Stem Cells: Mediated Regeneration

Prasad S. Koka (Editor)
Chief Scientific Director and Professor of DiponEd Institute of Regenerative Medicine Merisis Therapeutics – DiponEd BioIntelligence, Bangalore, India

Series: Stem Cells – Laboratory and Clinical Research
BISAC: SCI017000

Clear

$230.00

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

Stem cells of varying potencies originating from the organ generating totipotent embryonic stem cells (ESCs) to terminally differented cells such as platelets formation, via pluripotent hematopoietic stem cells (HSCs), and their downstream multipotent mesenchymal stem cells (MSCs), have in general been well characterized. Thus majority of these different stem cell types and their differentiation ‘progeny’ can be tracked for subjecting to further characterizations for clinical relevance and consequently needed biological modifications at the cellular and molecular levels, for patients’ clinical treatments. The very first section of this book’s contents deal with the above stated description.

Such characterizations and research laboratory manipulations of the stem cells have led to their clinical grade applications and treatments with positive benefits, as described in the second section of this book. The clinical benefits as published by Nova Science Publishers herein as part of the contents are of tremendous significance and provide relief to the handicapped individuals, particularly for those who suffered life’s biological hazards. This naturally seeks R&D-mediated bench to bedside benefits and solutions for the genetically defective individuals.

Bone marrow-derived stem cells with HSCs as their primary components are increasingly being cast the human eyes with pregnant females resorting cord blood banking as they peek to dwell into the future well being of their offspring(s) which could even benefit their own selves, should there be expectedly sufficient HLA matching. The third section of this book dels with such topics. The induced pluripotent stem cells (iPSCs) which were generated to overcome the ethical considerations of using ESCs were fraught with ‘elaborate’ molecular and cellular biological engineering methods and the advent of derivation and usefulness of MSCs have since sidelined or relegated the iPSCs to a distant role. Nonetheless the hitherto served purpose of iPSCs is not discounted and yet unknown stumbling blocks of what seems to be a smooth going ‘runway’ of MSCs may spring up in the clinical paths necessitated by the treatment along the future.

In the fourth section of the book, it is to be kept in mind that uncontrolled proliferation of cells should be avoided at all costs. Whereas self-renewal of stem cells is generally expected to lead to a turnover, it need not be the case with regeneration processes. This will depend upon the genetic make up of the donor-derived and invasively injected stem cells plus accompanying biological reagent components, as well as also the recipients’ physical conditions.

The fifth and last section of the book deals with conventional and alternative medicine topics applicable to carcinogenesis or such tendencies. Telomerase activity is a ‘double edged sword’. Therefore its homeostasis or equilibrium is to be maintained. Discriminatory apoptosis that is of beneficial nature affecting malignant cells but not the normal cells is necessary. Thus equation between apoptotic and telomerase activities even those of stem cells should be as hand in glove. (Imprint: Nova Biomedical)

Preface: Regeneration Restricted to Non-Carcinogenicity

Section 1: Manipulation and Characterization of Stem Cells

Chapter 1. Degeneration versus Regeneration
Prasad S Koka

Chapter 2. Differentiation Potential of Mesenchymal Stem Cells from Equine Bone Marrow Cultured on Hyaluronic Acid-Chitosan Polyelectrolyte Multilayer Biofilm
Amanda J. Listoni, Isadora Arruda, Leandro Maia, Danielle J. Barberini, Ian Martins, Fernando C. Vasconcellos, and Fernanda C. Landim-Alvarenga

Chapter 3. Stem Cells Cultured on Beta Tricalcium Phosphate (¦Â-TCP) in Combination with Recombinant Human Platelet-Derived Growth Factor ¨C BB (rh-PDGF-BB) for the Treatment of Human Infrabony Defects
Roshani Dhote, Priti Charde, Manohar Bhongade, and Jyotsana Rao

Chapter 4. Fat Layer from Medullary Canal Reamer Aspirate for Potential Use as a Supplemental Osteoinductive Bone Graft Material
Sarina S. Kay Sinclair, C. Olsen Horton, Kyle J. Jeray, Stephanie L. Tanner, and Karen J. L. Burg

Chapter 5. Deprivation of bFGF Promotes Spontaneous Differentiation of Human Embryonic Stem Cells into Retinal Pigment Epithelial Cells
Lee R. Ferguson, Sankarathi Balaiya, Bharani K. Mynampati, Kumar Sambhav, and Kakarla V. Chalam

Chapter 6. Stability of Reference Genes During Tri-Lineage Differentiation of Human Adipose-Derived Stromal Cells
Luciana Fraga da Costa Diesel, Bruno Paiva dos Santos, Bruno Corr¨ºa Bellagamba, Angelo Syrillo Pretto Neto, Pedro Bins Ely, Lindolfo da Silva Meirelles, Nance Beyer Nardi, and Melissa Camassola

Chapter 7. Anaerobic Glycolysis and HIF1alpha Expression in Haematopoietic Stem Cells Explains Its Quiescence Nature
Lokanathan Srikanth, Manne Mudhu Sunitha, Katari Venkatesh, Pasupuleti Santhosh Kumar, Chodimella Chandrasekhar, Bhuma Vengamma, and Potukuchi Venkata Gurunadha Krishna Sarma

Section 2: Regeneration Treatments with Stem Cells

Chapter 8. Mesenchymal Stem Cells and Lung Transplantation: A Couple for a Perfect Relationship
Mohamed S. A. Mohamed

Chapter 9. Healing of Experimentally Created Non-Union of Femur in Rats Using Bone Precursor Cells from Mesenchymal Stem Cells (MSCs)
Mir Sadat-Ali, Md Quamar Azam, Dakheel A. Al-Dakheel, and Sadananda Acharya

Chapter 10. Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Duchenne Muscular Dystrophy: Safety and Feasibility Study in India
B. S. Rajput, Swarup K. Chakrabarti, Vaishali S. Dongare, Christina M. Ramirez, and Kaushik D. Deb

Chapter 11. Therapeutic Application of Bone Marrow-Derived Stem Cells in a Patient with Methanol-Induced Blindness
Himanshu Bansal, Anupama Bansal, M. Neelam Kachhap, Abhay Chowdhary, and Prasad S. Koka

Section 3: Hematopoietic Stem Cells

Chapter 12. The Impact Age, Sex, and Religious Beliefs have on the Attitude towards Cord Blood Banking
Inger Birgitta Sundell and Teddi J. Setzer

Chapter 13. Hematopoietic Stem Cells, Their Niche, and the Concept of Co-Culture Systems: A Critical Review
Anuradha Vaidya and Vaijayanti Kale

Chapter 14. Mechanism of Induction: Induced Pluripotent Stem Cells (iPSCs)
Vimal Kishor Singh, Neeraj Kumar, Manisha Kalsan, Abhishek Saini, and Ramesh Chandra

Section 4: Stem Cells and Carcinogenesis

Chapter 15. Regeneration and Carcinogenesis
A. V. Pechersky, V. I. Pechersky, A. B. Smolyaninov, V. N. Velyaninov, S. F. Adylov, A. Yu. Shmelev, O. V. Pecherskaya, and V. F. Semiglazov

Chapter 16. Cancer Stem Cells and Chemoresistance in Glioblastoma Multiform: A Review Article
Mojdeh Safari and Alireza Khoshnevisan

Chapter 17. Effect of Mobile Phone-Induced Electromagnetic Field on Brain Hemodynamics and Human Stem Cell Functioning: Possible Mechanistic Link to Cancer Risk and Early Diagnostic Value of Electronphotonic Imaging
Hemant Bhargav, T. M. Srinivasan, S. Varambally, B. N. Gangadhar, and Prasad Koka

Section 5: Mechanisms of Prevention of Stem Cells-Mediated Carcinogenic Trends

Chapter 18. Imiquimod Treatment Effectively Reduces the Percentage of Viable Cells in a Cervical carcinoma Cell Line But Does Not Affect the Expression of HLA-G or OCT-4
Konstantinos Stefanidis, Jessica Patta, Vasilios Pergialiotis, Diamanto Stefanidi, and Dimitrios Loutradis

Chapter 19. Antiaging Effects of an Intensive Mind and Body Therapeutic Program through Enhancement of Telomerase Activity and Adult Stem Cell Counts
Krishna S. Rao, Swarup K. Chakrabarti, Vaishali S. Dongare, K. Chetana, Christina M. Ramirez, Prasad S. Koka, and Kaushik D. Deb

Index

Chapter 1

[1] Irina Klimanskaya, Young Chung, Sandy Becker, Shi-Jiang Lu, Robert Lanza. Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481-485 (23 November 2006) | doi:10.1038/nature05142.
[2] Steven D Schwartz, Jean-Pierre Hubschman, Gad Heilwell, Valentina Franco-Cardenas, Carolyn K Pan, Rosaleen M Ostrick, Edmund Mickunas, Roger Gay, Irina Klimanskaya, Robert Lanza. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 23 January 2012 | DOI:10.1016/S0140-6736(12)60028-2.
[3] Bin Lu, Christopher Malcuit, Shaomei Wang, Sergej Girman, Peter Francis, Linda Lemieux, Robert Lanza, Raymond Lund. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 2009 27: 2126–2135.

Chapter 2

Artursoon, P. et al. Chitosan on permeability of monolayers of intesticial epithelial cells (cacco-2). Pharm. research, vol. 111, 1994.
Barry, F. P.; Murphy, J. M. Mesenchymal Stem Cell: Clinical Application and Biological Characterization. The International Journal of Biochemistry and Cell Biology. 36: 568-584, 2004.
Boo J.S., Yamada Y., Okazaki Y, Hibino Y., Okada K, Hata K.I., Yoshikawa T., Sugiura Y., Ueda M. Tissue-Engineered Bone Using Mesenchymal Stem Cells and a Biodegradable Scaffold. The Journal of Craniofacial Surgery/Volume 13, Number 2 March 2002. 231-239.
Borjesson, D. L., Peroni, J. F., The Regenerative Medicine Laboratory: Facilitating Stem Cell Therapy for Equine Disease, Eleseve, February, 2011.
Chen, Y.; Shao, J.Z.; Xiang, L.X; Dong, X.J.; Zhang, G.R. Mesenchymal stem cells: A promising candidate in regenerative medicine. The International Journal of Biochemistry and Cell Biology, v. 40, p. 815-820, 2008.
Chen, Y.; Shao, J.Z.; Xiang, L.X; Dong, X.J.; Zhang, G.R. Mesenchymal stem cells: A promising candidate in regenerative medicine. The International Journal of Biochemistry and Cell Biology, v. 40, p. 815-820, 2008.
Cheng Sl, Yang Jw, Risns T. Diferentiation of human bonemarrow osteogenic stromal cells in vitro. Induction of the osteoblastphenotype by dexamethasone. Endocrinology; 134:277-286.1994.
Chua P.H., Neoh K.G., Shi Z., Kang E.T. Structural stability and bioapplicability assessment of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates. J. Biomed. Mater. Res. A. 15;87(4): 1061-74. 2008.
Chung C-H, Golub Ee, Forbes E, Tokuoka T, Shapiro IM. Mechanism of action of b-glycerophosphate on bone cell mineralization. Calcif. Tissue Int.; 51:305-311.1992.
Chung, D.J., Hayashi, K., Toupadakis, C.A., Wong, A., Yellowley, C.E.; Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia., Research in Veterinary Science; 92, 66-75, 2012.
Decher, G.; Hong, J. D.; Schimitt, J., Build up of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 1992, 210-211.
Descher, G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, (5330), 1232-1237.
Franceschi RT. The role of ascorbic acid in mesenchymal differentiation. Nutr. Rev.; 50:60-65.1992.
Gangji L. V.; Hauzeur J. P.; Matos, C.; De Maertelaer, V.; Toungouz, M.; Lambermont, M. Treatment of Osteonecrosis of the Femoral Head with Implantation of Autologous Bone-Marrow Cells. A Pilot Study. J. Bone Joint Surg. Am. 86:1153-1160, 2004.
Hu, Y; Cai, K.; Zhong, L.; Zhang, R., Yang, L.; Deng, L; Jandt, K.D., Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by Layer-by-Layer technique, Biomaterials, Eslsevier, april, 2009, 3626-3635.
Lai, C.R.; Choo, A.; Lim, S.K. Derivation anda Characterization of Human ESC-Derived Mesenchymal Stem Cells. Springer Science, vol. 698, cap. 11, p.
Le Blanc K., Frassoni F., Ball L., Locatelli F., Roeloffs H., Lewis I. et al. Mesenchymal Stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study, Lancet, v. 371, p. 1579-86, 2006.
Le Blanc, K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy, v. 6, p. 485-489, 2003.
Lechner S., Huss R. Bone Engineering: Combining Smart Biomaterials and the Application of Stem Cells. Artificial Organs 30(10):770-774, 2006.
Lima, S.A.F. et al.: Diferenciação in vitro de células-tronco mesenquimais da medula óssea de cães em precursores osteogênicos [In vitro differentiation of mesenchymal stem cells from bone marrow in dogs osteogenic precursors]. Pesquisa Veterinária Brasileira; 32 (5): 463-469, 2012.
Lubis, A.M.T. and Lubis, V.K., Adult Bone Marrow Stem Cells in Cartilage Therapy, ActaMedica Indonesia - The Indonesian Journal of Internal Medicine, v. 44, n., January 2012.
Martins, R., Kinoshita, A.M.O., Carvalho, N.T.A, Guimarães, S.A.C.; Estudo comparativo da resposta do tecido ósseo em técnica de regeneração tecidual guiada û avaliação macroscópica: parte 1 [Comparative study of bone tissue response in guided tissue regeneration technique û macroscopic evaluation: Part 1]; Lilacs, p. 224-230, Jun. 2010 141-150, 2011.
Mayhall Ea, Paffett-Lugassy N, Zon Li. The Clinical Potential of Stem Cells. Curr. Opin. Cell Biol. 2004.
Porter R.M., Huckle W.R., Goldstein A.S. Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells. J. Cell. Biochem., 90: 13. 2003.
Tsai M.S.; Lee, J.L.; Chang, Y.J; Hwang, S.M. Isolation of human multipotent mesenchymal stem cells from second-semester amniotic fluid using a novel model two-stage culture protocol. Human reproduction. v. 19. n. 6. p. 1450-1456. 2004.
Vasconcellos, F.C., Swiston, A.J.; Beppu, M.M.; Cohen, R.E.; Rubner, M.F.; Bioactive Polyelectrolyte Multilayers: Hyaluronic Acid Mediated B Lymphocyte Adhesion, Biomacromolecules, July, 2010, 2407-2414.
Zago, M. A., Covas, D. T.; Células-Tronco, a Nova Fronteira da Medicina [Stem Cells, New Frontier Medicine], Editora Atheneu, São Paulo, 2006.

Chapter 3

[1] Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, Shi S. Craniofacial tissue engineering by stem cells. J. Dent. Res. 2006; 85:966-979.
[2] Strayhorn CL, Garrett JS, Dunn RL, Benedict JJ, Somerman MJ. Growth factors regulate expression of osteoblast-associated genes. J. Periodontol. 1999; 70:1345-1354.
[3] Saygin NE, Giannobile WV, Somerman MJ. Molecular and cell biology of cementum. Periodontol. 2000 2000; 24:73-98.
[4] Dennison DK, Vallone DR, Pinero GJ, Rittman B, Caffesse RG. Differential effect of TGF-beta 1 and PDGF on proliferation of periodontal ligament cells and gingival fibroblasts. J. Periodontol. 1994; 65:641-648.
[5] Canalis E, Varghese S, McCarthy TL, Centrella M. Role of platlet derived growth factor in bone cell function. Growth Regul. 1992; 2:151-155.
[6] Andrew JG, Hoyland JA, FreemontAJ, Marsh DR. Platlet-derived growth factor expression in normally healing human fractures. Bone 1995; 16:455-460.
[7] Lynch SE, Williams RC, Poison AM, Howell TH, Reddy MS, Zappa UE, Antoniades HN. A combination of platelet-derived and insulin-like growth factors enhances periodontal regenerations. J. Clin. Periodontol. 1989; 16:545-548.
[8] Rutherford RB, Sampath TK, Rueger DC, Taylor TD. The use of bovine osteogenic protein to promote rapid osseointegration of endosseous dental implants. Int. J. Oral Maxillofac. Implants 1992; 7:297-301.
[9] Cho MI, Lin WL, Jenco RJ. Platelet-Derived Growth Factor- modulated guided tissue regeneration therapy. J. Periodontol. 1995; 66:522-530.
[10] Park JB, Matsuura M, Han KY, Norderyd O, Lin WL, Genco RJ, Cho MI. Periodontal regeneration in class III furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor. J. Periodontol. 1995; 66:462-477.
[11] Nevins Myron, Marcelo Camelo, Marc L. Nevins, Robert K. Schenk, and Samuel E. Lynch. Periodontal Regeneration in Humans Using Recombinant Human Platelet-Derived Growth Factor-BB (rhPDGF-BB) and Allogenic. Bone J. Periodontol. 2003; 74:1282-1292.
[12] Camelo M, Nevins ML, Schenk RK, Lynch SE, Nevins M. Periodontal regeneration in human Class II furcations using purified recombinant human platelet-derived growth factor-BB (rhPDGF-BB) with bone allograft. Int. J. Periodontics Restorative Dent. 2003; 23:213-225.
[13] Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H, Takata T, Kato Y, Kurihara H. Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J. Periodontol. 2004; 75:1281-1287.
[14] Hasegawa N, Kawaguchi H, Hirachi A, Takeda K, Mizuno N, Nishimura M, Koike C, Tsuji K, Iba H, Kato Y, Kurihara H. Behavior of transplanted bone marrow-derived mesenchymal stem cells in periodontal defects. J. Periodontol. 2006; 77:1003-1007.
[15] Yamada Y, Ueda M, Hibi H, Baba S. A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: A clinical case report. Int. J. Periodontics Restorative Dent. 2006; 26:363-369.
[16] Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J. Orthop. Res. 2001; 19:117-125.
[17] Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 2004; 22:1330-1337.
[18] Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human Umbilical Cord Perivascular (HUCPV) Cells: A Source of Mesenchymal Progenitors. Stem Cells. 2005; 23:220-229.
[19] Lin NH, Gronthos S, Bartold PM. Stem cells and periodontal regeneration. Aust. Dent. J. 2008; 53:108-121.
[20] Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human Mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25:1384-1392.
[21] Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D, McIntosh KR. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 2008; 26:2865-2874.
[22] Peter SJ, Miller ST, Zhu G, Yasko AW, Mikos AG. In vivo degradation of a poly (propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold. Biomed. Mater. Res. 1998; 41:1-7.
[23] Yosei OI, Mikio OTA, Shigeki Yamamoto, Yoshihiro Shibukawa and Satoru Yamada. β-tricalcium phosphate and basic fibroblast growth factor combination enhances periodontal regeneration in intrabony defects in dogs. Dent. Mater. J. 2009; 28:162-169.
[24] Eslaminejad MB, Hamid M, Yossef M, Aghbibi N. Bone differentiation of marrow-derived mesenchymal stem cells using β-tricalcium phosphate–alginate–gelatin hybrid scaffolds. J. Tissue Eng. Regen. Med. 2007; 1:417-424.
[25] Oates TW, Rouse CA, Cochran DL. Mitogenic effects of growth factors on human periodontal ligament cells in vitro. J. Periodontol. 1993; 64: 142-148.
[26] Thakare K, Deo V. Randomized controlled clinical study of rhPDGF-BB + β-TCP versus HA + β-TCP for the treatment of infrabony periodontal defects: clinical and radiographic results. Int. J. Periodontics Restorative Dent. 2012; 32:689-696.
[27] Yildrim S, Balci D, Akpinar P, Can A. Differentiation potentials of two stroma-resident tissue-specific stem cells. Niche 2012; 1:1-7.
[28] McAllister BS. Stem cell-containing allograft matrix enhances periodontal regeneration: case presentations. Int. J. Periodontics Restorative Dent. 2011; 31:149-155.
[29] Jayakumar A, Rajababu P, Rohini S, Butchibabu K, Naveen A, Krishnajaneya Reddy P, Vidyasagar S, Satyanarayana D, Pavan Kumar S. Multi-centre, randomized clinical trial on efficacy and safety of recombinant human platelet-derived growth factor with β-tricalcium phosphate in human intra-osseous periodontal defects. J. Clin. Periodontol. 2011; 38:163-172.
[30] Katuri KK, Kumar PJ, Swarna C, Swamy DN, Arun KV. Evaluation of bioactive glass and demineralized freeze dried bone allograft in the treatment of periodontal intraosseous defects: A comparative clinico-radiographic study. J. Indian Soc. Periodontol. 2013; 17:367-72.
[31] Yukna RA, Krauser JT, Callan DP, Evans GH, Cruz R, Martin M. Thirty-six months follow-up of 25 patients treated with combination anorganic bovine-derived hydroxyapatitie matrix (ABM)/cell binding peptide (P-15) bone replacement grafts in human intrabony defects. I. clinical findings. J. Periodontol. 2002; 73:123-128.

Chapter 4

[1] Vaccaro AR: The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 2002; 25:571–8.
[2] Kao ST, Scott DD: A review of bone substitutes. Oral Maxillofac. Surg. Clin. North Am. 2007; 19:513–21.
[3] Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT: Tissue engineering of bone: Material and matrix considerations. J. Bone Joint Surg. Am. 2008; 90 Suppl. 1:36–42.
[4] Moore WR, Graves SE, Bain GI: Synthetic bone graft substitutes. ANZ J. Surg. 2001; 71:354–61.
[5] Betz RR: Limitations of autograft and allograft: New synthetic solutions. Orthopedics 2002; 25:S561–70.
[6] Pittenger MF: Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284:143–7.
[7] Gimble JM, Katz AJ, Bunnell BA: Adipose-derived stem cells for regenerative medicine. Circ. Res. 2007; 100:1249–60.
[8] Uppal HS, Peterson BE, Misfeldt ML, Rocca GJ Della, Volgas DA, Murtha YM, Stannard JP, Choma TJ, Crist BD: The viability of cells obtained using the Reamer-Irrigator-Aspirator system and in bone graft from the iliac crest. Bone Joint J. 2013; 95-B:1269–74.
[9] Schmidmaier G, Herrmann S, Green J, Weber T, Scharfenberger A, Haas NP, Wildemann B: Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone 2006; 39: 1156–63.
[10] Sagi HC, Young ML, Gerstenfeld L, Einhorn TA, Tornetta P: Qualitative and quantitative differences between (with a Reamer/Irrigator/Aspirator) and the iliac crest of the same patient. J. Bone Jt. Surg. 2012; 94-A:2128–35.
[11] Stafford PR, Norris BL: Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: A review of 25 cases. Injury 2010; 41 Suppl. 2:S72–7.
[12] Berner A, Reichert JC, Müller MB, Zellner J, Pfeifer C, Dienstknecht T, Nerlich M, Sommerville S, Dickinson IS, Schütz MA, Füchtmeier B: Treatment of long bone defects and non-unions: From research to clinical practice. Cell Tissue Res. 2012; 347: 501–19.
[13] Cox G, Jones E, McGonagle D, Giannoudis PV: Reamer-irrigator-aspirator indications and clinical results: a systematic review. Int. Orthop. 2011; 35:951–6.
[14] Cox G, McGonagle D, Boxall SA, Buckley CT, Jones E, Giannoudis PV: The use of the reamer-irrigator-aspirator to harvest mesenchymal stem cells. Bone Joint J. 2011; 93-B:517–24.
[15] Porter RM, Liu F, Pilapil C, Betz OB, Mark S, Harris MB, Evans CH: Osteogenic potential of Reamer Irrigator Aspirator (RIA) aspirate collected from patients undergoing hip arthroplasty. J. Orthop. Res. 2009; 27:42–9.
[16] Cox G, Boxall SA, Giannoudis PV, Buckley CT, Roshdy T, Churchman SM, McGonagle D, Jones E: High abundance of CD271(+) multipotential stromal cells (MSCs) in intramedullary cavities of long bones. Bone 2012; 50:510–7.
[17] De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH: Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174:101–9.
[18] Hattori H, Masuoka K, Sato M, Ishihara M, Asazuma T, Takase B, Kikuchi M, Nemoto K, Ishihara M: Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. J. Biomed. Mater. Res. B. Appl. Biomater. 2006; 76:230–9.
[19] Insausti CL, Blanquer MB, Olmo LM, Lopez-Martinez MC, Ruiz XF, Lozano FJR, Perianes VC, Funes C, Nicolas FJ, Majado MJ, Jimenez JMM: Isolation and characterization of mesenchymal stem cells from the fat layer on the density gradient separated bone marrow. Stem Cells Dev. 2012; 21:260–72.
[20] Sinclair SSK, Jeray KJ, Tanner SL, Burg KJL: Evaluation of the lipid-rich layer of reamer aspirate. J. Tissue Eng. Regen. Med. 2010; 4:491–5.
[21] Declercq H: Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 2004; 25:757–68.
[22] Zhu S-J, Choi B-H, Huh J-Y, Jung J-H, Kim B-Y, Lee S-H: A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006; 101:164–9.
[23] Koch TG, Heerkens T, Thomsen PD, Betts DH: Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol. 2007; 7:26.
[24] Lee OK, Kuo TK, Chen W, Lee K, Hsieh S, Chen T: Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103:1669–75.
[25] Polisetty N, Fatima A, Madhira SL, Sangwan VS, Geeta K: Mesenchymal cells from limbal stroma of human eye. Mol. Vis. 2008; 14:431–42.
[26] Rochefort GY, Vaudin P, Bonnet N, Pages J-C, Domenech J, Charbord P, Eder V: Influence of hypoxia on the domiciliation of mesenchymal stem cells after infusion into rats: Possibilities of targeting pulmonary artery remodeling via cells therapies? Respir. Res. 2005; 6:125.
[27] Zuk PA, Zhu M, Ashjian P, Ugarte DA De, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 2002; 13:4279–95.
[28] Grant AC, Ortiz-Colòn G, Doumit ME, Buskirk DD: Optimization of in vitro conditions for bovine subcutaneous and intramuscular preadipocyte differentiation. J. Anim. Sci. 2008; 86:73–82.
[29] Forest C, Doglio A, Ricquier D, Ailhaud G: A preadipocyte clonal line from mouse brown adipose tissue: Short- and long-term responses to insulin and beta-adrenergics. Exp. Cell Res. 1987; 168:218–32.
[30] Gorski JP, Griffin D, Dudley G, Stanford C, Thomas R, Huang C, Lai E, Karr B, Solursh M: Bone acidic glycoprotein-75 is a major synthetic product of osteoblastic cells and localized as 75- and/or 50-kDa forms in mineralized phases of bone and growth plate and in serum. J. Biol. Chem. 1990; 265:14956–63.
[31] Perinpanayagam H, Martin T, Mithal V, Dahman M, Marzec N, Lampasso J, Dziak R: Alveolar bone osteoblast differentiation and Runx2/Cbfa1 expression. Arch. Oral Biol. 2006; 51:406–15.
[32] Jensen SS, Broggini N, Hjørting-Hansen E, Schenk R, Buser D: Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin. Oral Implants Res. 2006; 17:237–43.
[33] Rajan GP, Fornaro J, Trentz O, Zellweger R: Cancellous allograft versus autologous bone grafting for repair of comminuted distal radius fractures: A prospective, randomized trial. J. Trauma 2006; 60:1322–9.
[34] Thomas CB: Development of a Composite Bone Graft Substitute for Bone Tissue Engineering Applications (Dissertation, Clemson University) 2005.
[35] Thomas CB, Jenkins L, Kellam JF, Burg KJL: Endpoint Verification of Bone Demineralization for Tissue Engineering Applications, Tissue Engineered Medical Products Special Technical Publication 1452. ASTM. 2003, pp 90–3.
[36] Ulloa-Montoya F, Verfaillie CM, Hu W-S: Culture systems for pluripotent stem cells. J. Biosci. Bioeng. 2005; 100:12–27.
[37] Kitamura S, Ohgushi H, Hirose M, Funaoka H, Takakura Y, Ito H: Osteogenic differentiation of human bone marrow-derived mesenchymal cells cultured on alumina ceramics. Artif. Organs 2004; 28:72–82.
[38] Schantz J-T, Teoh SH, Lim TC, Endres M, Lam CXF, Hutmacher DW: Repair of calvarial defects with customized tissue-engineered bone grafts: Evaluation of osteogenesis in a three-dimensional culture system. Tissue Eng. 2003; 9:S113–26.
[39] Maxson S, Burg KJL: Conditioned media cause increases in select osteogenic and adipogenic differentiation markers in mesenchymal stem cell cultures. J. Tissue Eng. Regen. Med. 2008; 2:147–54.
[40] Fang B, Wan Y, Tang T, Gao C, Dai K: Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng. Part A 2009; 15:1091–8.
[41] Masson E, Wiernsperger N, Lagarde M, El Bawab S: Involvement of gangliosides in glucosamine-induced proliferation decrease of retinal pericytes. Glycobiology 2005; 15:585–91.
[42] Boyan BD, Schwartz Z, Lohmann CH, Sylvia VL, Cochran DL, Dean DD, Puzas JE, Univer P, Science H, Antonio S, Biocliernistry D, Herrlth T: Pretreatment of bone with osteoclasts affects phenotypic expression of osteoblast-like cells. J. Ortho. Res. 2003; 21:638–47.
[43] Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF: Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 2000; 275:9645–52.
[44] Schecroun N, Delloye C: Bone-like nodules formed by human bone marrow stromal cells: Comparative study and characterization. Bone 2003; 32:252–60.
[45] Egusa H, Iida K, Kobayashi M, Lin TY, Zhu M, Zuk PA, Wang CJ, Thakor DK, Hedrick MH, Nishimura I: Downregulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow- and adipose tissue-derived stromal cells. Tissue Eng. 2007; 13:2589–600.
[46] Huttunen MM, Pekkinen M, Ahlström MEB, Lamberg-Allardt CJE: Long-term effects of tripeptide Ile-Pro-Pro on osteoblast differentiation in vitro. J. Nutr. Biochem. 2008; 19:708–15.
[47] Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 1997; 64:295–312.
[48] Kamalia N, McCulloch CA, Tenebaum HC, Limeback H: Dexamethasone recruitment of self-renewing osteoprogenitor cells in chick bone marrow stromal cell cultures. Blood 1992; 79:320–6.
[49] Deyama Y, Takeyama S, Koshikawa M, Shirai Y, Yoshimura Y, Nishikata M, Suzuki K, Matsumoto A: Osteoblast maturation suppressed osteoclastogenesis in coculture with bone marrow cells. Biochem. Biophys. Res. Commun. 2000; 274:249–54.

Chapter 5

[1] Simó R, Villarroel M, Corraliza L, Hernández C, Garcia-Ramírez M. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier--implications for the pathogenesis of diabetic retinopathy. J Biomed Biotechnol, 2010, 2010:190724.
[2] Kevany BM, Palczewski K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda). 2010, 25, 8-15.
[3] Aleman, TS; Cideciyan, AV; Sumaroka, A; Windsor, EA; Herrera, W; White, DA; Kaushal, S; Naidu, A; Roman, AJ; Schwartz, SB; Stone, EM; Jacobson, SG; Retinal laminar architecture in human retinitis pigmentosa caused by Rhodopsin gene mutations. Investigation Ophthalmol Vis Sci, 2008,49,1580-1590.
[4] McLeod, DS; Grebe, R; Bhutto, I; Merges, C; Baba, T; Lutty, GA. Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci, 2009, 50, 4982-4989.
[5] Charteris, DG. Proliferative vitreoretinopathy: pathobiology, surgical management, and adjunctive treatment. Br J Ophthalmol, 1995, 79, 953-960.
[6] Scheiffarth, OF; Kampik, A; Günther, H; von der Mark, K; Proteins of the extracellular matrix in vitreoretinal membranes. Graefes Arch Clin Exp Ophthalmol, 1988, 226,357-361.
[7] Bi, A; Cui, J; Ma, YP; Olshevskaya, E; Pu, M; Dizhoor, AM; Pan, ZH. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 2006, 50, 23–33.
[8] Chader, GJ; Weiland, J; Humayun, MS. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res, 2009, 175, 317–332.
[9] Klimanskaya, I; Hipp, J; Rezai, KA; West, M; Atala, A; Lanza, R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells, 2004,6,217-245.
[10] Aghajanova, L; Skottman, H; Strömberg, AM; Inzunza, J; Lahesmaa, R; Hovatta, O. Expression of leukemia inhibitory factor and its receptors is increased during differentiation of human embryonic stem cells. Fertil Steril, 2006,86,1193-1209.
[11] Liao, JL; Yu, J; Huang, K; Hu, J; Diemer, T; Ma, Z; Dvash, T; Yang, XJ; Travis, GH; Williams, DS; Bok, D; Fan, G. Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet, 2010,19, 4229-4238.
[12] Liu Y, Song Z, Zhao Y, Qin H, Cai J, Zhang H, Yu T, Jiang S,Wang G, Ding M, Deng H. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun, 2006, 346, 131-139.
[13] Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell, 2009,5,396-408.
[14] Osakada F, Ikeda H, Sasai Y, Takahashi M. Stepwise differentiation of pluripotentstem cells into retinal cells. Nat Protoc, 2009a, 4, 811–824.
[15] Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M.In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci, 2009b, 122, 3169–3179.
[16] Nistor G, Seiler MJ, Yan F, Ferguson D, Keirstead HS. Three-dimensional early retinal progenitor 3D tissue constructs derived from human embryonic stem cells. J Neurosci Methods, 2010, 190, 63–70.
[17] Hirami Y,Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N,Takahashi M. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett, 2009,458,126–131.
[18] Pennington BO, Clegg DO, Melkoumian ZK, Hikita ST. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate. Stem Cells Transl Med. 2015,4, 165-177.

Chapter 6

[1] Dominici M, K Le Blanc, I Mueller, I Slaper-Cortenbach, F Marini, D Krause, R Deans, A Keating, D Prockop, E Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–317.
[2] Bourin P, BA Bunnell, L Casteilla, M Dominici, AJ Katz, KL March, H Redl, JP Rubin, K Yoshimura, FM Gimble. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics (IFATS) and Science and the International S. Cytotherapy 2013; 15(6): 641–648.
[3] Zhu Y, T Liu, K Song, X Fan, X Ma, Z Cui. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 2008; 26(6): 664–675.
[4] Curtis KM, LA Gomez, C Rios, E Garbayo, AP Raval, MA Perez-Pinzon, PC Schiller. EF1alpha and RPL13a represent normalization genes suitable for RT-qPCR analysis of bone marrow derived mesenchymal stem cells. BMC

Mol Biol 2010; 11(61): 1–15.
[5] Vandesompele J, K De Preter, F Pattyn, B Poppe, N Van Roy, A De Paepe, F Speleman. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3(7): Rearch0034.1 – research 0034.11.
[6] Andersen CL, JL Jensen, TF Ørntoft. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer Data Sets. Cancer Res 2004; 64(15): 5245–5250.
[7] De Jonge HJM, RSN Fehrmann, ESJM de Bont, et al. Evidence based selection of housekeeping genes. Plos One 2007; 2(9): e898.
[8] Quiroz FG, OM Posada, D Gallego-Perez, N Higuita-Castro, C Sarassa, DJ Hansford, P Agudelo-Florez, LE López. Housekeeping gene stability influences the quantification of osteogenic markers during stem cell differentiation to the osteogenic lineage. Cytotechnology 2010; 62(2): 109–120.
[9] Pfaffl MW, A Tichopad, C Prgomet, TP Neuvians. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper–excel-based tool using pair-wise correlations. Biotechnol Lett 2004; 26(6): 509–514.
[10] Xie F, P Xiao, D Chen, L Xu, B Zhang. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 2012; 80: 75–84.
[11] Ragni E, M Viganò, P Rebulla, R Giordano, L Lazzari. What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: How to choose the most reliable housekeeping genes. J Cell Mol Med 2013; 17(1): 168–180.
[12] Markarian CF, GZ Frey, MD Silveira, EM Chem, AR Milani, PB Ely, AP Horn, NB Nardi, M Camassola. Isolation of adipose-derived stem cells : a comparison among different methods. Biotechnol Lett 2014; 36(4): 693–702.
[13] Rasmussen R. Quantification on the LightCycler. Springer Press. 2001, pp. 21–34.
[14] Livak KJ, TD Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 2001; 25(4): 402–408.
[15] Fink T, P Lund, L Pilgaard, JG Rasmussen, M Duroux, V Zachar. Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure. BMC Mol Biol 2008; 9(98): 98.
[16] Amable PR, MVT Teixeira, RBV Carias, JM Granjeiro, R Borojevic. Identification of appropriate reference genes for human mesenchymal cells during expansion and differentiation. Plos One 2013; 8(9): e73792.
[17] Mehta R, A Birerdinc, N Hossain, A Afendy, V Chandhoke, Z Younossi, A Baranova. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples. BMC Mol Biol 2010; 11: 39.
[18] Köllmer M, JS Buhrman, Y Zhang, RA Gemeinhart. Markers are shared between adipogenic and osteogenic differentiated mesenchymal stem cells. J Dev Biol Tissue Eng 2013; 5(2): 18–25.
[19] Li X, Q Yang, J Bai, Y Xuan, Y Wang. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR. Biotechnol Lett 2015; 37(1): 67–73.

Chapter 7

[1] Lemischka I. A few thoughts about the plasticity of stem cells. Exp. Hemato., 2002, 30, 848–852.
[2] Verfaillie C. M. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol., 2002, 12, 502–508.
[3] Wagers A. J., Weissman IL.Plasticity of adult stem cells. Cell, 2004, 116, 639–648.
[4] Sauer H., Wartenberg M., Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol. Biochem., 2001, 11, 173–186.
[5] Droge W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82, 47–95.
[6] Finkel T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol., 2003, 15, 247–254.
[7] Busuttil R. A., Rubio M., Dolle M. E. T., Campisi J., Vijg J. Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell, 2003, 2, 287–294.
[8] Cipolleschi M. G., Dello Sbarba P., Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood, 1993, 82, 2031–2037.
[9] Eliasson P., Jonsson J. I. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell. Physiol., 2010, 222, 17–22.
[10] Lekli I., Gurusamy N., Ray D., Tosaki A., Das D. K. Redox regulation of stem cell mobilization. Can. J. Physiol. Pharmacol., 2009, 87, 989–995.
[11] Koshiji M., Kageyama Y., Pete E. A., Horikawa I., Barrett J. C., Huang L. E. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J., 2004, 23, 1949–1956.
[12] Takubo K., Goda N., Yamada W., Iriuchishima H., Ikeda E., Kubota Y., Shima H., Johnson R. S., Hirao A., Suematsu M., Suda T. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell, 2010, 7(3), 391-402.
[13] Wang G. L., Jiang B. H., Rue E. A., Semenza G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA, 1995, 92, 5510–5514.
[14] Ivan M., Haberberger T., Gervasi D. C., Michelson K. S., Gunzler V., Kondo K., Yang H. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA, 2002, 99, 13459–13464.
[15] Simsek T., Kocabas F., Zheng J., Deberardinis R. J., Mahmoud A. I., Olson E. N., Schneider J. W., Zhang C. C., Sadek H. A. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 2010, 7, 380–390.
[16] Takubo K., Nagamatsu G., Kobayashi C. I., Nakamura-Ishizu A., Kobayashi H., Ikeda E., Goda N., et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell, 2013, 12, 49–61.
[17] Wise D. R., Thompson C. B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci., 2010, 35, 427–433.
[18] Son J., Lyssiotis C. A., Ying H., Wang X., Hua S., Ligorio M., Perera R. M. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013,496, 101–105.
[19] Newsholme E. A., Crabtree B., Ardawi M. S. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci. Rep., 1985, 5, 393–400.
[20] Sarma P. V., Subramanyam G. In vitro cardiogenesis can be initiated in human CD34+ cells. Indian Heart J., 2008, 60, 95–100.
[21] Sutherland D. R., Anderson L., Keeney M., Nayar R., ChinYee I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J. Hematother., 1996, 5,213-226.
[22] Mahe B., Menard A., Accard F., Pineau D., Robillard N., Hermouet S. In vitro expansion of CD34+ cells from peripheral blood of myeloma and lymphoma patients. Nouv. Rev. Fr. Hematol., 1995,37,335-341.
[23] Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25, 402–408.
[24] Nielsen J. S., McNagny K. M. Novel functions of the CD34 family. J. Cell Sci., 2008, 121, 3683–3692.
[25] Piccoli C., Agriesti F., Scrima R., Falzetti F., Di Ianni M., Capitanio N. To breathe or not to breathe: the haematopoietic stem/progenitor cells dilemma. Br. J. Pharmacol., 2013,169, 1652–1671.
[26] Ito K., Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol., 2014, 15, 243–256.
[27] Ardawi M. S., Newsholme E. A. Glutamine metabolism in lymphocytes of the rat. Biochem. J., 1983, 212, 835–842.

Chapter 8

[1] Cypel M, Yeung JC, Machuca T, et al. 2012. Experience with the first 50 ex vivo lung perfusions in clinical transplantation. J. Thorac. Cardiovasc. Surg.; 144:1200-7.
[2] Yeung JC, Wagnetz D, Cypel M, et al. 2012. Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig. Mol. Ther. 20 (6): 1204-11.
[3] Kentaro Noda, Norihisa Shigemura, Yugo Tanaka, et al. Hydrogen preconditioning during ex vivo lung perfusion improves the quality of lung grafts in rats. Transplantation: 15 September 2014; Vol. 98 - Issue 5 - p 499-506.
[4] Giorgio Zanotti, Monica Casiraghi, John B. Abano, et al. Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema. Am. J. Physiol. Lung Cell Mol. Physiol. Jul 2009; 297 (1): L52–L63.
[5] Kaneda H, Waddell TK, de Perrot M, et al. Pre-implantation multiple cytokine mRNA expression analysis of donor lung grafts predicts survival after lung transplantation in humans. Am. J. Transplant. 2006; 6:544.
[6] Roobrouck V. D., C. C. Carlos Clavel, S. A. Jacobs et al. Differentiation potential of human postnatal mesenchymal stem cells, mesoangioblasts, and multipotent adult progenitor cells reflected in their transcriptome and partially influenced by the culture conditions. Stem Cells 2011. Vol. 29, no. 5, pp. 871–882.
[7] M. Krampera, S. Glennie, J. Dyson et al., “Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003. Vol. 101, no. 9, pp. 3722–3729.
[8] K. Le Blanc, L. Tammik, B. Sundberg, S. E. Haynesworth, and O. Ringdén. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian Journal of Immunology 2003. Vol. 57, no. 1, pp. 11–20.
[9] Thorsten Wittwer, Parwis Rahmanian, Yeong-Hoon Choi, Mohamed Zeriouh, Samira Karavidic, Klaus Neef, et al. Mesenchymal stem cell pretreatment of non-heart-beating-donors in experimental lung transplantation. Journal of Cardiothoracic Surgery 2014, 9:151 doi: 10.1186/s13019-014-0151-3.
[10] Katarina Le Blanc, Ida Rasmusson, Berit Sundberg, Cecilia Götherström, Moustapha Hassan, Mehmet Uzunela, Olle Ringdéna. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet 2004. Volume 363, Issue 9419, Pages 1439–1441.
[11] Abhishek Sohni and Catherine M. Verfaillie. Mesenchymal Stem Cells Migration Homing and Tracking. Stem Cells International. Volume 2013 (2013), Article ID 130763, 8 pages.
[12] Tian W, Liu Y, Zhang B, Dai X, Li G, Li X, Zhang Z, Du C, Wang H. Infusion of Mesenchymal Stem Cells Protects Lung Transplants from Cold Ischemia-Reperfusion Injury in Mice. Lung. October 2014. DOI: 10.1007/s00408-014-9654-x.
[13] Shampa Chatterjee, Gary F. Nieman, Jason D. Christie and Aron B. Fisher. Shear stress-related mechanosignaling with lung ischemia: lessons from basic research can inform lung transplantation. Articles in PresS. Am. J. Physiol. Lung Cell Mol. Physiol. (September 2014)
[14] M. Shi, J. Li, L. Liao et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 2007. Vol. 92, no. 7, pp. 897–904.
[15] Phinney DG and Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of trans-differentiation and modes of tissue repair--current views. Stem Cells. 2007 Nov; 25(11):2896-902.
[16] Tremain N, Korrko J, Kopen GC et al. MicroSAGE analysis of 2353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 2001; 19:408–418.
[17] Phinney DG, Hill K, Michelson C et al. Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental plasticity and broad clinical efficacy. Stem Cells 2006; 24:186–198.
[18] W. J. C. Rombouts and R. E. Ploemacher, “Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture,” Leukemia 2003. Vol. 17, no. 1, pp. 160–170.
[19] Jun D, Garat C, West J, Thorn N, Chow K, Cleaver T et al. The pathology of bleomycin-induced fbrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells 2011; 29: 725–735.
[20] Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fbrotic effects. Proc. Natl. Acad. Sci. USA 2003; 100: 8407–8411.
[21] Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K et al. Interleukin 1 receptor antagonist mediates the antiinfammatory and antifbrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. USA 2007; 104: 11002–11007.
[22] Zhao F, Zhang YF, Liu YG, Zhou JJ, Li ZK, Wu CG et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplant. Proc 2008; 40: 1700–1705.
[23] Lee SH, Jang AS, Kim YE, Cha JY, Kim TH, Jung S et al. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fbrosis. Respir. Res. 2010; 11: 16.
[24] Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 2009; 15: 42–49.
[25] Gonzalez-Rey E, Anderson P, González MA, Rico L, Büscher D and Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 2009; 58: 929–939.
[26] Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS et al. Mesenchymal stem cells reduce infammation while enhancing bacterial clearance and improving survival in sepsis. Am. J. Respir. Crit. Care Med. 2010; 182: 1047–1057.
[27] Yagi H, Soto-Gutierrez A, Kitagawa Y, Tilles AW, Tompkins RG and Yarmush ML. Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant. 2010; 19: 823–830.
[28] Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y et al. Reactive bone marrow stromal cells attenuate systemic infammation via sTNFR1. Mol. Ther. 2010; 18: 1857–1864.
[29] Baber SR, Deng W, Master RG, Bunnell BA, Taylor BK, Murthy SN et al. Intratracheal mesenchymal stem cell administration attenuates monocrotaline- induced pulmonary hypertension and endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 200; 292: H1120–H1128.
[30] Umar S, de Visser YP, Steendijk P, Schutte CI, Laghmani H, Wagenaar GT et al. Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 2009; 297: H1606–H1616.
[31] Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, Furuya E et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 2006; 114(1 Suppl): I181–I185.
[32] Grove DA, Xu J, Joodi R, Torres-Gonzales E, Neujahr D, Mora AL et al. Attenuation of early airway obstruction by mesenchymal stem cells in a murine model of heterotopic tracheal transplantation. J. Heart Lung Transplant. 2011; 30: 341–350.
[33] Hiroshi Yagi and Yuko Kitagawa. The role of mesenchymal stem cells in cancer development. Frontiers in Genetics 2013| Volume4 | Article 261.

Chapter 9

[1] Mills L. A., Simpson AHRW. The relative incidence of fracture non-union in the Scottish population (5.17 million): a 5-year epidemiological study. BMJ Open 2013; 3: e002276 doi:10.1136/bmjopen-2012-002276.
[2] Fayaz H. C., Giannoudis P. V., Vrahas M. S., Smith R. M., Moran C., Pape H. C., et al. The role of stem cells in fracture healing and nonunion. Inter. Orthop. 2011; 35(11):1587-97.
[3] Dahabreh Z., Calori G. M., Kanakaris N. K., Nikolaou V. S., Giannoudis P. V. A cost analysis of treatment of tibial fracture nonunion by bone grafting or bone morphogenetic protein-7. Int. Orthop. 2009; 33: 1407–14.
[4] Zimmermann G., Moghaddam A. Trauma: Non-Union: New Trends. In European Instructional Lectures. Bentley G (eds) Volume (10), 15DOI: 10.1007/978-3-642-11832-6_2, Springer Publication.
[5] Friedlaender G. E., Perry C. R., Cole J. D., Cook S. D., Cierny G., Muschler G. F. et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J. Bone Joint. Surg. 2001; Am 83-A suppl 1(Pt 2):S151–S158.
[6] Zimmermann G., Müller U., Löffle C., Wentzensen A., Moghaddam A. Therapeutic outcome in tibial pseudarthrosis: bone morphogenetic protein 7 (BMP-7) versus autologous bone grafting for tibial fractures. Unfallchirurg 2007;110 (11):931–938.
[7] Sen M. K., Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 2007; 38 suppl 1:S75–S80.
[8] Caplan A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol.; 2007; 213:341-347.
[9] Kumar S., Chanda D., Ponnazhagan S.: Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther. 2008, 15:711-715.
[10] Undale A., Fraser D., Hefferan T., Kopher R. A., Herrick J., Evans G. L. et al. Induction of Fracture Repair by Mesenchymal Cells Derived from Human Embryonic Stem Cells or Bone Marrow. J. Orthop. Res. 2011 December; 29(12): 1804–11.
[11] Kokubu T., Hak D. J., Hazelwood S. J., Reddi A. H. Development of an atrophic nonunion model and comparison to a closed healing fracture in rat femur. J. Orthop. Res. 2003; May; 21(3):503-10.
[12] Piao H., Youn, T. J., Kwon, J. S., Kim Y. H., Bae, J. W., Bora-Sohn, Kim D.W. et al. Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium. Eur. J. Heart Fail 2005; 7(5): 730-738.
[13] Gupta R. R., Yoo D. J., Hebert C., Niger C., Stains JP. Induction of an osteocyte-like phenotype by fibroblast growth factor-2. Biochem. Biophys. Res. Commun. 2010; 402: 258- 264.
[14] Myers T. J., Yan Y., Granero-Molto F., Weis J. A., Longobardi L., Li T., Li Y., Contaldo C., Ozkhan H. et al., Systemically delivered insulin-like growth factor-I enhances mesenchymal stem cell-dependent fracture healing. Growth Factors. 2012 Aug; 30(4):230-41.
[15] Simpson AHRW, Mills L., Noble B. The role of growth factors and related agents in accelerating fracture healing. J. Bone Joint Surg. 2006; 88-B: 701-5.
[16] Chrastil J, Low J. B., Whang P. G., Patel A. A. Complications associated with the use of the recombinant human bone morphogenetic proteins for posterior inter body fusions of the lumbar spine. Spine 2013 Jul 15; 38 (16):E1020-7.
[17] Carragee E. J., Hurwitz E. L., Weiner B. K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011; 11: 471–91.
[18] Tsutsumi S., Shimazu A., Miyazaki K., Pan H., Koike C., Yoshida E., Takagishi K., Kato. Y.: Retention of multilineage diff erentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem. Biophys. Res. Commun. 2001, 288:413-419.
[19] Gómez-Barrena E., Rosset P., Lozano D., Stanovici J., Ermthaller C., Gerbhard F. Bone fracture healing: Cell therapy in delayed unions and nonunions. Bone. 2015; 70C: 93-101.

Chapter 10

[1] Tedesco FS. Human artificial chromosomes for Duchenne muscular dystrophy and beyond: challenges and hopes. Chromosome Res. 23, 135-41 (2015).
[2] Monaco AP, Neve RL, Colletti-Feener C et al. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature.323, 646–650 (1996).
[3] Stedman HH, Sweeney HL, Shrager JB et al. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature. 352, 536-539 (1991).
[4] Barnabei MS, Sjaastad FV, Townsend D et al. Severe dystrophic cardiomyopathy caused by the enteroviral protease 2A–mediated C-terminal dystrophin cleavage fragment. Science Translational Medicine. 7, 294ra106, DOI: 10.1126 /scitranslmed.aaa4804 (2015).
[5] Sussman M. Duchenne Muscular Dystrophy.J Am AcadOrthop Surg.10,138-151 (2002).
[6] Thomson WH, Smith I. X-linked recessive (Duchenne) muscular dystrophy (DMD) and purine metabolism: effects of oral allopurinol and adenylate. Metabolism. 27(2),151-63(1978).
[7] Zhao BL, Helen DK, Kathryn RW. Myostatin directly regulates skeletal muscle fibrosis. J Biol Chem.; 28, 19371-19378 (2008).
[8] Christopher JM, Eusebio P, Yacine K et al. Aberrant repair and fibrosis development in skeletal muscle. Skeletal muscle.1:21 (2011).
[9] Serrano AL, Mann CJ, Vidal B et al. Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Cur Top Dev Biol.96,167-201(2011).
[10] Kharraz Y, Guerra J, Pessina P et al. Understanding the process of fibrosis in Duchenne Mascular Dystrophy. BioMed Research International. Article ID 965631 (2014).
[11] Klingler W, Jurkar-Rott K, Lehmann-horn F et al. The role of fibrosis in Duchenne mascular dystrophy. ActaMyol. 31, 184-195 (2012). J NeuropatholExp Neurol. 69, 771-765 (2010).
[12] Zhou L, Lu Haiyan. Targeting Fibrosis in Duchenne Mascular Dystrophy. J NeuropatholExp Neurol. 69, 771-765 (2010).
[13] Yoshida K, Nakamura A, Yazaki M et al. Insertional mutation by transposable element, L1, in the DMD gene results in x-linked dilated cardiomyopathy. Human Molecular Genetics.7,1129-1132 (1998).
[14] Stanbury RM, Graham EM. Systemic corticosteroid therapy-side effects and their management. Br J Opthalmol. 82,704-708 (1998).
[15] Wagner KR, Lechtzin N, Judge DP. Current treatment of adult Duchenne muscular dystrophy. BiochimicaBiophysicaActa.1772,229-237 (2007).
[16] Darabi R1, Perlingeiro RC. Derivation of Skeletal Myogenic Precursors from Human PluripotentStem Cells Using Conditional Expression of PAX7. Methods Mol Biol.(2014) (in press).
[17] Arpke RW, Darabi R, Mader TL et al. A new immuno-dystrophin-deficient model, the NSG-mdx4Cv mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation. Stem cells. 31,1611-1620 (2013).
[18] Morrow JM, Sinclair CDJ, FischmannA et al. Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers. EurRadiol. 24(7), 1610–1620 (2014).
[19] Pavlath GK, Rando TA, Blau HM. Transient immunosuppressive treatment leads to long-term retention of allogeneic myoblasts in hybrid myofibers. J cell Biol.127,1923-1932 (1994).
[20] Porter JD, Khanna S, Kaminski HJ et al. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Human molecular genetics.; 11, 263-272 (2002).
[21] Schu S1, Nosov M, O'Flynn L et al.Immunogenicity of allogeneic mesenchymal stem cells. J Cell Mol Med.; 16, 2094-2103 (2012).
[22] Nauta AJ, Westerhuis G, Kruisselbrink AB. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting.Blood. 15, 2114-2120 (2006).
[23] Huang XP, Sun Z, Miyagi Y et al. Differentiation of Allogeneic Mesenchymal Stem Cells Induces Immunogenicity and Limits Their Long-Term Benefits for Myocardial Repair. Circulation.122, 2419-2429 (2012).
[24] L Miyoung, Jeong SY, Ha J et al. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo.Biochem. Biophys. Res. Commun. 446, 983-989 (2014).
[25] Klyushnenkova E, Mosca JD, Zernetkina V et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed. Sci. 12, 47-57(2005).

Chapter 11

[1] Onder F, Ilker S, Kansu T, Tatar T, Kural G. Acute blindness and putaminal necrosis in methanol intoxication. Intl. Ophthalmol. 1998; 22: 81-84.
[2] Liu JJ, Daya MR, Mann NC. Methanol-related deaths in Ontario. J. Toxicol. Clin. Toxicol. 1999; 37(1):69-73.
[3] Mégarbane B, Borron SW, Baud FJ. Current recommendations for treatment of severe toxic alcohol poisonings. Intensive Care Med. 2005; 31(2):189-195. Epub. 2004 Dec. 31.
[4] Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings. J. Exptl. Clin. Cancer Res. 2011; 30-39.
[5] Geffner LF, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad AH, Montenegro X, Gonzalez R, Silva F. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplantation 2008; 17:1277-1293.
[6] Janson CG, Ramesh TM, During MJ, Leone P, Heywood J. Human intrathecal transplantation of peripheral blood stem cells in amyotrophic lateral sclerosis. J. Hematother. Stem Cell Res. 2001; 10(6):913-915.
[7] Slavina S, Basan G, Kurkallia S, Karussisb D. The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders. 2008; 110 (9):943-946.
[8] Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 2000; 61(4):364-370.
[9] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 2000; 164(2): 247-256.
[10] Calatrava-Ferreras L, Gonzalo-Gobernado R, Herranz AS, Reimers D, Montero Vega T, Jiménez-Escrig A, Richart López LA, Bazán E. Effects of intravenous administration of human umbilical cord blood stem cells in 3-acetylpyridine-lesioned rats. Stem Cells Intl. Volume 2012, Article ID 135187, 14 pages, doi:10.1155/2012/135187.
[11] Mezey E, Chandross KJ, Harta G, Maki Richard A, McKercher Scott R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290(5497):1779-1782.
[12] Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci. Lett. 2009; 456:120-123. DOI:10.1016/j.neulet.2008.03.096.
[13] Kim HJ, Lee JH, Kim SH. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma. 2010; 27:131-138. DOI:10.1089/NEU.2008-0818.
[14] Walker PA, Harting MT, Jimenez F, Shah SK, Pati S, Dash PK, Cox CS. Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NFêB-mediated increase ininterleukin-6 production. Stem Cells Dev. 2010; 19:867-876. DOI: 10.1089/scd.2009.0188.
[15] Wang E, Gao J, Yang Q, Parsley MO, Dunn TJ, Zhang L, DeWitt DS, Denner L, Prough DS, Wu P. Molecular mechanisms underlying effects of neural stem cells against traumatic axonal injury. J. Neurotrauma 2012; 29(2): 295-312. doi:10.1089/ neu.2011.2043.
[16] Zwart I, Hill AJ, Al-Allaf F, Shah M, Girdlestone J, Sanusi AB, Mehmet H, Navarrete R, Navarrete C, Jen LS. Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp. Neurol. 2009; 216(2):439-448.
[17] Dahlmann-Noor AH, Vijay S, Limb GA, Khaw PT-Strategies for optic nerve rescue and regeneration in glaucoma and other optic neuropathies. Drug Discov. Today 2010; 15(7-8):287-299. Epub. 2010 Mar. 1.
[18] Miller NR. Optic nerve protection, regeneration, and repair in the 21st century: LVIII Edward Jackson Memorial lecture. Am. J. Ophthalmol. 2001; 132(6):811-818.
[19] Benowitz L, Yin Y. Optic Nerve Regeneration. Arch. Ophthalmol. 2010; 128(8):1059-1064.
[20] Paasma R, HovdaKE, Jacobsen D. Methanol poisoning and long term sequelae: a six years follow-up after a large methanol outbreak. BMC Clin. Pharmacol. 2009; March 27; 9:5. doi:10.1186/1472-6904-9-5.
[21] Sanaei-Zadeh H, Zamani N, Shadnia S. Outcomes of visual disturbances after methanol poisoning. Clin. Toxicol. (Phila.) 2011; 49:102-107.
[22] Benton CD, Calhoun FP. The ocular effects of methyl alcohol poisoning: report of a catastrophe involving three hundred and twenty persons. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1952; 56:875-885.
[23] Zhang Z, Alexanian AR. The neural plasticity of early-passage human bone marrow derived mesenchymal stem cells and their modulation with chromatin-modifying agents. J. Tissue Eng. Regen. Med. 2012 DOI: 10.1002/term.1535.
[24] Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 2004; 77:174-191. DOI:10.1002/jnr.20148.
[25] Khalili MA, Anvari M, Hekmati-Moghadam SH, Sadeghian-Nodoushan F, Fesahat F, Miresmaeili SM. Therapeutic benefit of intravenous transplantation of mesenchymal stem cells after experimental subarachnoid hemorrhage in rats. J. Stroke Cerebrovasc. Dis. 2012; 6: 445-451. DOI:10.1016/j.jstrokecerebrovasdis.2010.10.005.
[26] Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur. J. Immunol. 20026; 10: 2566-2573. DOI: 10.1002/eji.200636416.
[27] Sekeljic V, Bataveljic D, Stamenkovic S, Ulamekand M, Jablonski M, Radenovic L, Pluta R, Andjus PR. Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Struct. Funct. 2012; 217: 411-420. DOI:10.1007/s00429-011-0336-7.
[28] Mathur JS, Nema HV, Char JN, Mehra KS. Nylidrin hydrochloride in optic atrophy. Indian J. Ophthalmol. 1970; 18:176-179.
[29] Shukla BR, Ahuja OP, Gupta NC. Functional recovery in optic atrophy. Indian J. Ophthalmol. 1970; 18:180-182.
[30] Jing L-X, Shi Y-H, Feng J-L, Wang X-H. Electro-massage combined with retrobulbar vasodilator injection for treatment of optic atrophy. Intl. J. Ophthalmol. 2007; 7(3).
[31] Scrimgeour EM, Dethlefs RF, Kevau I Delayed recovery of vision after blindness caused by methanol poisoning. Med. J. Aust. 1982; 2: 481-483.
[32] Buzna E, Cernea D. The therapeutic approach in optic neuropathy due to methyl alcohol. Oftalmologia (Romania) 1992; 35:39-42.
[33] Stelmach MZ, O’Day J. Partly reversible visual failure with methanol toxicity. Aust. N Z J. Ophthalmol. 1992; 20(1):57-64.
[34] Rotenstreich Y, Assia EI. Late treatment of methanol blindness. Br. J. Ophthalmol. 1997; 81:415. doi:10.1136/bjo.81.5.415b.
[35] Abrishami M, Khalifeh M, Shoayb M, Abrishami M. Therapeutic effects of high-dose intravenous prednisolone in methanol-induced toxic optic neuropathy. J. Ocular. Pharmacol. Ther. 2011; 27(3): 261-263.
[36] Shukla M, Shikoh I, Saleem A. Intravenous methylprednisolone could salvage vision in methyl alcohol poisoning. Indian J. Ophthalmol. 2006; 54:68-69.
[37] Pakravan M, Sanjari N. Erythropoietin treatment for methanol optic neuropathy. J. Neuro-Ophthalmol. 2012; DOI:10.1097/WNO.0b013e318262a7c2.

Chapter 12

Abouchedid, K. E. (2007) “Correlates of religious affiliation, religiosity and gender role attitudes among Lebanese Christian and Muslim college students,” Equal. Opportunities International, Vol. 26 Iss: 3, pp. 193-208.
Amato, P. R., Booth, A., Johnson, D., R., Rogers, S., R. (2007) Alone Together How Marriage in America is Changing. Cambridge, MA: Harvard University Press (p. 148).
American Medical Association (2010). Code of medical ethics. Opinion 2.165 - Umbilical cord blood banking. http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics/code-medical-ethics/opinion2165.shtml.
Annas GJ. (1999) Waste and longing - the legal status of placental-blood banking. N. Engl. J. Med. 340(19):1521-1524.
Armson, B., A. (2005) Umbilical Cord Blood Banking: Implications for Perinatal Care Providers. J. Obstet. Gynaecol. Can. 27(3):263-274.
Arnold, K. D. (1993). Undergraduate aspirations and career outcomes of academically talented women: A discriminant Arnold, K. D. (1993). Undergraduate aspirations and career outcomes of academically talented women: A discriminant analysis. Roeper Review, 15, 169-176.
ASBMT position statement. Collection and preservation of cord blood for personal use. Biol. Blood Marrow Transplant. 2008;14(3):364.
Beloucif, S. The Muslim’s perspective related to stem cell research. Round table “Ethical aspects of human stem cells research and uses,” Brussels, 26 June 2000.
Benson Gold, R. (2004) Embryonic Stem Cell Research - Old Controversy; New Debate. The Guttmacher Report on Public Policy 7(4). Bloom, Paul (2012) Religion, Morality, Evolution. Annual Review of Psychology, 63, pp. 179-199, 2012.
Bryant, A. N. (2003). Changes in attitudes toward women’s roles: Predicting gender-role traditionalism among college students. Sex Roles, 48, 131-142.
Cairo, M. S., Wagner, J. E. (1997) Placental and/or umbilical cord blood: an alternative source of hematopoetic stem cells for transplantation. Blood 90(12): 4665-78.
Committee on Obstetric Practice; Committee on Genetics. ACOG committee opinion number 399, February 2008: umbilical cord blood banking. Obstet. Gynecol. 2008;111(2 pt 1): 475-477.
Danzer, E., Holzgreve, W., Troeger, C., Kostka, U., Steimann, S., Bitzer, J., Gratwohl, A., Tichelli, A., Seelmann, K., Surbek, D. V. (2003), Attitudes of Swiss mothers toward unrelated umbilical cord blood banking 6 months after donation. Transfusion, 43: 604-608.
Dowe, P. (2005) Galileo, Darwin, and Hawking: the Interplay of Science, Reason, and Religion William B. Eerdmans Publishing Company Grand Rapids, Michigan.
Ethical and Religious Directives for Catholic Health Care Services (5th ed. United States Conference of Catholic Bishops, Washington 2009) Directive 3, http://www.ncbcenter. org/document.doc?id=147.
Gluckman, E., Rocha, V. (2005) History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy 7(3):219-27.
Harris, D., Schumcher, M., LoCascio, J. (1992) Phenotypic and functional immaturity of human umbilical cord blood lymphocytes. Proccedings of the Academy of Sciences 89: 10006-10.
Harris DT. (2008) Cord blood stem cells: worth the investment. Nat. Rev. Cancer. 8(10):823.
Johnson FL. (1997) Placental blood transplantation and autologous banking -caveat emptor. J. Pediatr. Hematol. Oncol. 19(3):183-186.
Jordens, C., F. C., O’Connor, M., A. C., Kerridge, I., H., Stewart, C., Keown, D., Lawrence, R., J., McGarrity, A., Sachedina, A., Tobin, (2012). Religious perspectives on umbilical cord blood banking. JLM 19: 497-511.
Kaimal AJ, Smith CC, Laros RK Jr, Caughey AB, Cheng YW. (2009) Cost-effectiveness of private umbilical cord blood banking. Obstet. Gynecol. 114(4):848-855.
Kurtzberg J, Lyerly AD, Sugarman J. (2005) Untying the Gordian knot: policies, practices, and ethical issues related to banking of umbilical cord blood. J. Clin. Invest. 115(10): 2592-2597.
Kurtzberg, J., Laughlin, M., Graham, M. L. (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N. Engl. J. Med. 335: 157-66.
Lalitha, M. (2008) Cord blood banking. Nightingale Nursing Times Feb. 3(11): 39-40.
Lampman, J. (2001) Different faiths, different views on stem cells. Christ. Sci. Monitor. 93:1-1.
Lubin BH, Shearer WT. (2007) American Academy of Pediatrics Section on Hematology/Oncology; American Academy of Pediatrics Section on Allergy/Immunology. Cord blood banking for potential future transplantation. Pediatrics. 119(1):165-170.
Martin PL, Kurtzberg J, Hesse B. (2011) Umbilical cord blood: a guide for primary care physicians. Am. Fam. Physician 84(6):661-666.
McElwee, J.J., Mazza, B. (2013) Vatican religious prefect: Gender inequality exists in church. National Catholic Reporter Aug. 12.
Murugan, V. (2009) Embryonic Stem Cell Research: A Decade of Debate from Bush to Obama Yale. J. Biol. Med. 82(3): 101-103.
Nietfeld JJ. (2008) Opinions regarding cord blood use need an update. Nat. Rev. Cancer 8 (10):823.
Nietfeld JJ, Harris DT. (2010) Cost-effectiveness of private umbilical cord blood banking. Obstet. Gynecol. 115(5):1090.
National Institute of Health. (2009, April 28). Stem Cell Information. Retrieved February 19, 2011, from National Institute of Health: http://stemcells.nih.gov/info/basics/basics2.asp.
Pargament, K. I., Smith, B. W., Koenig, H.G., Perez, L. (1998).
Patterns of Positive and Negative Religious Coping with Major Life Stressors. Journal for the Scientific Study of Religion, 37(4), 710-724.
Pasquini, M.C., Logan, B.R., Verter, F., Horowitz, M.M., Nietfield, J.J. (2005) The likelihood of hematopoietic stem cell transplantation (HCT) in the United States: Implications for Umbilical Cord Blood Storage. Blood 106 (11): 1330-33.
Saad, L. (2010). Four Moral Issues Sharply Divide Americans. Partisan disagreement drives national controversy on gay relations, abortion. Gallup Politics. http://www.gallup.com/ poll/137357/four-moral-issues-sharply-divide-americans.aspx.
Samuel, G., Kerridge, I., Vowels, M., Trickett, A., Chapman, J., Dobbins, T. (2007) Ethnicity, Equity and Public Benefit: A critical evaluation of public umbilical cord blood banking in Australia. Bone Marrow Transplant. 40: 729.
Sampath S, Ramsaran V, Parasram S, Mohammed S, Latchman S, Khunja R, Budhoo D, Poon King C, Charles KS. (2007) Attitudes towards blood donations in Trinidad and Tobago. Transfusion Medicine 17: 83-87.
Sandel, M.J. (2004) Embryo Ethics - The Moral Logic of Stem-Cell Research. N. Engl. J. Med. 351:207-209.
Sowle Cahill, L. “Stem Cells and Social Ethics: Some Catholic Contributions,” Nancy Snow, ed., Stem Cell Research: New Frontiers in Science and Ethics (Univ. of Notre Dame Press, 2003).
Storb, R. (2012). “Edward Donnall Thomas (1920-2012).” Nature 491 (7424): 334.
Sullivan MJ. (2008) Banking on cord blood stem cells. Nat. Rev. Cancer. 8(7): 555-563.
US Census Bureau, Current Population Survey, 1961 to 2009 Annual Social and Economic Supplements http://www.census.gov/prod/2010pubs/p60238.pdf.
World Marrow Donor Association. WMDA policy statement on the utility of autologous or family cord blood unit storage. http://www.worldmarrow.org/fileadmin/WorkingGroups_ Subcommittees/Cord_Blood_Working_Group/WMDA_Policy_Statement_Final_02062006.pdf.
Wall DA. (2010) Regulatory issues in cord blood banking and transplantation. Best Pract. Res. Clin. Haematol. 23(2):171-177.

Chapter 13

[1] Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5:17-26.
[2] Sng J and Lufkin T. Advances in stem cell therapies (Chapter-17). Pluripotent Stem Cells, book edited by Deepa Bhartiya and Nibedita Lenka, ISBN 978-953-51-1192-4.
[3] Bordignon C. Stem-cell therapies for blood diseases. Nature. 2006;441:1100-1102.
[4] Chotinantakul K and Leeanansaksiri W. Hematopoietic StemCell Development, Niches, and Signaling Pathways. Bone Marrow Research. Volume 2012;Article ID 270425:16 pages.
[5] Bonnet D. Cancer stem cells: AMLs show the way. Stem Cell Dev. 2005;33(6):1531-1533.
[6] Eckfeldt CE, Mendenhall EM and Verfaillie. The molecular repertoire of the ‘almighty’ stem cell. Nature. 2005;6:726-737.
[7] Engelhardt M, Lübbert M and Guo Y. CD34+ or CD34-: Which is the more primitive? Leukemia. 2002;16:1603-1608.
[8] Körbling M and Anderlini P. Peripheral blood stem cell versus bone marrow allotransplantation: Does the source of hematopoietic stem cells matter? Blood. 2001;98(10):2900-2908.
[9] Fiegel HC, Lange C, Kneser U, et al. Fetal and adult liver stem cells for liver regeneration and tissue enginnering. J Cell Mol Med. 2006;10(3):577-87.
[10] Haspel RL and Miller KB. Hematopoietic stem cells: Source matters. Current Stem Cell Res Ther. 2008;3(4):229-236.
[11] Lu L, Shen R-N and Broxmeyer HE. Stem cells from bone marrow, umbilical cord blood and peripheral blood for clinical application: Current status and future application. Critical Rev in Oncol/Hematol. 1996;22:61-78.
[12] Kim I, He S, Yilmaz ÖH, et al. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood. 2006;108(2):737-744.
[13] Michejda M. Which stem cells should be used for transplantation? Fetal Diagn Ther. 2004;19(1):2-8.
[14] Ema H, Takano H, Sudo K, et al. In vitro self-renewal division of hematopoietic stem cells. J Exp Med. 2000;192(9):1281-1288.
[15] Dazy S, Damiola F, Parisey N, et al. The MEK-1/ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells. Oncogene. 2003;22:9205-9216.
[16] Purton LE, Dworkin S, Olsen GH, et al. RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med. 2006;203(5):1283-1293.
[17] de Wynter E and Ploemacher RE. Assays for the assessment of human hematopoietic stem cells. J Biol Regul Homeost Agents. 2001;15:23-27.
[18] Shpall EJ, Jones RB, Bearman SI, et al. Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: Influence of CD34-positive peripheral blood progenitors and growth factors on engraftment. J Clin Oncol. 1994;12:28-36.
[19] Civin CI, Trischmann T, Kadan NS, et al. Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol. 1996;14:2224-2233.
[20] Shizuru JA, Negrin RS and Weissman IL. Hematopoietic stem and progenitor cells: Clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med. 2005;56:509-538.
[21] Civin C, Strauss LC, Brovall C, et al. Antigenic analysis of haematopoiesis. III A haematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG1a cells. J Immunol. 1984;133:157-165.
[22] Krause DS, Fackler MJ, Civin CI, et al. CD34: Structure, biology, and clinical utility. Blood. 1996;87:1-13.
[23] Sutherland DR, Anderson L, Keeney M, et al. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. J Hematother. 1996;5:213-226.
[24] Baum CM, Weissman IL, Tsukamoto AS, et al. Isolation of a candidate human hematopoietic stem cell population. PNAS. 1992;89:2804-2808.
[25] Gunji Y, Nakamura M, Osawa H, et al. Human primitive hematopoietic progenitor cells are more enriched in KITlow cells than in KIThigh cells. Blood. 1993;82:3283-3289.
[26] Civin CI, Almeida-Porada G, Lee MJ, et al. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood. 1996;88:4102-4109.
[27] Hill B, Rozler E, Travis M, et al. High-level expression of a novel epitope of CD59 identifies a subset of CD34+ bone marrow cells highly enriched for pluripotent stem cells. Exp Hematol. 1996;24:936-943.
[28] Kawashima I, Zanjani ED, maida-Porada G, et al. CD34+ human marrow cells that express low levels of Kit protein are enriched for long-term marrow-engrafting cells. Blood. 1996;87:4136-4142.
[29] Larochelle A, Vormoor J, Hannenberg H, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nat Med. 1996;2:1329-1337.
[30] Ziegler BL, Valtieri M, Almeida Porada G, et al. KDR receptor: A key marker defining hematopoietic stem cells. Science. 1999;285:1553-1558.
[31] Bhatia M, Wang JC, Kapp U, et al. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. PNAS. 1997;94:5320-5325.
[32] Huss R. Isolation of primary and immortalized CD34– hematopoietic and mesenchymal stem cells from various sources. Stem Cells. 2000;18:1-9.
[33] Nakamura Y, Ando K, Chargui J, et al. Ex vivo generation of CD34+ cells from CD34– hematopoietic cells. Blood. 1999;94(12):4053-4059.
[34] Hawley RG, Ramezani A and Hawley TS. Hematopoietic stem cells. Methods Enzymol. 2006; 419:149-179.
[35] Boxall SA, Cook GP, Pearce D, et al. Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells. Bone Marrow Transplantation. 2009;43:627-635.
[36] Gallacher L, Murdoch B, Wu DM, et al. Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood. 2000;95:2813-2820.
[37] Hess DA, Wirthlin L, Craft TP, et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107(5):2162-2169.
[38] Karbanova J, Missol-Kolka E, Fonseca A-V, et al. The stem cell marker CD133 (prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem. 2008;56:977-993.
[39] Vander Griend DJ, Karthaus WL, Dalrymple S, et al. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res. 2008;68(23):9703-9711.
[40] Wu Y and Wu PY. CD133 as a marker for cancer stem cells: Progress and concerns. Stem Cells Dev. 2009;18(8):1127-1134.
[41] Engel P, Eck MJ and Terhorst C. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol. 2003;3:813-821.
[42] Sidorenko SP and Clark EA. The dual-function CD150 receptor subfamily: The viral attraction. Nat Immunol. 2003;4:19-24.
[43] Howie D, Okamoto S, Rietdijk S, et al. The role of SAP in murine CD150 (SLAM)-mediated T-cell proliferation and interferon gamma production. Blood. 2002;100:2899-2907.
[44] Wang N, Satoskar A, Faubion W, et al. The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med. 2004;199:1255-1264.
[45] Veillette A. Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol. 2006;6:56-66.
[46] Kiel MJ, Yilmaz ÖH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109-1121.
[47] Sintes J, Romero X, Marin P, et al. Differential expression of CD150 (SLAM) family receptors by human hematopoietic stem and progenitor cells. Exp Hematol. 2008;36:1199-1204.
[48] Yilmaz ÖH, Kiel MJ and Morrison SJ. The SLAM family markers are conserved among hemtopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood. 2006;107:924-930.
[49] Weksberg DC, Chambers SM, Boles NC, et al. CD150- side population cells represent a functionally distinct population of long-term hematopoietic stem cells. Blood. 2008;111(4):2444-2451.
[50] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71-74.
[51] Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic transplants of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230-247.
[52] Bianco P, Robey PG and Simmons PJ. Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell. 2008;2:313-319.
[53] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-147.
[54] Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell–natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2–inducedNK-cell proliferation. Blood. 2006;107(4):1484-1490.
[55] Majumdar MK, Thiede MA, Haynesworth SE, et al. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res. 2000;9:841-848.
[56] Maitra B, Szekely E, Gjini K, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T cell activation. Bone Marrow Transplant. 2004;33:597-604.
[57] Muguruma Y, Yahata T, Miyatake H, et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood. 2006;107(5):1878-1887.
[58] Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838-3843.
[59] Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42-48.
[60] Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101:3722-3729.
[61] Salem HK and Thiemermann C. Mesenchymal stromal cells – Current understanding and clinical status. Stem Cells. 2010;28(3):585-596.
[62] Kolf CM, Cho E and Tuan RS. Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arthritis Res and Ther. 2007;9(1):204.
[63] Minguell JJ, Erices A and Conget P. Mesenchymal stem cells. Exp Biol Med. 2001;226(6):507-520.
[64] Neuss S, Becher E, WöltjeM, et al. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells. 2004;22:405-414.
[65] Etheridge SL, Spencer GJ, Heath DJ, et al. Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells. Stem Cells. 2004;22:849-860.
[66] Hilton MJ, Tu X, Wu X, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008;14(3):306-314.
[67] Jian H, Shen X, Liu I, et al. Smad3-dependent nuclear translocation of β-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev. 2006;20:666-674.
[68] Dazzi F, Ramasamy R, Glennie S, et al. The role of mesenchymal stem cells in haemopoiesis. Blood Revs. 2006;20:161-171.
[69] Battula VL, Treml S, Bareiss PM, et al. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Hematologica. 2009;94(2):173-184.
[70] Tuli R, Tuli S, Nandi S, et al. Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells. 2003;21:681-693.
[71] Gang EJ, Bosnakovski D, Figueiredo CA, et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood. 2007;109(4):1743-1751.
[72] Gronthos S, Zannettino AC, Hay SJ, et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003;116:1827-1835.
[73] Alhadlaq A and Mao JJ. Mesenchymal Stem Cells: Isolation and Therapeutics. Stem Cells Dev. 2004;13:436-448.
[74] Bensidhoum M, Chapel A, Francois S, et al. Homing of in vitro expanded Stro-1-or Stro-1+human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood. 2004;103(9):3313-3319.
[75] Lee OK, Kuo TK, Chen W-M, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669-1675.
[76] Gang EJ, Jeong JA, Hong SH, et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 2004;22:617-624.
[77] Bieback K, Kern S,Klüter H, et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625-634.
[78] Wagner W, Roderburg C, Wein F, et al. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells. 2007;25:2638-2647.
[79] Tsai M-S, Lee J-L, Chang Y-J, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Repro. 2004;19(6):1450-1456.
[80] Zhang Y, Li C, Jiang X, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol. 2004;32:657-664.
[81] Fukuchi Y, Nakajima H, Sugiyama D, et al. Human placenta-derived cells have mesenchymalstem/progenitor cell potential. Stem Cells. 2004;22:649-658.
[82] Chamberlain G, Fox J, Ashton B, et al. Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features and potential for homing. Stem Cells. 2007; 25(11):2739-49.
[83] Wagner WA, Wein FA, Seckingera AA, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33(11):1402-1416.
[84] Kopp H-G, Avecilla ST, Hooper AT, et al. The bone marrow vascular niche: Home of HSC differentiation and mobilization. Physiology (Bethesda Md). 2005;20:349-356.
[85] Jones DL and Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008;9:11-21.
[86] Molofsky AV, Pardal R and Morrison SJ. Diverse mechanisms regulate stem cell self renewal. Curr Opin in Cell Biol. 2004;16:700-707.
[87] Adams GB and Scadden DT. The hematopoietic stem cell in its place. Nat Immunol. 2006;7:333-337.
[88] Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7-25.
[89] Lord BI, Testa NG and Hendry JH. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood. 1975,46: 65-72.
[90] Fliedner TM, Graessle D, Paulsen C, et al. Structure and function of bone marrow hemopoiesis: Mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm. 2002;17:405-426.
[91] Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841-846.
[92] Palmer TD, Willhoite AR and Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425:479-494.
[93] Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004;304:1338-1340.
[94] Xie Y, Yin T, Wiegraebe W, et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2009;457:97-102.
[95] Taichman RS and Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179:1677-1682.
[96] Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836-841.
[97] Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149-161.
[98] Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6:1038-1046.
[99] Chute JP, Muramoto GG, Dressman HK, et al. Molecular profile and partial functional analysis of novel endothelial cell-derived growth factors that regulate hematopoiesis. Stem Cells. 2006;24:1315-1327.
[100] Petit I, Jin D and Rafii S. The SDF-1-CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol. 2007;28:299-307.
[101] Shiozawa Y, Haven AM, Pienta KJ, et al. The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia. 2008;22:941-950.
[102] Kiel MJ and Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol. 2008;8:290-301.
[103] Garrett RW and Emerson SG. Bone and blood vessels: The hard and the soft of hematopoietic stem cell niches. Cell Stem Cell. 2009;4:503-506.
[104] Franz-Odendaal TA, Hall BK and Witten PE. Buried alive: How osteoblasts become osteocytes. Dev Dyn. 2006;235:176-190.
[105] Seeman E and Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250-2261.
[106] Huber TL, Kouskoff V, Fehling H J, et al. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature. 2004;432:625-630.
[107] Taniguchi H, Toyoshima T, Fukao K, et al. Presence of hematopoietic stem cells in the adult liver. Nat Med. 1996;2:198-203.
[108] Johnson RS, Spiegelman BM and Papaioannou V. Pleiotropic effects of a null mutation in the c-fos protooncogene. Cell. 1992;71:577-586.
[109] Yang B, Kirby S, Lewis J, et al. A mouse model for β0-thalassemia. PNAS. 1995;92(25):11608-11612.
[110] Wilson A and Trumpp A. Bone-marrow haematopoietic stem- cell niches. Nat Rev Immunol. 2006;6:93-106.
[111] Li W, Johnson SA, Shelley WC, et al. Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp Hematol. 2004;32:1226-1237.
[112] Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109(5):625-637.
[113] Avecilla ST, Hattori K, Heissig B, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10:64-71.
[114] Yoshihara H, Arai F, Hosokawa K, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with in the osteoblastic niche. Cell Stem Cell. 2007;1(6):685-697.
[115] Stier S, Ko Y, Forkert R, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med. 2005;201(11):1781-1791.
[116] Nilsson SK, Johnston HM, Whitty GA, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood. 2005;106(4):1232-1239.
[117] Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439:599-603.
[118] Petit I, Szyper-Kravitz M, Nagler A, Lahav M, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3(7):687-694.
[119] Qian H, Buza-Vidas N, Hyland CD, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007;1(6):671-684.
[120] Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283(5403):845-848.
[121] Li JJ, Huang YQ, Basch R, et al. Thrombin induces the release of angiopoietin-1 from platelets. Thromb. Haemost. 2001;85:204-206.
[122] Guerriero A, Worford L, Holland HK, et al. Thrombopoietin is synthesized by bone marrow stromal cells. Blood. 1997;90(9):3444-3455.
[123] Sungaran R, Markovic B and Chong BH. Localization and regulation of thrombopoietin mRNA expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood. 1997;89:101-107.
[124] Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977-988.
[125] Wilson A, Murphy MJ, Oskarsson T, et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004:18(22):2747-2763.
[126] Reya T, Duncan AW, Allies L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423:409-414.
[127] Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423(6938):448-452.
[128] Fleming I. Double tribble. Two TRIB3 variants, insulin, Akt, and eNOS. Arterioscler Thromb Vasc Biol. 2008;28;1216-1218.
[129] Malhotra S and Kincade PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell. 2009;4:27-36.
[130] Cobas M, Wilson A, Ernst B, et al. β-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med. 2004;199:221-229.
[131] Varnum-Finney B, Purton LE, Yu M, et al. The notch ligand, jagged-1, influences the development of primitive hematopoietic precursor cells. Blood. 1998;91:4084-4091.
[132] Karanu FN, Murdoch B, Miyabayashi T, et al. Human homologues of delta-1 and delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood. 2001;97:1960-1967.
[133] Varnum-Finney B, Brashem-Stein C and Bernstein ID. Combined effects of notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood. 2003;101:1784-1789.
[134] Suzuki T, Yokoyama Y, Kumano K, et al. Highly efficient ex vivo expansion of human hematopoietic stem cells using delta1-Fc chimeric protein. Stem Cells. 2006;24:2456-2465.
[135] Domen J and Weissman IL. Self-renewal, differentiation or death: Regulation and manipulation of hematopoietic stem cell fate. Mol Med Today. 1999;5:201-208.
[136] Ballen K. Targeting the stem cell niche: Squeezing blood from bones. Bone Marrow Transplant. 2007;39:655-660.
[137] Maillard I, Koch U, Dumortier, et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell. 2008;2:356-366.
[138] Kollet O, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12 (6):657-664.
[139] Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595-599.
[140] Ara T, Tokoyoda K, Sugiyama T, et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity. 2003;19(2):257-267.
[141] Gillette JM, Larochelle A, Dunbar CE, et al. Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nat Cell Biol. 2009;11(3):303-311.
[142] Kinashi T and Springer TA. Steel factor and c-kit regulate cell-matrix adhesion. Blood. 1994;83:1033-1038.
[143] Haylock DN and Nilsson SK. Stem cell regulation by the hematopoietic stem cell niche. Cell Cycle. 2005;4(10):1353-1355.
[144] Lyman SD and Jacobsen SE. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood. 1998;91:1101-1134.
[145] Kovach NL, Lin N, Yednock T, et al. Stem cell factor modulates avidity of α4β1 and α5β1 integrins expressed on hematopoietic cell lines. Blood. 1995;85:159-167.
[146] Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386(6624):488-493.
[147] Sanchez MJ, Holmes A, Miles C, et al. Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity. 1996;5:513-525.
[148] Medvinsky A and Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897-906.
[149] Cumano A, Dieterlen-Lievre F and Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell. 1996;86:907-916.
[150] North TE, de Bruijn MF, Stacy T, et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity. 2002;16(5):661-672.
[151] de Bruijn MF, Ma X, Robin C, Ottersbach K, et al. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity. 2002;16(5):673-683.
[152] Mikkola HK and Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133:3733-3744.
[153] Ohneda O, Fennie C, Zheng Z, et al. Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood. 1998;92(3):908-919.
[154] Yao L, Yokota T, Xia L, et al. Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood. 2005;106:4093-4101.
[155] Rafii S, Mohle R, Shapiro F, et al. Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma. 1997;27:375-386.
[156] Sipkins D, Wei X, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969-973.
[157] Rafii S, Shapiro F, Pettengell R, et al. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood. 1995;86(9):3353-3363.
[158] Zhang J and Li Linheng. Stem cell niche-microenvironment and beyond. J Biol Chem. 2008; 283(15):9499-503.
[159] Delehanty LL, Mogass M, Gonias SL, et al. Stromal inhibition of megakaryocytic differentiation is associated with blockade of sustained Rap1 activation. Blood. 2003;101:1744-1751.
[160] Visnjic D, Kalajzic Z, Rowe DW, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103(9):3258-3264.
[161] Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460:259-264.
[162] Parmar K, Mauch P, Vergilio JA, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. PNAS. 2007;104(13):5431-5436.
[163] Durand RE, Chaplin DJ and Olive PL. Cell sorting with Hoechst or carbocyanine dyes as perfusion probes in spheroids and tumors. Methods Cell Biol. 1990;33: 509-518.
[164] Levesque JP, Winkler IG, Hendy J, et al. Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxiainducible transcription factor-1α and vascular endothelial growth factor A in bone marrow. Stem Cells. 2007;25(8):1954-1965.
[165] Eliasson P and Jönsson J-I. The hematopoietic stem cell niche: Low in oxygen but a nice place to be. J Cell Physiol. 2010;222:17-22.
[166] Dravid G and Rao SG. Ex vivo expansion of stem cells from umbilical cord blood: Expression of cell adhesion molecules. Stem Cells. 2002;20(2):183-189.
[167] Denning-Kendall P, Singha S, Bradley B, et al. Cytokine expansion culture of cord blood CD34+ cells induces marked and sustained changes in adhesion receptor and CXCR4 expressions. Stem Cells. 2003;21(1):61-70.
[168] Piacibello W, Gammaitoni L and Pignochino Y. Proliferative senescence in hematopoietic stem cells during ex-vivo expansion. Folia Histochemica ET Cytobiologica. 2005;43(4):197-202.
[169] Xie C-G, Wang J-F, Xiang Y, et al. Cocultivation of umbilical cord blood CD34+ cells with retro-transduced hMSCs leads to effective amplification of long-term culture-initiating cells. World J Gastroenterol. 2006;12(3):393-402.
[170] Zandstra PW, Coneally E, Petzer AL, et al. Cytokine manipulation of primitive human hematopoietic cell self-renewal. PNAS. 1997;94:4698-4703.
[171] Wagers AJ, Christensen JL and Weissman IL. Cell fate determination from stem cells. Gene Therapy. 2002;9:606-612.
[172] Li N, Feugier P, Serrurrier B, et al. Human mesenchymal stem cells improve ex vivo expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity. Experimental Hematology. 2007;35:507-515.
[173] Oostendorp RA, Robin C, Steinhoff C, et al. Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures. Stem Cells. 2005;23:842-851.
[174] Baksh D, Davies JE and Zandstra PW. Soluble factor cross-talk between human bone marrow-derived hematopoietic and mesenchymal cells enhances in vitro CFU-F and CFUO growth and reveals heterogeneity in the mesenchymal progenitor cell compartment. Blood. 2005;106(9):3012-3019.
[175] Lou S, Gu P, Chen F, et al. The effect of bone marrow stromal cells on neuronal differentiation of mesencephalic neural stem cells in Sprague-Dawley rats. Brain Res. 2003;968:114-21.
[176] Wilkins A, Kemp K, Ginty M, et al. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 2009;3(1):63-70.
[177] Esposito MT, Di Noto R, Mirabelli P, et al. Culture conditions allow selection of different mesenchymal progenitors from adult mouse bone marrow. Tissue Eng Part A. 2009;15(9):2525-2536.
[178] Breems DA, Blokland EA, Siebel KE, et al. Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells. Blood. 1998;91:111-117.
[179] Bennaceur-Griscelli A, Tourino C, Izac B, et al. Murine stromal cells counteract the loss of long-term culture-initiating cell potential induced by cytokines in CD34(+)CD38(low/neg) human bone marrow cells. Blood. 1999;94:529-538.
[180] Robinson SN, Ng J, Niu T, et al. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cell. Bone Marrow Transplant. 2006;37(4):359-366.
[181] Magin AS, Körfer NR, Partenheimer H, et al. Primary cells as feeder cells for coculture expansion of human hematopoietic stem cells from umbilical cord blood – A comparative study. Stem Cells Dev. 2009;18(1):173-186.
[182] Walenda T, Bork S, Horn P, et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of hematopoietic progenitor cells. J Cell Mol Med. 2010;14(1-2):337-50.
[183] Wagner W, Saffrich R, Wirkner U, et al. Hematopoietic progenitor cells and cellular microenvironment: Behavioral and molecular changes upon interaction. Stem Cells. 2005;23(8):1180-1191.
[184] Wagner W, Wein F, Roderburg C, et al. Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction. Experimental Hematol. 2007; 35(2):314-325.
[185] Wagner W, Wein F, Roderburg C, et al. Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44. Cells Tissues Organs. 2008;188(1-2):160-169.
[186] Marciniak-Czochra A, Stiehl T, Ho AD, et al. Modeling of asymmetric cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 2008;17:1-10.
[187] Gottschling S, Saffrich R, Seckinger A, et al. Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a β1-integrin-dependent mechanism. Stem Cells. 2007;25:798-806.
[188] Hurley RW, McCarthy JB and Verfaillie CM. Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation. J Clin Invest. 1995;96:511-519.
[189] Wang MW, Consoli U, Lane CM, et al. Rescue from apoptosis in early (CD34-selected) versus late (non-CD34-selected) human hematopoietic cells by very late antigen 4- and vascular cell adhesion molecule (VCAM)1-dependent adhesion to bone marrow stromal cells. Cell Growth Differ. 1998;9:105-112.
[190] Schofield KP, Humphries MJ, de Wynter E, et al. The effect of α4β1-integrin binding sequences of fibronectin on growth of cells from human hematopoietic progenitors. Blood. 1998;91:3230-3238.
[191] Yokota T, Oritani K, Mitsui H, et al. Growth-supporting activities of fibronectin on hematopoietic stem/progenitor cells in vitro and in vivo: Structural requirement for fibronectin activities of CS1 and cell-binding domains. Blood. 1998;91:3263-3272.
[192] Dao MA, Hashino K, Kato I, et al. Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood. 1998;92:4612- 4621.
[193] Huang GP, Pan ZJ, Jia BB, et al. Ex vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from human umbilical cord blood. Cell Transplant. 2007;16(6):579-85.
[194] Freund D, Bauer N, Boxberger S, et al. Polarization of human hematopoietic progenitors during contact with multipotent mesenchymal stromal cells: Effects on proliferation and clonogenicity. Stem Cells Dev. 2006;15:815-829.
[195] Jang YK, Jung DH, Jung MH, et al. Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells. Ann Hematol. 2006;85:212-225.
[196] Jing D, Fonseca AV, Alakel N, et al. Hematopoietic stem cells in coculture with mesenchymal stromal cells - modelling the niche compartments in vitro. Hematologica. 2010;95(4):542-550.
[197] Denning-Kendall P, Singha S, Bradley B, et al. Cobblestone area-forming cells in human cord blood are heterogeneous and differ from long-term culture-initiating cells. Stem Cells. 2003;21:694-701.
[198] Zhang XB, Li K, Fok TF, et al. Cobblestone area-forming cells, long-term culture-initiating cells and NOD/SCID repopulating cells in human neonatal blood: a comparison with umbilical cord blood. Bone Marrow Transplant. 2002;30:557-564.
[199] de Haan G and Ploemacher R. Methods in Molecular Medicine TM. Hematopoietic stem cell protocols. The cobblestone-area-forming-cell assay. 2002;Chp-9:143-151.
[200] Breems DA, Blokland EA, Neben S, et al. Frequency analysis of human primitive hematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia. 1994;8:1095-1104.
[201] Petzer AL, Gunsilius E, Zech N, et al. Evaluation of optimal survival of primitive progenitor cells (LTC-IC) from PBPC apheresis products after overnight storage. Bone Marrow Transplant. 2000;25:197-200.
[202] Denning-Kendall PA, Nicol A, Horsley H, et al. Is in vitro expansion of human cord blood cells clinically relevant? Bone Marrow Transplant. 1998;21:225-232.
[203] Gupta P, Oegema TR Jr, Brazil JJ, et al. Human LTC-IC can be maintained for at least 5 weeks in vitro when interleukin-3 and a single chemokine are combined with O-sulfated heparan sulfates: Requirement for optimal binding interactions of heparan sulfate with early-acting cytokines and matrix proteins. Blood. 2000;95:147-155.
[204] Benboubker L, Binet C, Cartron G, et al. Frequency and differentiation capacity of circulating TC-IC mobilized by GCSF or GM-CSF following chemotherapy: A comparison with steady-state bone marrow and peripheral blood. Exp Hematol. 2002;30:74-81.
[205] Rizzo S, Scopes J, Elebute MO, et al. Stem cell defect in aplastic anemia: Reduced long term culture-initiating cells (LTC-IC) in CD34(+) cells isolated from aplastic anemia patient bone marrow. Hematol J. 2002;3:230-236.
[206] Giri N, Kang E, Tisdale JF, et al. Clinical and laboratory evidence for a trilineage haematopoietic defect in patients with refractory Diamond-Blackfan anaemia. Br J Haematol. 2000;108:167-175.
[207] Robinson SN, Freedman AS, Neuberg DS, et al. Loss of marrow reserve from dose intensified chemotherapy results in impaired hematopoietic reconstitution after autologous transplantation: CD34(+), CD34(+)38(–), and week-6 CAFC assays predict poor engraftment. Exp Hematol. 2000;28:1325-1333.
[208] Cartron G, Herault O, Benboubker L, et al. Quantitative and qualitative analysis of the human primitive progenitor cell compartment after autologous stem cell transplantation. J Hematother Stem Cell Res. 2002;11:359-368.
[209] Papadaki HA, Gibson FM, Rizzo S, et al. Assessment of bone marrow stem cell reserve and function and stromal cell function in patients with autoimmune cytopenias. Blood. 2000;96:3272-3275.
[210] Raic A, Rödling L, Kalbacher H, et al. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials. 2014;35(3):929-940.
[211] Sharma MB, Limaye LS and Kale VP. Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel-based three-dimensional cultures of mesenchymal stromal cells. Hematologica, 2012;97(5):651-660.
[212] Leisten I, Kramann R, Ferreira MSV, et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials. 2012;33(6):1736-1747.
[213] Anthony BA and Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends in Immunol. 2014;35(1):32-37.
[214] Torisawa Y-S, Spina CS, Mammoto T, et al. Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nature Methods. 2014;11(6):663-669.
[215] Morrison SJ and Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327-334.
[216] Miller CL and Eaves CJ. Methods in Molecular Medicine TM. Hematopoietic stem cell protocols. Long-term culture-initiating cell assays for human and murine cells. 2002;Chp-8:123-141.
[217] Zhang Y, Chai C, Jiang XS, et al. Co-culture of umbilical blood CD34+ cells with human mesenchymal stem cells. Tissue Eng. 2006;12(8):2161-2170.
[218] Yuan Y, Sin WY, Xue B, et al. Novel alginate three-dimensional static and rotating culture systems for effective ex vivo amplification of human cord blood hematopoietic stem cells and in vivo functional analysis of amplified cells in NOD/SCID mice. Transfusion. 2013;65(9):2001-2011.
[219] Lee-Thedieck C and Spatz JP. Biophysical regulation of hematopoietic stem cells. Biomaterials Science. 2014; 2:1548-1561.
[220] Flores-Guzmán P, Fernández-Sánchez V and Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med. 2013;2(11):830-838.
[221] Mahadik BP, Wheeler TD, Skertich LJ, et al. Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv Healthc Mater. 2014;3(3):449-458.
[222] Baker BM and Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. Journal of Cell Science. 2012;125:3015-3024.
[223] Kay RR, Langridge P, Traynor D, et al. Changing directions in the study of chemotaxis. Nat Rev Mol Cell Biol. 2008;9(6):455-463.
[224] Su WT. Ex vivo expansion of a hematopoietic stem cell on a murine stromal cell by 3D micro-pillar device. Biomed Microdevices. 2011;13(1):11-17.
[225] Choi JS and Harley BA. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials. 2012;33(18):4460-4468.
[226] Gazit R, Garrison BS, Rao TN, et al. Transcriptome analysis identifies regulators of hematopoietic stem and progenitor cells. Stem Cell Reports. 2013;1:266-280.

Chapter 14

[1] Speman H. Embryonic development and induction. New Haven: Yale University press 1938.
[2] Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs eggs. Proc Natl Acad Sci USA 1952; 38:455.
[3] Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of embryology and experimental morphology 1962; 10: 622–640.
[4] Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385: 810-813.
[5] Tada M, Tada T, Lefebvre L, Barton SC and Surani MA. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 1997; 16: 6510-6520.
[6] Takahashi K and Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (4): 663–76.
[7] Takahashi K, Okita K, Nakagawa M and Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007; 2(12): 3081-9.
[8] Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, Maier LS, Han DW, Glage S, Miller K, Fischer P, Schöler HR, Martin U. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 2009; 5(4): 434-41.
[9] Wang Y, Liu J, Tan X, Li G, Gao Y, Liu X, Zhang L, Li Y. Induced pluripotent stem cells from human hair follicle mesenchymal stem cells. Stem Cell Rev. 2013; 9(4): 451-60.
[10] Beltrão-Braga PC, Pignatari GC, Maiorka PC, Oliveira NA, Lizier NF, Wenceslau CV, Miglino MA, Muotri AR, Kerkis I. Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant. 2011; 20(11-12): 1707-1719.
[11] Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, Bao X, Tse HF, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA. Generation of human induced pluripotent stem cells from urine samples. Nature Protocols 2012; 7(12): 2080–2089.
[12] Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, Jaenisch R. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A. 2009; 106(1): 157–162.
[13] Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4(5): 381-4.
[14] Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM,Rossi DJ. Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell 2010; 7(5): 618-630.
[15] Federation AJ, Bradner JE and Meissner A. The use of small molecules in somatic-cell reprogramming. Trends Cell Bio. 2014; 24(3): 179-87.
[16] Quintanilla RH, Asprer JST, Vaz C, Tanavde V and Lakshmipathy U. CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming. PLoS ONE. 2014; 9(1): e85419.
[17] Campbell KH, McWhir J, Ritchie WA and Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996; 380(6569): 64-6.
[18] Hochedlinger K and Jaenisch R. Nuclear Transplantation, Embryonic Stem Cells, and the Potential for Cell Therapy. N Engl J Med. 2003; 349: 275-286.
[19] Tada M, Takahama Y, Abe K, Nakatsuji N and Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 2001; 11(19): 1553-8.
[20] Pralong D, Trounson AO and Verma PJ. Cell fusion for reprogramming pluripotency: toward elimination of the pluripotent genome, Stem Cell Rev. 2006; 2(4): 331-40.
[21] Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, and Collas P. Induction of Dedifferentiation, Genomewide Transcriptional Programming, and Epigenetic Reprogramming by Extracts of Carcinoma and Embryonic Stem Cells. Molecular Biology of the Cell 2005; 16(12): 5719–5735.
[22] Ikehata H, Masuda T, Sakata H and Ono T. Analysis of mutation spectra in UVB-exposed mouse skin epidermis and dermis: frequent occurrence of C-->T transition at methylated CpG-associated dipyrimidine sites. Environ Mol Mutagen 2003; 41(4): 280-92.
[23] Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bili J, Pekarik V, Tiscornia G, Edel M, Boué S, Belmonte JCI. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol.2008; 26(11): 1276-1284.
[24] Zhao J, Jiang WJ, Sun C, Hou CZ, Yang XM and Gao JG. Induced pluripotent stem cells: origins, applications, and future perspectives. J Zhejiang Univ Sci B. 2013; 14(12): 1059-69.
[25] Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R. Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes to Pluripotency. Cell 2008; 133(2): 250–264.
[26] Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, Mostoslavsky G, Jaenisch R. Reprogramming of peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell. 2010; 7(1): 20-24.
[27] Ye Z, Zhan H, Mali P, Dowey S, Williams DM, Jang YY, Dang CV, Spivak JL, Moliterno AR, Cheng L. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 2009; 114(27): 5473–5480.
[28] Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LMS, Zou C, Zhang YA, Tong J, Linzhao Cheng L. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research 2011; 21(3): 518–529.
[29] Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
[30] Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS. Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell. 2009; 4(6): 472–476.
[31] Utikal J, Maherali N, Kulalert W and Hochedlinger K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 2009; 122(19): 3502–3510.
[32] Li W, Zhou H, Abujarour R, Zhu S, Young Joo J, Lin T, Hao E, Schöler HR, Hayek A, Ding S. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells. 2009; 27(12): 992-3000.
[33] Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ, Lutz MK, Berggren WT, Belmonte JCI, Evans RM. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci U S A. 2010; 107(8): 3558-63.
[34] Liu H, Ye Z, Kim YH, Sharkis S and Jang YY. Generation of Endoderm derived Human iPS cells from Primary Hepatocytes. Hepatology. 2010; 1(5): 810-1819.
[35] Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M, Okada Y, Seimiya H, Fusaki N, Hasegawa M,Fukuda K. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell. 2010; 7(1): 11-4.
[36] Ruiz S, brennand K, Panopoulos AD, Herrerias A, Gage FH, Izpisua-Belmonte JC. High-Efficient Generation of Induced Pluripotent Stem Cells from Human Astrocytes. PLoS ONE 2010; 5(12): e15526.
[37] Kunisato A, Wakatsuki M, Shinba H, Ota T, Ishida I, Nagao K. Direct generation of induced pluripotent stem cells from human nonmobilized blood. Stem Cells Dev. 2011; 20(1): 159-68.
[38] Song B, Niclis JV, Alikhan MA, Sakkal S, Sylvain A, Kerr PG, Laslett AL, Bernard CA, Ricardo SD. Generation of Induced Pluripotent Stem Cells from Human Kidney Mesangial Cells. J Am Soc Nephrol. 2011; 22(7): 1213-1220.
[39] Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J. An Expanded Oct4 Interaction Network: Implications for Stem Cell Biology, Development, and Disease. Cell Stem Cell. 2010; 6(4): 382–395.
[40] Niwa H, Ogawa K, Shimosato D and Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009; 460 (7251): 118–22.
[41] Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113 (5): 643–55.
[42] Rosenfeld N, Elowitz MB and Alon U. Negative autoregulation speeds the response times of transcription networks. J Mol Biol. 2002; 323(5): 785-93.
[43] Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol. 2005; 25(6): 2475-85.
[44] Gagliardi A, Mullin NP, Tan ZY, Colby D, Kousa AI and Halbritter F. A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal. The EMBO Journal. 2013; 32: 2231–2247.
[45] Johansson H and Simonsson S. Core transcription factors, Oct4, Sox2 and Nanog, individually form complexes with nucleophosmin (Npm1) to control embryonic stem (ES) cell fate determination. AGING. 2010; 2(11): 815-22.
[46] Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CWH, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. NATURE GENETICS. 2006; 38(4): 431-40.
[47] Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell. 2005; 122(6): 947–956.
[48] Fong YW, Inouye C, Yamaguchi T, Cattoglio C, Grubisic I, Tjian R. A DNA Repair Complex Functions as an Oct4/Sox2 Coactivator in Embryonic Stem Cells. Cell. 2011; 147(1):120–131.
[49] Flinn EM, Wallberg AE, Hermann S, Grant PA, Workman JL and Wright AP. Recruitment of Gcn5-containing complexes during c-Myc-dependent gene activation. Structure and function aspects. J Biol Chem. 2002; 277(26): 23399-406.
[50] Rowland BD, Bernards R and Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005; 7(11): 1074-82.
[51] Heffernan C, Sumer H, Malaver-Ortega LF and Verma PJ. Temporal Requirements of cMyc Protein for Reprogramming Mouse Fibroblasts. Stem Cells International 2012; vol.2012: article id 541014.
[52] Fussner E, Djuric U, Strauss M, Hotta A, Perez-Iratxeta C, Lanner F, Dilworth FJ, Ellis J, Bazett-Jones DP. Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J 2011; 30: 1778–1789.
[53] Reynolds N, Latos P, Hynes-Allen A, Loos R, Leaford D, O'Shaughnessy A, Mosaku O, Signolet J, Brennecke P, Kalkan T, Costello I, Humphreys P, Mansfield W, Nakagawa K, Strouboulis J, Behrens A, Bertone P, Hendrich B. NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell 2012;

10: 583–594.
[54] Melcer S, Hezroni H, Rand E, Nissim-Rafinia M, Skoultchi A, Stewart CL, Bustin M, Meshorer E. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nat Commun 2012;

3: 910.
[55] Dos Santos RL, Tosti L, Radzisheuskaya A, Caballero IM, Kaji K, Hendrich B, Silva JC. MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner. Cell Stem Cell. 2014; 15(1): 102-10.
[56] Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA,Jaenisch R. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441(7091): 349-353.
[57] Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Tommerup N, Rappsilber J, Helin, K. JARID2 regulates binding of the polycomb repressive complex 2 to target genes in ES cells. Nature 2010; 464(7286): 306-10.
[58] Wei Z, Yang Y, Zhang P, Andrianakos R, Hasegawa K, Lyu J, Chen X, Bai G, Liu C, Pera M, Lu W. Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells 2009; 27(12): 2969-78.
[59] Christophersen NS and Helin K. Epigenetic control of embryonic stem cell fate. J Exp Med. 2010; 207(11): 2287-95.
[60] Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010;

11: 607–620.
[61] Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 2009; 324 (5929): 930–935.
[62] Hu X, Zhang L, Mao SQ, Li Z, Chen J, Zhang RR, Wu HP, Gao J, Guo F, Liu W, Xu GF, Dai HQ, Shi YG, Li X, Hu B, Tang F, Pei D, Xu GL. Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming. Cell Stem Cell 2014; 14(4): 512–522.
[63] Gao Y, Chen J, Li K, Wu T, Huang B, Liu W, Kou X, Zhang Y, Huang H, Jiang Y, Yao C, Liu X, Lu Z, Xu Z, Kang L, Chen J, Wang H, Cai T, Gao S. Replacement of Oct4 by Tet1 during iPSC Induction Reveals an Important Role of DNA Methylation and Hydroxymethylation in Reprogramming. Cell Stem Cell 2013; 12(4): 453–469.
[64] Freudenberg JM, Ghosh S, Lackford BL, Yellaboina S, Zheng X, Li R, Cuddapah S, Wade PA, Hu G, Jothi R. Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Res. 2012; 40(8): 3364-3377.
[65] Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, Fidalgo M, Saunders A, Lawrence M, Dietmann S, Das S, Levasseur DN, Li Z, Xu M, Reik W,Silva JC, Wang J. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013; 495(7441): 370-4.
[66] Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES, Pera RR, Yakubov E, Cooke JP. Activation of innate immunity is required for efficient nuclear reprogramming. Cell. 2012; 151(3): 547-58.
[67] Yang CS, Li Z and Rana TM. microRNAs modulate iPS cell generation. RNA. 2011; 17(8): 1451-60.
[68] Morita S, Horii T, Kimura M, Ochiya T, Tajima S and Hatada I. miR-29 Represses the Activities of DNA Methyltransferases and DNA Demethylases. Int J Mol Sci. 2013; 14(7): 14647–14658.
[69] Wang G, Guo X, Hong W, Liu Q, Wei T, Lu C, Gao L, Ye D, Zhou Y, Chen J, Wang J, Wu M, Liu H, Kang J. Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci U S A. 2013; 110(8): 2858-63.
[70] Mongroo PS and Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther. 2010; 10(3): 219–222.
[71] Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Hong Song, Yang D, Zhang B, Zeng L, Lai L, Esteban MA, Pei D. A Mesenchymal-to-Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts. Cell Stem Cell 2010; 7(1): 51–63.
[72] Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C, Ozturk A, Hicks GG, Hannon GJ, He L. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol. 2011; 13(11): 1353-60.
[73] Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res. 2011; 39(3): 054-65.
[74] Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 2008; 28(20): 6426-38.
[75] Ware CB, Wang L, Mecham BH, Shen L, Nelson AM, Bar M, Lamba DA, Dauphin DS, Buckingham B, Askari B, Lim R, Tewari M, Gartler SM, Issa JP, Pavlidis P, Duan Z, Blau CA. Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell 2009;

4: 359–369.
[76] Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 2010;

463: 1042–1047.
[77] Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology 2008; 26: 1269 – 1275.
[78] Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D. Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells. Cell Stem Cell 2010; 6(1): 71–79.
[79] Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M, Blasco MA, Serrano M. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature. 2009; 460(7259): 1136-9.
[80] Mimasu S, Sengoku T, Fukuzawa S, Umehara T, Yokoyama S. Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25 A. Biochem Biophys Res Commun. 2008; 366(1): 15-22.
[81] Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB, Yusa K, Bradley A, Meyers DJ, Mukherjee C, Cole PA, Cheng L. Butyrate Greatly Enhances Derivation of Human Induced Pluripotent Stem Cells by Promoting Epigenetic Remodeling and the Expression of Pluripotency-Associated Genes. Stem Cells. 2010; 28(4): 713-720.
[82] Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A. Dissecting direct reprogramming through integrative genomic analysis. Nature. 2008; 454(7200): 49-55.
[83] Lin SW, Unno Y, Hou WS, Chang P, Adachi I, Aihara H et al. Difference in direct charge-parity violation between charged and neutral B meson decays. Nature. 2008; 452: 32-335.
[84] Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 2010; 464(7290): 927-31.
[85] Selvaraj V, Plane JM, Williams AJ, Deng W. Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends in Biotechnology 2010; 28 (4): 214–23.
[86] Stadtfeld M and Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes and Dev. 2010; 24: 2239-2263.
[87] Marqués-Torrejón MÁ, Porlan E, Banito A, Gómez-Ibarlucea E, Lopez-Contreras AJ, Fernández-Capetillo O, Vidal A, Gil J, Torres J, Fariñas I. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell. 2013; 12(1): 88-100.
[88] Kane NM, Nowrouzi A, Mukherjee S, Blundell MP, Greig JA, Lee WK, Houslay MD, Milligan G, Mountford JC, von Kalle C, Schmidt M, Thrasher AJ, Baker AH. Lentivirus-mediated Reprogramming of Somatic Cells in the Absence of Transgenic Transcription Factors. Mol Ther. 2010; 18(12): 2139–2145.
[89] Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009; 136(5): 964-77.
[90] Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458(7239): 766-70.
[91] Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K A. high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008; 3(3): 340-5.
[92] Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008; 322(5903): 945-9.
[93] Fusaki N, Ban H, Nishiyama A, Saeki K and Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009; 85(8): 348–362.
[94] Okita K, Nakagawa M, Hyenjong H, Ichisaka T and Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008; 322(5903): 949-53.
[95] Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Schöler HR. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009; 461(7264): 649-3.
[96] Somers A, Jean JC, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW, Lafyatis R, Demierre MF, Weiss DJ, French DL, Gadue P, Murphy GJ, Mostoslavsky G, Kotton DN. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 2010; 28(10): 1728-40.
[97] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145–1147.
[98] Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007; 25(7): 803–816.
[99] Singh U, Quintanilla RH, Grecian S, Gee KR, Rao MS, Lakshmipathy U. Novel Live Alkaline Phosphatase Substrate for Identification of Pluripotent Stem Cells. Stem Cell Rev. 2012; 8(3): 1021–1029.
[100] Quintanilla RH, Asprer JST, Vaz C, Tanavde V, Lakshmipathy U. CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming. PLoS ONE. 2014; 9(1): e85419.
[101] Nazor KL, Altun G, Lynch C, Tran H, Harness JV. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 2012; 10: 620-634.
[102] Keller GM. In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol. 1995; 7(6):862–869.
[103] Kahler DJ, Ahmad FS, Ritz A, Hua H, Moroziewicz DN, Sproul AA, Dusenberry CR, Shang L, Paull D, Zimmer M, Weiss KA, Egli D, Noggle SA. Improved methods for reprogramming human dermal fibroblasts using fluorescence activated cell sorting. PLoS One. 2013; 8(3): e59867.
[104] Lotz S, Goderie S, Tokas N, Hirsch SE, Ahmad F, Corneo B, Le S, Banerjee A, Kane RS, Stern JH, Temple S, Fasano CA. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding. PLoS One. 2013; 8(2): e56289.

Chapter 15

[1] Teplyashin AS, Korzhikova SV, Sharifullina SZ, Chupikova NI, Rostovskaya MS, Savchenkova IP. Characteristics of human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tsitologiya 2005; 47(2): 130-135.
[2] Tareeva IE. Nephrology. Meditsina (Мoscow). 1995; 1: 270-303.
[3] Napalkov NP. General oncology. Meditsina (Leningrad). 1989: 9-28.
[4] Pechersky AV, Pechersky VI, Aseev MV, Droblenkov AV, Semiglazov VF. Several aspects of the regeneration process carried out by means of pluripotent stem cells. Tsitologiya 2008; 50(6): 511-520.
[5] Merkulov GA. Course in histopathologic technology. MedGiz (Leningrad). 1961: 1-346.
[6] Jonat W, Maass H, Stegner HE. Immunohistochemical measurement of estrogen receptors in breast cancer tissue samples. Cancer Res 1986; 46: 4296-4298.
[7] Glantz SA. Primer of biostatistics. Practica (Moscow). 1999: 27-121, 285-322.
[8] Pechersky AV, Pechersky VI, Smolyaninov AB, Vilyaninov VN, Adylov ShF, Semiglazov VF. Implementing cellular technologies to restore the regeneration process in people of older age groups. Bulletin of the North-Western State Medical University named after I.I. Mechnikov 2014; 6(4): 52-62.
[9] Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. Mir (Moscow). 1994; 2: 176-529, 3: 7-381.
[10] Strukov AI, Serov VV. Pathological Anatomy. Meditsina (Мoscow). 1993: 47-262, 453-458.
[11] Yarilin AA. Fundamentals of Immunology. Meditsina (Мoscow). 1999: 17-440.
[12] Pechersky AV, Semiglazov VF, Mazurov VI, Karpischenko AI, Mikhailichenko VV, Udintsev AV. Androgen administration in middle-aged and ageing men: effects of oral testosterone undecanoate on dihydrotestosterone, estradiol and prostate volume. International Journal of Andrology 2002; 25: 119-125.
[13] Pechersky AV, Semiglazov VF, Loran OB, Mazurov VI, Karpishchenko VF, Nikiforov VF, Kalinina NM, Drygina LB, Davydova NI, Skorobogatykh MG. Changes in cytokine levels in patients with prostate cancer after orchiectomy. Laboratory diagnostics 2003; 2: 26-30.
[14] Pechersky AV, Semiglazov VF, Komyakov BK, Guliyev BG, Gorelov AI, Novikov AI, Pechersky VI, Simonov NN, Gulyayev AV, Samusenko IA, Vonsky MS, Mittenberg AG, Loran OB. Changes in the expression of steroid hormone receptors during development of partial androgen deficiency (PADAM). Tsitologiya 2005; 47(4): 311-317.
[15] Pechersky AV, Semiglazov VF, Mazurov VI, Karpishchenko AI, Pechersky VI, Zybina NN, Davydova NI, Kravtsov VYu, Proshin SN, Skorobogatykh MG, Loran OB. The influence of partial androgen deficiency of aging men on the development of metabolic syndrome. Laboratory Diagnostics 2006; 4: 12-19.
[16] Moiseenko VM, Urmancheeva AF, Hanson KP. Lectures on basic and clinical oncology. N-L Publishing House (St. Petersburg). 2004: 369-430.
[17] Bershtein LM. Hormonal carcinogenesis. Science (St. Petersburg). 2000: 10-129.
[18] Serov VV, Paukov VS. Inflammation. Meditsina (Мoscow). 1995: 62-261.
[19] Konstantinova MM. Principles and methods for evaluating the effectiveness of drug therapy and quality of life of patients with malignant tumors. In Lectures on basic and clinical oncology ed by Moiseenko VM, Urmancheeva AF, Hanson KP. N-L Publishing House (St. Petersburg). 2004: 573-597.
[20] Roitt I, Brostoff J, Male D. Immunology. Mir (Moscow). 2000: 63-64, 168-193.

Chapter 16

[1] Louis, D.N. et al., The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica, 2007. 114(2): p. 97-109.
[2] Galvao, R.P. et al., Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proceedings of the National Academy of Sciences, 2014. 111(40): p. E4214-E4223.
[3] Ramirez, Y.P. et al., Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals, 2013. 6(12): p. 1475-1506.
[4] Goffart, N., J. Kroonen, and B. Rogister, Glioblastoma-initiating cells: relationship with neural stem cells and the micro-environment. Cancers, 2013. 5(3): p. 1049-1071.
[5] Zhang, J., M. FG Stevens, and T. D Bradshaw, Temozolomide: mechanisms of action, repair and resistance. Current molecular pharmacology, 2012. 5(1): p. 102-114.
[6] Sarkaria, J.N. et al., Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clinical Cancer Research, 2008. 14(10): p. 2900-2908.
[7] Yamini, B. et al., Inhibition of nuclear factor-κB activity by temozolomide involves O6-methylguanine-induced inhibition of p65 DNA binding. Cancer research, 2007. 67 (14): p. 6889-6898.
[8] Mathieu, V. et al., Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia, 2008. 10(12): p. 1383-1392.
[9] Nduom, E.K.-E., C.G. Hadjipanayis, and E.G. Van Meir, Glioblastoma Cancer Stem-like Cells–Implications for Pathogenesis and Treatment. Cancer journal (Sudbury, Mass.), 2012. 18(1): p. 100.
[10] Fu, J. et al., Glioblastoma stem cells resistant to temozolomide-induced autophagy. Chin. Med. J. (Engl.), 2009. 122(11): p. 1255-1259.
[11] Yao, X.-h. et al., Chemoattractant receptors as pharmacological targets for elimination of glioma stem-like cells. International immunopharmacology, 2011. 11(12): p. 1961-1966.
[12] Haar, C.P. et al., Drug resistance in glioblastoma: a mini review. Neurochemical research, 2012. 37(6): p. 1192-1200.
[13] Kang, M.-K. and S.-K. Kang, Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem cells and development, 2007. 16(5): p. 837-848.
[14] Persano, L. et al., Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochemical pharmacology, 2013. 85(5): p. 612-622.
[15] Pérez-Castillo, A. et al., Cancer stem cells and brain tumors. Clinical and Translational Oncology, 2008. 10(5): p. 262-267.
[16] Pan, Q. et al., Chemoresistance to temozolomide in human glioma cell line U251 is associated with increased activity of O 6-methylguanine-DNA methyltransferase and can be overcome by metronomic temozolomide regimen. Cell biochemistry and biophysics, 2012. 62(1): p. 185-191.
[17] Frosina, G., DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Molecular Cancer Research, 2009. 7(7): p. 989-999.
[18] Pegg, A.E., Repair of O 6-alkylguanine by alkyltransferases. Mutation Research/Reviews in Mutation Research, 2000. 462(2): p. 83-100.
[19] Daniels, D.S. et al., Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. The EMBO journal, 2000. 19(7): p. 1719-1730.
[20] Beier, D., J.B. Schulz, and C.P. Beier, Chemoresistance of glioblastoma cancer stem cells–much more complex than expected. Mol. Cancer, 2011. 10(11): p. 128-139.
[21] Rivera, A.L. et al., MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-oncology, 2009: p. nop020.
[22] Kanzawa, T. et al., Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. Journal of neurosurgery, 2003. 99(6): p. 1047-1052.
[23] Johannessen, T.-C.A. and R. Bjerkvig, Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. 2012.
[24] Hunter, C. et al., A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer research, 2006. 66(8): p. 3987-3991.
[25] Cahill, D.P. et al., Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clinical cancer research, 2007. 13(7): p. 2038-2045.
[26] Yip, S. et al., MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clinical cancer research, 2009. 15(14): p. 4622-4629.
[27] McLendon, R. et al., Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008. 455(7216): p. 1061-1068.
[28] Kim, Y.-J. and D.M. Wilson III, Overview of base excision repair biochemistry. Current molecular pharmacology, 2012. 5(1): p. 3.
[29] Wood, R.D. et al., Human DNA repair genes. Science, 2001. 291(5507): p. 1284-1289.
[30] Rouleau, M. et al., PARP inhibition: PARP1 and beyond. Nature Reviews Cancer, 2010. 10(4): p. 293-301.
[31] Cheng, C.L. et al., Poly (ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair–deficient malignant glioma xenograft. Molecular cancer therapeutics, 2005. 4(9): p. 1364-1368.
[32] Chen, C.C., T. Taniguchi, and A. D’Andrea, The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents. Journal of molecular medicine, 2007. 85 (5): p. 497-509.
[33] Woodbury, D. et al., Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research, 2000. 61(4): p. 364-370.
[34] Vescovi, A.L., R. Galli, and B.A. Reynolds, Brain tumour stem cells. Nature Reviews Cancer, 2006. 6(6): p. 425-436.
[35] Safari, M. and A. Khoshnevisan, An overview of the role of cancer stem cells in spine tumors with a special focus on chordoma. World journal of stem cells, 2014. 6(1): p. 53.
[36] Rahman, R., R. Heath, and R. Grundy, Cellular immortality in brain tumours: an integration of the cancer stem cell paradigm. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2009. 1792(4): p. 280-288.
[37] Clevers, H., The cancer stem cell: premises, promises and challenges. Nature medicine, 2011: p. 313-319.
[38] Singh, S.K. et al., Identification of a cancer stem cell in human brain tumors. Cancer research, 2003. 63(18): p. 5821-5828.
[39] Beier, D. et al., Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer research, 2008. 68(14): p. 5706-5715.
[40] Mao, X.-g. et al., Brain tumor stem-like cells identified by neural stem cell marker CD15. Translational oncology, 2009. 2(4): p. 247-257.
[41] Mohler, J., Requirements for hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics, 1988. 120(4): p. 1061-1072.
[42] Ahn, S. and A.L. Joyner, In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 2005. 437(7060): p. 894-897.
[43] Stopschinski, B.E., C.P. Beier, and D. Beier, Glioblastoma cancer stem cells–from concept to clinical application. Cancer letters, 2013. 338(1): p. 32-40.
[44] Reya, T. et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-111.
[45] Schonberg, D.L. et al., Brain tumor stem cells: molecular characteristics and their impact on therapy. Molecular aspects of medicine, 2014. 39: p. 82-101.
[46] Fatoo, A. et al., Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. Journal of neuro-oncology, 2011. 103(3): p. 397-408.
[47] Bar, E.E. et al., Cyclopamine‐Mediated Hedgehog Pathway Inhibition Depletes Stem‐Like Cancer Cells in Glioblastoma. Stem cells, 2007. 25(10): p. 2524-2533.
[48] Cheng, J.-X., B.-L. Liu, and X. Zhang, How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer treatment reviews, 2009. 35(5): p. 403-408.
[49] Artavanis-Tsakonas, S., K. Matsuno, and M.E. Fortini, Notch signaling. Science, 1995. 268(5208): p. 225-232.
[50] Artavanis-Tsakonas, S., M.D. Rand, and R.J. Lake, Notch signaling: cell fate control and signal integration in development. Science, 1999. 284(5415): p. 770-776.
[51] Hovinga, K.E. et al., Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem cells, 2010. 28(6): p. 1019-1029.
[52] Hu, Y. and L. Fu, Targeting cancer stem cells: a new therapy to cure cancer patients. American journal of cancer research, 2012. 2(3): p. 340.
[53] Chen, Y.-H., M.-C. Hung, and W.-C. Shyu, Role of cancer stem cells in brain tumors. BioMedicine, 2012. 2(3): p. 84-91.
[54] Fan, X. et al., Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer research, 2006. 66(15): p. 7445-7452.
[55] Dirks, P.B., Brain tumor stem cells: the cancer stem cell hypothesis writ large. Molecular oncology, 2010. 4(5): p. 420-430.
[56] Soeda, A. et al., Surface protein dynamics in glioma stem cells. Austin J. Neurosurg., 2014. 1(3): p. 1015.
[57] Huelsken, J. and W. Birchmeier, New aspects of Wnt signaling pathways in higher vertebrates. Current opinion in genetics and development, 2001. 11(5): p. 547-553.
[58] Huang, Z. et al., Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein and cell, 2010. 1(7): p. 638-655.
[59] Liu, X. et al., β-Catenin overexpression in malignant glioma and its role in proliferation and apoptosis in glioblastma cells. Medical Oncology, 2011. 28(2): p. 608-614.
[60] Foltz, G. et al., Epigenetic regulation of wnt pathway antagonists in human glioblastoma multiforme. Genes and cancer, 2010. 1(1): p. 81-90.
[61] Hajduch, E., G.J. Litherland, and H.S. Hundal, Protein kinase B (PKB/Akt)–a key regulator of glucose transport? FEBS letters, 2001. 492(3): p. 199-203.
[62] Manning, B.D. and L.C. Cantley, AKT/PKB signaling: navigating downstream. Cell, 2007. 129(7): p. 1261-1274.
[63] Zoncu, R., A. Efeyan, and D.M. Sabatini, mTOR: from growth signal integration to cancer, diabetes and ageing. Nature reviews Molecular cell biology, 2011. 12(1): p. 21-35.
[64] Eyler, C.E. et al., Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem cells, 2008. 26(12): p. 3027-3036.
[65] Zhuang, W. et al., Induction of autophagy promotes differentiation of glioma‐initiating cells and their radiosensitivity. International Journal of Cancer, 2011. 129(11): p. 2720-2731.
[66] Akira, S. et al., Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell, 1994. 77(1): p. 63-71.
[67] Villalva, C. et al., STAT3 is essential for the maintenance of neurosphere‐initiating tumor cells in patients with glioblastomas: A potential for targeted therapy? International Journal of Cancer, 2011. 128(4): p. 826-838.
[68] de la Iglesia, N. et al., Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes and development, 2008. 22(4): p. 449-462.
[69] Perkins, N.D., The diverse and complex roles of NF-κB subunits in cancer. Nature Reviews Cancer, 2012. 12(2): p. 121-132.
[70] Alvero, A.B. et al., Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell cycle, 2009. 8(1): p. 158-166.
[71] Abdullah, L.N. and E.K.-H. Chow, Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med., 2013. 2(1): p. 3.
[72] Chen, D., M. Zhao, and G.R. Mundy, Bone morphogenetic proteins. Growth factors, 2004. 22(4): p. 233-241.
[73] Piccirillo, S. et al., Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 2006. 444(7120): p. 761-765.
[74] Lee, J. et al., Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer cell, 2008. 13 (1): p. 69-80.
[75] Ross, S.E., M.E. Greenberg, and C.D. Stiles, Basic helix-loop-helix factors in cortical development. Neuron, 2003. 39(1): p. 13-25.
[76] Lu, Q.R. et al., Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell, 2002. 109(1): p. 75-86.
[77] Gaber, Z.B. and B.G. Novitch, All the embryo’s a stage, and Olig2 in its time plays many parts. Neuron, 2011. 69(5): p. 833-835.
[78] Ligon, K.L. et al., Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron, 2007. 53(4): p. 503-517.
[79] Auffinger, B. et al., MicroRNA targeting as a therapeutic strategy against glioma. Current molecular medicine, 2013. 13(4): p. 535-542.
[80] Munoz, J.L. et al., Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Molecular Therapy—Nucleic Acids, 2013. 2(10): p. e126.
[81] Colleoni, F. and Y. Torrente, The new challenge of stem cell: brain tumour therapy. Cancer letters, 2008. 272(1): p. 1-11.
[82] Sutter, R., G. Yadirgi, and S. Marino, Neural stem cells, tumour stem cells and brain tumours: Dangerous relationships? Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2007. 1776(2): p. 125-137.
[83] Lefranc, F., V. Facchini, and R. Kiss, Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. The oncologist, 2007. 12(12): p. 1395-1403.
[84] Gilbert, C.A. and A.H. Ross, Glioma stem cells: cell culture, markers and targets for new combination therapies 2011: INTECH Open Access Publisher.
[85] Sebolt-Leopold, J.S. and R. Herrera, Targeting the mitogen-activated protein kinase cascade to treat cancer. Nature Reviews Cancer, 2004. 4(12): p. 937-947.
[86] Khoshnevisan, A., An overview of therapeutic approaches to brain tumor stem cells. Medical journal of the Islamic Republic of Iran, 2012. 26(1): p. 31.
[87] Bao, S. et al., Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer research, 2008. 68(15): p. 6043-6048.
[88] Cheng, L. et al., L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. The EMBO journal, 2011. 30(5): p. 800-813.
[89] Cheng, L. et al., Elevated invasive potential of glioblastoma stem cells. Biochemical and biophysical research communications, 2011. 406(4): p. 643-648.
[90] Graninger, W.B. et al., Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. Journal of Clinical Investigation, 1987. 80(5): p. 1512.
[91] Kim, R., M. Emi, and K. Tanabe, Role of mitochondria as the gardens of cell death. Cancer chemotherapy and pharmacology, 2006. 57(5): p. 545-553.
[92] Olcina, M., P.S. Lecane, and E.M. Hammond, Targeting hypoxic cells through the DNA damage response. Clinical cancer research, 2010. 16(23): p. 5624-5629.
[93] Hammond, E.M. et al., Hypoxia links ATR and p53 through replication arrest. Molecular and cellular biology, 2002. 22(6): p. 1834-1843.
[94] Smith, J. et al., The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Advances in cancer research, 2010(108): p. 73-112.
[95] Le, Y., P.M. Murphy, and J.M. Wang, Formyl-peptide receptors revisited. Trends in immunology, 2002. 23(11): p. 541-548.
[96] Adler, M.W. and T.J. Rogers, Are chemokines the third major system in the brain? Journal of leukocyte biology, 2005. 78(6): p. 1204-1209.
[97] Huang, J. et al., The G-protein-coupled formylpeptide receptor FPR confers a more invasive phenotype on human glioblastoma cells. British journal of cancer, 2010. 102 (6): p. 1052-1060.
[98] Roos, W. et al., Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene, 2007. 26(2): p. 186-197.
[99] Peñuelas, S. et al., TGF-β increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer cell, 2009. 15(4): p. 315-327.
[100] Ran, D. et al., Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Experimental hematology, 2009. 37(12): p. 1423-1434.
[101] Schinkel, A.H. and J.W. Jonker, Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Advanced drug delivery reviews, 2003. 55 (1): p. 3-29.
[102] Eramo, A. et al., Chemotherapy resistance of glioblastoma stem cells. Cell Death and Differentiation, 2006. 13(7): p. 1238-1241.
[103] Zhou, S. et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature medicine, 2001. 7(9): p. 1028-1034.
[104] Bhattacharya, S. et al., Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. Journal of cell science, 2007. 120(15): p. 2652-2662.
[105] Robey, R.W. et al., ABCG2: determining its relevance in clinical drug resistance. Cancer and Metastasis Reviews, 2007. 26(1): p. 39-57.
[106] Ding, X.-w., J.-h. Wu, and C.-p. Jiang, ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life sciences, 2010. 86(17): p. 631-637.
[107] Miller, D.S., Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends in pharmacological sciences, 2010. 31(6): p. 246-254.
[108] Kaur, B. et al., Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncology, 2005. 7(2): p. 134-153.
[109] Borovski, T. et al., Therapy-resistant tumor microvascular endothelial cells contribute to treatment failure in glioblastoma multiforme. Oncogene, 2013. 32(12): p. 1539-1548.
[110] Galli, R. et al., Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer research, 2004. 64(19): p. 7011-7021.
[111] Zheng, X. et al., CXCR4-positive subset of glioma is enriched for cancer stem cells. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 2011. 19 (12): p. 555-561.

Chapter 17

[1] Croft, R. J., Chandler, J. S., Burgess, A. P., Barry, R. J., Williams, J. D. and Clarke, A. R. (2002). Acute mobile phone operation affects neural function in humans. Clinical Neurophysiology, 113(10), 1623-1632.
[2] Levitt, B. B. and Lai, H. (2010). Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environmental Reviews, 18(NA), 369-395.
[3] INTERPHONE Study Group. (2010). Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case–control study. International Journal of Epidemiology, 39(3), 675-694.
[4] International Agency on Research for Cancer (IARC), World Health Organization. IARC Classifies Radiofrequency Electromagnetic Fields as Possibly Carcinogenic to Humans. Online document at: www.iarc.fr/en/mediacentre/pr/2011/pdfs/pr208_E.pdf Accessed May 31, 2015.
[5] Baan, R., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L. and Straif, K. (2011). Carcinogenicity of radiofrequency electromagnetic fields. The lancet oncology, 12(7), 624-626.
[6] Davis, D. L., Kesari, S., Soskolne, C. L., Miller, A. B. and Stein, Y. (2013). Swedish review strengthens grounds for concluding that radiation from cellular and cordless phones is a probable human carcinogen. Pathophysiology, 20(2), 123-129.
[7] Hardell, L., Nasman, A., Pahison, A et al. (1999) Use of cellulartelephones and the risk for brain tumours: a case-control study. Int J Oncol 15:113–116.
[8] Feinberg, A. P., Ohlsson, R. and Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nature reviews genetics, 7(1), 21-33.
[9] Altaner, C. (2008). Glioblastoma and stem cells-Minireview. Neoplasma, 55(5), 369.
[10] Fischer, U., Meese, E. (2007). Glioblastoma multiforme: the role of DSB repair between genotype and phenotype. Oncogene 26(56):7809-7815.
[11] Belyaev, I. Y. (2010). Radiation-induced DNA repair foci: Spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutation Research/Reviews in Mutation Research, 704(1), 132-141.
[12] Bassing, C. H., Chua, K. F., Sekiguchi, J., Suh, H., Whitlow, S. R., Fleming, J. C. and Livingston, D. M. (2002). Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proceedings of the National Academy of Sciences, 99(12), 8173-8178.
[13] Taneja, N., Davis, M., Choy, J. S., Beckett, M. A., Singh, R., Kron, S. J. and Weichselbaum, R. R. (2004). Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. Journal of Biological Chemistry, 279(3), 2273-2280.
[14] Markovà, E., Malmgren, L. O. and Belyaev, I. Y. (2010). Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: possible mechanistic link to cancer risk. Environ Health Perspect, 118(3), 394-399.
[15] Korotkov, K. (2002). Human Energy Field: study with GDV bioelectrography. Backbone.
[16] Korotkov, K., Shelkov, O., Shevtsov, A., Mohov, D., Paoletti, S., Mirosnichenko, D. and Robertson, L. (2012). Stress reduction with osteopathy assessed with GDV electrophotonic imaging: effects of osteopathy treatment. The Journal of Alternative and Complementary Medicine, 18(3), 251-257.
[17] Ghosn, R., Thuróczy, G., Loos, N., Brenet-Dufour, V., Liabeuf, S., De Seze, R. and Selmaoui, B. (2012). Effects of GSM 900 MHz on middle cerebral artery blood flow assessed by transcranial Doppler sonography. Radiation research, 178(6), 543-550.
[18] Kwon, M. S., Vorobyev, V., Kännälä, S., Laine, M., Rinne, J. O., Toivonen, T., Hämäläinen, H. (2012). No effects of short-term GSM mobile phone radiation on cerebral blood flow measured using positron emission tomography. Bioelectromagnetics, 33(3), 247–56.
[19] Huber, R., Treyer, V., Schuderer, J., Berthold, T., Buck, A., Kuster, N., Achermann, P. (2005). Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow. The European Journal of Neuroscience, 21(4), 1000–6.
[20] Aalto, S., Haarala, C., Brück, A., Sipilä, H., Hämäläinen, H. and Rinne, J. O. (2006). Mobile phone affects cerebral blood flow in humans. Journal of Cerebral Blood Flow and Metabolism, 26(7), 885-890.
[21] Kwon, M.S., Myoung, S., Vorobyev, V., Kännälä, S., Laine, M., Rinne, J. O., Toivonen, T et al. (2011). GSM mobile phone radiation suppresses brain glucose metabolism. Journal of Cerebral Blood Flow and Metabolism 31, (12), 2293-2301.
[22] Lindholm, H., Alanko, T., Rintamäki, H., Kännälä, S., Toivonen, T., Sistonen, H., Hietanen, M. (2011). Thermal effects of mobile phone RF fields on children: a provocation study. Progress in Biophysics and Molecular Biology, 107(3), 399–403.
[23] Belyaev, I. Y., Markovà, E., Hillert, L., Malmgren, L. O. and Persson, B. R. (2009). Microwaves from UMTS/GSM mobile phones induce long‐lasting inhibition of 53BP1/γ‐H2AX DNA repair foci in human lymphocytes. Bioelectromagnetics, 30(2), 129-141.
[24] Kao, G. D., McKenna, W. G., Guenther, M. G., Muschel, R. J., Lazar, M. A. and Yen, T. J. (2003). Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. The Journal of cell biology, 160(7), 1017-1027.
[25] Böcker, W. and Iliakis, G. (2006). Computational methods for analysis of foci: Validation for radiation-induced γ-H2AX foci in human cells. Radiation research, 165(1), 113-124.
[26] Ward, I., Kim, J. E., Minn, K., Chini, C. C., Mer, G. and Chen, J. (2006). The tandem BRCT domain of 53BP1 is not required for its repair function. Journal of Biological Chemistry, 281(50), 38472-38477.
[27] Leszczynski, D., Joenväärä, S., Reivinen, J. and Kuokka, R. (2002). Non‐thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer‐and blood‐brain barrier‐related effects. Differentiation, 70(2‐3), 120-129.
[28] Belyaev, I. Y., Hillert, L., Protopopova, M., Tamm, C., Malmgren, L. O., Persson, B. R. and Harms‐Ringdahl, M. (2005). 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics, 26(3), 173-184.
[29] Fischer, U. and Meese, E. (2007). Glioblastoma multiforme: the role of DSB repair between genotype and phenotype. Oncogene, 26(56), 7809-7815.
[30] Williams, D. A., Xu, H. and Cancelas, J. A. (2006). Children are not little adults: just ask their hematopoietic stem cells. Journal of Clinical Investigation, 116(10), 2593.
[31] Niwa, O. (2010). Roles of stem cells in tissue turnover and radiation carcinogenesis. Radiation research, 174(6b), 833-839.
[32] Sugiyama, T. and Nagasawa, T. (2012). Bone marrow niches for hematopoietic stem cells and immune cells. Inflammation and allergy drug targets, 11(3), 201.
[33] Metcalfe, A. D. and Ferguson, M. W. (2008). Skin stem and progenitor cells: using regeneration as a tissue-engineering strategy. Cellular and molecular life sciences: CMLS, 65(1), 24-32.
[34] Capri, M., Salvioli, S., Altilia, S., Sevini, F., Remondini, D., Mesirca, P. and Franceschi, C. (2006). Age‐Dependent Effects of in Vitro Radiofrequency Exposure (Mobile Phone) on CD95+ T Helper Human Lymphocytes. Annals of the New York Academy of Sciences, 1067(1), 493-499.
[35] Stankiewicz, W., Dąbrowski, M. P., Kubacki, R., Sobiczewska, E. and Szmigielski, S. (2006). Immunotropic influence of 900 MHz microwave GSM signal on human blood immune cells activated in vitro. Electromagnetic biology and medicine, 25(1), 45-51.
[36] Blank, M. and Goodman, R. (2004). Comment: a biological guide for electromagnetic safety: the stress response. Bioelectromagnetics, 25(8), 642-646.
[37] Feinberg, A. P., Ohlsson, R. and Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nature reviews genetics, 7(1), 21-33.
[38] Sohur, U. S., Emsley, J. G., Mitchell, B. D. and Macklis, J. D. (2006). Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1473), 1477-1497.
[39] Korotkov, K. (2013). Energy fields electrophotonic analysis in humans and nature. eBookIt. com.
[40] Polushin, J., Levshankov, A., Shirokov, D. and Korotkov, K. (2009). Monitoring energy levels during treatment with GDV technique. J of Science of Healing Outcome, 2(5), 5-15.
[41] Hacker, G. W., Augner, C., &Pauser, G. (2009). Daytime-Related Rhythmicity of GDV Parameter Glow Image Area: Time Course And Comparison To Biochemical Parameters Measured In Saliva.Energy Fields Electrophotonic Analysis In Humans And Naturepp. 80-83.
[42] Kuldeep, K., K.

, Srinivasan, T., M., Nagendra, H., R., Ilavarasu, J., V. (2016). Development of normative data of electro photonic imaging technique for healthy population in India: A normative study. Int J Yoga, 9(1), 49-56.
[43] Korotkov, K. (2002). GDV in medicine 2002: application of the GDV bioelectrography technique in medicine; in Francomano CA, Jonas WB, Chez RA (eds): Proceedings: Measuring the Human Energy Field State of the Science. Corona del Mar, CA, Samueli Institute, pp 9–22.
[44] Kononenko, I., Bosnić, Z. and Žgajnar, B. (2000). The influence of mobile telephones on human bioelectromagnetic field. In Proc. New Science of Consciousness, pp. 69-72.
[45] Kononenko, I., Zrimec, T., Sadikov, A., Mele, K., Milharčič T. (1999). Machine learning and GDV images: Current research and results, Proc. Biology and Cognitive Science, Ljubljana, pp. 80-83.
[46] Kononenko, I., Zrimec T., Sadikov A., Skočaj, D. (2000). GDV images: Current research and results, Proc. New Science of consciousness, Ljubljana, pp. 60-71.
[47] Korotkov, K. (1998).Aura and Consciousness: A New Stage of Scientific Understanding, St.Petersburg, Russia: State Editing and Publishing Unit ”Kultura”, pp. 33-45.
[48] Trampuž, A., Kononenko, I., Rus, V. (1999). Experiental and biophysical effects of the art of living programme on its participants, Proc. Biology and Cognitive Science, Ljubljana, pp. 94-97.
[49] Bhargav, H., Srinivasan, T. M., Vandana, Suresh, Alex hanky, Nagendra H. R. (2016) Acute effects of 900 Hz GSM mobile phone induced electro-imagnetic field on Electron-photonic Images of Healthy Teenagers: A Randomized Controlled Study. Manuscript submitted to Int J Yoga.

Chapter 18

[1] Stefanidis, K., et al., Nevirapine induces growth arrest and premature senescence in human cervical carcinoma cells. Gynecol. Oncol., 2008; 111: 344-349.
[2] Mellman, I., G. Coukos, and G. Dranoff, Cancer immunotherapy comes of age. Nature, 2011; 480: 480-489.
[3] Snook, A.E. and S.A. Waldman, Advances in cancer immunotherapy. Discov. Med., 2013; 15: 120-125.
[4] Botrel, T.E., et al., Immunotherapy with Sipuleucel-T (APC8015) in patients with metastatic castration-refractory prostate cancer (mCRPC): a systematic review and meta-analysis. Int. Braz. J. Urol., 2012; 38: 717-727.
[5] Schon, M.P. and M. Schon, Imiquimod: mode of action. Br. J. Dermatol., 2007; 157 Suppl. 2: 8-13.
[6] Bath-Hextall, F.J., et al., Interventions for basal cell carcinoma of the skin. Cochrane Database Syst. Rev., 2007: CD003412.
[7] Grimm, C., et al., Treatment of cervical intraepithelial neoplasia with topical imiquimod: a randomized controlled trial. Obstet. Gynecol., 2012; 120: 152-159.
[8] Pachman, D.R., et al., Randomized clinical trial of imiquimod: an adjunct to treating cervical dysplasia. Am. J. Obstet. Gynecol., 2012; 206: 42 e41-47.
[9] Lin, C.T., et al., Topical imiquimod treatment for human papillomavirus infection in patients with and without cervical/vaginal intraepithelial neoplasia. Taiwan J. Obstet. Gynecol., 2012; 51: 533-538.
[10] Gimenes, F., et al., Human leukocyte antigen (HLA)-G and cervical cancer immunoediting: a candidate molecule for therapeutic intervention and prognostic biomarker? Biochim. Biophys. Acta., 2014; 1846: 576-589.
[11] Stefanidis, K., et al., OCT-4 and DAZL expression in precancerous lesions of the human uterine cervix. J. Obstet. Gynaecol. Res., 2015; 41: 763-767.
[12] Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007; 448: 313-317.
[13] Wernig, M., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007; 448: 318-324.
[14] Imudia, A.N., et al., Retrieval of trophoblast cells from the cervical canal for prediction of abnormal pregnancy: a pilot study. Hum. Reprod., 2009; 24: 2086-2092.
[15] Schon, M., et al., Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J. Natl. Cancer Inst., 2003; 95: 1138-1149.
[16] Pfaffl, M.W., G.W. Horgan, and L. Dempfle, Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 2002; 30: e36-e36.
[17] Walter, A., et al., Aldara activates TLR7-independent immune defence. Nat Commun, 2013; 4: 1560.
[18] Bilu, D. and D.N. Sauder, Imiquimod: modes of action. Br. J. Dermatol., 2003; 149 Suppl 66: 5-8.
[19] de Witte, C.J., et al., Imiquimod in cervical, vaginal and vulvar intraepithelial neoplasia: A review. Gynecol. Oncol., 2015.
[20] Li, X.J., et al., Human leukocyte antigen-G (HLA-G) expression in cervical cancer lesions is associated with disease progression. Hum. Immunol., 2012; 73: 946-949.
[21] Dong, D.D., et al., Human leukocyte antigen-G (HLA-G) expression in cervical lesions: association with cancer progression, HPV 16/18 infection, and host immune response. Reprod. Sci., 2010; 17: 718-723.
[22] Yang, Y., et al., Clinical significance of the stem cell gene Oct-4 in cervical cancer. Tumour Biol., 2014; 35: 5339-5345.
[23] Wang, Y.D., et al., OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis., 2013; 4: e760.
[24] Bae, H.S., et al., Nestin expression as an indicator of cervical cancer initiation. Eur. J. Gynaecol. Oncol., 2013; 34: 238-242.
[25] Liu, X.F., et al., Cervical cancer cells with positive Sox2 expression exhibit the properties of cancer stem cells. PLoS One, 2014; 9: e87092.

Chapter 19

[1] Bowen RL, Atwood CS. Living and Dying for Sex. Gerontology 2004; 50 (5): 265–290. 2.
[2] Birbrair, A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. AJP: Cell Physiology 2013; 305 (11): C1098.doi:10.1152/ajpcell.00171.
[3] Dillin A, Gottschling DE, Nyström T. The good and the bad of being connected the integrons of aging. Curr Opin Cell Biol; 2014; 26: 107-12 doi:10.1016/
j.ceb.2013.12.003. 4.
[4] De Grey, Aubrey DNJ. Life Span Extension Research and Public Debate: Societal Considerations: Studies in Ethics, Law, and Technology. 2007;doi:10.2202/1941-6008. 1011.
[5] Barrows KA, Jacobes BP. Mind body medicine. Med Clin North Am 2002; 86:11-35.
[6] Scientific research on Maharishi’s Transcendental Meditation, a review. Maharishi International University press. Fairfield USA, 1993;16.
[7] Dhar HL. Meditation, health, intelligence and performance. Medicine update. APICON 2002; 202:1376-79.
[8] Dharmasingh K. Meditation an anti-aging Medicine. http//www.wholefitness, comp meditation html. 21.07.2005; 1-3.
[9] Seminar on investigating mind. The science and clinical applications of Meditation. DAR Constitution Hall. Washington DC Nov. 8-10, 2005.
[10] Carlos López-Otín, Maria A. Blasco, Linda Partridge, The Hallmarks of Aging, Cell. Author manuscript; available in PMC 2013 Nov 21
[11] Blackburn, EH. Structure and function of telomeres. Nature 1991; 350 :569— 573.
[12] Fossel M. Role of cell senescence in human aging. J Antiaging Med 2000; 3 (1): 91—98.
[13] Chan SR, Blackburn EH. Telomeres and telomerase. Philos. Trans. R. Soc 2004; 359:109—121.
[14] Frenck RW, Blackburn EH. The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl. Acad. Sci. USA. 1998; 95 (10): 5607— 5610.
[15] Cawthon RK, Smith E. O’Brien E et al. Association between telomere length in blood and mortality in people aged 60 years of older. Lancet 2003; 361: 393— 395.
[16] Epel ES. Telomeres in a life-span perspective: a new ‘‘psychobiomarker’’? Curr. Dir. Psychol. Sci. 2009; 18 (1): 6—10.
[17] Njajou OT, Hsueh WC, Blackburn EH, Newman, A.B., Wu, S.H.,Li, R., Simonsick EM, Harris TM, Cummings SR et al. Association between telomere lengths, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J. Gerontol. A Biol. Sci. Med. Sci. 2009; 64 (8): 860—864.
[18] Epel ES, Daubenmier J, Moskowitz JT et al. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. In: Bushell, W.C., Olivo, E.L.,Theise, N.D. (Eds.), Longevity, Regeneration, and Optimal Health: Integrating Eastern and Western Perspectives. Ann. N.Y. Acad. Sci. 1172, pp. 34—53.
[19] Nordfja¨ll K, Svenson U, Norrback KF et al. The individual blood cell telomere attrition rate is telomere length dependent. PloS Genet. 2009; 5 (2): e1000357.
[20] Farzaneh-Far R, Lin J, Epel E et al. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS ONE 2009; 5 (1): e8612.
[21] Blackburn EH. Telomere states and cell fates. Nature 2000; 408: 53—56.
[22] Kim S-h, Han S, You Y et al. The human telomere-associated protein TIN2 stimulates interactions between telomeric DNA tracts in vitro. EMBO Reports 2003; 4: 685—691.
[23] Serrano AL, Andres V, 2004. Telomeres and cardiovascular diseases: does size matter? Circ. Res. 2004; 94 (5): 575—584.
[24] Lin J, Epel ES, Blackburn EH. Telomeres, telomerase stress and aging. In: Bernston GG, Cacioppo JT. (Eds.). Handbook of Neuroscience for the Behavioral Sciences. 2009b: Wiley, New Jersey; chapter 65.
[25] Epel ES, Blackburn EH, Lin J et al. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. U.S.A. 2004; 101:17312—17315.
[26] Ornish E, Lin J, Daubenmier J et al. Increased telomerase activity and comprehensive lifestyle changes. Lancet Oncol 2008; 9: 1048—1057.
[27] Dalai L, Cutler HC. The Art of Happiness: A Handbook for Living, 10th Anniversary Edition. Riverhead Books, New York. 2009.
[28] Lisa B, Boyetteand Rocky ST. Adult stem cells and disease of aging. J Clin Med 2014; 3(1): 88-134.
[29] Keisuke I, Toshio S. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 2014. Author manuscript; available in PMC Jul 14, 2014.
[30] B.A. Avelar-Freitas VG. Almeida MCX. Pinto. Trypan blue exclusion assay by flow cytometry. Braz J Med Biol Res. 2014; 47(4): 307– 3015.
[31] Claudia Po¨ sel, Karoline M, Wenke FH. Density Gradient Centrifugation Compromises Bone Marrow Mononuclear Cell Yield, PLoS One. 2012; 7(12): e50293.
[32] Huaying Z, Chad A. Brautigam RG, Current Methods in SedimentationVelocity and Sedimentation Equilibrium Analytical Ultracentrifugation, Curr Protoc Protein Sci. Author manuscript; available in PMC 2014 February 1.Published in final edited form as: Curr Protoc Protein Sci. 2013 February.
[33] Shipeng Sun, ShuangMeng, Rui Zhang, Development of a new duplex real-time polymerase chain reaction assay for hepatitis B viral DNA detection, Virol J. 2011; 8: 227. Published online 2011 May 14.
[34] MAK Markwell, SM Haas, LL Bieber, A modification of the Lowry procedure to program. Simplify protein determination in membrane and lipoprotein samples- Analytical biochemistry, 1978 – Elsevier.
[35] Fauce, S.R., Jamieson, B.D., Chin, A.C., Mitsuyasu, R.T., Parish, S.T., Ng,H.L., Kitchen, C.C., Yang, O.O., Harley, C.B., Effros, R.B., 2008.Telomerase-based pharmacologic enhancement of antiviral function of human CD8 T Lymphocytes. J. Immunol. 181, 7400—7406.
[36] Uchiumi F, Watanabe T, Hasegawa S et al. The effect of resveratrol on the Werner syndrome RecQhelicase gene and telomerase activity. Curr Aging Sci. 2011; 4(1-7).
[37] Rizvi S, Raza ST, Mahdi F et al. Telomere length variations in aging and age-related disease. Curr. Aging Sci. 2014;7(161-167).
[38] Zole E, Pliss L, Ranka R et al. Dynamics of telomere length in different age groups in a Latvian population. Curr. Aging Sci. 2013; 6(244-250).
[39] Mikhelson VM, Gamaley IA. Telomere shortening is a sole mechanism of aging in mammals. Curr Aging Sci. 2012; 3(203-208).
[40] Brown, K.W., Ryan, R.M., 2003. The benefits of being present: mindfulness and its role in psychological well-being. J. Personal.Soc. Psychol. 84 (4), 822— 848.
[41] Nyklı´cˇke, I., Kuijpers, M.A., 2008. Effects of mindfulness-based stress reduction intervention on psychological well-being and quality of life: Is increased mindfulness indeed the mechanism? Ann. Behav. Med. 35, 331.
[42] Greider CW. 1998. Telomerase activity, cell proliferation, and cancer. Proc. Natl. Acad. Sci. 95, 90-92.
[43] Shay, J. W. and Wright, W. E. 1996. Telomerase activity in human cancer. Curr. Opin. Oncol., 8,6644.
[44] Shay, J. W. and Wright, W. E. 1996. The reactivation of telomerase activity in cancer progression. Trends Genet., 12,129–13.
[45] Holt, S.E. and Shay, J. W. 1999. Role of telomerase in cellular proliferation and cancer. J. Cell Physiol., 180,10–18.
[46] Izri A, Gunal A, Gunduz U, 2013. Significance of telomerase activity and gene expression in colorectal cancer. Research in brain cancer and tumor, 2,49-56.

You have not viewed any product yet.