The Basic Principles of Critical Care Nephrology

Nadezda Petejova, M.D., Ph.D.
Department of Internal Medicine, University Hospital Ostrava and Faculty od Medicine University of Ostrava, Czech Republic
Specialist, Instructor

Arnost Martinek, M.D.
Department of Internal Medicine, University Hospital Ostrava, Czech Republic

Series: Nephrology Research and Clinical Developments
BISAC: MED055000



Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick


Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:



Acute kidney injury (AKI) is a common diagnosis in daily clinical practice, occuring in virtually all fields of medicine. Critically ill patients are especially prone to the development of AKI due to frequent haemodynamic instability, multiple risk factors and, diagnostic and/or treatment complications. Severe AKI substantially prolongs the intensive care unit (ICU) length of stay, with increased risk of death. AKI is also a predisposing factor for multiple organ dysfunction syndrome and is usually a part of it. For these and other reasons, critical care nephrology plays an irreplaceable role in treating critically ill patients in ICUs.

The current trend in medicine generally – not only in critical care nephrology – is to gather as much scientific knowledge as possible and in medicine, everything is interrelated. Further, knowledge of pathophysiology and understanding the causes of illness come in an era of increasing polypharmacy and the escalating side effects of drugs. The latter can cause conditions with the same clinical picture as immune system disorders, viruses and bacteria. Another issue is poisonings and drug intoxications, which are a daily issue in ICU settings. In short, the aetiological spectrum of disease has expanded.
This book presents the basic principles in critical care nephrology and covers the epidemiology, pathophysiology, the most frequent syndromes, poisonings and conservative or invasive treatment options. The aim is to present an easily understandable overview using relevant scientific research results, along with the authors’ own practical clinical experience from the University Hospital of Ostrava in the Czech Republic. The authors believe that this textbook will be useful to physicians who have to make rapid diagnoses and decision making in daily ICU practice. (Imprint: Nova Biomedical)


Chapter 1. Acute Kidney Injury – Diagnosis and Therapy

Chapter 2. Clinical Syndromes and Specific Disorders in Acute Kidney Injury Diagnosis and Therapy

Chapter 3. Renal Replacement Therapy – Practical Guidance



“This is a first easy and up to date excellent book of basic principles in critical care nephrology that can be used in daily clinical practice as well as in postgraduate education. The authors present all information in a great logical manner with easy explanation of difficult medical issues. This book is very needed in intensive care medicine in nephrology.” - Prof Vladimir Teplan, MD, DSc, Professor of Internal Medicine and Nephrology, Prague, Czech Republic

Biomedical Papers - Josef Zadrazil, MD, CSc., Professor of Internal Medicine and Nephrology, Olomouc, Czech Republic

Chapter 1.1

[1] Adu, D., Okyere, P., Boima, V., Matekole, M. & Osafo, C. (2016). Community-acquired acute kidney injury in adults in Africa. Clin. Nephrol. Supplement 1., 86, 48-52.
[2] Agarwal, A., Dong, Z., Harris, R., Murray, P., Parikh, S. M., Rosner, M. H., Kellum, J. A. & Ronco, C; Acute Dialysis Quality Initiative XIII Working Group. (2016). Cellular and Molecular Mechanisms of AKI. J. Am. Soc. Nephrol., 27, 1288-1299.
[3] Andreucci, M., Faga, T., Pisani, A., Sabbatini, M., Russo, D. & Michael, A. Prevention of contrast-induced nephropathy through a knowledge of its pathogenesis and risk factors. Scientific World Journal. 2014: (2014): 823169. Accessed May 10, 2017. doi: 10.115 5/2014/823169.
[4] Bamgbola, O. (2016). Review of vancomycin-induced renal toxicity: an update. Ther. Adv. Endocrinol. Metab., 7, 136-147.
[5] Chew, S. T., Ng, R. R., Liu, W., Chow, K. Y. & Ti, L. K. (2017). Acute kidney injury increases the risk of end-stage renal disease after cardiac surgery in an Asian population: a prospective cohort study. BMC Nephrol., 13, 8, 60.
[6] Havasi, A, & Borkan, S. C. (2011). Apoptosis and acute kidney injury. Kidney Int., 80, 29-40.
[7] Hayati, F., Hossainzadeh, M., Shayanpour, S., Abedi-Gheshlaghi, Z. & Beladi Mousavi, S. S. (2015). Prevention of cisplatin nephrotoxi- city. J. Nephropharmacol, 22, 5, 57-60.
[8] Herrera-Pérez, Z., Gretz, N. & Dweep, H. A. (2016). Comprehensive Review on the Genetic Regulation of Cisplatin-induced Nephrotoxi- city. Curr. Genomics., 17: 279-293.
[9] Hocken, A. G. & Bradshaw, G. (1970). Arsine poisoning. Br. J. Ind. Med., 27, 56-60.
[10] Hoste, E. A., Bagshaw, S. M., Bellomo, R., Cely, C. M., Colman, R., Cruz, D. N., Edipidis, K., Forni, L. G., Gomersall, C. D., Govil, D., Honoré, P. M., Joannes-Boyau, O., Joannidis, M., Korhonen, A. M., Lavrentieva, A., Mehta, R. L., Palevsky, P., Roessler, E., Ronco, C., Uchino, S., Vazquez, J. A., Vidal Andrade, E., Webb, S. & Kellum, J. A. (2015). Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med., 41, 1411-1423.
[11] Huen, S. C. & Cantley, L. G. (2017). Macrophages in Renal Injury and Repair. Annu. Rev. Physiol., 10, 449-469.
[12] Izzedine, H., Mateus, C., Boutros, C., Robert, C., Rouvier, P., Amoura, Z. & Mathian A. Renal effects of immune checkpoint inhibitors. Nephrol. Dial. Transplant. (2016) pii: gfw382. Accessed May 10, 2017. doi: 10.1093/ndt/gfw382.
[13] Jha, V. & Parameswaran, S. (2013). Community-acquired acute kidney injury in tropical countries. Nat. Rev. Nephrol., 9, 278-290.
[14] Kantarci, G., Vanholder, R., Tuglular, S., Akin, H., Koç, M., Ozener, C. & Akoglu, E. (2002). Acute renal failure due to crush syndrome during Marmara earthquake. Am. J. Kidney. Dis., 40, 682-689.
[15] Kashani, K., Al-Khafaji, A., Ardiles, T., Artigas, A., Bagshaw, S. M., Bell, M., Bihorac, A., Birkhahn, R., Cely, C. M., Chawla, L. S., Davison, D. L., Feldkamp, T., Forni, L. G., Gong, M. N., Gunnerson, K. J., Haase, M., Hackett, J., Honore, P. M., Hoste, E. A., Joannes-Boyau, O., Joannidis, M., Kim, P., Koyner, J. L., Laskowitz, D. T., Lissauer, M. E., Marx, G., McCullough, P. A., Mullaney, S., Ostermann, M., Rimmelé, T., Shapiro, N. I., Shaw, A. D., Shi, J., Sprague, A. M., Vincent, J. L., Vinsonneau, C., Wagner, L., Walker, M. G., Wilkerson, R. G., Zacharowski, K. & Kellum, J. A. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care. 17 (2013): R25. Accessed June 10, 2017. doi: 10.1186/cc 12503.
[16] Kaushal, G. P. & Shah, S. V. (2016). Autophagy in acute kidney injury. Kidney Int., 89, 779-791.
[17] Kers, J., Leemans, J. C. & Linkermann, A. (2016). An Overview of Pathways of Regulated Necrosis in Acute Kidney Injury. Semin. Nephrol., 36, 139-152.
[18] Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney inter., Suppl. 2, 1–138.
[19] Kohli, H. S., Bhat, A., Jairam, A., Aravindan, A. N., Sud, K., Jha, V., Gupta, K. L. & Sakhuja, V. (2007). Predictors of mortality in acute renal failure in a developing country: a prospective study. Ren. Fail., 29, 463-469.
[20] Li, Q., Zhao, M., Du, J. & Wang, X. (2017). Outcomes of renal function in elderly patients with acute kidney injury. Clin. Interv. Aging., 12, 153-160.
[21] Linfert, D., Chowdhry, T. & Rabb, H. (2009). Lymphocytes and ischemia-reperfusion injury. Transplant. Rev. (Orlando)., 23, 1–10.
[22] Ma, Z., Wei, Q., Dong, G., Huo, Y. & Dong, Z. (2014). DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells. Biochim. Biophys. Acta., 1842, 1088-1096.
[23] Malek, M. & Nematbakhsh, M. (2015). Renal ischemia/reperfusion injury; from pathophysiology to treatment. J. Renal. Inj. Prev., 4, 20-27.
[24] Murphy, S. W., Barrett, B. J. & Parfrey, P. S. (2000). Contrast nephropathy. J. Am. Soc. Nephrol., 11, 177-182.
[25] Nast, C. C. Medication-Induced Interstitial Nephritis in the 21st Century. (2017). Adv. Chronic Kidney Dis., 24, 72-79.
[26] Pannu, N., Nadim, M. K. (2008). An overview of drug-induced acute kidney injury. Crit. Care Med., 36, S216-23.
[27] Paueksakon, P. & Fogo, A. B. (2017). Drug-induced nephropathies. Histopathology., 70, 94-108.
[28] Pendergraft, W. F., III, Herlitz, L. C., Thornley-Brown, D., Rosner M. & Niles, J. L. (2014). Nephrotoxic Effects of Common and Emerging Drugs of Abuse. Clin. J. Am. Soc. Nephrol., 9, 1996–2005.
[29] Perazella, M. A & Markowitz, G. S. (2008). Bisphosphonate nephro- toxicity. Kidney Int., 74, 1385-1393.
[30] Ponce, D. & Balbi, A. (2016). Acute kidney injury: risk factors and management challenges in developing countries. Int. J. Nephrol. Renovasc. Dis., 9, 193-200.
[31] Prakash, J., Singh, T. B, Ghosh, B., Malhotra, V., Rathore, S. S., Vohra, R., Mishra, R. N., Srivastava, P. K. & Usha. (2013). Chang- ing epidemiology of community-acquired acute kidney injury in developing countries: analysis of 2405 cases in 26 years from eastern India. Clin. Kidney. J., 6, 150-155.
[32] Rabb, H., Griffin, M. D., McKay, D. B., Swaminathan, S., Pickkers, P., Rosner, M. H., Kellum, J. A. & Ronco. C. (2016). Acute Dialysis Quality Initiative Consensus XIII Work Group. Inflammation in AKI: Current Understanding, Key Questions, and Knowledge Gaps. J. Am. Soc. Nephrol., 27, 371-379.
[33] Raghavan, R. & Shawar, S. (2017). Mechanisms of Drug-Induced Interstitial Nephritis. Adv. Chronic Kidney Dis., 24, 64-71.
[34] Ralto, K. M. & Parikh, S. M. (2016). Mitochondria in Acute Kidney Injury. Semin. Nephrol., 36, 8-16.
[35] Raza, M. N., Hadid, M., Keen, C. E, Bingham, C. & Salmon, A. H. (2012). Acute tubulointerstitial nephritis, treatment with steroid and impact on renal outcomes. Nephrology (Carlton)., 17, 748-753.
[36] Ronco, C., Ferrari, F. & Ricci, Z. (2017). Recovery after Acute Kidney Injury: A New Prognostic Dimension of the Syndrome. Am. J. Respir. Crit. Care Med., 195, 711-714.
[37] Rybak, M. J., Lomaestro, B. M., Rotschafer, J. C., Moellering, R .C., Craig, W. A., Billeter, M., Dalovisio, J. R. & Levine, D. P. (2009). Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis., 49, 325-327.
[38] Sawhney, S., Marks, A., Fluck, N., Levin, A., Prescott, G. & Black, C. (2017). Intermediate and Long-term Outcomes of Survivors of Acute Kidney Injury Episodes: A Large Population-Based Cohort Study. Am. J. Kidney Dis., 69, 18-28.
[39] Schieppati, A., Perico, N. & Remuzzi, G. (2015). Eliminating treatable deaths due to acute kidney injury in resource-poor settings. Semin. Dial., 28, 193–197.
[40] Shah, S. H & Mehta, R. L. Epidemiology of Community - Acquired Acute Kidney Injury. In: Ronco, C., Bellomo, R., & Kellum J. A., editors. Critical Care Nephrology. 2nd Edition., Philadelphia, USA, Saunders Elsevier.; 2009.
[41] Solomon, R. (2008). Contrast-induced acute kidney injury: is there a risk after intravenous contrast? Clin. J. Am. Soc. Nephrol., 3, 1242-1243.
[42] Thong, B. Y. & Tan, T. C. (2011). Epidemiology and risk factors for drug allergy. Br. J. Clin. Pharmacol., 71, 684-700.
[43] Vanholder, R., Gibney, N., Luyckx, V. A. & Sever, M. S; Renal Disaster Relief Task Force. (2010). Renal Disaster Relief Task Force in Haiti earthquake. Lancet., 375, 1162-1163.
[44] Wargo, K. A. & Edwards, J. D. (2014). Aminoglycoside-induced nephrotoxicity. J. Pharm. Pract., 27, 573-577.
[45] Williams, T. M., Wise, A. F., Layton, D. S. & Ricardo, S. D. Pheno- type and Influx Kinetics of Leukocytes and Inflammatory Cytokine Production in Kidney Ischemia/Reperfusion Injury. Nephrology (Carlton). (2016). Accessed May 10, 2017. doi: 10.1111/nep.12941.
[46] Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., Kang, R. & Tang, D. (2016). Ferroptosis: process and function. Cell. Death. Differ., 23, 369-379.
[47] Xu, Y., Ma, H., Shao, J., Wu, J., Zhou, L., Zhang, Z., Wang, Y., Huang, Z., Ren, J., Liu, S., Chen, X. & Han, J. (2015). A Role for Tubular Necroptosis in Cisplatin-Induced AKI. J. Am. Soc. Nephrol., 26, 2647-2658.
[48] Yokota, L. G., Sampaio, B. M., Rocha, E., Balbi, A. L. & Ponce, D. Acute kidney injury in elderly intensive care patients from a developing country: clinical features and outcome. Int. J. Nephrol. Renovasc. Dis. 10 (2017):27-33. Accessed May 8, 2017. doi: 10.214 7/IJNRD.S126534.
[49] Zavascki, A. P. & Nation, R. L. Nephrotoxicity of Polymyxins: Is There Any Difference between Colistimethate and Polymyxin B? Antimicrob. Agents Chemother. 61 (2017): pii: e02319-16. Accessed May 10, 2017. doi: 10.1128/AAC.02319-16.

Chapter 1.2

[1] Bagshaw, S. M. & Bellomo, R. (2010). Urine abnormalities in acute kidney injury and sepsis. Contrib. Nephrol., 165, 274-283.
[2] Besen, B. A., Gobatto, A. L., Melro, L. M., Maciel, A. T. & Park, M. (2015). Fluid and electrolyte overload in critically ill patients: An overview. World J. Crit. Care. Med., 4, 116-129.
[3] Boddi, M., Natucci, F. & Ciani, E. (2015). The internist and the renal resistive index: truths and doubts. Intern. Emerg. Med., 10, 893-905.
[4] Cheong, B. Y. & Muthupillai. R. (2010). Nephrogenic systemic fibrosis: a concise review for cardiologists. Tex. Heart. Inst. J., 37, 508-515.
[5] Darmon, M., Ostermann, M., Cerda, J., Dimopoulos, M.A., Forni, L., Hoste, E., Legrand, M., Lerolle, N., Rondeau, E., Schneider, A., Souweine, B. & Schetz, M. Diagnostic work-up and specific causes of acute kidney injury. Intensive Care Med. (2017). Accessed June 10, 2017. doi: 10.1007/s00134-017-4799-8.
[6] Godin, M., Bouchard, J. & Mehta, R. L. (2013). Fluid balance in patients with acute kidney injury: emerging concepts. Nephron. Clin. Pract., 123, 238-245.
[7] Granata, A., Fiorini, F., Andrulli, S., Logias, F., Gallieni, M., Romano, G., Sicurezza, E. & Fiore, C. E. (2009). Doppler ultrasound and renal artery stenosis: An overview. J. Ultrasound., 12, 133-143.
[8] Kashani, K., Al-Khafaji, A., Ardiles, T., Artigas, A., Bagshaw, S. M., Bell, M., Bihorac, A., Birkhahn, R., Cely, C. M., Chawla, L. S., Davison, D. L., Feldkamp, T., Forni, L. G., Gong, M. N., Gunnerson, K. J., Haase, M., Hackett, J., Honore, P. M., Hoste, E. A., Joannes-Boyau, O., Joannidis, M., Kim, P., Koyner, J. L., Laskowitz, D. T., Lissauer, M. E., Marx, G., McCullough, P. A., Mullaney, S., Ostermann, M., Rimmelé, T., Shapiro, N. I., Shaw, A. D., Shi, J., Sprague, A. M., Vincent, J. L., Vinsonneau, C., Wagner, L., Walker, M. G., Wilkerson, R. G., Zacharowski, K. & Kellum, J. A. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care. 17 (2013): R25. Accessed June 10, 2017. doi: 10. 1186/cc 12503.
[9] Kashani, K., Cheungpasitporn, W. & Ronco, C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin. Chem. Lab. Med. (2017): pii: /j/cclm.ahead-of-print/cclm-2016-0973/ cclm-2016-0973.xml. Accessed May 15, 2017. doi: 10.1515/ cclm-2016-0973.
[10] Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. (2012). KDIGO Clinical Practice Guide- line for Acute Kidney Injury. Kidney inter., Suppl., 2, 1–138.
[11] Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. (2013). KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney inter., Suppl 3, 1-150.
[12] Macedo, E., Malhotra, R., Bouchard, J., Wynn, S. K. & Mehta, R. L. (2011). Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int., 80, 760-767.
[13] Maciel, A. T. & Vitorio, D. (2017). Urine biochemistry assessment in critically ill patients: controversies and future perspectives. J. Clin. Monit. Comput., 31, 539-546.
[14] Mohmand, H. & Goldfarb, S. (2011). Renal dysfunction associated with intra-abdominal hypertension and the abdominal compartment syndrome. J. Am. Soc. Nephrol., 22, 615-621.
[15] O'Connor, M. E. & Prowle, J. R. (2015). Fluid Overload. Crit. Care Clin., 31, 803-821.
[16] Palmer, P. E. S. et al. Manuál ultrazvukové diagnostiky. Czech translation), Prague, Czech Republic, Grada Publishing a.s.; 2000. [Manual of Diagnostic Ultrasound. (Czech translation), Prague, Czech Republic, Grada Publishing a.s.; 2000].
[17] Peng, Z.Y. (2016). The biomarkers for acute kidney injury: A clear road ahead? J. Transl. Int. Med., 4, 95-98.
[18] Platt, J. F., Ellis, J. H. & Rubin, J. M. (1991). Renal transplant pyelo- caliectasis: role of duplex Doppler US in evaluation. Radiology., 179, 425–428.
[19] Prowle, J. R., Liu, Y. L., Licari, E., Bagshaw, S. M., Egi, M., Haase, M., Haase-Fielitz, A., Kellum, J. A., Cruz, D., Ronco, C., Tsutsui, K., Uchino, S. & Bellomo, R. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit. Care. 15 (2011): R172. Accessed May 27, 2017. doi: 10.1186/cc10318.
[20] Sobel, D. W. & Jumper, B. M. The case of the wandering kidney. Case. Rep. Urol. 2013 (2013):498507. Accessed May 27, 2017. doi: 10.1155/2013/498507.
[21] Teixeira, C., Garzotto, F., Piccinni, P., Brienza, N., Iannuzzi, M., Gramaticopolo, S., Forfori, F., Pelaia, P., Rocco, M., Ronco, C., Anello, C. B., Bove, T., Carlini, M., Michetti, V. & Cruz, D. N; NEFROlogia e Cura INTensiva (NEFROINT) investigators. Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit. Care. 17 (2013): R14. Accessed May 27, 2017. doi: 10.1186/cc12484.
[22] Teplan, V. et al. Akutní poškození a selhání ledvin v klinické medicíně. 1st Edition, Prague, Czech Republic, Grada Publishing a.s.; 2010. [Acute Kidney Injury and Failure in Clinical Medicine. 1st Edition, Prague, Czech Republic, Grada Publishing a.s.; 2010].
[23] Thongprayoon, C., Cheungpasitporn, W. & Kashani, K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. J. Thorac. Dis. 8 (2016): E305-311. Accessed May 27, 2017. doi: 10.21037/jtd.2016.03.62.
[24] Van Eijs, M. J. M, van Zuilen, A. D., de Boer, A., Froeling, M., Nguyen, T. Q., Joles, J. A., Leiner, T. & Verhaar, M. C. Innovative Perspective: Gadolinium-Free Magnetic Resonance Imaging in Long-Term Follow-Up after Kidney Transplantation. Front. Physiol. 8 (2017): 296. Accessed June 10, 2017. doi: 10.3389/fphys.2017.00 296.
[25] Yin, C. & Wang, N. (2016). Kidney injury molecule-1 in kidney disease. Ren. Fail., 38, 1567-1573.

Chapter 1.3

[1] Adeva-Andany, M. M., Fernández-Fernández, C., Mouriño-Bayolo D., Castro-Quintela, E. & Domínguez-Montero, A. Sodium Bicar- bonate Therapy in Patients with Metabolic Acidosis. Scientific World Journal. 2014 (2014): 627673. Accessed May 17, 2017. doi: 10.1155/2014/627673.
[2] Adrogué, H. J. & Madias, N. E. (2000). Hyponatremia. N. Engl. J. Med., 342, 1581-1589.
[3] Adrogué, H. J. & Madias, N. E. (2000). Hypernatremia. N. Engl. J. Med. 342, 1493-1499.
[4] Agarwal, R., Afzalpurkar, R. & Fordtran, J. S. (1994). Pathophysio- logy of potassium absorption and secretion by the human intestine. Gastroenterology., 107, 548-571.
[5] Allison, M. G. & McCurdy, M. T. (2014). Alcoholic metabolic emer- gencies. Emerg. Med. Clin. North. Am., 32, 293-301.
[6] Allon, M., Dunlay, R. & Copkney, C. (1989). Nebulized albuterol for acute hyperkalemia in patients on hemodialysis. Ann. Intern. Med., 110, 426-429.
[7] Al Shibli, A. & Narchi, H. (2015). Bartter and Gitelman syndromes: Spectrum of clinical manifestations caused by different mutations. World. J. Methodol., 26, 55-61.
[8] Altun, E., Kaya, B., Paydaş, S. & Balal, M. (2013). Milk alkali syndrome induced by calcitriol and calcium bicarbonate in a patient with hypoparathyroidism. Indian. J. Endocrinol. Metab., 17 (Suppl 1), S191-193.
[9] Arima, H., Azuma, Y., Morishita, Y. & Hagiwara, D. (2016). Central diabetes insipidus. Nagoya. J. Med. Sci., 78, 349-358.
[10] Ben, S.C., Badreddine, A., Fathallah, N., Slim, R. & Hmouda, H. (2014). Drug-induced hyperkalemia. Drug Saf., 37, 677-692.
[11] Berend, K., de Vries, A. P. & Gans, R. O. (2014). Physiological app- roach to assessment of acid-base disturbances. N. Engl. J. Med., 371, 1434-1445.
[12] Bruno, C. M. & Valenti, M. Acid-base disorders in patients with chronic obstructive pulmonary disease: a pathophysiological review. J. Biomed. Biotechnol. 2012 (2012):915150. Accessed June 11, 2017. doi: 10.1155/2012/915150.
[13] Ceska, R., et al. Metabolická alkalóza in Ceska, R., et al editor: Interna, Prague. Czech Republic. Triton,; 2010. Available from: Accessed June 6, 2017 [Metabolic alcalosis in Ceska, R., et al. editor: Internal Medicine, Prague. Czech Republic. Triton,; 2010. Available from: Accessed June 6, 2017].
[14] Charles, J. C. & Heilman, R. L. Metabolic Acidosis. Hospital Physician. (2005): 37-42. Accessed June 10, 2017. Available from: http://www.turner – /memberfile. php? Pub Code =hp_ mar05_acid.pdf
[15] Crona, D. J., Faso, A., Nishijima, T. F., McGraw, K. A., Galsky, M. D. & Milowsky, M. I. (2017). A Systematic Review of Strategies to Prevent Cisplatin-Induced Nephrotoxicity. Oncologist., 22, 609-619.
[16] Denker, B. M. Electrolytes and Acid-Base 2. (paper presented at the annual meeting of Harvard Medical School, The Brigham Update in Medicine Boston, MA, USA, March 15, 2014).
[17] Ellison, D. H. & Berl, T. (2007). Clinical practice. The syndrome of inappropriate antidiuresis. N. Engl. J. Med., 356, 2064-2072.
[18] Faubel, S. & Shah, P. B. (2016). Immediate Consequences of Acute Kidney Injury: The Impact of Traditional and Nontraditional Complications on Mortality in Acute Kidney Injury. Adv. Chronic. Kidney Dis., 23, 179-185.
[19] Feldman, M., Soni, N. & Dickson, B. (2005). Influence of hypo- albuminemia or hyperalbuminemia on the serum anion gap. J. Lab. Clin. Med., 146, 317-320.
[20] Galla, J. H. (2000). Metabolic alkalosis. J. Am. Soc. Nephrol., 11, 369-375.
[21] Galla, J. H, Rome, L. & Luke, R. G. (1995). Bicarbonate transport in collecting duct segments during chloride-depletion alkalosis. Kidney Int., 48, 52-55.
[22] García Castaño, A., Pérez de Nanclares, G., Madariaga, L., Aguirre, M., Chocron, S., Madrid, A., Lafita Tejedor, F. J., Gil Campos, M., Sánchez Del Pozo, J., Ruiz Cano, R., Espino, M., Gomez Vida, J. M., Santos, F., García Nieto, V. M., Loza, R., Rodríguez, L. M., Hidalgo Barquero, E., Printza, N., Camacho, J. A., Castaño, L. & Ariceta, G. RenalTube Group. (2015). Novel mutations associated with nephrogenic diabetes insipidus. A clinical-genetic study. Eur. J. Pediatr., 174, 1373–1385.
[23] Gennari, F.J. (1998). Hypokalemia. N. Engl. J. Med., 339, 451-458.
[24] Gennari, F.J. & Weise, W. J. (2008). Acid-base disturbances in gastrointestinal disease. Clin. J. Am. Soc. Nephrol., 3, 1861-1868.
[25] Gopal, M., Parasram, M., Patel, H., Ilorah, C. & Nersesyan, H. Acute Psychosis as Main Manifestation of Central Pontine Myelinolysis. Case Rep. Neurol. Med. 2017 (2017):1471096. Accessed May 25, 2017. doi: 10.1155/2017/1471096.
[26] Haber, P. K., Ye, M., Wysocki, J., Maier, C., Haque, S. K. & Batlle, D. (2014). Angiotensin-converting enzyme 2-independent action of presumed angiotensin-converting enzyme 2 activators: Studies in vivo, ex vivo, and in vitro. Hypertension., 63, 774-782.
[27] Hine, J., Schwell, A. & Kairys, N. An Unlikely Cause of Hypo- kalemia. J. Emerg. Med. 52 (2017): e187-e191. Accessed May 24, 2017. doi: 10.1016/j.jemermed.2016.12.011.
[28] Hodgkin, J. E., Soeprono, F. F. & Chan, D. M. (1980). Incidence of metabolic alkalemia in hospitalized patients. Crit. Care Med., 8, 725-728.
[29] Hoorn, E. J. & Zietse, R. (2017). Diagnosis and Treatment of Hyponatremia: Compilation of the Guidelines. J. Am. Soc. Nephrol., 28, 1340-1349.
[30] Hughes, D., Koerbin, G., Potter, J. M., Glasgow, N., West, N., Abhayaratna, W. P., Cavanaugh, J., Armbruster, D. & Hickman, P. E. (2016). Harmonising Reference Intervals for Three Calculated Parameters used in Clinical Chemistry. Clin. Biochem. Rev., 37, 105-111.
[31] Jabor, A. et al. Vnitřní prostředí. 1st Edition, Prague, Czech Republic, Grada Publishing a.s.; 2008. [Internal Environment. 1st Edition, Prague, Czech Republic, Grada Publishing a.s.; 2008].
[32] Jandhyala, S. N., Madireddi, J., Belle, J., Rau, N. R. & Shetty, R. Hypokalaemic Periodic Paralysis- A Prospective Study of the Underlying Etiologies. J. Clin. Diagn. Res. 9 (2015):OC17-19. Accessed May 24, 2017. doi: 10.7860/JCDR/2015/13237.6529.
[33] Jordan, M. & Caesar, J. Hypokalaemia: Improving the investigation, management and therapeutic monitoring of hypokalaemic medical inpatients at a district general hospital. BMJ. Qual. Improv. Rep. 4 (2015) pii: u209049.w3670. Accessed May 14, 2017. doi: 10.1136/ bmjquality.u209049.w3670.
[34] Jung, W. J., Lee, H. J., Park, S., Lee, S. N., Kang, H. R., Jeon, J. S., Noh, H., Han, D. C. & Kwon, S. H. Severity of community acquired hypernatremia is an independent predictor of mortality. Intern. Emerg. Med. (2017). Accessed May 30, 2017. doi: 10.1007/s11739-017-1673-1.
[35] Kalra, S., Zargar, A. H., Jain, S. M., Sethi, B., Chowdhury, S., Singh, A. K., Thomas, N., Unnikrishnan, A. G., Thakkar, P. B. & Malve, H. (2016). Diabetes insipidus: The other diabetes. Indian. J. Endocrinol. Metab., 20, 9-21.
[36] Kibria, R., Ahmed, S., Ali, S. A. & Barde, C. J. (2009). Hypokalemic rhabdomyolysis due to watery diarrhea, hypokalemia, achlorhydria (WDHA) syndrome caused by vipoma. South. Med. J., 102, 761-764.
[37] Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. (2013). KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney inter., Suppl. 3, 1-150.
[38] Kim, G. H. (2006). Pseudohyponatremia: does it matter in current clinical practice? Electrolyte Blood Press., 4, 77-82.
[39] Kim, H. J., Son, Y. K. & An, W. S. Effect of sodium bicarbonate administration on mortality in patients with lactic acidosis: a retrospective analysis. PLoS One. 8 (2013): e65283. Accessed May 30, 2017. doi: 10.1371/journal.pone.0065283.
[40] Kitabchi, A. E., Umpierrez, G. E., Miles, J. M. & Fisher, J. N. (2009). Hyperglycemic crises in adult patients with diabetes. Diabetes Care., 32, 1335-1343.
[41] Kitterer, D., Schwab, M., Alscher, M. D., Braun, N. & Latus, J. (2015). Drug-induced acid-base disorders. Pediatr. Nephrol., 30, 1407-1423.
[42] Kraut, J. A. & Kurtz, I. (2015). Treatment of acute non-anion gap metabolic acidosis. Clin. Kidney J., 8, 93-99.
[43] Kraut, J. A. & Xing, S. X. (2011). Approach to the evaluation of a patient with an increased serum osmolal gap and high-anion-gap metabolic acidosis. Am. J. Kidney Dis. 58, 480-484.
[44] Kreü, S., Jazrawi, A., Miller, J., Baigi, A. & Chew, M. Alkalosis in Critically Ill Patients with Severe Sepsis and Septic Shock. PLoS One. 12 (2017): e0168563. Accessed May 30, 2017. doi: 10.1371/ journal.pone.0168563.
[45] Labarca, M., Nizar, J. M., Walczak, E. M., Dong, W., Pao, A. C. & Bhalla, V. (2015). Harvest and primary culture of the murine aldosterone-sensitive distal nephron. Am. J. Physiol. Renal. Physiol., 308, 1306-1315.
[46] Lassey, S. C. & Robinson, J. N. (2016). Rhabdomyolysis After Hyperemesis Gravidarum. Obstet. Gynecol., 128, 195-196.
[47] Lehnhardt, A. & Kemper, M.J. (2011). Pathogenesis, diagnosis and management of hyperkalemia. Pediatr. Nephrol., 26, 377–384.
[48] Levis, J. T. (2013). ECG Diagnosis: Hyperkalemia. Perm. J., 17, 69.
[49] Libório, A. B., Noritomi, D. T., Leite, T. T., de Melo Bezerra, C. T, de Faria, E. R. & Kellum, J. A. (2015). Increased serum bicarbonate in critically ill patients: a retrospective analysis. Intensive Care Med., 41, 479-486.
[50] Lullmann, K., Mohr, K. & Wehling, M. Farmakologie a toxikologie. 2nd Edition. Prague, Czech translation, Grada publishing a.s, 2004. [Pharmacology and toxicology. 2nd Edition. Prague, Czech trans- lation, Grada publishing a.s.; 2004].
[51] Marhong, J. & Fan, E. (2014). Carbon dioxide in the critically ill: too much or too little of a good thing? Respir. Care., 59, 1597-1605.
[52] Marques, P., Gunawardana, K. & Grossman, A. Transient diabetes insipidus in pregnancy. Endocrinol. Diabetes Metab. Case Rep. 2015 (2015):150078. Accesssed May 14,2017. doi: 10.1530/EDM-15-0078.
[53] McGuire, L. C., Cruickshank, A. M. & Munro, P.T. (2006). Alcoho-lic ketoacidosis. Emerg. Med. J., 23, 417-420.
[54] Mendez, Y., Surani, S. & Varon, J. (2017). Diabetic ketoacidosis: Treatment in the intensive care unit or general medical/surgical ward? World. J. Diabetes., 8, 40-44.
[55] Mostert, M. & Bonavia, A. (2016). Starvation Ketoacidosis as a Cause of Unexplained Metabolic Acidosis in the Perioperative Period. Am. J. Case Rep., 17, 755-758.
[56] Mount, D. B. Electrolyte Disorders in: Singh, AK. & Loscalzo, J. editors: The Brigham Intensive Review of Internal Medicine. 2nd Edition. New York, NY 10016, USA, Oxford University Press.; 2014.
[57] Muhsin, S. A. & Mount, D. B. (2016). Diagnosis and treatment of hypernatremia. Best. Pract. Res. Clin. Endocrinol. Metab., 30, 189-203.
[58] Mushiyakh, Y., Dangaria, H., Qavi, S., Ali, N., Pannone, J. & Tompkins, D. Treatment and pathogenesis of acute hyperkalemia. J. Community Hosp. Intern. Med. Perspect. 1 (2012). Accessed June 11, 2017. doi: 10.3402/ jchimp.v1i4.7372.
[59] Orban, J. C., Maizière, E. M., Ghaddab, A., Van Obberghen, E. & Ichai, C. Incidence and characteristics of acute kidney injury in severe diabetic ketoacidosis. PLoS One. 9 (2014):e110925. Accessed May 14, 2017. doi: 10.1371/journal.pone.0110925.
[60] Orwoll, E. S. (1982). The milk-alkali syndrome: current concepts. Ann. Intern. Med., 97, 242-248.
[61] Palmer, B. F. & Alpern, R. J. (1997). Metabolic alkalosis. J. Am. Soc. Nephrol., 8, 1462-1469.
[62] Patel, A., Felstead, D., Doraiswami, M., Stocks, G. M. & Waheed, U. (2011). Acute starvation in pregnancy: a cause of severe metabolic acidosis. Int. J. Obstet. Anesth., 20, 253-256.
[63] Pham, A. Q., Xu, L. H. & Moe, O. W. Drug-Induced Metabolic Acidosis. F1000Res. 4 (2015) pii: F1000 Faculty Rev-1460. Accessed May 17, 2017. doi: 10.12688/f1000research.7006.1.
[64] Puschett, J. B. & Winaver, J. Effects of Diuretics on Renal Function. Supplement 25: Handbook of Physiology, Renal Physiology. (1992). Accessed June 11, 2017. Doi: 10.1002/cphy.cp 080250,
[65] Rastegar, M. & Nagami, G. T. (2017). Non-Anion Gap Metabolic Acidosis: A Clinical Approach to Evaluation. Am. J. Kidney Dis. 69, 296-301.
[66] Robertson, G. L. (2016). Diabetes insipidus: Differential diagnosis and management. Best. Pract. Res. Clin. Endocrinol. Metab., 30, 205-218.
[67] Roerig, J. L., Steffen, K. J., Mitchell, J. E. & Zunker, C. (2010). Laxative abuse: epidemiology, diagnosis and management. Drugs.,70, 1487-1503.
[68] Sarwar, C. M., Papadimitriou, L., Pitt, B., Piña, I., Zannad, F., Anker, S. D., Gheorghiade, M., & Butler, J. (2016). Hyperkalemia in Heart Failure. J. Am. Coll. Cardiol., 68, 1575-1589.
[69] Sato, Y. & Fukudo, S. (2015). Gastrointestinal symptoms and disorders in patients with eating disorders. Clin. J. Gastroenterol., 8, 255-263.
[70] Schuck, O. Poruchy metabolizmu vody a elektrolytů v klinické praxi. 1st Edition. Prague. Czech Republic, Grada Publishing a.s.; 2000. [The Metabolic and Electrolytes Disorders in Clinical Practice. 1st Edition. Prague. Czech Republic, Grada Publishing a.s.; 2000].
[71] Seheult, J., Fitzpatrick, G. & Boran, G. (2017). Lactic acidosis: an update. Clin. Chem. Lab. Med., 55, 322-333.
[72] Seifter, J. L. Acid-base disturbances. In Singh, A. K. & Loscalzo, J. editors. The Brigham Intensive Review of Internal Medicine. 2nd Edition. New York, NY 10016, USA, Oxford University Press,; 2014.
[73] Serum osmolal gap. UptoDate. Available on: https://www. uptodate. com/contents/serum-osmolal-gap. Accessed June 11, 2017.
[74] Sica, D. A. (2004). Diuretic-related side effects: development and treatment. J. Clin. Hypertens. (Greenwich)., 6, 532-540.
[75] Surviving Sepsis Campaign, International Guidelines for Management of Severe Sepsis and Septic Shock. 2013. Accessed June 10, 2017. Available on: http://
[76] Sweeney, G. & Klip, A. (1998). Regulation of the Na+/K+-ATPase by insulin: Why and how? Mol. Cell. Biochem., 182: 121.
[77] The Royal College of Pathologists of Australasia Manual – Anion Gap. 2017. Accessed June 10, 2017. Available on: https://www. hology-Tests/A/Anion-gap.
[78] Turgutalp, K., Bardak, S., Helvacı, I., İşgüzar, G., Payas, E., Demir, S. & Kıykım, A. (2016). Community-acquired hyperkalemia in elderly patients: risk factors and clinical outcomes. Ren. Fail. 38, 1405-1412.
[79] Veltri, K. T. & Mason, C. (2015). Medication-Induced Hypokalemia. P. T., 40, 185–190.
[80] Xu, N., Hirohama, D., Ishizawa, K., Chang, W. X., Shimosawa, T., Fujita, T., Uchida, S. & Shibata, S. (2017). Hypokalemia and Pendrin Induction by Aldosterone. Hypertension., 69, 855-862.
[81] Yaxley, J. & Pirrone, C. (2016). Review of the Diagnostic Eva- luation of Renal Tubular Acidosis. Ochsner J., 16, 525-530.
[82] Zacchia, M., Abategiovanni, M. L., Stratigis, S. & Capasso, G. (2016). Potassium: From Physiology to Clinical Implications. Kidney Dis. (Basel). 2, 72-79.

Chapter 2.1

[1] Angelini, A., Castellani, C., Virzì, G. M., Fedrigo, M., Thiene, G., Valente, M., Ronco, C. & Vescovo, G. (2015). The Role of Congestion in Cardiorenal Syndrome Type 2: New Pathophy- siological Insights into an Experimental Model of Heart Failure. Cardiorenal. Med., 6, 61-72.
[2] Banerjee, S. & Panas, R. Diabetes and cardiorenal syndrome: Understanding the “Triple Threat.” Hellenic J. Cardiol. (2017) pii: S1109-9666(16)30248-2. Accessed May 17, 2017. doi:10.1016/
[3] Brocca, A., Virzì, G. M., Pasqualin, C., Pastori, S., Marcante, S., de Cal, M. & Ronco, C. Cardiorenal syndrome type 5: in vitro cytotoxicity effects on renal tubular cells and inflammatory profile. Anal. Cell. Pathol. (Amst). 2015 (2015): 469461. Accesssed May 14, 2017. doi: 10.1155/2015/469461.
[4] Butt, W. & MacLaren, G. Extracorporeal membrane oxygenation 2016: an update. F1000Res. 5 (2016): 750. Accessed May 17, 2017. doi: 10.12688/f1000research.8320.1.
[5] Chambord, J., Attivi, D., Thuus, V., Zeghmouli, C. & Gibaud, S. (2017). The effect of intravenous isosorbide dinitrate in acute decompensated heart failure in hospital. Int. J. Clin. Pharm., 39, 536-541.
[6] Clementi, A., Virzì, G. M., Brocca, A., de Cal, M., Pastori, S., Clementi, M., Granata, A., Vescovo, G. & Ronco, C. Advances in the pathogenesis of cardiorenal syndrome type 3. Oxid. Med. Cell. Longev. 2015 (2015): 148082. Accessed May 25, 2017. doi: 10.11 55/2015/148082.
[7] Cruz, D. N., Schmidt-Ott, K. M., Vescovo, G., House, A. A., Kel- lum, J. A., Ronco, C. & McCullough, P. A. (2013). Pathophysiology of cardiorenal syndrome type 2 in stable chronic heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol., 182, 117-136.
[8] Cupples, W.A. (2007). Interactions contributing to kidney blood flow autoregulation. Curr. Opin. Nephrol. Hypertens., 16, 39-45.
[9] DeVore, A. D., Greiner, M. A., Sharma, P. P., Qualls, L. G., Schulte, P. J., Cooper, L. B., Mentz, R. J., Pang, P. S., Fonarow, G. C., Curtis, L. H. & Hernandez, A. F. (2016). Development and validation of a risk model for in-hospital worsening heart failure from the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart. J., 178, 198-205.
[10] Di Lullo, L., Bellasi, A., Russo, D., Cozzolino, M. & Ronco, C. (2017). Cardiorenal acute kidney injury: Epidemiology, presentation, causes, pathophysiology and treatment. Int. J. Cardiol., 227, 143-150.
[11] eMC SPC Furosemide Injection BP (hameln). Available online on Accessed May 17, 2017.
[12] Gambardella, I., Gaudino, M., Ronco, C., Lau, C., Ivascu, N. & Girardi, L. N. (2016). Congestive kidney failure in cardiac surgery: the relationship between central venous pressure and acute kidney injury. Interact. Cardiovasc. Thorac. Surg., 23, 800-805.
[13] Gigante, A., Liberatori, M., Gasperini, M. L., Sardo, L., Di Mario, F., Dorelli, B., Barbano, B., Rosato, E., Rossi Fanelli, F. & Amoroso, A. (2014). Prevalence and clinical features of patients with the cardiorenal syndrome admitted to an internal medicine ward. Cardiorenal. Med., 4, 88-94.
[14] Gnanaraj, J. & Radhakrishnan, J. Cardio-renal syndrome. F1000Res. 5 (2016) pii: F1000 Faculty Rev-2123. Accessed April 14, 2017. doi: 10.12688/f1000research.8004.1.
[15] Granata, A., Clementi, A., Virzì, G. M., Brocca, A., de Cal, M., Scarfia, V. R., Zanoli, L., Ronco, C., Corrao, S. & Malatino, L. (2016). Cardiorenal syndrome type 4: From chronic kidney disease to cardiovascular impairment. Eur. J. Intern. Med., 30, 1-6.
[16] Guaricci, A. I., Santoro, F., Paoletti Perini, A., Ioffredo, L., Trivedi, C., Pontone, G., Di Biase, M. & Brunetti, N. D. (2015). Correlations between NT-proBNP, outcome and haemodynamics in patients with septic shock. Acta Cardiol., 70, 545-552.
[17] H, S., B, S. A., Moger, V. & Swamy, M. (2017). Cardiorenal synd- rome type 4: A study of cardiovascular diseases in chronic kidney disease. Indian. Heart. J., 69, 11-16.
[18] Kelly, K. J. (2003). Distant effects of experimental renal ischemia/ reperfusion injury. J. Am. Soc. Nephrol., 14, 1549-1558.
[19] Kingma, J. G. Jr., Simard, D. & Rouleau, J. R. Renocardiac syndro- mes: physiopathology and treatment stratagems. Can. J. Kidney. Health. Dis. 2 (2015): 41. Accessed April 12, 2017. doi: 10.1186/ s40697-015-0075-4.
[20] Lai, S., Ciccariello, M., Dimko, M., Galani, A., Lucci, S., Cianci, R. & Mariotti, A. (2016). Cardio-Renal Syndrome Type 4: The Corre- lation between Cardiorenal Ultrasound Parameters. Kidney Blood Press. Res., 41, 654-662.
[21] Lazzarini, V. & Felker, G.M. (2012). Management of the cardiorenal syndrome in acute heart failure. Curr. Treat. Options. Cardiovasc. Med., 14, 342-355.
[22] Legrand, M. & Payen, D. Understanding urine output in critically ill patients. Ann. Intensive Care. 1 (2011):13. Accessed May 17, 2017. doi: 10.1186/2110-5820-1-13.
[23] London, G. M., & Drueke, T. B. (1997). Atherosclerosis and arterio- sclerosis in chronic renal failure. Kidney Int., 51, 1678–1695.
[24] Martinell, L., Herlitz, J., Karlsson, T., Nielsen, N. & Rylander, C. Mild induced hypothermia and survival after out-of-hospital cardiac arrest in a Swedish urban area. Am. J. Emerg. Med. (2017) pii: S0735-6757(17)30335-2. Accessed May 30, 2017. doi: 10.1016/j. ajem.2017.04.071.
[25] Mehta, R. L, Rabb, H., Shaw, A. D., Singbartl, K., Ronco, C., McCullough, P. A. & Kellum, J. A. (2013). Cardiorenal syndrome type 5: clinical presentation, pathophysiology and management strategies from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol., 182, 174-194.
[26] Napp, L. C., Kühn, C. & Bauersachs, J. (2017). ECMO in cardiac arrest and cardiogenic shock. Herz., 42, 27-44.
[27] Palazzuoli, A., Masson, S., Ronco, C., & Maisel, A. (2014). Clinical relevance of biomarkers in heart failure and cardiorenal syndrome: the role of natriuretic peptides and troponin. Heart. Fail. Rev., 19, 267-284.
[28] Palazzuoli, A., Ruocco, G., Pellegrini, M., Martini, S., Del Castillo, G., Beltrami, M., Franci, B., Lucani, B. & Nuti, R. (2014). Patients with cardiorenal syndrome revealed increased neurohormonal activity, tubular and myocardial damage compared to heart failure patients with preserved renal function. Cardiorenal Med., 4, 257-268.
[29] Pavan, M. (2014). Incidence of acute cardiorenal syndrome type 3 in India. Iran J. Kidney Dis., 8, 42-45.
[30] Pimienta, G. R., Couto, C. P., Rodríguez, E. M., Alemán Sánchez, J. J., Hernández, A. J., Rodríguez Pérez M. D., Marcelino Rodríguez, I., Brito Díaz, B., Elosua, R. & Cabrera de León, A. Incidence, Mortality and Positive Predictive Value of Type 1 Cardiorenal Syndrome in Acute Coronary Syndrome. PLoS One. 11 (2016): e0167166. Accessed April 15, 2017. doi: 10.1371/journal.pone.01 67166.
[31] Prins, K. W., Thenappan, T., Markowitz, J. S. & Pritzker, M. R. (2015). Cardiorenal Syndrome Type 1: Renal Dysfunction in Acute Decompensated Heart Failure. J. Clin. Outcomes. Manag., 22, 443-454.
[32] Ronco, C. & Di Lullo, L. (2014). Cardiorenal syndrome. Heart. Fail. Clin., 10, 251-280.
[33] Ronco, C., McCullough, P., Anker, S. D., Anand, I., Aspromonte, N., Bagshaw, S. M., Bellomo, R., Berl, T., Bobek, I., Cruz, D. N., Daliento, L., Davenport, A., Haapio, M., Hillege, H., House, A. A., Katz, N., Maisel, A., Mankad, S., Zanco, P., Mebazaa, A., Palazzuoli, A., Ronco, F., Shaw, A., Sheinfeld, G., Soni, S., Vescovo, G., Zamperetti, N. & Ponikowski P; Acute Dialysis Quality Initiative (ADQI) consensus group. (2010). Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur. Heart. J., 31, 703-711.
[34] Salman, K., Cain, P. A., Fitzgerald, B. T., Sundqvist, M. G. & Ugander, M. (2017). Cardiac Amyloidosis Shows Decreased Diastolic Function as Assessed by Echocardiographic Parameterized Diastolic Filling. Ultrasound. Med. Biol., 43, 1331-1338.
[35] Schefold, J. C., Filippatos, G., Hasenfuss, G., Anker, S. D. & Von Haehling, S. (2016). Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat. Rev. Nephrol., 12, 610-623.
[36] Sharma, A., Sartori, M., Zaragoza, J. J., Villa, G., Lu, R., Faggiana, E., Brocca, A., Di Lullo, L., Feriozzi, S. & Ronco, C. (2015). Fabry's disease: an example of cardiorenal syndrome type 5. Heart. Fail. Rev., 20, 689-708.
[37] Soni, S. S., Ronco, C., Pophale, R., Bhansali, A. S., Nagarik, A. P., Barnela, S. R., Saboo, S. S. & Raman, A. (2012). Cardio-renal syndrome type 5: epidemiology, pathophysiology, and treatment. Semin. Nephrol., 32, 49-56.
[38] Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC), Steg, P. G., James, S. K., Atar, D., Badano, L. P., Blömstrom-Lundqvist, C., Borger, M. A., Di Mario, C., Dickstein, K., Ducrocq, G., Fernandez-Aviles, F., Gershlick, A. H., Giannuzzi, P., Halvorsen, S., Huber, K., Juni, P., Kastrati, A., Knuuti, J., Lenzen, M. J., Mahaffey, K. W., Valgimigli, M., van’t Hof, A., Widimsky, P. & Zahger, D. (2012). ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart. J., 33, 2569-2619.
[39] Thiele, H., Ohman, E. M., Desch, S., Eitel, I. & de Waha, S. (2015). Management of cardiogenic shock. Eur. Heart. J., 36, 1223-1230.
[40] Vandenberghe, W., Gevaert, S., Kellum, J. A., Bagshaw, S. M., Peperstraete, H., Herck, I., Decruyenaere, J. & Hoste, E. A. (2016). Acute Kidney Injury in Cardiorenal Syndrome Type 1 Patients: A Systematic Review and Meta-Analysis. Cardiorenal. Med., 6, 116-128.
[41] Virzi, G. M., Clementi, A., Brocca, A., de Cal, M., Marcante, S. & Ronco, C. (2016). Cardiorenal Syndrome Type 5 in Sepsis: Role of Endotoxin in Cell Death Pathways and Inflammation. Kidney Blood Press. Res., 41, 1008-1015.
[42] Vitko, S. & Adamkova, V. Kardiorenální syndromy. 1st Edition, Prague, Czech Republic, Maxdorf,; 2017. [Cardiorenal Syndromes. 1st Edition, Prague, Czech Republic, Maxdorf,; 2017].

Chapter 2.2

[1] Acevedo, J. G. & Cramp, M. E. (2017). Hepatorenal syndrome: Up- date on diagnosis and therapy. World J. Hepatol., 9, 293-299.
[2] Angeli, P., Ginès, P., Wong, F., Bernardi, M., Boyer, T. D., Gerbes, A., Moreau, R., Jalan, R., Sarin, S. K., Piano, S., Moore, K., Lee, S. S., Durand, F., Salerno, F., Caraceni, P., Kim, W. R., Arroyo, V. & Garcia-Tsaom, G. (2015). Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J. Hepatol., 62, 968-974.
[3] Angeli, P., Tonon, M., Pilutti, C., Morando, F. & Piano, S. (2016). Sepsis-induced acute kidney injury in patients with cirrhosis. Hepatol. Int., 10, 115-123.
[4] Aslam, M., Ram, A. S. & Krishnamurthy, A. (2016). The renal resistive index is a non-invasive indicator of hepatorenal syndrome in cirrhotics. JCRI., 3, 23–27.
[5] Barreto, R., Fagundes, C., Guevara, M., Solà, E., Pereira, G., Rodríguez, E., Graupera, I., Martín-Llahí, M., Ariza, X., Cárdenas, A., Fernández, J., Rodés, J., Arroyo, V. & Ginès, P. (2014). Type-1 hepatorenal syndrome associated with infections in cirrhosis: natural history, outcome of kidney function, and survival. Hepatology., 59, 1505-1513.
[6] Bernardi, M., Moreau, R., Angeli, P., Schnabl, B. & Arroyo, V. (2015). Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. J. Hepatol., 63, 1272-1284.
[7] Bortoluzzi, A., Ceolotto, G., Gola, E., Sticca, A., Bova, S., Morando, F, Piano, S., Fasolato, S., Rosi, S., Gatta, A. & Angeli, P. (2013). Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: molecular mechanisms. Hepatology., 57, 266-276.
[8] Busk, T. M., Bendtsen, F. & Møller, S. (2016). Hepatorenal syndro- me in cirrhosis: diagnostic, pathophysiological, and therapeutic aspects. Expert. Rev. Gastroenterol. Hepatol., 16, 1-9.
[9] Colson, P. H., Virsolvy, A., Gaudard, P., Charrabi, A., Corbani, M., Manière, M. J., Richard, S. & Guillon, G. (2016). Terlipressin, a vasoactive prodrug recommended in hepatorenal syndrome, is an agonist of human V1, V2 and V1B receptors: Implications for its safety profile. Pharmacol. Res., 113, 257-264.
[10] Erly, B., Carey, W. D., Kapoor, B., McKinney, J. M., Tam, M. & Wang, W. (2015). Hepatorenal Syndrome: A Review of Pathophy- siology and Current Treatment Options. Semin. Intervent. Radiol., 32, 445-454.
[11] Facciorusso, A., Chandar, A. K., Murad, M. H., Prokop, L. J., Mus- catiello, N., Kamath, P. S. & Singh, S. (2017). Comparative efficacy of pharmacological strategies for management of type 1 hepatorenal syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol., 2, 94-102.
[12] Ginès, P. & Schrier, R. W. (2009). Renal failure in cirrhosis. N. Engl. J. Med., 361, 1279-1290.
[13] International Club of Ascites. Available online on Accessed Jan 15, 2017.
[14] Lavayssière, L., Kallab, S., Cardeau-Desangles, I., Nogier, M.B., Cointault, O., Barange, K., Muscari, F., Rostaing, L. & Kamar, N. (2013). Impact of molecular adsorbent recirculating system on renal recovery in type-1 hepatorenal syndrome patients with chronic liver failure. J. Gastroenterol. Hepatol., 28, 1019-1024.
[15] Low, G., Owen, N. E., Joubert, I., Patterson, A. J., Graves, M. J., Alexander, G. J. & Lomas, D. J. (2015). Magnetic resonance elasto- graphy in the detection of hepatorenal syndrome in patients with cirrhosis and ascites. Eur. Radiol., 25, 2851-2858.
[16] Meola, M., Nalesso, F., Petrucci, I., Samoni, S. & Ronco, C. (2016). Clinical Scenarios in Acute Kidney Injury: Hepatorenal Syndrome. Contrib. Nephrol., 188, 33-38.
[17] Mitzner, S. R., Stange, J., Klammt, S., Peszynski, P., Schmidt, R. & Noldge-Schomburg, G. (2001). Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J. Am. Soc. Nephrol., 12, (Suppl. 17), S75–82.
[18] Møller, S., Krag, A. & Bendtsen, F. (2014). Kidney injury in cirrhosis: pathophysiological and therapeutic aspects of hepatorenal syndromes. Liver Int., 34, 1153-1163.
[19] Piano, S., Romano, A., Di Pascoli, M. & Angeli, P. (2017). Why and how to measure renal function in patients with liver disease. Liver Int., 37, Suppl 1, 116-122.
[20] Regner, K. R. & Singbartl, K. (2016). Kidney Injury in Liver Disea- se. Crit. Care Clin., 32, 343-355.
[21] Runyon, B. A., Hepatorenal syndrome, UpToDate. Available onli-
ne on: https:// www. uptodate. com/ contents/hepatorenal-syndrome. Accessed May 17, 2017.
[22] Russ, K. B., Stevens, T. M. & Singal, A. K. (2015). Acute Kidney Injury in Patients with Cirrhosis. J. Clin. Transl. Hepatol., 3, 195-204.
[23] Salerno, F., Gerbes, A., Ginès, P., Wong, F. & Arroyo, V. (2007). Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut., 56, 1310-1318.
[24] Sanyal, A. J., Boyer, T. D., Frederick, R. T., Wong, F., Rossaro, L., Araya, V., Vargas, H. E., Reddy, K. R., Pappas, S. C., Teuber, P., Escalante, S. & Jamil, K. (2017). Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin vs. placebo plus albumin in a pooled analysis of the OT-0401 and REVERSE randomised clinical studies. Aliment. Pharmacol. Ther., 45, 1390-1402.
[25] Snowdon, V. K., Lachlan, N. J., Hoy, A. M., Hadoke, P. W., Semple, S. I., Patel, D., Mungall, W., Kendall, T. J., Thomson, A., Lennen, R. J., Jansen, M. A., Moran, C. M., Pellicoro, A., Ramachandran, P., Shaw, I., Aucott, R.L., Severin, T., Saini, R.. Pak, J., Yates, D., Dongre, N., Duffield, J. S., Webb, D. J., Iredale, J. P., Hayes, P. C. & Fallowfield, J. A. Serelaxin as a potential treatment for renal dys- function in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial. PLoS Med. 14 (2017): e1002248. Accessed June 17, 2017. doi: 10.1371/journal.pmed.1002248.
[26] Tujios, S. R., Hynan, L. S., Vazquez, M. A., Larson, A. M., Seremba, E., Sanders, C. M. & Lee, W. M. (2015). Acute Liver Failure Srudy Group. Risk factors and outcomes of acute kidney injury in patients with acute liver failure. Clin. Gastroenterol. Hepatol., 13, 352-359.
[27] Urrunaga, N. H., Magder, L. S., Weir, M. R., Rockey, D. C. & Mindikoglu, A. L. (2016). Prevalence, Severity, and Impact of Renal Dysfunction in Acute Liver Failure on the US Liver Transplant Waiting List. Dig. Dis. Sci., 61, 309-316.
[28] Valerio, C., Theocharidou, E., Davenport, A. & Agarwal, B. (2016). Human albumin solution for patients with cirrhosis and acute on chronic liver failure: Beyond simple volume expansion. World J. Hepatol., 8, 345-354.
[29] Wang, Y., Liu, L. P., Bai, W. Y., Wen, S. B., Dan, H. J., Luan, Y. Y., Zeng, M. X. & Hu, B. (2011). Renal haemodynamics in patients with liver cirrhosis assessed by color ultrasonography. J. Int. Med. Res., 39, 249-255.
[30] Wong, F., Nadim, M. K., Kellum, J. A., Salerno, F., Bellomo, R., Gerbes, A., Angeli, P., Moreau, R., Davenport, A., Jalan, R., Ronco, C., Genyk, Y. & Arroyo, V. (2011). Working Party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut., 60, 702-709.
[31] Yap, D. Y., Seto, W. K., Fung, J., Chok, S. H., Chan, S. C., Chan, G. C., Yuen, M. F. & Chan, T. M. (2017). Serum and urinary biomar- kers that predict hepatorenal syndrome in patients with advanced cirrhosis. Dig. Liver Dis., 49, 202-206.

Chapter 2.3

[1] Alderton, W. K., Cooper, C. E. & Knowles, R. G. (2001). Nitric oxide synthases: Structure, function and inhibition. Biochem. J., 357, (Pt 3): 593-615.
[2] Baek, S. D., Yu, H., Shin, S., Park, H. S., Kim, M. S., Kim, S. M., Lee, E. K. & Chang, J. W. (2017). Early continuous renal replace- ment therapy in septic acute kidney injury could be defined by its initiation within 24 hours of vasopressor infusion. J. Crit. Care.,39, 108-114.
[3] Bagshaw, S. M., Laupland, K. B., Doig, C. J., Mortis, G., Fick, G. H., Mucenski, M., Godinez-Luna, T., Svenson, L. W. & Rosenal, T. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit. Care. 9 (2005): R700-R709. Accessed May 17, 2017. doi:10. 1186/cc3879.
[4] Bagshaw, S. M., Uchino, S., Bellomo, R., Morimatsu, H., Morgera, S., Schetz, M., Tan, I., Bouman, C., Macedo, E., Gibney, N., Tolwani, A., Oudemans-van Straaten, H. M., Ronco, C. & Kellum, J. A. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. (2007). Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin. J. Am. Soc. Nephrol., 2, 431–439.
[5] Bagshaw, S. M. & Wald, R. (2017). Strategies for the optimal timing to start renal replacement therapy in critically ill patients with acute kidney injury. Kidney Int., 91, 1022-1032.
[6] Bellomo, R., Kellum, J. A., Ronco, C., Wald, R., Martensson, J., Maiden, M., Bagshaw, S. M., Glassford, N. J., Lankadeva, Y., Vaara, S. T. & Schneider, A. (2017). Acute kidney injury in sepsis. Inten- sive Care. Med., 43, 816-828.
[7] Bellomo, R., Wan, L., Langenberg, C., Ishikawa, K. & May, C. N. (2011). Septic acute kidney injury: the glomerular arterioles. Contrib. Nephrol, 74, 98-107.
[8] Besen, B. A., Gobatto, A. L., Melro, L. M., Maciel, A. T. & Park, M. (2015). Fluid and electrolyte overload in critically ill patients: An overview. World. J. Crit. Care. Med., 4, 116-129.
[9] Calzavacca, P., Evans, R. G., Bailey, M., Bellomo, R. & May, C. N. Cortical and Medullary Tissue Perfusion and Oxygenation in Experimental Septic Acute Kidney Injury. Crit. Care. Med. 43 (2015) e431-439. Accessed April 17, 2017. doi:10.1097/CCM.0000 000000001198.
[10] Cupples, W. A. (2007). Interactions contributing to kidney blood flow autoregulation. Curr. Opin. Nephrol. Hypertens., 16, 39-45.
[11] Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M., Sevransky, J. E., Sprung, C. L., Douglas, I. S., Jaeschke, R., Osborn, T.M., Nunnally, M. E., Townsend, S. R., Reinhart, K., Kleinpell, R. M., Angus, D. C., Deutschman, C. S., Machado, F. R., Rubenfeld, G. D., Webb, S. A., Beale, R. J., Vincent, J. L. & Moreno, R; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. (2013). Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care. Med., 41, 580-637.
[12] Di Giantomasso, D., May, C. N. & Bellomo, R. (2003). Vital organ blood flow during hyperdynamic sepsis. Chest., 124, 1053–1059.
[13] El-Menyar, A., Al Thani, H., Zakaria, E. R., Zarour, A., Tuma, M., Rahman, H.A., Parchani, A., Peralta R. & Latifi, R. (2012). Multiple Organ Dysfunction Syndrome (MODS): Is It Preventable or Inevitable? International Journal of Clinical Medicine, 3, 722-730.
[14] Friedericksen, D. V., Van der Merwe, L., Hattingh, T. L., Nel, D. G. & Moosa, M. R. (2009). Acute renal failure in the medical ICU still predictive of high mortality. S. Afr. Med. J., 99, 873-875.
[15] Gao, Z., Mu, D. W., Guo, L., Li, X. M. & Lun, L. D. (2014). Etiological factors, prognostic assessment, and outcomes of patients with acute kidney injury and multiple organ dysfunction syndrome. Genet. Mol. Res., 13, 8378-8384.
[16] Ho, K. M. & Power, B. M. (2010). Benefits and risks of furosemide in acute kidney injury. Anaesthesia., 65, 283-293.
[17] Honore, P. M., Jacobs, R., Hendrickx, I., Bagshaw, S. M., Joannes-Boyau, O., Boer, W., De Waele, E., Van Gorp, V. & Spapen, H. D. Prevention and treatment of sepsis-induced acute kidney injury: an update. Ann. Intensive Care. 5 (2015):51. Accessed May 15, 2017. doi: 10.1186/s13613-015-0095-3.
[18] Ioakeimidou, A., Pagalou, E., Kontogiorgi, M., Antoniadou, E., Kaziani, K., Psaroulis, K., Giamarellos-Bourboulis, E. J., Prekates, A., Antonakos, N., Lassale, P. & Gogos, C. Hellenic Sepsis Study Group. Increase of circulating endocan over sepsis follow-up is associated with progression into organ dysfunction. Eur. J. Clin. Microbiol. Infect. Dis. 2017 Apr 28. doi: 10.1007/s10096-017-29
[19] Jacob, M., Paul, O., Mehringer, L., Chappell, D., Rehm, M., Welsch, U., Kaczmarek, I., Conzen, P. & Becker, B. F. (2009). Albumin augmentation improves condition of guinea pig hearts after 4 hr of cold ischemia. Transplantation., 87, 956-965.
[20] Jawad, I., Lukšić, I. & Rafnsson, S. B. Assessing available informa- tion on the burden of sepsis: global estimates of incidence, prevalen- ce and mortality. J. Glob. Health. 2 (2012): 010404. Accessed May 24, 2017. doi: 10.7189/ jogh.02.010404.
[21] Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney inter., Suppl. 2, 1–138.
[22] Kosaka, J., Lankadeva, Y. R., May, C. N. & Bellomo, R. Histo- pathology of Septic Acute Kidney Injury: A Systematic Review of Experimental Data. Crit. Care. Med. 44 (2016): e897-903. Accessed May 10, 2017. doi: 10.1097 /CCM. 0000000000001735.
[23] Lai, T. S., Shiao, C. C., Wang, J. J., Huang, C. T., Wu, P. C., Chueh, E., Chueh, S. J., Kashani, K. & Wu, V. C. Earlier versus later initia- tion of renal replacement therapy among crititically ill patients with acute kidney injury: a systematic review and meta-analysis of randomized controlled trials. Ann. Intensive Care. 7 (2017): 38. Accessed May 30, 2017. doi: 10.1186/s13613-017-0265-6.
[24] Langerberg, C., Bellomo, R., May, C., Wan, L., Egi, M. & Morgera, S. Renal blood flow in sepsis. Crit. Care. 9 (2005): R363–R374. Accessed April 12, 2017. doi: 10.1186/cc3540.
[25] Legrand, M. & Payen, D. Understanding urine output in critically ill patients. Ann. Intensive Care., 1 (2011):13. Accessed May 10, 2017. doi: 10.1186/2110-5820-1-13.
[26] Levi, M., Schultz, M. & van der Poll, T. (2013). Sepsis and thrombo- sis. Semin. Thromb. Hemost., 39, 559-566.
[27] Levi, M. & van der Poll T. (2017). Coagulation and sepsis. Thromb. Res., 149, 38-44.
[28] Loflin, R. & Winters, M. E. (2017). Fluid Resuscitation in Severe Sepsis. Emerg. Med. Clin. North. Am., 35, 59-74.
[29] Lullmann, K., Mohr, K. & Wehling, M. Farmakologie a toxikologie. 2nd Edition, Czech translation, Prague, Czech Republic, Grada Publishing a.s.; 2004. [Pharmacology and toxicology, 2nd Edition, Czech translation, Prague, Czech Republic, Grada Publishing a.s.; 2004].
[30] Metnitz, P. G., Krenn, C. G., Steltzer, H., Lang, T., Ploder, J., Lenz, K., Le Gall, J. R. & Druml, W. (2002). Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit. Care Med., 30, 2051-2058.
[31] National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network; Wiedemann, H. P., Wheeler, A. P., Bernard, G. R., Thompson, B. T., Hayden, D., de Boisblanc, B., Connors, A. F. Jr, Hite, R. D. & Harabin, A. L. (2006). Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med., 354, 2564-2575.
[32] O’Connor, M. E. & Prowle, J. R. (2015). Fluid Overload. Crit. Care. Clin., 31, 803-821.
[33] Perel, P., Roberts, I. & Ker, K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst. Rev. (2013):CD000567. Accessed May 10, 2017. doi: 10.1002/14651858. CD000567.pub6.
[34] Prowle, J. R. & Bellomo, R. (2013). Fluid administration and the kidney. Curr. Opin. Crit. Care., 19, 308-314.
[35] Ramachandran, G. (2014). Gram-positive and gram-negative bacte- rial toxins in sepsis: a brief review. Virulence., 5, 213-218.
[36] Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antonelli, M., Ferrer, R., Kumar, A., Sevransky, J. E., Sprung, C. L., Nunnally, M. E., Rochwerg, B., Rubenfeld, G. D., Angus, D. C., Annane, D., Beale, R. J., Bellinghan, G. J., Bernard, G. R., Chiche, J. D, Coopersmith, C., De Backer, D. P., French, C. J., Fujishima, S., Gerlach, H., Hidalgo, J. L., Hollenberg, S. M., Jones, A. E., Karnad, D. R., Kleinpell, R. M., Koh, Y., Lisboa, T .C., Machado, F. R., Marini, J. J., Marshall, J. C., Mazuski, J. E., McIntyre, L. A., McLean, A. S., Mehta, S., Moreno, R. P., Myburgh, J., Navalesi, P., Nishida, O., Osborn, T. M., Perner, A., Plunkett, C. M., Ranieri, M., Schorr, C. A., Seckel, M. A., Seymour, C. W., Shieh, L., Shukri, K.A., Simpson, S. Q., Singer, M., Thompson, B. T., Townsend,
S. R., Van der Poll, T., Vincent, J. L., Wiersinga, W. J., Zimmerman. J.L. & Dellinger, RP. (2017). Surviving Sepsis Campaign: Internatio- nal Guidelines for Management of Sepsis and Septic Shock: 2016. Crit. Care. Med., 45, 486-552.
[37] Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll, T., Vincent, J. L. & Angus, D.C. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA., 315, 801-810.
[38] Sun, Z., Ye, H., Shen, X., Chao, H., Wu, X. & Yang, J. Continuous venovenous hemofiltration versus extended daily hemofiltration in patients with septic acute kidney injury: a retrospective cohort study. Crit. Care. 18 (2014): R70. Accessed May 25, 2017. doi: 10.1186/cc 13827.
[39] Van der Poll, T., van de Veerdonk, F. L., Scicluna, B. P. & Netea, M. G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. (2017). Accessed May 30, 2017. doi: 10. 1038/nri. 2017.36.
[40] Vincent, J. L., De Backer, D. & Wiedermann, C. J. (2016). Fluid management in sepsis: The potential beneficial effects of albumin. J. Crit. Care., 35, 161-167.
[41] Woodcock, T. E. & Woodcock, T. M. (2012). Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth., 108, 384-394.
[42] Zhang, F., Liu, A. L., Gao, S., Ma, S. & Guo, S. B. (2016). Neutrophil Dysfunction in Sepsis. Chin. Med. J. (Engl)., 129, 2741-2744.

Chapter 2.4

[1] Aggarwal, P., Handa, R., & Walli, J.P. Acute Poisoning – Manage- ment Guidelines. Journal of Indian Academy of Clinical Medicine. Vol. 5 No.2 pp.142-147. Available online on: http://medind.nic.
in/jac/t00/i2/jact00i2p142.pdf, Accessed May 15, 2017.
[2] An, H. & Godwin, J. Flumazenil in benzodiazepine overdose. CMAJ. 188 (2016): E537. Accessed Ma 30, 3017. doi: 10.1503/cmaj.
[3] Araz, C., Karaaslan, P., Esen, A., Zeyneloglu, P., Candan, S., Torgay, A. & Haberal, M. (2006). Successful treatment of a child with fulminant liver failure and coma due to Amanita phalloides poisoning using urgent liver transplantation. Transplant. Proc., 38, 596-597.
[4] Barceloux, D. G., Bond, G. R., Krenzelok, E. P., Cooper, H. & Vale, J. A. (2002). American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. J. Toxicol. Clin. Toxicol., 40, 415–446.
[5] Barceloux, D. G., Krenzelok, E. P., Olson, K. & Watson, W. (1999). American Academy of Clinical Toxicology practice guidelines on the treatment of ethylene glycol poisoning. Ad Hoc Committee. J. Toxicol. Clin. Toxicol, 37, 537–560.
[6] Barnhill, M. T. Jr., Herbert, D. & Wells, D. J. Jr. (2007). Compa- rison of hospital laboratory serum alcohol levels obtained by an enzymatic method with whole blood levels forensically determined by gas chromatography. J. Anal. Toxicol., 31, 23-30.
[7] Berecki-Gisolf, J., Hassani-Mahmooei, B., Clapperton, A. & McClu- re, R. (2017). Prescription opioid dispensing and prescription opioid poisoning: Population data from Victoria, Australia 2006 to 2013. Aust. N. Z. J. Public Health., 41, 85-91.
[8] Brandenburg, R., Brinkman, S., de Keizer, N. F., Meulenbelt, J. & de Lange, D. W. (2014). In-hospital mortality and long-term survival of patients with acute intoxication admitted to the ICU. Crit. Care Med., 42, 1471-1479.
[9] Brent, J., McMartin, K., Phillips, S., Aaron, C. & Kulig, K. (2001). Methylpyrazole for Toxic Alcohols Study Group. Fomepizole for the treatment of methanol poisoning. N. Engl. J. Med., 344, 424-429.
[10] Brent, J., McMartin, K., Phillips, S., Burkhart, K. K., Donovan, J. W., Wells, M. & Kulig, K. (1999). Fomepizole for the treatment of ethylene glycol poisoning. Methylpyrazole for Toxic Alcohols Study Group. N. Engl. J. Med., 340, 832-838.
[11] Bullock, C. (1990). The biochemistry of alcohol metabolism – a brief review. Biochemical Education., 18, 62-66.
[12] Bursová, M., Hložek, T. & Čabala, R. (2015). Simultaneous Deter-mination of Methanol, Ethanol and Formic Acid in Serum and Urine by Headspace GC-FID. J. Anal. Toxicol., 39, 741-745.
[13] Carota, A., Calabrese, P. & Bogousslavsky, J. (2016). Neurotoxic Weapons and Syndromes. Front. Neurol. Neurosci., 38, 214-227.
[14] Charness, M. E., Simon, R. P. & Greenberg, D. A. (1989). Ethanol and the nervous system. N. Engl. J. Med., 321, 442-454.
[15] Colović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M. & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: pharmaco- logy and toxicology. Curr. Neuropharmacol., 11, 315-335.
[16] Colvin, R. B. & Chang, A. Diagnostic Pathology: Kidney Diseases. 2nd Edition. Philadelphia, USA, Elsevier.; 2016.
[17] Dart, R. C. Medical Toxicology. 3rd Edition. Philadelphia, USA, Lippincott- Williams & Wilkins.; 2004.
[18] Devlin, R. J. & Henry, J. A. Clinical review: Major consequences of illicit drug consumption. Crit. Care. 12 (2008):202. Accessed June 22, 2017. doi: 10.1186/cc6166.
[19] Dharel, N. & Bajaj, J. S. (2015). Definition and nomenclature of hepatic encephalopathy. J. Clin. Exp. Hepatol., 5, (Suppl 1), S37-41.
[20] Eddleston, M., Buckley, N. A., Eyer, P. & Dawson, A. H. (2008). Management of acute organophosphorus pesticide poisoning. Lancet., 371, 597-607.
[21] eMC. SPC Acetylcysteine 200mg/mL Injection. Available online on:, Accessed May 10, 2017.
[22] eMC. SPC Flumazenil 0.1mg/mL Injection (hameln). Available online on: Accessed May 10, 2017.
[23] eMC. SPC Naloxone Hydrochloride Injection, Minijet. Available online on: Accessed May 15, 2017.
[24] Faul, M., Lurie, P., Kinsman, J. M., Dailey, M. W., Crabaugh, C. & Sasser, S. M. (2017). Multiple Naloxone Administrations Among Emergency Medical Service Providers is Increasing. Prehosp. Emerg. Care., 8, 1-8.
[25] Garcia, J., Costa, V. M., Carvalho, A., Baptista, P., de Pinho, P. G., de Lourdes, Bastos, M. & Carvalho, F. (2015). Amanita phalloides poisoning: Mechanisms of toxicity and treatment. Food Chem. Toxicol., 86, 41-55.
[26] Garner, C. D., Lee, E. W., Terzo, T. S. & Louis-Ferdinand, R. T. (1995). Role of retinal metabolism in methanol-induced retinal toxicity. J. Toxicol. Environ. Health., 44, 43-56.
[27] Gaudreault, P., Guay, J., Thivierge, R. L. & Verdy, I. (1991). Benzodiazepine poisoning. Clinical and pharmacological considerations and treatment. Drug. Saf., 6, 247-265.
[28] Gausterer, C., Penker, M., Krisai-Greilhuber, I., Stein, C. & Stimpfl, T. (2014). Rapid genetic detection of ingested Amanita phalloides. Forensic Sci. Int. Genet., 9, 66-71.
[29] Hedegaard, H., Warner, M. & Minino, A. M. (2017). Drug Overdose Deaths in the United States, 1999-2015. NCHS. Data Brief., 273,
[30] Heier, C., Xie, H. & Zimmermann, R. (2016). Nonoxidative ethanol metabolism in humans-from biomarkers to bioactive lipids. IUBMB. Life., 68, 916-923.
[31] Henderson, W. R. & Brubacher, J. (2002). Methanol and ethylene glycol poisoning: a case study and review of current literature. CJEM., 4, 34-40.
[32] Hložek, T., Bursová, M. & Čabala R. (2014). Fast determination of ethylene glycol, 1,2-propylene glycol and glycolic acid in blood serum and urine for emergency and clinical toxicology by GC-FID. Talanta., 130, 470-474.
[33] Hovda, K. E., Urdal, P. & Jacobsen, D. (2005). Increased serum formate in the diagnosis of methanol poisoning. J. Anal. Toxicol., 29, 586-588.
[34] Kaplan, M. S., McFarland, B. H., Huguet, N., Conner, K., Caetano, R., Giesbrecht, N. & Nolte, K. B. (2013). Acute alcohol intoxication and suicide: a gender-stratified analysis of the National Violent Death Reporting System. Inj. Prev., 19, 38–43.
[35] Karalliedde, L. (1999). Organophosphorus poisoning and anaes- thesia. Anaesthesia., 54, 1073-1088.
[36] Koch, A. & Trautwein, Ch. Acute Liver failure in Dancygier, H. Editor: Clinical Hepatology. Principles and Practice of Hepatobiliary Diseases. Volume 2. 1st Edition. Berlin Heidelber, Germany, Springer Verlag.; 2010.
[37] Krasnodębski, M., Grąt, M., Hołówko, W., Masior, Ł., Wronka, K. M., Grąt, K., Stypułkowski, J., Patkowski, W. & Krawczyk, M. (2016). Results of liver transplantation in patients with acute liver failure due to Amanita phalloides and paracetamol (acetaminophen) intoxication. Prz. Gastroenterol., 11, 90-95.
[38] Kraut, J. A. & Kurtz, I. (2008). Toxic alcohol ingestions: clinical features, diagnosis, and management. Clin. J. Am. Soc. Nephrol., 3, 208-225.
[39] Kruse, J. A. (2012). Methanol and ethylene glycol intoxication. Crit. Care. Clin., 28, 661-711.
[40] Li, S. F., Jacob, J., Feng, J. & Kulkarni, M. (2008). Vitamin deficien- cies in acutely intoxicated patients in the ED. Am. J. Emerg. Med., 26, 792-795.
[41] Liesivuori, J. & Savolainen, H. (1991). Methanol and formic acid toxicity: biochemical mechanisms. Pharmacol. Toxicol., 69, 157-163.
[42] Lim, C. S. & Bryant, S. M. (2016). Forgoing the Folate?-Contem- porary Recommendations for Methanol Poisoning and Evidence Review. Am. J. Ther., 23, 850-854.
[43] Liu, D. M., Zhou, S., Chen, J. M., Peng, S. Y. & Xia, W. The Intoxication Effects of Methanol and Formic Acid on Rat Retina Function. J. Ophthalmol. 2016 (2016): 4087096. Accessed May, 30, 2017. doi: 10.1155/2016/4087096.
[44] Magdalan, J., Ostrowska, A., Piotrowska, A., Gomułkiewicz, A., Podhorska-Okołów, M., Patrzałek, D., Szelag, A. & Dziegiel, P. (2010). Benzylpenicillin, acetylcysteine and silibinin as antidotes in human hepatocytes intoxicated with alpha-amanitin. Exp. Toxicol. Pathol., 62, 367-373.
[45] Magdalan, J., Ostrowska, A., Piotrowska, A., Izykowska, I., Nowak, M., Gomułkiewicz, A., Podhorska-Okołów, M., Szelag, A. & Dziegiel, P. (2010). alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes. Folia Histochem. Cytobiol., 48, 58-62.
[46] Massoumi, G., Saberi, K., Eizadi-Mood, N., Shamsi, M., Alavi, M. & Morteza, A. (2012). Methanol poisoning in Iran, from 2000 to 2009. Drug. Chem. Toxicol., 35, 330-333.
[47] McGill, M. R. & Jaeschke, H. (2013). Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res., 30, 2174-2187.
[48] McMartin, K., Jacobsen, D. & Hovda K. E. (2016). Antidotes for poisoning by alcohols that form toxic metabolites. Br. J. Clin. Pharmacol., 81, 505-515.
[49] Mengs, U., Pohl, R. T. & Mitchell, T. (2012). Legalon® SIL: the antidote of choice in patients with acute hepatotoxicity from amatoxin poisoning. Curr. Pharm. Biotechnol., 13, 1964-1970.
[50] Muley, A., Shah, C., Lakhani, J., Bapna, M. & Mehta, J. (2014). To identify morbidity and mortality predictors in acute organophosphate poisoning. Indian J. Crit. Care. Med., 18, 297-300.
[51] Nouira, S., Abroug, F., Elatrous, S., Boujdaria, R. & Bouchoucha, S. (1994). Prognostic value of serum cholinesterase in organophosphate poisoning. Chest., 106, 1811-1814.
[52] O'Grady, J. (2014). Timing and benefit of liver transplantation in acute liver failure. J. Hepatol., 60, 663-670.
[53] Paasma, R., Hovda, K. E. & Jacobsen, D. Methanol poisoning and long-term sequelae - a six years follow-up after a large methanol outbreak. BMC. Clin. Pharmacol., 9 (2009): 5. Accessed May 12, 2017. doi: 10.1186/1472-6904-9-5.
[54] Peces, R., González, E., Peces, C. & Selgas, R. (2008). Treatment of severe alcohol poisoning. Nefrología., 28, 369-372.
[55] Peter, J. V., Sudarsan, T. I. & Moran, J.L. (2014). Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian. J. Crit. Care Med., 18, 735-745.
[56] Pillukat, M. H., Schomacher, T., Baier, P., Gabriëls, G., Pavenstädt., H. & Schmidt, H. H. (2016). Early initiation of MARS® dialysis in Amanita phalloides - induced acute liver injury prevents liver transp- lantation. Ann. Hepatol., 15, 775-787.
[57] Porter, W. H. (2012). Ethylene glycol poisoning: quintessential clini- cal toxicology; analytical conundrum. Clin. Chim. Acta., 413, 365-377.
[58] Rademacher, S., Oppert, M. & Jörres, A. (2011). Artificial extracorporeal liver support therapy in patients with severe liver failure. Expert. Rev. Gastroenterol. Hepatol., 5, 591-599.
[59] Roberts, D. M., Hall, M. J., Falkland, M. M., Strasser, S. I. & Buckley, N. A. (2013). Amanita phalloides poisoning and treatment with silibinin in the Australian Capital Territory and New South Wales. Med. J. Aust., 198, 43-47.
[60] Santi, L., Maggioli, C., Mastroroberto, M., Tufoni, M., Napoli, L. & Caraceni, P. Acute Liver Failure Caused by Amanita phalloides Poisoning. Int. J. Hepatol. 2012 (2012):487480. Accessed May 10, 2017. doi: 10.1155/2012/487480.
[61] Sivilotti, M. L. (2016). Flumazenil, naloxone and the 'coma cocktail'. Br. J. Clin. Pharmacol., 81, 428-436.
[62] Sorge, M., Weidhase, L., Bernhard, M., Gries, A. & Petros, S. (2015). Self-poisoning in the acute care medicine 2005-2012. Anaesthesist., 64, 456-462.
[63] Tittarelli, R., Pellegrini, M., Scarpellini, M. G., Marinelli, E., Bruti, V., di Luca, N. M., Busardò, F. P., & Zaami, S. (2017). Hepatoto- xicity of paracetamol and related fatalities. Eur. Rev. Med. Phar- macol. Sci., 21, (1 Suppl), 95-101.
[64] The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009. World Health Organization 2010. Available online on: es_hazard_2009.pdf. Accessed May 30, 2017.
[65] Thunga, G., Sam, K. G., Khera, K., Xavier, V. & Verma, M. Profile of acute mixed organophosphorus poisoning. Am. J. Emerg. Med. 27 (2009): 628.e1-3. Accessed June 22, 2017. doi: 10.1016/j.ajem. 2008.08.030.
[66] Viinamäki, J., Sajantila, A. & Ojanperä, I. (2015). Ethylene Glycol and Metabolite Concentrations in Fatal Ethylene Glycol Poisonings. J. Anal. Toxicol., 39, 481-485.
[67] Wadd, S. & Papadopoulos, C. Drinking behaviour and alcohol-related harm amongst older adults: analysis of existing UK datasets. BMC. Res. Notes. 7 (2014): 741. Accessed June 17, 2017. doi: 10.11 86/1756-0500-7-741.
[68] Weiss, N., Jalan, R. & Thabut, D. Understanding hepatic encepha- lopathy. Intensive Care Med. (2017). Accessed June 10, 2017. doi: 10.1007/s00134-017-4845-6.
[69] Wilcox, H. C., Conner, K. R. & Caine, E. D. (2004). Association of alcohol and drug use disorders and completed suicide: an empirical review of cohort studies. Drug. Alcohol. Depend., 76, Suppl: S11-9.
[70] Yilmaz, I., Ermis, F., Akata, I. & Kaya, E. (2015). A Case Study: What Doses of Amanita phalloides and Amatoxins Are Lethal to Humans? Wilderness. Environ. Med., 26, 491-496.
[71] Yoon, E., Babar, A., Choudhary, M., Kutner, M. & Pyrsopoulos, N. (2016). Acetaminophen-Induced Hepatotoxicity: a Comprehensive Update. J. Clin. Transl. Hepatol., 4, 131-142.
[72] Zakharov, S., Kotikova, K., Nurieva, O., Hlusicka, J., Kacer, P., Urban, P., Vaneckova, M., Seidl, Z., Diblik, P., Kuthan, P., Navratil, T. & Pelclova, D. (2017). Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning. Clin. Toxicol. (Phila). 55, 249-259.
[73] Zakharov, S., Navratil, T. & Pelclova, D. (2014). Fomepizole in the treatment of acute methanol poisonings: experience from the Czech mass methanol outbreak 2012-2013. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub., 158, 641-649.

Chapter 3.1

[1] Ambalavanan, S., Rabetoy, G. & Cheung, A.K. High-Efficiency and High-Flux Hemodialysis. Chapter 3. Accessed June 3, 201, Available online on
me5/ch3/ADK5-03_1-3.ccc. QXD. Pdf.
[2] Baumgaertel, M. W., Kraemer, M. & Berlit, P. (2014). Neurologic complications of acute and chronic renal disease. Handb. Clin. Neurol., 119, 383-393.
[3] Bayliss, G. (2010). Dialysis in the poisoned patient. Hemodial. Int., 14, 158-167.
[4] Bellomo, R. (2011). Acute renal failure. Semin. Respir. Crit. Care Med., 32, 639-650.
[5] Berger, D. & Takala, J. Hypotension and hypovolemia during hemodialysis: is the usual suspect innocent? Crit. Care. 20 (2016): 140. Accessed June 15, 2017. doi: 10.1186/s13054-016-1307-4.
[6] Bitker, L., Bayle, F., Yonis, H., Gobert, F., Leray, V., Taponnier, R., Debord, S., Stoian-Cividjian, A., Guérin, C. & Richard, J. C. Prevalence and risk factors of hypotension associated with preload-dependence during intermittent hemodialysis in critically ill patients. Crit. Care. 20 (2016):44. Accessed June 15, 2017. doi: 10.1186/ s13054-016-1227-3.
[7] Boyer, C. J. & Swartz, R. D. (1991). Severe Clotting During Extracorporeal Dialysis Procedures. Seminars in Dialysis., 4, 69-71.
[8] Centers for Disease Control and Prevention (CDC). (2008). Acute allergic-type reactions among patients undergoing hemodialysis--multiple states, 2007-2008. MMWR. Morb. Mortal. Wkly. Rep., 57, 124-125.
[9] Desai, N. (2015). Basics of base in hemodialysis solution: Dialysate buffer production, delivery and decontamination. Indian. J. Nephrol., 25, 189–193.
[10] du Cheyron, D., Terzi, N., Seguin, A., Valette, X., Prevost, F., Ramakers, M., Daubin, C., Charbonneau, P. & Parienti, J. J. (2013). Use of online blood volume and blood temperature monitoring during haemodialysis in critically ill patients with acute kidney injury: a single-centre randomized controlled trial. Nephrol. Dial. Transplant., 28, 430-437.
[11] Ebo, D. G., Bosmans, J. L., Couttenye, M. M. & Stevens, W. J. (2006). Haemodialysis-associated anaphylactic and anaphylactoid reactions. Allergy., 61, 211-220.
[12] Fang, J., Feng, L. & Wang, H. (2017). Anaphylactic reaction during hemodialysis on polysulfone membrane in a patient receiving angiotensin II receptor antagonist. J. Integr. Nephrol. Androl., 4,
[13] Hakim, R. M., Breillatt, J., Lazarus, J. M. & Port, F. K. (1984). Complement activation and hypersensitivity reactions to dialysis membranes. N. Engl. J. Med., 311, 878-882.
[14] Horacek, J. Farmakokinetika u selhání ledvin. in Sulkova, S. editor: Hemodialýza. 1st Edition, Prague, Czech Republic, Maxdorf Jese- nius.; 2000. [Pharmacokinetics in renal failure] in Sulkova, S. editor: [Hemodialysis]. 1st Edition, Prague, Czech Republic, Maxdorf Jese- nius.; 2000.
[15] Key, J., Nahmias, M. & Acchiardo, S. (1983). Hypersensitivity reaction on first-time exposure to cuprophan hollow fiber dialyzer. Am. J. Kidney. Dis., 2, 664-666.
[16] Kielstein, J. T., Czock, D., Schöpke, T., Hafer, C., Bode-Böger, S. M., Kuse, E., Keller, F. & Fliser, D. (2006). Pharmacokinetics and total elimination of meropenem and vancomycin in intensive care unit patients undergoing extended daily dialysis. Crit. Care Med., 34, 51-56.
[17] Klinkmann, H. & Vienken, J. (1995). Membranes for dialysis. Neph- rol. Dial. Transplant.,10 Suppl 3, 39-45.
[18] Koo, W. S., Jeon, D. S., Ahn, S.J., Kim, Y. S., Yoon, Y.S. & Bang, B. K. (1996). Calcium-free hemodialysis for the management of hypercalcemia. Nephron., 72, 424-428.
[19] Krieter, D. H. & Wanner, C. Membranes for Dialysis and Hemo- filtration in A. Jörres et al. (eds.), Management of Acute Kidney Problems, Berlin Heidelberg Springer-Verlag, 2010. Accessed June 16, 2017.
[20] Lachance, P., Mac-Way, F., Desmeules, S., De Serres, S. A., Julien, A. S., Douville, P., Ghannoum, M. & Agharazii, M. (2015). Prediction and validation of hemodialysis duration in acute methanol poisoning

. Kidney Int., 88, 1170-1177.
[21] Lamontagne, F., McIntyre, L., Dodek, P., Heels-Ansdell, D., Meade, M., Pemberton, J., Skrobik, Y., Seppelt, I., Vlahakis, N. E., Muscedere, J., Reece, G., Ostermann, M., Padayachee, S., Alhashemi, J., Walsh, M., Lewis, B., Schiff, D., Moody, A., Zytaruk, N., Leblanc, M. & Cook, D.J; Prophylaxis for Thromboembolism in Critical Care Trial Investigators; Canadian Critical Care Trials Group; Australian and New Zealand Intensive Care Society Clinical Trials Group. (2014). Nonleg venous thrombosis in critically ill adults: a nested prospective cohort study. JAMA Intern. Med., 174, 689-696.
[22] Legler, D., & Nugent, M. (1984). Doppler localization of the internal jugular vein facilitates central venous cannulation. Anesthesiology., 60, 481-482.
[23] Lynch, K. E., Ghassemi, F., Flythe, J. E., Feng, M., Ghassemi, M., Celi, L. A. & Brunelli, S.M. (2016). Sodium modelling to reduce intradialytic hypotension during haemodialysis for acute kidney injury in the intensive care unit. Nephrology (Carlton)., 21, 870-877.
[24] Mallory, D. L., McGee, W. T., Shawker, T. H., Brenner, M., Bailey, K. R., Evans, R. G., Parker, M. M., Farmer, J. C. & Parillo, J. E. (1990). Ultrasound guidance improves the success rate of internal jugular vein cannulation. A prospective, randomized trial. Chest., 98, 157-160.
[25] Miller, A. H., Roth, B. A, Mills, T. J., Woody, J. R., Longmoor, C. E. & Foster, B. (2002). Ultrasound guidance versus the landmark technique for the placement of central venous catheters in the emergency department. Acad. Emerg. Med., 9, 800-805.
[26] Ng, Y. H., Ganta, K., Davis, H., Pankratz, V. S. & Unruh, M. Vascular Access Site for Renal Replacement Therapy in Acute Kidney Injury: A Post hoc Analysis of the ATN Study. Front. Med. (Lausanne) 4 (2017): 40. Accessed June 10, 2017. doi: 10.3389/fmed.2017.00040.
[27] Nilsson, B., Ekdahl, K. N., Mollnes, T. E. & Lambris, J. D. (2007). The role of complement in biomaterial-induced inflammation. Mol. Immunol., 44, 82-94.
[28] Novak, I. et al. Akutní selhání ledvin a eliminační techniky v intenzivní péči. 1st Edition, Prague, Czech Republic, Maxdorf.; 2008. [Acute Renal Failure and Elimination Methods in Intensive Care]. 1st Edition, Prague, Czech Republic, Maxdorf.; 2008.
[29] Olyaei, A. J, Wahba, I. & Bennett, W. M. Prescribing Drugs for Dialysis Patients in Henrich WL editor: Principles and Practice of Dialysis. 4th Edition. Philadelphia USA, Wolters Kluwer/ Lippincott Williams & Wikins.; 2009.
[30] Parnes, E. L. & Shapiro, W. B. (1991). Anaphylactoid reactions in hemodialysis patients treated with the AN69 dialyzer. Kidney Int., 40, 1148-1152.
[31] Payne, G. M. AAMI Association for the Advancement of Medical Instrumentation. Dialysis Water and Dialysate Recommendations: A User Guide. Arlington, VA 22203-1633, USA. AAMI, 2014, Accessed June 10, 2017,
[32] Petejova, N. & Martinek, A. Acute Kidney Injury and Nephrotoxic Antibiotic Treatment. In Pearson, E. editor: Acute Kidney Injury Detection, Predictors and Long-Term Outcomes. 1st Edition, New York, USA, Nova Science Publisher.; 2016.
[33] Petejova, N., Martinek, A., Zahalkova, J., Duricova, J., Brozmanova, H., Urbanek, K., Grundmann, M. & Kacirova, I. (2012). Vancomycin removal during low-flux and high-flux extended daily hemodialysis in critically ill septic patients. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech. Repub., 156, 342-347.
[34] Reilly, R. F. (2014). Attending rounds: A patient with intradialytic hypotension. Clin. J. Am. Soc. Nephrol., 9, 798-803.
[35] Schaefer, R. M., Schaefer, L. & Hörl, W. H. (1994). Anaphylactoid reactions during hemodialysis. Clin. Nephrol., 42, Suppl 1: S44-47.
[36] Schortgen, F., Soubrier, N., Delclaux, C., Thuong, M., Girou, E., Brun-Buisson, C., Lemaire, F. & Brochard, L. (2000). Haemo- dynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am. J. Respir. Crit. Care. Med., 162, 197-202.
[37] Skofic, N., Buturović-Ponikvar, J., Kovac, J., Premru, V., Knap, B., Marn Pernat, A., Kersnic, B., Gubensek, J. & Ponikvar. R. (2009). Hemodialysis catheters with citrate locking in critically ill patients with acute kidney injury treated with intermittent online hemofiltration or hemodialysis. Ther. Apher. Dial., 13, 327-333.
[38] Uda, S., Mizobuchi, M. & Akizawa, T. (2011). Biocompatible characteristics of high-performance membranes. Contrib. Nephrol., 173, 23-29.
[39] Veltri, M. A., Neu, A. M., Fivush, B. A., Parekh, R. S. & Furth, S. L. (2004). Drug dosing during intermittent hemodialysis and continuous renal replacement therapy: special considerations in pediatric patients. Paediatr. Drugs. 6, 45-65.

Chapter 3.2

[1] Aucella, F., Di Paolo, S. & Gesualdo, L. (2007). Dialysate and replacement fluid composition for CRRT. Contrib. Nephrol., 156, 287-296.
[2] Bagshaw, S. M. & Wald, R. (2017). Strategies for the optimal timing to start renal replacement therapy in critically ill patients with acute kidney injury. Kidney Int., 91, 1022-1032.
[3] Bellomo, R. (2011). Acute renal failure. Semin. Respir. Crit. Care Med., 32, 639-650.
[4] Berger, M. M., Shenkin, A., Revelly, J. P., Roberts, E., Cayeux, M. C., Baines, M. & Chioléro, R. L. (2004). Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am. J. Clin. Nutr., 80, 410-416.
[5] Btaiche, I. F., Mohammad, R. A., Alaniz, C. & Mueller, B. A. (2008). Amino Acid requirements in critically ill patients with acute kidney injury treated with continuous renal replacement therapy. Pharmacotherapy., 28, 600-613.
[6] Clark, B., Leblanc, M. & Levin, N. Acute Dialysis Quality Initiative. Workgroup 4. Membranes. Available online on: http://www. Accessed June 4, 2017.
[7] Clark, W. R., Neri, M., Garzotto, F., Ricci, Z., Goldstein, S. L., Ding, X., Xu, J. & Ronco, C. The future of critical care: renal support in 2027. Crit. Care. 21 (2017): 92. Accessed June 17, 2017. doi: 10.11 86/s13054-017-1665-6.
[8] Choi, G., Gomersall, C. D., Tian, Q., Joynt, G. M., Freebairn, R. & Lipman, J. (2009). Principles of antibacterial dosing in continuous renal replacement therapy. Crit. Care Med., 37, 2268-2282.
[9] Economou, C. J. P., Wong, G., McWhinney, B., Ungerer, J. P. J, Lipman, J. & Roberts, J. A. (2017). Impact of β-lactam antibiotic therapeutic drug monitoring o dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int. J. Antimicrob. Agents., 49, 589-594.
[10] Ganesan, M. V., Annigeri, R. A, Shankar, B., Rao, B. S., Prakash, K. C., Seshadri, R. & Mani, M. K. (2009). The protein equivalent of nitrogen appearance in critically ill acute renal failure patients undergoing continuous renal replacement therapy. J. Ren. Nutr., 19, 161-166.
[11] Honore, P. M., De Waele, E., Jacobs, R., Mattens, S., Rose, T., Joannes-Boyau, O., De Regt, J., Verfaillie, L., Van Gorp, V., Boer, W., Collin, V. & Spapen, H. D. (2013). Nutritional and metabolic alterations during continuous renal replacement therapy. Blood Purif., 35, 279-284.
[12] Honore, P. M., Jacobs, R., Boer, W., Joannes-Boyau, O., De Regt, J., De Waele, E., Van Gorp, V., Collin, V. & Spapen, H. D. (2012). New insights regarding rationale, therapeutic target and dose of hemofiltration and hybrid therapies in septic acute kidney injury. Blood. Purif., 33, 44–51.
[13] Honore, P. M., Jacobs, R., Joannes-Boyau, O., De Regt, J., De Waele, E., van Gorp, V., Boer, W., Verfaillie, L. & Spapen, H. D. (2013). Newly designed CRRT membranes for sepsis and SIRS a pragmatic approach for bedside intensivists summarizing the more recent advances: a systematic structured review. ASAIO J., 59, 99-106.
[14] Honoré, P. M, Jacobs, R., Joannes-Boyau, O., Lochy, S., Boer, W., De Waele, E., Van Gorp, V., De Regt, J., Collin, V. & Spapen, H. D. (2014). Continuous renal replacement therapy-related strategies to avoid colistin toxicity: a clinically orientated review. Blood Purif., 37, 291-295.
[15] Lai, T. S., Shiao, C. C., Wang, J. J., Huang, C. T., Wu, P. C., Chueh, E., Chueh, S. J., Kashani, K. & Wu, V. C. Earlier versus later initiation of renal replacement therapy among critically ill patients with acute kidney injury: a systematic review and meta-analysis of randomized controlled trials. Ann. Intensive Care. 7 (2017): 38. Accessed June 17, 2017. doi: 10.1186/s13613-017-0265-6.
[16] Manns, M., Sigler, M. H. & Teehan, B.P. (1998). Continuous renal replacement therapies. An update. Am. J. Kidney Dis., 32, 185–207.
[17] Maxvold, N. J., Smoyer, W. E., Custer, J. R. & Bunchman, T. E. (2000). Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit. Care Med., 28, 1161-1165.
[18] Mehta, R. L. (2005). Continuous renal replacement therapy in the critically ill patient. Kidney Int., 67, 781-795.
[19] Murugan, R., Hoste, E., Mehta, R. L., Samoni, S., Ding, X., Rosner, M. H., Kellum, J. A. & Ronco, C. Acute Disease Quality Initiative (ADQI) Consensus Group. (2016). Precision Fluid Management in Continuous Renal Replacement Therapy. Blood Purif., 42, 266-278.
[20] Pasko, D. A., Churchwell, M. D., Salama, N. N. & Mueller, B. A. (2011). Longitudinal hemodiafilter performance in modeled continuous renal replacement therapy. Blood Purif., 32, 82-88.
[21] Petejova, N., Martinek, A., Zahalkova, J., Duricova, J., Brozman-nova, H., Urbanek, K., Grundmann, M., Plasek, J. & Kacirova, I. (2014). Vancomycin pharmacokinetics during high-volume continuous venovenous hemofiltration in critically ill septic patients. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub., 158, 65-72.
[22] Petejova, N., Zahalkova, J., Duricova, J., Kacirova, I., Brozmanova, H., Urbanek, K., Grundmann, M. & Martinek, A. (2012). Gentamicin pharmacokinetics during continuous venovenous hemofiltration in critically ill septic patients. J. Chemother., 24, 107-112.
[23] Quenot, J. P, Binquet, C., Vinsonneau, C., Barbar, S. D., Vinault, S., Deckert, V., Lemaire, S., Hassain, A. A., Bruyère, R., Souweine, B., Lagrost, L. & Adrie, C. (2015). Very high volume hemofiltration with the Cascade system in septic shock patients. Intensive Care Med., 41, 2111-2120.
[24] RENAL Replacement Therapy Study Investigators, Bellomo, R., Cass, A., Cole, L., Finfer, S., Gallagher, M., Lo, S., McArthur, C., McGuinness, S., Myburgh, J., Norton, R., Scheinkestel, C. & Su, S. (2009). Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med., 361, 1627-1638.
[25] Ricci, D., Panicali, L., Facchini, M. G. & Mancini, E. (2017). Citrate Anticoagulation during Continuous Renal Replacement Therapy. Contrib. Nephrol., 190, 19-30.
[26] Rimmelé, T. & Kellum, J. A. (2012). High-volume hemofiltration in the intensive care unit: a blood purification therapy. Anesthesiology., 116, 1377-1387.
[27] Roberts, J. A. & Lipman, J. (2009). Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med., 37, 840-851.
[28] Singer, P., Berger, M. M., Van den Berghe, G., Biolo, G., Calder, P., Forbes, A., Griffiths, R., Kreyman, G., Leverve, X. & Pichard, C. (2009). ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin. Nutr., 28, 387-400.
[29] Uchino, S., Toki, N., Takeda, K., Ohnuma, T., Namba, Y., Katayama, S., Kawarazaki, H., Yasuda, H., Izawa, J., Uji, M., Tokuhira, N. & Nagata, I.; Japanese Society for Physicians and Trainees in Intensive Care (JSEPTIC) Clinical Trial Group. (2013). Validity of low-intensity continuous renal replacement therapy. Crit. Care Med., 41, 2584-2591.
[30] VA/NIH Acute Renal Failure Trial Network, Palevsky, P. M., Zhang, J. H., O’Connor, T. Z., Chertow, G. M., Crowley, S. T., Choudhury, D., Finkel, K., Kellum, J. A., Paganini, E., Schein, R. M., Smith, M. W., Swanson, K. M., Thompson, B. T., Vijayan, A., Watnick, S., Star, R. A. & Peduzzi, P. (2008). Intensity of renal support in critically ill patients with acute kidney injury. N. Engl. J. Med., 359, 7-20.
[31] Yatabe, T., Inoue, S., Sakaguchi, M. & Egi, M. (2017). The optimal target for acute glycemic control in critically ill patients: a network meta-analysis. Intensive Care Med., 43, 16-28.

[32] Zarbock, A., Kellum, J. A., Schmidt, C., Van Aken, H., Wempe, C., Pavenstädt, H., Boanta, A., Gerß, J. & Meersch, M. (2016). Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients with Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA., 315, 2190-2199.
[33] Zhou, F., Peng, Z., Murugan, R. & Kellum, J. A. (2013). Blood purification and mortality in sepsis: a meta-analysis of randomized trials. Crit. Care Med., 41, 2209-2220.

Chapter 3.3

[1] Alfred, A., Taylor, P. C., Dignan, F., El-Ghariani, K., Griffin,
J., Gennery, A. R., Bonney, D., Das-Gupta, E., Lawson, S., Malladi, R. K., Douglas, K. W., Maher, T., Guest, J., Hartlett, L., Fisher,
A. J., Child, F. & Scarisbrick, J. J. (2017). The role of extracorporeal photopheresis in the management of cutaneous T-cell lymphoma, graft-versus-host disease and organ transplant rejection: a consensus statement update from the UK Photopheresis Society. Br. J. Haematol., 177, 287-310.
[2] Anseeuw, K., Mowry, J. B., Burdmann, E. A., Ghannoum, M., Hoffman, R. S., Gosselin, S., Lavergne, V. & Nolin, T. D., EXTRIP Workgroup. (2016). Extracorporeal Treatment in Phenytoin Poisoning: Systematic Review and Recommendations from the EXTRIP (Extracorporeal Treatments in Poisoning) Workgroup. Am. J. Kidney Dis., 67, 187-197.
[3] Antonelli, M., Fumagalli, R., Cruz, D. N., Brienza, N. & Giunta, F., EUPHAS Study Group. (2010). PMX endotoxin removal in the clinical practice: results from the EUPHAS trial. Contrib. Nephrol., 167, 83-90.
[4] Ash, S. R. (2002). Extracorporeal blood detoxification by sorbents in treatment of hepatic encephalopathy. Adv. Ren. Replace. Ther., 9, 3-18.
[5] Bañares, R., Nevens, F., Larsen, F. S., Jalan, R., Albillos, A., Dollinger, M., Saliba, F., Sauerbruch, T., Klammt, S., Ockenga, J., Pares, A., Wendon, J., Brünnler, T., Kramer, L., Mathurin, P., de la Mata, M., Gasbarrini, A., Müllhaupt, B., Wilmer, A., Laleman, W., Eefsen, M., Sen, S., Zipprich, A., Tenorio, T., Pavesi, M., Schmidt, H. H., Mitzner, S., Williams, R. & Arroyo, V., RELIEF study group. (2013). Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology., 57, 1153-1162.
[6] Baumann, A., Buchwald, D., Annecke, T., Hellmich, M., Zahn, P. K. & Hohn, A. RECCAS - REmoval of Cytokines during CArdiac Surgery: study protocol for a randomised controlled trial. Trials. 17 (2016): 137. Accessed: May 15, 2017. doi: 10.1186/s13063-016-1265-9.
[7] Bo, L. (2014). Therapeutic efficacies of different hemoperfusion frequencies in patients with organophosphate poisoning. Eur. Rev. Med. Pharmacol. Sci., 18, 3521-3523.
[8] Clark, W. F., Huang, S. S., Walsh, M. W., Farah, M., Hildebrand, A. M. & Sontrop, J. M. (2016). Plasmapheresis for the treatment of kidney diseases. Kidney Int., 90, 974-984.
[9] Cortese, I., Chaudhry, V., So, Y. T., Cantor, F., Cornblath, D. R. & Rae-Grant, A. (2011). Evidence-based guideline update: Plasma- pheresis in neurologic disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology., 76, 294-300.
[10] Edelson, R., Berger, C., Gasparro, F., Jegasothy, B., Heald, P., Wintroub, B., Vonderheid, E., Knobler, R., Wolff, K., Plewig, G. & McKiernan, G. (1987) Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. New England Journal of Medicine., 316, 297–303.
[11] Erkurt, M. A., Berber, I., Berktas, H. B., Kuku, I., Kaya, E., Koroglu, M., Nizam, I., Bakırhan, F. A. & Ozgul, M. (2015). A life-saving therapy in Class I HELLP syndrome: Therapeutic plasma exchange. Transfus. Apher. Sci., 52, 194-198.
[12] Eskandary, F., Wahrmann, M., Biesenbach, P., Sandurkov, C., König, F., Schwaiger, E., Perkmann, T., Künig, S., Derfler, K., Zlabinger, G. J. & Böhmig, G. A. (2014). ABO antibody and complement depletion by immunoadsorption combined with membrane filtration a randomized, controlled, cross-over trial. Nephrol. Dial. Transplant., 29, 706-714.
[13] Ghannoum, M., Laliberté, M., Nolin, T. D., MacTier, R., Lavergne, V, Hoffman, R. S. & Gosselin, S., EXTRIP Workgroup. (2015). Extracorporeal treatment for valproic acid poisoning: systematic review and recommendations from the EXTRIP workgroup. Clin. Toxicol. (Phila)., 53, 454-465.
[14] Ghannoum, M., Wiegand, T. J., Liu, K. D., Calello, D. P., Godin, M., Lavergne, V., Gosselin, S., Nolin, T. D. & Hoffman, R. S., EXTRIP workgroup. (2015). Extracorporeal treatment for theophylline poisoning: systematic review and recommendations from the EXTRIP workgroup. Clin. Toxicol. (Phila)., 53, 215-229.
[15] Ghannoum, M., Yates, C., Galvao, T. F., Sowinski, K. M., Vo, T. H., Coogan, A., Gosselin, S., Lavergne, V. Nolin, T. D., & Hoffman, R. S., EXTRIP workgroup. (2014). Extracorporeal treatment for carbamazepine poisoning: systematic review and recommendations from the EXTRIP workgroup. Clin. Toxicol. (Phila)., 52, 993-1004.
[16] Greinacher, A., Friesecke, S., Abel, P., Dressel, A., Stracke, S., Fiene, M., Ernst, F., Selleng, K., Weissenborn, K., Schmidt, B. M., Schiffer, M., Felix, S. B., Lerch, M. M., Kielstein, J. T. & Mayerle, J. (2011). Treatment of severe neurological deficits with IgG depletion through immunoadsorption in patients with Escherichia coli O104:H4-associated haemolytic uraemic syndrome: a prospective trial. Lancet., 378, 1166-1173.
[17] Higgins, R. M., Goldsmith, D. J., MacDiarmid-Gordon, A., Taberner, D., Venning, M.C. & Ackrill, P. (1996). Treating paracetamol overdose by charcoal haemoperfusion and long-hours high-flux dialysis. QJM., 89, 297-306.
[18] Jin, F., Cao, M., Bai, Y., Zhang, Y., Yang, Y. & Zhang, B. (2012). Therapeutic effects of plasma exchange for the treatment of 39 patients with acute fatty liver of pregnancy. Discov Med.,13, 369-373.
[19] Joglekar, K., Brannick, B., Kadaria, D. & Sodhi, A. (2017). Therapeutic plasmapheresis for hypertriglyceridemia-associated acute pancreatitis: case series and review of the literature. Ther. Adv. Endocrinol. Metab., 8, 59-65.
[20] Juurlink, D. N., Gosselin, S., Kielstein, J. T., Ghannoum, M., Lavergne, V., Nolin, T. D. & Hoffman, R.S.; EXTRIP Workgroup. (2015). Extracorporeal Treatment for Salicylate Poisoning: Systematic Review and Recommendations from the EXTRIP Workgroup. Ann. Emerg. Med., 66, 165-181.
[21] Kielstein, J. T., Schwarz, A., Arnavaz, A., Sehlberg, O., Emrich, H. M. & Fliser, D. (2002). High-flux hemodialysis–an effective alternative to hemoperfusion in the treatment of carbamazepine intoxication. Clin. Nephrol., 57, 484–486.
[22] Kogelmann, K., Jarczak, D., Scheller, M. & Drüner, M. Hemo- adsorption by CytoSorb in septic patients: a case series. Crit. Care. 21 (2017): 74. Accessed June 10, 2017. doi: 10.1186/s13054-017-1662-9.
[23] Koivusalo, A. M., Yildirim, Y., Vakkuri, A., Lindgren, L., Höckerstedt, K. & Isoniemi, H. (2003). Experience with albumin dialysis in five patients with severe overdoses of paracetamol. Acta Anaesthesiol. Scand., 47, 1145-1150.
[24] Kribben, A., Gerken, G., Haag, S., Herget-Rosenthal, S., Treichel, U., Betz, C., Sarrazin, C., Hoste, E., Van Vlierberghe, H., Escorsell, A., Hafer, C., Schreiner, O., Galle, P. R., Mancini, E., Caraceni, P., Karvellas, C. J., Salmhofer, H., Knotek, M., Ginès, P., Kozik-Jaromin, J. & Rifai, K., HELIOS Study Group. (2012). Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology., 142, 782-789.
[25] Larsen, F. S., Schmidt, L. E., Bernsmeier, C., Rasmussen, A., Isoniemi, H., Patel, V. C., Triantafyllou, E., Bernal, W., Auzinger, G., Shawcross, D., Eefsen, M., Bjerring, P. N., Clemmesen, J. O., Hockerstedt, K., Frederiksen, H. J., Hansen, B. A., Antoniades, C. G. & Wendon, J. (2016). High-volume plasma exchange in patients with acute liver failure: An open randomised controlled trial. J. Hepatol., 64, 69-78.
[26] Matten, F. J. & Gastineau, D. (2008). Transfusion related acute lung injury (TRALI) after plasma exchange in myasthenic crisis. Neurocrit. Care., 8, 280-282.
[27] Meijers, B. K., Verhamme, P., Nevens, F., Hoylaerts, M. F., Bammens, B., Wilmer, A., Arnout, J., Vanrenterghem, Y. & Evenepoel, P. (2007). Major coagulation disturbances during fractionated plasma separation and adsorption. Am. J. Transplant., 7, 2195-2199.
[28] Mitzner, S. R. (2011). Extracorporeal liver support-albumin dialysis with the Molecular Adsorbent Recirculating System (MARS®). Ann. Hepatol., 10, Suppl 1: S21-28.
[29] Mitzner, S. & Stange, J. Albumin Dialysis with Molecular Adsorbent Recirculating System in the Treatment of Liver Failure. In Ronco, C., Bellomo, R., & Kellum, J. A. Editors: Critical Care Nephrology. 2nd Edition. Philadelphia, USA, Saunders Elsevier.; 2009.
[30] Mitzner, S. R., Stange, J., Klammt, S., Peszynski, P., Schmidt, R. & Nöldge-Schomburg, G. (2001). Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J. Am. Soc. Nephrol., 12, Suppl 17: S75-82.
[31] Muangchan, C., van Vollenhoven, R. F., Bernatsky, S. R., Smith, C. D., Hudson, M., Inanç, M., Rothfield, N. F., Nash, P. T., Furie, R. A., Senécal, J. L., Chandran, V., Burgos-Vargas, R., Ramsey-Goldman, R. & Pope, J. E. (2015). Treatment Algorithms in Systemic Lupus Erythematosus. Arthritis Care Res. (Hoboken)., 67, 1237-1245.
[32] Payen, D. M., Guilhot, J., Launey, Y., Lukaszewicz, A. C., Kaaki, M., Veber, B., Pottecher, J., Joannes-Boyau, O., Martin-Lefevre, L., Jabaudon, M., Mimoz, O., Coudroy, R., Ferrandière, M., Kipnis, E., Vela, C., Chevallier, S., Mallat, J. & Robert, R.; ABDOMIX Group. (2015). Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med., 41, 975-984.
[33] Pillukat, M. H., Schomacher, T., Baier, P., Gabriëls, G., Pavenstädt, H. & Schmidt, H. H. (2016). Early initiation of MARS® dialysis in Amanita phalloides-induced acute liver injury prevents liver transplantation. Ann. Hepatol., 15, 775-787.
[34] Pretagostini, R., Poli, L., Gozzer, M., Pettorini, L., Garofalo, M., Novelli, S., Cinti, P. & Berloco, P. B. (2015). Plasmapheresis, Photopheresis, and Endovenous Immunoglobulin in Acute Antibody-mediated Rejection in Kidney Transplantation. Transplant. Proc., 47, 2142-2144.
[35] Rifai, K., Ernst, T., Kretschmer, U., Bahr, M. J., Schneider, A., Hafer, C., Haller, H., Manns, M. P. & Fliser, D. (2003). Prometheus--a new extracorporeal system for the treatment of liver failure. J. Hepatol., 39, 984-990.
[36] Rifai, K., Tetta, C. & Ronco, C. Liver Support with Fractionated Plasma Separation and Adsorption and Prometheus®. In: Vincent, J. L. Editor: Intensive Care Medicine. New York, NY, Springer.; 2008.
[37] Saito, N., Sugiyama, K., Ohnuma, T., Kanemura, T., Nasu, M., Yoshidomi, Y., Tsujimoto, Y., Adachi, H., Koami, H., Tochiki, A., Hori, K., Wagatsuma, Y. & Matsumoto, H. Efficacy of polymyxin B-immobilized fiber hemoperfusion for patients with septic shock caused by Gram-negative bacillus infection. PLoS One. 12 (2017): e0173633. Accessed June 10, 2017. doi: 10.1371/ journal. pone. 0173633.
[38] Schwartz, J., Padmanabhan, A., Aqui, N., Balogun, R. A., Connelly-Smith, L., Delaney, M., Dunbar, N. M., Witt, V., Wu, Y. & Shaz, B. H. (2016). Guidelines on the Use of Therapeutic Apheresis in Clinical Practice – Evidence- Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. J. Clin. Apher., 31, 149-162.
[39] Schwenger, V. & Morath, C. (2010). Immunoadsorption in nephro- logy and kidney transplantation. Nephrol. Dial. Transplant., 25, 2407-2413.
[40] Shalkham, A. S., Kirrane, B. M., Hoffman, R. S., Goldfarb, D. S. & Nelson, L. S. (2006). The availability and use of charcoal hemo- perfusion in the treatment of poisoned patients. Am. J. Kidney Dis., 48, 239-241.
[41] Shoji, H. (2003). Extracorporeal endotoxin removal for the treatment of sepsis: endotoxin adsorption cartridge (Toraymyxin). Ther. Apher. Dial., 7, 108–114.
[42] Smith, P. J. & Chang, I. J. Extracorporeal treatment of poisoning. In Taal, M. W., Chertow, G. M. et al. Editors: Brenner & Rector’s. The Kidney. 9th Edition. Philadelphia, USA, Saunders Elsevier.; 2012.
[43] Stange, J., Mitzner, S., Ramlow, W., Gliesche, T., Hickstein, H. & Schmidt, R. (1993). A new procedure for the removal of protein bound drugs and toxins. ASAIO. J., 39, 621-625.
[44] Stankiewicz, R., Lewandowski, Z., Kotulski, M., Patkowski, W. & Krawczyk, M. (2016). Effectiveness of Fractionated Plasma Separation and Absorption as a Treatment for Amanita Phalloides Poisoning. Ann. Transplant., 21, 428-432.
[45] Steiner, C. & Mitzner, S. (2002). Experiences with MARS® liver support therapy in liver failure: analysis of 176 patients of the International MARS® Registry. Liver., 22, Suppl 2, 20-25.
[46] Teplan, V. et al. Praktická Nefrologie. 2nd Edition, Prague, Czech Republic, Grada Publishing a.s.; 2006. [Practical Nephrology. 2nd Edition, Prague, Czech Republic, Grada Publishing a.s.; 2006].
[47] Wang, H. R., Pan, J., Shang, A. D. & Lu, Y. Q. Time-dependent haemoperfusion after acute paraquat poisoning. Sci. Rep. 7 (2017): 2239. Accessed May 29, 2017. doi: 10.1038/s41598-017-02527-0.
[48] Wittebole, X. & Hantson, P. (2011). Use of the molecular adsorbent recirculating system (MARS®™) for the management of acute poisoning with or without liver failure. Clin. Toxicol. (Phila)., 49, 782-793.

[49] Zhao, X. H., Jiang, J. K. & Lu, Y. Q. (2015). Evaluation of efficacy of resin hemoperfusion in patients with acute 2,4-dinitrophenol poisoning by dynamic monitoring of plasma toxin concentration. J. Zhejiang Univ. Sci. B., 16, 720-726.

Audience: Nephrologists, Intensivists, Students of Medicine, Intensive Care staff (doctors and nurses),

You have not viewed any product yet.