prodynorphin gene via differential binding to an intragenic silencer element.” Mol. Cell. Biol. 18(12):6921-6929.
[209] Ledo, F.; Link, W. A.; Carrion, A. M.; Echeverria, V.; Mellstrom, B. and Naranjo, J. R. 2000. “The DREAM-DRE interaction: key nucleotides and dominant negative mutants.” Biochim. Biophys. Acta 1498(2-3):162-168.
[210] Osawa, M.; Dace, A.; Tong, K. I.; Valiveti, A.; Ikura, M. and Ames, J. B. 2005. “Mg2+ and Ca2+ Differentially Regulate DNA Binding and Dimerization of DREAM.” J Biol Chem. 280(18):18008-14.
[211] Bekar, L. K.; Wei, H. S. and Nedergaard, M. 2012. “The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand.” J. Cereb Blood Flow Metab. 32(12):2135-45.
[212] Wang, F.; Smith, N.A.; Xu, Q.; Fujita, T.; Baba, A.; Matsuda, T.; Takano, T.; Bekar, L. and Nedergaard, M. 2012. “Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+.” Sci. Signal. 5(218):ra26.
[213] Goldin, A. L.; Barchi, R. L.; Caldwell, J. H.; Hofmann, F.; Howe, J. R.; Hunter, J. C.; Kallen, R. G.; Mandel, G.; Meisler, M. H.; Netter, Y. B.; Noda, M.; Tamkun, M. M.; Waxman, S. G.; Wood. J. N. and Catterall, W. A. 2000. “Nomenclature of voltage-gated sodium channels.” Neuron. 28(2):365-8.
[214] Barchi, R. L. 1998. “Ion channel mutations affecting muscle and brain.” Curr Opin Neurol. 11(5):461-8.
[215] Sun, W.; Barchi, R. L. and Cohen, S. A. 1995. “Probing sodium channel cytoplasmic domain structure. Evidence for the interaction of the rSkM1 amino and carboxyl termini.” J. Biol. Chem. 270(38):22271-6.
[216] Kleopa, K. A. and Barchi R. L. 2002. “Genetic disorders of neuromuscular ion channels.” Muscle Nerve. 26(3):299-325.
[217] Kraner, S. D.; Rich, M. M.; Sholl, M. A.; Zhou, H.; Zorc, C. S.; Kallen, R. G. and Barchi, R. L. 1999. “Interaction between the skeletal muscle type 1 Na+ channel promoter E-box and an upstream repressor element. Release of repression by myogenin.” J. Biol Chem. 274(12):8129-36.
[218] Barchi, R. L.; Rich, M. M. and Kraner, S. D. 1999. “Altered gene expression in steroid-treated denervated muscle.” Neurobiol Dis. 6(6):515-22.
[219] Neuwelt, E. A.; Bauer, B.; Fahlke, C.; Fricker, G.; Iadecola, C.; Janigro, D.; Leybaert, L.; Molnár, Z.; O’Donnell, M. E.; Povlishock, J. T.; Saunders, N. R.; Sharp, F.; Stanimirovic, D.; Watts, R. J. and Drewes, L. R. 2011. “Engaging neuroscience to advance translational research in brain barrier biology.” Nat. Rev. Neuroscience 12(3):169-182.
[220] Bourtchuladze, R.; Frenguelli, B.; Blendy, J.; Cioffi, D.; Schutz, G. and Silva, A. J. 1994. “Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein.” Cell 79(1):59-68.
[221] Mørk, A. and Geisler, A. 1987. “Effects of lithium on calmodulin-stimulated adenylate cyclase activity in cortical membranes from rat brain.” Pharmacology and Toxicology 60(1):17-23.
[222] Jung, J. S.; Bhat, R. V.; Preston, G. M.; Guggino, W. B.; Baraban, J. M. and Agre, P. 1994. “Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance.” Proc Natl Acad Sci USA 91(26):
13052-6.
[223] Musa-Aziz, R.; Chen, L. M.; Pelletier, M. F. and Boron, W. F. 2009. “Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG.” Proc. Natl. Acad. Sci. USA. 106(13):5406-11.
[224] Benfenati, V. and Ferroni, S. 2010. “Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels.” Neuroscience 168:926-940.
[225] Cerdan, S. and Seelig, J. 1990. “NMR studies of metabolism.” Annu. Rev. Biophys. Biophys. Chem. 19:43-67.
[226] Kunnecke, B. 1995. Application of 13C NMR spectroscopy to metabolic studies on animals, in Carbon-13 NMR Spectroscopy of Biological Systems, ed. N. Beckman (New York: Academic Press, Inc.), 159–267.
[227] Morris, P., and Bachelard, H. 2003. “Reflections on the application of C-13-MRS to research on brain metabolism.” NMR Biomed. 16:303-312.
[228] Rodrigues, T. B., and Cerdán, S. 2007. The cerebral tricarboxylic acid cycles. In Handbook of Neurochemistry and Molecular Neurobiology, eds A. Lajtha, G. Gibson, and G. Dienel (New York: Springer), 63-91.
[229] Rodrigues, T. B.; Valette, J. and Anne-Karine Bouzier-Sore. 2013. “13C NMR spectroscopy applications to brain energy metabolism.” Front. Neuroenergetics 5:9.
[230] Cerdan, S.; Sierra, A.; Fonseca, L. L.; Ballesteros, P. and Rodrigues, T. B. 2009. “The turnover of the H3 deuterons from (2-13C) glutamate and (2-13C) glutamine reveals subcellular trafficking in the brain of partially deuterated rats.” J. Neurochem. 109(Suppl. 1):63-72.
[231] Friebolin, H. 1991. Basic One- and Two-dimensional NMR Spectroscopy. Verlagsgesellschaft; New York, NY, USA : VCH Publishers.
[232] Chowdhury, G. M. I.; Patel, A. B.; Mason, G. F.; Rothman, D. L. and Behar K. L. 2007. “Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development.” J Cereb Blood Flow Metab 27(12):1895-1907.
[233] Brekke, E. M.; Walls, A. B.; Schousboe, A.; Waagepetersen, H. S. and Sonnewald, U. 2012. “Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons.” J Cereb Blood Flow Metab 32(9):1788-1799.
[234] Norenberg, M. D. and Martinez-Hernandez, A. 1979. “Fine structural localization of glutamine synthetase in astrocytes of rat brain.” Brain Res. 161:303-310.
[235] Ozkan, E. D., and Ueda, T. 1998. “Glutamate transport and storage in synaptic vesicles.” Jpn. J. Pharmacol. 77:1-10.
[236] Amaral, A. I., Teixeira, A. P., Sonnewald, U., and Alves, P. M. 2011. “Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation.” J. Neurosci. Res. 89, 700-710.
[237] Birnbaum, S. M.; Levintow, L.; Kingsley, R. B. and Greenstein, J. P. 1952. “Specificity of amino acid acylases.” J. Biol. Chem. 194:455-470.
[238] Miller, D. S. 2010. “Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier.” Trends Pharmacol. Sci. 31:246-254.
[239] Abbott, N. J.; Rönnbäck, L. and Hansson, E. 2006. “Astrocyte-endothelial interactions at the blood–brain barrier.” Nature Rev. Neurosci. 7(1):41-53.
[240] Iadecola, C. and Nedergaard, M. 2007. “Glial regulation of the cerebral microvasculature.” Nature Neurosci. 10:1369-1376.
[241] Kimelberg, H. K. and Nedergaard, M. 2010. “Functions of astrocytes and their potential as therapeutic targets.” Neurotherapeutics 7:338-353.
[242] Simard, M.; Arcuino, G.; Takano, T.; Liu, Q. S. and Nedergaard, M. 2003. “Signalling at the gliovascular interface.” J. Neurosci. 23:9254-9262.
[243] Davidson, A. L.; Dassa, E.; Orelle, C. and Chen, J. 2008. “Structure, function, and evolution of bacterial ATP-binding cassette systems.” Microbiol. Mol. Biol. Rev. 72(2):317-64.
[244] Goffeau, A.; de Hertogh, B. and Baret, P. V. 2004. ABC Transporters. In: Encyclopedia of Biological Chemistry, 1:1-5.
[245] Jones, P. M. and George, A. M. 2004. “The ABC transporter structure and mechanism: perspectives on recent research.” Cell Mol Life Sci. 61(6):682-99.
[246] Ponte-Sucre, A. 2009. ABC transporters in microorganisms. Caister Academic Press. ISBN 978-1-904455-49-3.
[247] Perea, G.; Navarrete, M. and Araque, A. 2009. “Tripartite synapses: astrocytes process and control synaptic information.” Trends. Neurosci. 32:421-431.
[248] Gadsby, D. C.; Bezanilla, F.; Rakowski, R. F.; De Weer, P. and Holmgren, M. 2012. “The dynamic relationships between the three events that release individual Na+ ions from the Na+/K+-ATPase.” Nature Cell Biology 14:416-423.
[249] Prigogine, I.; Lefever, R.; Goldbeter, A. and Herschkowitz-Kaufman, M. 1969. “Symmetry breaking instabilities in biological systems.” Nature 223(5209):913-6.
[250] Thompson, S. W.; Dray, A. and Urban, L. 1994. “Injury-induced plasticity of spinal reflex activity: NK1 neurokinin receptor activation and enhanced A- and C-fiber mediated responses in the rat spinal cord in vitro.” J Neurosci. 14(6):3672-87.
[251] Guinzel, D. and Schlue, W. R. 1996. “Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis.” Journal of Physiology 491(3):595-608.
[252] Jardetzky, O. 1966. “Simple allosteric model for membrane pumps.” Nature 211:969-970.
[253] Clausen, J. D.; McIntosh, D. B.; Woolley, D. G. and Andersen, J. P. 2011. “Modulatory ATP binding affinity in intermediate states of E2P dephosphorylation of sarcoplasmic reticulum Ca2+-ATPase.” J. Biol. Chem. 286:11792-11802.
[254] Jensen, A. M.; Sorensen, T. L.; Olesen, C.; Moller, J. V. and Nissen, P. 2006. “Modulatory and catalytic modes of ATP binding by the calcium pump.” EMBOJ. 25:2305-2314.
[255] Bublitz, M.; Morth, J. P. and Nissen, P. 2011. “P-type ATPases at a glance.” J. Cell Sci. 124(Pt 15):2515-9.
[256] Albers, R. W. 1967. “Biochemical aspects of active transport.” Annu. Rev. Biochem. 36:727-756.
[257] Olesen, C.; Picard, M.; Winther, A. M.; Gyrup, C.; Morth, J. P.; Oxvig, C.; Moller, J. V. and Nissen, P. 2007. “The structural basis of calcium transport by the calcium pump.” Nature 450:1036-1042.
[258] Raben, M. S. and Hollemberg, C. H. 1959. “Effect of growth hormone on plasma fatty acids.” J. Clin. Invest. 38(3):484-8.
[259] Lefkowitz, R. J. 2007. “Seven transmembrane receptors: something old, something.” New. Acta Physiol. (Oxf.) 190(1):9-19.
[260] William, R. 2010. “Robert Lefkowitz: godfather of G protein-coupled receptors.” Circ. Res. 106(5):812-4.
[261] Mazzocchi, G.; Malendowicz, L. K.; Gottardo, L.; Aragona, F. and Nussdorfer, G. G. 2001. “Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade.” J. Clin. Endocrinol. Metab. 86(2):778-82.
[262] Sutherland, E. W.; Rall, T. W. and Menon, T. 1962. “Adenylyl cyclase. I. Distribution, preparation, and properties.” J. Biol. Chem. 237:1220-7.
[263] Pupim, L. B.; Flakoll, P. J.; Yu, C. and Ikizler, T. A. 2005. “Recombinant human growth hormone improves muscle amino acid uptake and whole-body protein metabolism in chronic hemodialysis patients.” Am. J. Clin. Nutr. 82(6):1235-1243.
[264] Grimm, S.; Pestke, K.; Feeser, M.; Aust, S.; Weigand, A.; Wang, J.; Wingenfeld, K.; Pruessner, J.C.; Böker, H. and Bajbouj, M. 2014. “Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress.” Soc Cogn Affect Neurosci. Jan 28. [Epub ahead of print][265] Taelman, V. F.; Dobrowolski, R.; Plouhinec, J. L.; Fuentealba, L. C.; Vorwald, P. P.; Gumper, I.; Sabatini, D. D. and De Robertis, E. M. 2010. “Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes.” Cell. 143(7):1136-48.
[266] Zeigerer, A.; Lampson, M. A.; Karylowski, O.; Sabatini, D. D.; Adesnik, M.; Ren, M. and McGraw, T. E. 2002. “GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps.” Mol. Biol. Cell. 13(7):2421-35.
[267] Barbacid, M. 1994. “The Trk family of neurotrophin receptors.” J. Neurobiol. 25(11):1386-403.
[268] Rapp, G.; Klaudiny, J.; Hagendorff, G.; Luck, M. R. and Scheit, K. H. 1989. “Complete sequence of the coding region of human elongation factor 2 (EF-2) by enzymatic amplification of cDNA from human ovarian granulosa cells.” Biol. Chem. Hoppe Seyler. 370(10):1071-5.
[269] Vicario, P. P.; Saperstein, R. and Bennun, A. 1988. “Regulation of insulin receptor tyrosine kinase by divalent metal cations, metal-ATP substrate and free ATP4-.” Biochem. Soc. Trans. 16:40-42.
[270] Hunter, T. 2009. “Tyrosine phosphorylation: thirty years and counting.” Current Opinion in Cell Biology 21(2):140–146.
[271] Hunter, T. and Sefton, B. M. 1980. “Transforming gene product of Rous sarcoma virus phosphorylates tyrosine.” Proc. Natl. Acad. Sci. USA 77(3 I):1311–1315.
[272] Eckhart, W.; Hutchinson, M. A. and Hunter, T. 1979. “An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates.” Cell 18(4):925–933.
[273] Bishop, J. M. 1991. “Molecular themes in oncogenesis.” Cell 64(2):235–248.
[274] Grangeasse, C.; Cozzone, A. J.; Deutscher, J. and Mijakovic, I. 2007. “Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology.” Trends in Biochemical Sciences 32(2):86–94.
[275] Pincus, D.; Letunic, I.; Bork, P. and Lim, W. A. 2008. “Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages.” Proc. Natl. Acad. Sci. USA. 105(28):9680–9684.
[276] Thomas, S. M. and Brugge, J. S. 1997. “Cellular functions regulated by SRC family kinases.” Annu. Rev. Cell Dev. Biol. 13:513–609.
[277] Yanagimachi, R. 1994. Mammalian fertilization. in The Physiology of Reproduction, Knobil, E. and Neil, J. D. Eds., pp. 189–317, Raven Press, New York, NY, USA, 1994.
[278] Wei, G. and Mahowald, A. P. 1994. “The germline: familiar and newly uncovered properties.” Annual Review of Genetics 28:309–324.
[279] Darszon, A.; Nishigaki, T.; Beltran,C. and Treviño, C. L. 2011. “Calcium channels in the development, maturation, and function of spermatozoa.” Physiological Reviews 91(4):1305–1355.
[280] Toshimori, K. 2009. “Dynamics of the mammalian sperm head: modifications and maturation events from spermatogenesis to egg activation.” Advances in Anatomy, Embryology, and Cell Biology 204:5–94.
[281] Voronina, E. and Wessel, G. M. 2003. “The regulation of oocyte maturation.” Current Topics in Developmental Biology 58:53–110.
[282] Ciapa, B. and Chiri, S. 2000. “Egg activation: upstream of the fertilization calcium signal.” Biology of the Cell 92(3-4):215–233.
[283] Whitaker, M. 2006. “Calcium at fertilization and in early development.” Physiological Reviews 86(1):25–88.
[284] Takashi W. Ijiri, A. K. M. Mahbub Hasan and Ken-ichi Sato. 2012. “Protein-Tyrosine Kinase Signaling in the Biological Functions Associated with Sperm.” Journal of Signal Transduction Article ID 181560, 18 pages.
[285] White, D. R. and Aitken, R. J. 1989. “Influence of epididymal maturation on cyclic AMP levels in hamster spermatozoa.” Int. J. Androl. 12(1):29-43.
[286] Gavi, S.; Shumay, E.; Wang, H. Y. and Malbon, C. C. 2006. “G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation.” Trends. Endocrinol. Metab. 17(2):48-54.
[287] Hendriks, W. J.; Elson, A.; Harroch, S.; Pulido, R.; Stoker, A and den Hertog, J. 2013. “Protein tyrosine phosphatases in health and disease.” FEBS J. 280(2):708-30.
[288] Sahin, M.; Dowling, J. J. and Hockfield, S. 1995. “Seven protein tyrosine phosphatases are differentially expressed in the developing rat brain.” J. Comp Neurol. 351(4):617-31.
[289] Petrone, A.; Battaglia, F.; Wang, C.; Dusa, A.; Su, J.; Zagzag, D.; Bianchi, R.; Casaccia-Bonnefil, P.; Arancio, O. and Sap, J. 2003. “Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation.” EMBO J. 22(16):4121-31.
[290] Skelton, M. R.; Ponniah, S.; Wang, D. Z.; Doetschman T.; Vorhees, C. V. and Pallen, C. J. 2003. “Protein tyrosine phosphatase alpha (PTP alpha) knockout mice show deficits in Morris water maze learning, decreased locomotor activity, and decreases in anxiety.” Brain Res. 984(1-2):1-10.
[291] Ohnishi, H.; Murata, Y.; Okazawa, H. and Matozaki, T. 2011. “Src family kinases: modulators of neurotransmitter receptor function and behavior.” Trends Neurosci. 34(12):629-37.
[292] Takahashi, N.; Nielsen, K. S.; Aleksic, B.; Petersen, S.; Ikeda, M.; Kushima, I.; Vacaresse, N.; Ujike, H.; Iwata, N.; Dubreuil, V.; Mirza, N.; Sakurai, T.; Ozaki, N.; Buxbaum, J. D. and Sap, J. 2011. “Loss of function studies in mice and genetic association link receptor protein tyrosine phosphatase α to schizophrenia.” Biol. Psychiatry. 70(7):626-35.
[293] Impey, S.; McCorkle, S. R.; Cha-Molstad, H.; Dwyer, J.M.; Yochum, G. S.; Boss, J. M.; McWeeney, S.; Dunn, J. J.; Mandel, G. and Goodman, R. H. 2004. “Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions.” Cell. 119(7):1041-54.
[294] Alberini, C. M. 2009. “Transcription Factors in Long-Term Memory and Synaptic Plasticity.” Physiological Reviews 89(1):121-145.
[295] Carlezon, W. A. Jr.; Duman, R. S. and Nestler, E. J. 2005. “The many faces of CREB.” Trends Neurosci. 28(8):436-45.
[296] Kisseleva, T.; Bhattacharya, S.; Braunstein, J. and Schindler, C. W. 2002. “Signaling through the JAK/STAT pathway, recent advances and future challenges.” Gene. 285(1–2):1–24.
[297] Finkbeiner, S. 2001. “New roles for introns: sites of combinatorial regulation of Ca2+- and cyclic AMP-dependent gene transcription.” Sci. STKE. 2001(94), pe1.
[298] Pigazzi, M.; Manara, E.; Baron, E. and Basso, G. 2009. “miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia.” Cancer Res. 69(6):2471-8.
[299] Kornhauser, J. M.; Cowan, C. W.; Shaywitz, A. J.; Dolmetsch, R. E.; Griffith, E. C.; Hu, L. S.; Haddad, C.; Xia, Z. and Greenberg, M. E. 2002. “CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events.” Neuron. 34(2):221-33.
[300] Husi, H.; Ward, M. A.; Choudhary, J.S.; Blackstock, W. P. and Grant, S. G. 2000. “Proteomic analysis of NMDA receptor-adhesion protein signaling complexes.” Nat. Neurosci. 3(7):661-9.
[301] Chan, C. B.; Liu, X.; He, K.; Qi, Q.; Jung, D. Y.; Kim, J. K. and Ye, K. 2011. “The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity.” EMBO Rep. 12(8):847-54.
[302] Rana, S.; Blowers, E. C. and Natarajan, A. 2015. “Small molecule adenosine 5′-monophosphate activated protein kinase (AMPK) modulators and human diseases.” J. Med. Chem. 58(1):2-29.
[303] Lindsley, J. E. and Rutter, J. 2004. “Nutrient sensing and metabolic decisions.” Comp Biochem Physiol B Biochem Mol Biol. 139(4):543-59.
[304] Boudeau J.; Scott, J. W.; Resta, N.; Deak, M.; Kieloch, A.; Komander, D.; Hardie, D. G.; Prescott, A. R.; van Aalten, D. M. and Alessi, D. R. 2004. “Analysis of the LKB1-STRAD-MO25 complex.” J. Cell Sci., 117(Pt 26):6365-75.
[305] Hardie, D. G.; Scott, J. W.; Pan, D. A. and Hudson, E. R. 2003. “Management of cellular energy by the AMP-activated protein kinase system.” FEBS Lett. 546(1):113-20.
[306] Michiels, C. 2004. “Physiological and pathological responses to hypoxia.” Am. J. Pathol. 164(6):1875-82.
[307] Forcet, C.; Etienne-Manneville, S.; Gaude, H.; Fournier, L.; Debilly, S.; Salmi, M.; Baas, A.; Olschwang, S.; Clevers, H. and Billaud, M. 2005. “Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity.” Hum Mol Genet. 14(10):1283-92.
[308] Atkinson, D. E. 1968. “The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers.” Biochemistry 7(11):4030-4034.
[309] Kumar, A.; Rassoli, A. and Raizada, M. K. 1988. “Angiotensinogen gene expression in neuronal and glial cells in primary cultures of rat brain.” J. Neurosci. Res. 19(3):287–290.
[310] Thomas, W. G.; Greenland, K. J.; Shinkel, T. A. and Sernia, C. 1992. “Angiotensinogen is secreted by pure rat neuronal cell cultures.” Brain Res 588(2):191–200.
[311] Palkovits, M.; Mezey, E.; Fodor, M.; Ganten, D.; Bahner, U.; Geiger, H. and Heidland, A. 1995. “Neurotransmitters and neuropeptides in the baroreceptor reflex arc: connections between the nucleus of the solitary tract and the ventrolateral medulla oblongata in the rat.” Clin. Exp. Hypertens. 17:101–113.
[312] Tham, M.; Sim, M. K. and Tang, F. R. 2001. “Location of renin-angiotensin system components in the hypoglossal nucleus of the rat.” Regul. Pept. 101:51–57.
[313] Mungall, B. A.; Shinkel, T. A. and Sernia, C. 1995. “Immunocytochemical localization of angiotensinogen in the fetal and neonatal rat brain.” Neuroscience 67:505–524.
[314] Thomas, W. G. and Sernia, C. 1988. “Immunocytochemical localization of angiotensinogen in the rat brain.” Neuroscience 25:319–341.
[315] Aronsson, M.; Almasan, K.; Fuxe, K.; Cintra, A.; Harfstrand, A.; Gustafsson, J. A. and Ganten, D. 1988. “Evidence for the existence of angiotensinogen mRNA in magnocellular paraventricular hypothalamic neurons.” Acta Physiol Scand 132:585–586.
[316] Yang, G.; Gray, T. S.; Sigmund, C. D. and Cassell, M. D. 1999. “The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system.” Brain Res. 817:123–131.
[317] Vinsant, S.; Chappel, M. C.; Ferrario, C. M.; Ganten, D. and Diz, D. I. 2005. “Low glial angiotensinogen is not associated with dficits in angiotensin peptides in neuronal pathways in transgenic ASrAogen rats.” FASEB J. 19:674, 4.
[318] Lobo, M. K. and Nestler, E. J. 2011. “The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons.” Front Neuroanat. 5:41.
[319] Grueter, B. A.; Robison, A. J.; Neve, R. L.; Nestler, E. J. and Malenka, R. C. 2013. “∆FosB differentially modulates nucleus accumbens direct and indirect pathway function.” Proc. Natl. Acad. Sci. USA. 110(5):1923-8.
[320] Swanson, L. W. 1982. “The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat.” Brain Res. Bull. 9(1-6):321-53.
[321] Berger, M.; Gray, J. A and Roth, B. L. 2009. “The expanded biology of serotonin.” Annu. Rev. Med. 60:355–66.
[322] Nixon, N. L. et. al. 2014. “Biological vulnerability to depression: linked structural and functional brain network findings.” The British Journal of Psychiatry 204(4):283-289.
[323] Young, S. N. 2007. “How to increase serotonin in the human brain without drugs.” Rev. Psychiatr. Neurosci. 32(6):394-99.
[324] Nichols, D. E. and Nichols, C. D. 2008. “Serotonin receptors.” Chem. Rev. 108(5):1614-41.
[325] Petersson, M.; Uvnäs-Moberg, K.; Erhardt, S. and Engberg, G. 1998. “Oxytocin increases locus coeruleus alpha 2-adrenoreceptor responsiveness in rats.” Neurosci. Lett. 255(2):115-8.
[326] Ahlquist, R.P. 1948. “A study of the adrenotrophic receptors.” Am. J. Physiol. 155:586-600.
[327] Limbird L. E. 2005. Cell Surface Receptors: A Short Course on Theory and Methods. 3rd Edition Springer.
[328] Hicks, C.; Jorgensen, W.; Brown, C.; Fardell, J.; Koehbach, J.; Gruber, C. W.; Kassiou, M.; Hunt, G. E. and McGregor, I. S. 2012. “The nonpeptide oxytocin receptor agonist WAY 267,464: receptor-binding profile, prosocial effects and distribution of c-Fos expression in adolescent rats.” J. Neuroendocrinol. 24(7):1012-29.
[329] McGregor, I. S.; Callaghan, P. D. and Hunt, G. E. 2008. “From ultrasocial to antisocial: a role for oxytocin in the acute reinforcing effects and long-term adverse consequences of drug use?” Br. J. Pharmacol. 154(2):358-368.
[330] Caldwell, H. K., and Young W. S. III. 2006. Oxytocin and Vasopressin: Genetics and Behavioral Implications. In Lajtha A, Lim R. Handbook of Neurochemistry and Molecular Neurobiology: Neuroactive Proteins and Peptides (3rd ed.). Berlin: Springer. pp. 573–607.
[331] Kiss, A. and Mikkelsen, J. D. 2005. “Oxytocin--anatomy and functional assignments: a minireview.” Endocr. Regul. 39(3):97-105.
[332] Veenema, A. H. and Neumann, I. D. 2008. “Central vasopressin and oxytocin release: regulation of complex social behaviours.” Progress in Brain Research 170:261–76.
[333] Gimpl, G.; Fahrenholz, F. 2001. “The oxytocin receptor system: structure, function, and regulation.” Physiol. Rev. 81(2):629-83.
[334] Devost, D.; Wrzal, P. and Zingg, H. H. 2008. “Advances in vasopressin and oxytocin from genes to behaviour to disease.” Prog. Brain Res. 170:167-76.
[335] Gimpl, G.; Reitz, J.; Brauer, S. and Trossen, C. 2008. “Advances in Vasopressin and Oxytocin from Genes to Behaviour to Disease.” Prog. Brain Res. 170:193-204.
[336] Striepens, N.; Kendrick, K. M.; Hanking, V.; Landgraf, R.; Wüllner, U.; Maier, W. and Hurlemann, R. 2013. “Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans.” Sci. Rep. 3:3440.
[337] Ku, C. Y.; Qian, A.; Wen, Y.; Anwer, K. and Sanborn B. M. 1995. “Oxytocin stimulates myometrial guanosine triphosphatase and phospholipase-C activities via coupling to G alpha q/11.” Endocrinology 136(4):1509-1515.
[338] Bhalla, R. C.; Sanborn, B. M. and Korenman, S. G. 1972. “Hormonal interactions in the uterus: inhibition of isoproterenol-induced accumulation of adenosine 3’:5’-cyclic monophosphate by oxytocin and prostaglandins.” Proc. Natl. Acad. Sci. USA 69(12):3761–3764.
[339] Anwer, K. and Sanborn, B. M. 1989. “Changes in intracellular free calcium in isolated myometrial cells: role of extracellular and intracellular calcium and possible involvement of guanine nucleotide-sensitive protein.” Endocrinology 124:17–23.
[340] Marieb, E. N. and Hoehn K. N. 2012. Human Anatomy & Physiology 9th edition, chapter:16, page:599. Series: Books a la Carte. Publisher: Pearson.
[341] Lee, H. J.; Macbeth, A. H.; Pagani, J. H. and Young, W. S. 2009. “Oxytocin: the great facilitator of life.” Prog. Neurobiol. 88(2):127-51.
[342] De Dreu, C. K.; Greer, L. L.; Van Kleef G. A.; Shalvi, S. and Handgraaf, M. J. 2011. “Oxytocin promotes human ethnocentrism.” Proc. Natl. Acad. Sci. U.S.A. 108(4):1262-6.
[343] Malik, A. I.; Zai, C. C.; Abu, Z.; Nowrouzi, B. and Beitchman, J. H. 2012. “The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression.” Genes Brain Behav. 11(5):545–51.
[344] Shalvia, S. and De Dreub, C. 2014. “Oxytocin promotes group-serving dishonesty.” Proc. Natl. Acad. Sci. USA 111(15):5503-5507.
[345] Banks, W. A.; Owen, J. B. and Erickson, M. A. 2012. “Insulin in the brain: there and back again.” Pharmacol. Ther. 136(1):82-93.
[346] Kamat, P. K.; Kalani, A.; Rai, S.; Tota, S. K.; Kumar, A. and Ahmad, A. S. 2015 (Aug 23). “Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer’s Disease (sAD)-Like Pathology.” Mol. Neurobiol. [Epub ahead of print].
[347] Mitra, J. K.; Roy, J. and Sengupta, S. 2011. “Vasopressin: Its current role in anesthetic practice.” Indian. J. Crit. Care. Med. 15(2):71-7.
[348] Bernal-Mizrachi, E.; Wen, W.; Srinivasan, S.; Klenk, A.; Cohen D. and Permutt, M. A. 2001. “Activation of Elk-1, an Ets transcription factor, by glucose and EGF treatment of insulinoma cells.” Am. J. Physiol. Endocrinol. Metab. 281(6):E1286-99.
[349] Suh, Y. A.; Arnold, R. S.; Lassegue, B.; Shi, J.; Xu, X.; Sorescu, D.; Chung, A. B.; Griendling, K. K. and Lambeth, J. D. 1999. “Cell transformation by the superoxide-generating oxidase Mox1.” Nature 401(6748):79–82.
[350] Ciobica, A.; Bild, W.; Hritcu, L. and Haulica, I. 2009. “Brain renin-angiotensin system in cognitive function: pre-clinical findings and implications for prevention and treatment of dementia.” Acta Neurol. Belg. 109(3):171-80.
[351] Fischer-Ferraro, C.; Nahmod, V. E.; Goldstein, D. J. and Finkielman S. 1971. “Angiotensin and renin in rat and dog brain.” J. Exp. Med. 133:353-361.
[352] Ganten, D.; Minnich, J. L.; Granger, P.; Hayduk, K.; Brecht, H. M.; Barbeau, A.; Boucher, R. and Genest, J. 1971. “Angiotensin-forming enzyme in brain tissue.” Science 173:64-65.
[353] Dzau, V. J.; Ingelfinger, J.; Pratt, R. E. and Ellison, K. E. 1986. “Identification of renin and angiotensinogen messenger RNA sequences in mouse and rat brains.” Hypertension 8:544-548.
[354] Ganten, D.; Fuxe, K.; Phillips, M. I.; Mann, J. F. E. and Ganten U. 1978. The brain isorenin-angiotensin system: biochemistry, localization, and possible role in drinking and blood pressure regulation. In: Frontiers in Neuroendocrinology, edited by Ganong WF, Martini L. New York: Raven, p. 61-99.
[355] Hermann, K.; Raizada, M. K.; Sumners, C. and Phillips, M. I. 1987. “Presence of renin in primary neuronal and glial cells from rat brain.” Brain. Res. 437:205-213.
[356] Speck, G.; Poulsen, K.; Unger, T.; Rettig, R.; Bayer, C.; Scholkens, B. and Ganten, D. 1981. “In vivo activity of purified mouse brain renin.” Brain Res. 219:371-384.
[357] Choe, E.S. and Wang, J. Q. 2002. “Regulation of transcription factor phosphorylation by metabotropic glutamate receptor-associated signaling pathways in rat striatal neurons.” Neuroscience 114(3):557-65.
[358] Ahmed, T. and Frey J. U. 2005. “Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro.” Neuropharmacology. 49(4):477-92.
[359] Li, D.; Jin, L.; Alesi, G. N.; Kim, Y. M.; Fan, J.; Seo, J. H.; Wang, D.; Tucker, M.; Gu, T. L.; Lee, B. H.; Taunton, J.; Magliocca, K. R.; Chen, Z. G.; Shin, D. M.; Khuri, F. R. and Kang, S. 2013. “The prometastatic ribosomal S6 kinase 2-cAMP response element-binding protein (RSK2-CREB) signaling pathway up-regulates the actin-binding protein fascin-1 to promote tumor metastasis.” J. Biol. Chem. 288(45):32528-38.
[360] Chawla, S. and Bading, H. 2001. “CREB/CBP and SRE-interacting transcriptional regulators are fast on-off switches: duration of calcium transients specifies the magnitude of transcriptional responses.” J. Neurochem. 79(4):849-58.
[361] Nielsen, S.; Chou, C. L.; Marples, D.; Christensen, E. I.; Kishore, B. K. and Knepper, M. A. 1995. “Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane.” Proc. Natl. Acad. Sci. U.S.A. 92(4):1013-7.
[362] Lind, R. W.; Swanson, L. W. and Ganten D. 1985. “Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study.” Neuroendocrinology 40:2-24.
[363] Fuxe, K.; Ganten, D.; Hoekfelt, T. and Bolme, P. 1980. “Immunohistochemical evidence for the existence of angiotensin II-containing nerve terminal in the brain and spinal cord in the rat.” Neurosci. Lett. 2:229-239.
[364] Lind, R. W.; Swanson, L. W. and Ganten, D. 1984. “Angiotensin II immunoreactive pathways in the central nervous system of the rat: evidence for a projection from the subfornical organ to the paraventricular nucleus of the hypothalamus.” Clin. Exp. Hypertens. 6:1915-1920.
[365] Lind, R. W.; Swanson, L. W. and Ganten, D. 1984. “Angiotensin II immunoreactivity in the neural afferents and efferents of the subfornical organ of the rat.” Brain Res. 321:209-215.
[366] Pickel, V. M. and Chan, J. 1995. “Co-localization of angiotensin II and gamma-aminobutyric acid in axon terminals in the rat subfornical organ.” Neurosci. Lett. 193:89-92.
[367] Babar, S. M. 2013. “SIADH associated with ciprofloxacin.” Ann Pharmacother 47(10):1359-63.
[368] McKinley, M. J.; Albiston, A. L.; Allen, A. M.; Mathai, M. L.; May, C. N.; McAllen, R. M.; Oldfield, B. J.; Mendelsohn, F. A. and Chai, S. Y. 2003. “The brain renin-angiotensin system: location and physiological roles.” Int. J. Biochem. Cell Biol. 35(6):901-18.
[369] Grobe, J. L.; Xu, D. and Sigmund, C. D. 2008. “An Intracellular Renin-Angiotensin System in Neurons: Fact, Hypothesis, or Fantasy.” Physiology (Bethesda) 23:187-193.
[370] Lavoie, J. L.; Cassell, M. D.; Gross, K. W. and Sigmund, C. D. 2004. “Localization of renin expressing cells in the brain using a REN-eGFP transgenic model.” Physiol. Genomics 16:240–246.
[371] Lavoie, J. L.; Cassell, M. D. and Gross, K. W. and Sigmund, C. D. 2004. “Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model.” Hypertension 43:1116-1119.
[372] Morimoto, S.; Cassell, M. D. and Sigmund, C. D. 2002. “The brain renin-angiotensin system in transgenic mice carrying a highly regulated human renin transgene.” Circ. Res. 90:80-86.
[373] Emma, J. E.; Cervoni, P.; Sulner, J. W. and Bennun, A. 1986. “KCI-stimulated renin release.” Ann. New York Acad. Sci. 463:281-283.
[374] Sakima, A.; Averill, D. B.; Kasper, S. O.; Jackson, L.; Ganten, D.; Ferrario, C. M.; Gallagher, P. E. and Diz, D. I. 2007. “Baroreceptor reflex regulation in anesthetized transgenic rats with low glial-derived angiotensinogen.” Am. J. Physiol. Heart Circ. Physiol. 292(3):H1412-1419.
[375] Allen, A. M.; Dosanjh, J. K.; Erac, M.; Dassanayake, S.; Hannan, R. D. and Thomas, W. G. 2006. “Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure.” Hypertension. 47(6):1054–1061.
[376] Epstein, A. N.; Fitzsimons, J. T. and Rolls, B. J. 1970. “Drinking induced by injection of angiotensin into the rain of the rat.” J. Physiol. 210(2):457-474.
[377] Lazartigues, E.; Dunlay, S. M.; Loihl, A. K.; Sinnayah, P.; Lang, J. A.; Espelund, J. J.; Sigmund, C. D. and Davisson, R. L. 2002. “Brain-selective overexpression of angiotensin (AT1) receptors causes enhanced cardiovascular sensitivity in transgenic mice.” Circ. Res. 90(5):617-624.
[378] Petersen, R. C. 2000. “Aging, mild cognitive impairment, and Alzheimer’s disease.” Neurol. Clin. 18(4):789-806.
[379] Whitehouse, P. J.; Sciulli, C. G. and Mason, R. M. 1997. “Dementia drug development: use of information systems to harmonize global drug development.” Psychopharmacol. Bull. 33(1):129-133.
[380] Cherubini, A.; Lowenthal, D. T.; Paran, E.; Mecocci, P.; Williams, L. S. and Senin, U. 2007. “Hypertension and cognitive function in the elderly.” Am. J. Ther. 14(6):533-554.
[381] Mogi, M.; Iwanami, J. and Horiuchi, M. 2012. “Roles of brain angiotensin II in cognitive function and dementia.” Int. J. Hypertens. ID 169649:7.
[382] Chih, B.; Gollan, L. and Scheiffele, P. 2006. “Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex.” Neuron. 51(2):171-178.
[383] Song, J. Y.; Ichtchenko, K.; Südhof, T. C. and Brose, N. 1999. “Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses.” Proc. Natl. Acad. Sci. USA. 96(3):1100-1105.
[384] Barrow, S. L.; Constable, J. R.; Clark, E.; El-Sabeawy, F.; McAllister, A. K. and Washbourne, P. 2009. “Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis.” Neural. Dev. 4:17.
[385] Wittenmayer, N.; Körber, C.; Liu, H.; Kremer, T.; Varoqueaux, F.; Chapman, E. R.; Brose, N.; Kuner, T. and Dresbach, T. 2009. “Postsynaptic Neuroligin1 regulates presynaptic maturation.” Proc. Natl. Acad. Sci. USA. 106(32):13564-1369.
[386] Jung, S. Y.; Kim, J.; Kwon, O. B.; Jung, J. H.; An, K. and Jeong, A. Y. 2010. “Input-specific synaptic plasticity in the amygdala is regulated by neuroligin-1 via postsynaptic NMDA receptors.” Proc. Natl. Acad. Sci. USA. 107:4710-4715.
[387] Kim, J.; Jung, S. Y.; Lee, Y. K.; Park, S.; Choi, J. S.; Lee, C. J.; Kim, H. S.; Choi, Y. B.; Scheiffele, P.; Bailey, C. H.; Kandel, E. R. and Kim, J. H. 2008. “Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals.” Proc. Natl. Acad. Sci. USA. 105(26):9087-9092.
[388] Peixoto, R. T.; Kunz, P. A.; Kwon, H.; Mabb, A. M.; Sabatini, B. L.; Philpot, B. D. and Ehlers, M. D. 2012. “Transsynaptic signaling by activity-dependent cleavage of neuroligin-1.” Neuron. 76(2):396-409.
[389] Blundell, J.; Blaiss, C. A.; Etherton, M. R.; Espinosa, F.; Tabuchi, K.; Walz, C.; Bolliger, M. F.; Südhof, T. C. and Powell, C. M. 2010. “Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior.” J. Neurosci. 30(6):2115-2129.
[390] Wang, H.; Liu, Y.; Briesemann, M. and Yan, J. 2010. “Computational analysis of gene regulation in animal sleep deprivation.” Physiol. Genomics. 42(3):427-36.
[391] El Helou, J.; Bélanger-Nelson, E.; Freyburger, M.; Dorsaz, S.; Curie, T.; La Spada, F.; Gaudreault, P. O.; Beaumont, É.; Pouliot, P.; Lesage, F.; Frank, M. G.; Franken, P. and Mongrain, V. 2013. “Neuroligin-1 links neuronal activity to sleep-wake regulation.” Proc. Natl. Acad. Sci. USA. 110(24):9974-9979.
[392] Lawson, C. L.; Swigon, D.; Murakami, K. S.; Darst, S. A.; Berman, H. M. and Ebright, R. H. 2004. “Catabolite activator protein: DNA binding and transcription activation.” Curr. Opin. Struct. Biol. 14(1):10-20.
[393] Gupta, R.K., Gupta, P., Yushok, W.D. & Rose, Z.B. 1983. “Measurement of the dissociation constant of MgATP at physiological nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy.” Biochemical and Biophysical Research Communications 117:210–216.
[394] Serrano, R.; Kielland-Brandt, M. C. and Fink, G. R. 1986. “Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases.” Nature 319:6055.
[395] Petrzilka, S.; Taraborrelli, C.; Cavadini, G.; Fontana, A. and Birchler, T. 2009. “Clock gene modulation by TNF-alpha depends on calcium and p38 MAP kinase signaling.” J. Biol. Rhythms. 24(4):283-94.
[396] Steinmetz, C. C. and Turrigiano, G. G. 2010. “Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling.” J. Neurosci. 30(44):14685-90.
[397] Rachalski, A.; Freyburger, M. and Mongrain, V. 2014. “Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation.” Ann. Med. 46(2):62-72.
[398] Cohen, S. and Greenberg, M. E. 2008. “Communication between the synapse and the nucleus in neuronal development, plasticity, and disease.” Annu. Rev. Cell Dev. Biol. 24:183-209.
[399] Ishizuka, T. and Yamatodani, A. 2012. “Integrative role of the histaminergic system in feeding and taste perception.” Front. Syst. Neurosci. 6:44.
[400] Panula, P. and Nuutinen, S. 2013. “The histaminergic network in the brain: basic organization and role in disease.” Nat. Rev. Neurosci. 14(7):472-487.
[401] Labrie, F.; Luu-The, V.; Bélanger, A.; Lin, S. X.; Simard, J.; Pelletier, G. and Labrie, C. 2005. “Is dehydroepiandrosterone a hormone?” J. Endocrinol. 187(2):169-196.
[402] Arlt, W.; Callies, F.; van Vlijmen, J. C.; Koehler, I.; Reincke, M.; Bidlingmaier, M.; Huebler, D.; Oettel, M.; Ernst, M.; Schulte, H. M. and Allolio, B. 1999. “Dehydroepiandrosterone replacement in women with adrenal insufficiency.” N. Engl. J. Med. 341(14):1013-1020.
[403] Mazat, L.; Lafont, S.; Berr, C.; Debuire, B.; Tessier, J. F.; Dartigues, J. F. and Baulieu, E. E. 2001. “Prospective measurements of dehydroepiandrosterone sulfate in a cohort of elderly subjects: Relationship to gender, subjective health, smoking habits, and 10-year mortality.” Proc. Natl. Acad. Sci. USA. 98(14):8145-8150.
[404] Ravaglia, G.; Forti, P.; Maioli, F.; Boschi, F.; Bernardi, M.; Pratelli, L.; Pizzoferrato, A. and Gasbarrini, G. 1996. “The relationship of dehydroepiandrosterone sulfate (DHEAS) to endocrine-metabolic parameters and functional status in the oldest-old. Results from an Italian study on healthy free-living over-ninety-year-olds.” J. Clin. Endocrinol. Metab. 81(3):1173-1178.
[405] Binder, E. B. 2009. “The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders.” Psychoneuroendocrinology. 34(Suppl. 1): S186-S195
[406] Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J. C.; Pariante, C. M.; Pace, T. W.; Mercer, K. B.; Mayberg, H. S.; Bradley, B.; Nemeroff, C. B.; Holsboer, F.; Heim, C. M.; Ressler, K. J.; Rein, T. and Binder, E. B. 2013. “Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions.” Nat. Neurosci. 16(1):33-41.
[407] Slavich, G. M.; O’Donovan, A.; Epel, E. S. and Kemeny, M. E. 2010. “Black sheep get the blues: a psychobiological model of social rejection and depression.” Neurosci. Biobehav. Rev. 35(1):39-45.
[408] Carr, C. P.; Martins, C. M.; Stingel, A. M.; Lemgruber, V. B. and Juruena, M. F. 2013. “The role of early life stress in adult psychiatric disorders: a systematic review according to childhood trauma subtypes.” J. Nerv. Ment. Dis. 201(12):1007-1020.
[409] Strüber, N.; Strüber, D. and Roth, G. 2014. “Impact of early adversity on glucocorticoid regulation and later mental disorders.” Neurosci. Biobehav. Rev. 38:17-37.
[410] Teicher, M. H.; Andersen, S. L.; Polcari, A.; Anderson, C. M.; Navalta, C. P. and Kim, D. M. 2003. “The neurobiological consequences of early stress and childhood maltreatment.” Neurosci. Biobehav. Rev. 27(1-2):33-44.
[411] Senbonmatsu, T.; Saito, T.; Landon, E. J.; Watanabe, O.; Price, E. Jr.; Roberts, R. L.; Imboden, H.; Fitzgerald, T. G.; Gaffney, F. A. and Inagami, T. 2003. “A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy.” EMBO J. 22(24):6471-6482.
[412] Elton, T. S.; Kuhn, D. E.; Malana, G. E.; Martin, M. M.; Nuovo, G. J.; Pleister, A. P. and Feldman, D. S. 2008. “MiR-132 Regulates Angiotensin II Type 1 Receptor Expression Through a Protein Coding Region Binding Site.” Circulation 118(18):S513.
[413] Fan, Y. S.; Eddy, R. L.; Byers, M. G.; Haley, L. L.; Henry, W. M.; Nowak, N. J. ans Shows, T. B. 1989. “The human mineralocorticoid receptor gene (MLR) is located on chromosome 4 at q31.2.” Cytogenet. Cell Genet. 52(1-2):83-84.
[414] Fuller, P. J. and Young, M. J. 2005. “Mechanisms of mineralocorticoid action.” Hypertension. 46(6):1227-1235.
[415] Catt, K. J.; Mendelsohn, F. A.; Millan, M. A. and Aguilera, G. 1984. “The role of angiotensin II receptors in vascular regulation.” J. Cardiovasc. Pharmacol. 6(Suppl 4):S575-586.
[416] Bennun A. and Avron M. 1964. “Light-dependent and light-triggered adenosine triphosphatases in chloroplasts.” Biochim Biophys Acta 79:646-648.
[417] Bennun A. and Avron M. 1965. “The relation of the light-dependent and light-triggered adenosine triphosphatases to photophosphorylation.” Biochim. Biophys. Acta 109(1):117-127.
[418] Benarroch, E. E. 2009. “The locus ceruleus norepinephrine system: functional organization and potential clinical significance.” Neurology. 73(20):1699-704.
[419] Adolphs, R.; Cahill, L.; Schul, R. and Babinsky, R. 1997. “Impaired declarative memory for emotional material following bilateral amygdala damage in humans.” Learning & Memory 4:291-300.
[420] Cahill, L.; Babinsky, R.; Markowitsch, H. J. and McGaugh, J. L. 1995. “The amygdala and emotional memory.” Nature 377(6547):295-296.
[421] Collingridge, G. L.; Peineau, S.; Howland, J. G. and Wang, Y. T. 2010. “Long-term depression in the CNS.” Nat Rev Neurosci. 11(7):459-473.
[422] Salmans, S. 1997. Depression: Questions You Have – Answers You Need. People’s Medical Society. ISBN 978-1-882606-14-6.
[423] Pertwee, R. G. 2006. “The pharmacology of cannabinoid receptors and their ligands: an overview.” Int J Obes (Lond) 30(1):S13-8.
[424] Bluett, R. J.; Gamble-George, J. C.; Hermanson, D. J.; Hartley, N. D.; Marnett, L. J. and Patel, S. 2014. “Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation.” Translational Psychiatry 4:e408.
[425] Moreira, F. A.; Grieb, M. and Lutz, B. 2009. “Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression.” Best Pract Res Clin Endocrinol Metab 23(1):133-144.
[426] Carlson, N. 2013. Physiology of Behavior. Pearson. pp. 602-606.
[427] Porterfield, V. M.; Gabella, K. M.; Simmons, M. A. and Johnson, J. D. 2012. “Repeated stressor exposure regionally enhances beta-adrenergic receptor-mediated brain IL-1β production.” Brain Behav. Immun. 26(8):1249-1255.
[428] Talbot, K.; Wang, H. Y.; Kazi, H.; Han, L. Y.; Bakshi, K. P.; Stucky, A.; Fuino, R. L.; Kawaguchi, K. R.; Samoyedny, A. J.; Wilson, R. S.; Arvanitakis, Z.; Schneider, J. A.; Wolf, B. A.; Bennett, D. A.; Trojanowski, J. Q. and Arnold, S. E. 2012. “Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline.” J Clin Invest. 122(4):1316-1338.
[429] Van Assema, D. M.; Goos, J. D.; van der Flier, W. M.; Lubberink, M.; Boellaard, R.; Windhorst, A. D.; Scheltens, P.; Lammertsma, A. A. and van Berckel, B. N. 2012. “No evidence for additional blood-brain barrier P-glycoprotein dysfunction in Alzheimer’s disease patients with microbleeds.” J. Cereb Blood Flow Metab. 32(8):1468-71.
[430] Sahin, K.; Tuzcu, M.; Orhan, C.; Ali, S.; Sahin, N.; Gencoglu, H.; Ozkan, Y.; Hayirli, A.; Gozel, N. and Komorowski, J. R. 2013. “Chromium modulates expressions of neuronal plasticity markers and glial fibrillary acidic proteins in hypoglycemia-induced brain injury.” Life Sci. 93(25-26):1039-1048.
[431] Walter, P. and Ron, D. 2011. “The unfolded protein response: from stress pathway to homeostatic regulation.” Science 334(6059):1081-1086.
[432] Bennun, A. 2012. “The dynamics of H-bonds of the hydration shells of ions, ATPase and NE-activated adenylyl cyclase on the coupling of energy and signal transduction.” arXiv:1208.5673v1 [q-bio.OT].
[433] Mackliff, J.; Sanchez O. and Bennun, A. 2013. Bilateral electrocoagulation of adrenal medulla, a surgical neurotechnology applied to the dysfunctional hypothalamic-pituitary-adrenal axis. Accelerating Translational Neurotechnology Fourth Annual Aspen Brain Forum. Aspen Meadows Resort.
[434] Bennun, A. 2013. “A nano-insert silicate Sr-89 applied to decrease the hyper-functionality of micro-sized tissue.” Accelerating Translational Neurotechnology. Sept 18-20, 2013 Aspen, CO.
[435] Bennun A. 2012. Recovery of radioisotopes from nuclear waste for radio-scintillator-luminescence energy applications. International Journal of Energy, Environment, and Economics, Nova Science Publishers, Inc. 20(5):509-515.
[436] Harris, L. W.; Guest, P. C.; Wayland, M. T.; Umrania, Y.; Krishnamurthy, D.; Rahmoune, H. and Bahn, S. 2013. “Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies.” Psychoneuroendocrinology 38(6):752-66.
[437] Ohki, K.; Chung, S.; Kara, P.; Hübener, M.; Bonhoeffer, T. and Reid, R.C. 2006. “Highly ordered arrangement of single neurons in orientation pinwheels.” Nature 442(7105):925-8.
[438] Ballabh, P.; Braun, A. and Nedergaard, M. 2004. “The blood-brain barrier: an overview: structure, regulation, and clinical implications.” Neurobiol. Dis. 16(1):1-13.
[439] Li, F. and Tsien, J. Z. 2009. “Memory and the NMDA receptors.” N. Engl. J. Med. 361(3):302-3.
[440] Slutsky, I.; Sadeghpour, S.; Li, B. and Liu, G. 2004. “Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity.” Neuron. 44(5):835-49.
[441] Wei, Y. Z.; Kumbharkhane, A. C.; Sadeghi, M.; Sage, J. T.; Tian, W. D.; Champion, P. M.; Sridhar, S. and McDonald, M. J. 1994. “Protein hydration investigations with high-frequency dielectric spectroscopy.” J. Phys. Chem. 98(26):6644-51.
[442] Barco, A.; Balley, C. H. and Kandel, E. R. 2006. “Common molecular mechanisms in explicit and implicit memory.” J. Neurochem. 97(6):1520-33.
[443] Bean, B. P. 2007. “The action potential in mammalian central neurons.” Nat. Rev. Neurosci. 8(6):451-65.
[444] Bennun, A. 2012. The dynamics of H-bonds of the hydration shells of ions, ATPase and NE-activated adenylyl cyclase on the coupling of energy and signal transduction. Nova Science Publishers, Inc. International Journal of Medical and Biological Frontiers, 18 (11), 767-782.
[445] Bennun, A. 1974. “A model mechanism for coupled phosphorylation.” Proc. 3rd Int. Cong. Photosynthesis, Rehovoth (M. Avron, ed.), Vol. 2, 1107-1120, Elsevier Sci. Pub. Co., Amsterdam.
[446] Bennun A. and Bennun, N. 1972. Hypothesis for a mechanism of energy transduction. Sigmoidal kinetics of chloroplast's heat-activated ATPase. Proceedings 2nd International Congress on Photosynthesis Research (G. Fortí, M. Avron and A. Melardri, eds.), 2, 1115-1124, Dr. W. Junk N.V. Pub., The Hague (1972).
[447] Lomize A. L.; Pogozheva I. D. and Mosberg, H. I. 2011. “Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides and proteins in membranes.” J. Chem. Inf. Model. 51(4):930-46.
[448] Gibb, C. L. and Gibb, B. C. 2011. “Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes.” J. Am. Chem. Soc. 133(19):7344-7.
[449] Schmidt, D. A.; Birer, O.; Funkner, S.; Born B. P.; Gnanasekaran, R.; Schwaab, G. W.; Leitner, D. M. and Havenith, M. 2009. “Rattling in the cage: ions as probes of sub-picosecond water network dynamics.” J. Am. Chem. Soc. 131(51):18512-7.
[450] Ding, F.; O’Donnell, J.; Thrane, A. S.; Zeppenfeld, D.; Kang, H.; Xie, L.; Wang, F. and Nedergaard, M. 2013. “α1-Adrenergic receptors mediate coordinated Ca(2+) signaling of cortical astrocytes in awake, behaving mice.” Cell Calcium. 54(6):387-94.
[451] Barchi, R. L. 1993. “Ion channels and disorders of excitation in skeletal muscle.” Curr. Opin. Neurol. Neurosurg. 6(1):40-7.
[452] Schotland, D. L.; Fieles, W. and Barchi, R. L. 1991. “Expression of sodium channel subtypes during development in rat skeletal muscle.” Muscle Nerve 14(2):142-51.
[453] Purves, D.; Augustine, G. J.; Fitzpatrick, D.; Hall, W. C.; LaMantia, A. S.; McNamara, J. O. and White, L. E. 2008. Neuroscience. 4th ed. Sinauer Associates. pp. 170-6.
[454] Moll, J. R.; Acharya, A.; Gal, J.; Mir A. A. and Vinson C. 2012. “Magnesium is required for specific DNA binding of the CREB B-ZIP domain.” Nucleic Acids Res. 30(5):1240-6.
[455] Mashaghi, A. and Katan, A. 2013. A physicist’s view of DNA. De Physicus, 24e (3), 59-61. arXiv:1311.2545v1.
[456] Chubb, J. R.; Trcek, T.; Shenoy, S. M. and Singer, R. H. 2006. “Transcriptional pulsing of a developmental gene.” Current biology: CB 16(10):1018-25.
[457] Raven, P. H. 2011. Biology (9th ed.). New York: McGraw-Hill. pp. 278-301.
[458] Richardson, J. 2002. “Rho-dependent termination and ATPases in transcript termination.” Biochimica et Biophysica Acta. 1577(2):251-260.
[459] Hamady, Z. Z.; Farrar, M. D.; Whitehead, T. R.; Holland, K. T.; Lodge, J.P. and Carding, S. R. 2008. “Identification and use of the putative Bacteroides ovatus xylanase promoter for the inducible production of recombinant human proteins.” Microbiology. 154(Pt 10):3165-74.
[460] Lodish, H.; Berk, A.; Matsudaira, P. and Kaiser C. A. 2004. Molecular Cell Biology (5th ed.). New York: W.H. Freeman and Company.
[461] Lykke-Andersen, S. and Jensen, T. H. 2007. “Overlapping pathways dictate termination of RNA polymerase II transcription. Biochimie. 89(10):1177-82.
[462] Popovych, N.; Tzeng, S. R.; Tonelli, M.; Ebright, R. H. and Kalodimos, C. G. 2009. “Structural basis for cAMP-mediated allosteric control of the catabolite activator protein.” Proc. Natl. Acad. Sci. USA. 106(17):6927-6932.
[463] Kos’ianenko, N. A.; Selman-Housein Sosa, G.; Uverskiĭ, V. N. and Frisman, E. V. 1987. “Effect of Mn2+ and Mg2+ ions on DNA conformation.” Mol. Biol. (Mosk) 21(1):140-6.
[464] Amsten, A. F. T. 2011. “Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia.” International Journal of Developmental Neuroscience 29(3):215-223.
[465] Goelet, P.; Castellucci, V. F.; Schacher, S. and Kandel, E. R. 1986. “The long and the short of long-term memory a molecular framework.” Nature 322(6078):419-22.
[466] Eccles, J. C. 1983. “Calcium in long-term potentiation as a model for memory.” Neuroscience 10(4):1071-81.
[467] Silva, A. J.; Kogan, J. H.; Frankland, P. W. and Kida, S. 1998. “CREB and memory.” Annu. Rev. Neurosci. 21:127-48.
[468] Davis, H. P. and Squire, L. R. 1984. “Protein synthesis and memory: a review.” Psychol. Bull. 96(3):518-59.
[469] Mayr, B. and Montminy, M. 2001. “Transcriptional regulation by the phosphorylation dependent factor CREB.” Nat. Rev. Mol. Cell Biol. 2(8):599-609.
[470] Kandel, E. R. 2012. “The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB.” Mol. Brain 5:14.
[471] Kandel, E. R. 2001. “The molecular biology of memory storage: a dialogue between genes and synapses.” Science 294(5544):1030-8.
[472] Greenspan, R. J.; Tononi, G.; Cirelli, C. and Shaw, P. J. 2001. “Sleep and the fruit fly.” Trends Neurosci. 24:142-145.
[473] Malow, B. A. 2004. “Sleep deprivation and epilepsy.” Epilepsy Curr. 4(5):193-5.
[474] Stickgold, R. 2006. “Neuroscience: a memory boost while you sleep.” Nature 444(7119):559-60.
[475] Tonomi, G. 2014. “Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration.” Neuron (Impact Factor: 15.77) 81(1):12-34.
[476] Kress, B. T.; Iliff, J. J.; Xia, M.; Wang, M.; Wei, H. S.; Zeppenfeld, D.; Xie, L.; Kang, H.; Xu, Q.; Liew, J. A.; Plog, B. A.; Ding, F.; Deane, R. and Nedergaard, M. 2014. “Impairment of paravascular clearance pathways in the aging brain.” Ann. Neurol. 76(6):845-61.
[477] Iliff, J. J.; Wang, M.; Liao, Y.; Plogg, B. A.; Peng, W.; Gundersen, G. A.; Benveniste, H.; Vates, G. E.; Deane, R.; Goldman, S. A.; Nagelhus, E. A. and Nedergaard M. 2012. “A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.” Sci Transl Med. 4(147):147ra111.
[478] Mendelsohn, A. R. and Larrick, J. W. 2013. “Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases.” Rejuvenation Res. 16(6):518-23.
[479] Constantinople, C. M. and Bruno, R. M. 2011. “Effects and mechanisms of wakefulness on local cortical networks.” Neuron. 69(6):1061-8.
[480] O’Donnell, J.; Zeppenfeld, D.; McConnell, E.; Pena, S. and Nedergaard, M. 2012. “Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance.” Neurochem Res. 37(11):2496-512.
[481] McBain, C. J.; Traynelis, S. F. and Dingledine, R. 1990. “Regional variation of extracellular space in the hippocampus.” Science. 249(4969):674-7.
[482] Wang, F.; Smith, N. A.; Xu, Q.; Goldman, S.; Peng, W.; Huang, J. H.; Takano, T. and Nedergaard, M. 2013. “Photolysis of caged Ca2+ but not receptor-mediated Ca2+ signaling triggers astrocytic glutamate release.” J. Neurosci. 33(44):17404-12.

You have not viewed any product yet.