Spectroscopic Properties of Nd:YAG Laser and Its Performance

$110.00

Seyed Ebrahim Pourmand
Estahban Branch, Islamic Azad University, Estahban, Iran

Iraj Sadegh Amiri
Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abdolkarim Afroozeh
Fasa University, Fasa, Iran.

Volker J. Sorger
The George Washington University, Washington, D.C., USA

Xi Ling
Boston University, Boston, MA, USA

Series: Materials Science and Technologies
BISAC: TEC021000

The purpose of this book was to investigate the temperature and input energy dependency of Nd:YAG laser performance pumped by flashlamp. A commercial laser rod Nd:YAG laser crystal was utilized as a gain medium. The laser rod was placed parallel to a linear flashlamp filled by xenon gas at 450 Torr. The Nd:YAG crystal together with the flashlamp was flooded with a coolant comprising of a mixture with 60% ethylene glycol and 40% distilled water, which covers a range of temperature from -30C to +60C. Spectroscopic properties of the Nd:YAG rod under pulsed flashlamp pumping was investigated from the output fluorescence spectrum of the flashlamp radiation and the Nd:YAG rod. The linewidth of each fluorescence line was measured for an estimation of an effective emission cross section and saturation intensity.

The influence of temperature and input energy on a fluorescence emission cross section of Nd3+:YAG crystal was studied. The cross-section was found to decrease as the temperature and the input energy was increased. The inter-stark emission showed a Lorentzian line shape indicating homogeneous broadening. This was attributed to the thermal broadening mechanism of the emission line. The spectral widths and shifts of the emission lines for the three and four level inter-Stark transitions within the respective intermanifold transitions of 4F3/2→4I9/2 and 4F3/2→4I11/2 were investigated over the range of 0 to 75 J.

The emission lines for the 4F3/2→4I9/2 transitions shifted towards a longer wavelength and broadened, while the positions and linewidths for the 4F3/2→4I11/2 transitions remained unchanged with the increase of input energy. Finally, the temperature dependence of quasi-three-level laser transitions for long pulse Nd:YAG laser was also investigated. The laser performances at both 938.5 nm and 946.0 nm were also found to be inversely proportional to temperature, and the slope efficiency was unchanged with temperature. The reduction was due to the mechanism of phonon scattering as well as a broadening effect while the temperature increased.

Table of Contents

Table of Contents

Preface

Chapter 1. Introduction of Flashlamp Pumped Nd:YAG Laser (pp. 1-10)

Chapter 2. Concepts and Principle Working of Nd:YAG Laser (pp. 11-64)

Chapter 3. Research Methodology of Nd3+:YAG Laser Pumped by Flashlamp (pp. 65-76)

Chapter 4. Spectroscopic Results and Discussion on the Fluorescence Spectrum of the Pump Source to Excite Nd:YAG Laser Rod as Flashlamp (pp. 77-116)

Chapter 5. Conclusion and Future Work of Nd:YAG Laser (pp. 117-122)

About the Authors (pp. 123-124)

Index (pp. 125)

Total Pages: 128


References

Chapter 1

[1] Natarajan, V., Balakrishnan, V. & Mukunda, N. (2005). “Einstein’s Miraculous Year”, Resonance, 10, 35-56.
[2] Perlman, D. E. (1966). “Characteristics and Operation of Xenon Filled Linear Flashlamps. Review of Scientific Instruments”, Review of Scientific Instruments, 37, 340-343.
[3] Koechner, W. (2006). “Solid-State Laser Engineering”, 6th revised and updated version. USA: Springer.
[4] Rapaport, A., Zhao, S., Xiao, G., Howard, A. & Bass, M. (2002). “Temperature dependence of the 1.06-µm stimulated emission cross section of neodymium in YAG and in GSGG”, Applied Optics, 41, 7052-7057.
[5] Zhao, S., Rapaport, A., Dong, J., Chen, B., Deng, P. & Bass, M. (2005). “Temperature dependence of the 1.03 μm stimulated emission cross section of Cr:Yb:YAG crystal”, Optical Materials, 27, 1329–1332.
[6] Sardar, D. & Yow, R. (1998). “Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12”, Optical Materials, 10, 191–199.
[7] Sardar, D. & Yow, R. (2000). “Stark components of 4F3/2, 4I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd+3 in YVO4”, Optical Materials, 14, 5-11.
[8] Saiki, T., Nakatsuka, M., Fujioka, K., Motokoshi, S. & Imasaki, K. (2011). “Cross-relaxation and spectral broadening of gain for Nd/Cr:YAG ceramic lasers with white-light pump source under high-temperature operation. “, Optics Communications, 284, 2980-2984.
[9] Eichhorn, M. (2008). “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions”, Appl. Phys. B, 93, 269-316.
[10] Lupeia, V., Aka, G. & Vivien, D. (2002). “Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885nm into the emitting level”, Optics Communications, 204, 399–405.
[11] Dong, J., Rapaport, A., Bass, M., Szipocs, F. & Ueda, K. (2005). “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals”, Phys. Stat. Sol. (a), 202, 2565-2573.
[12] Turri, G., Jenssen, H. P., Cornacchia, F., Tonelli, M. & Bass, M. (2009). “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals”, J. Opt. Soc. Am. B., 26, 2084-2088.
[13] J. a. D. Dong, P. (2003). “Temperature dependent emission cross-section and fluorescence lifetime of Cr, Yb:YAG crystals”, Journal of Physics and Chemistry of Solids, 64, 1163-1171.
[14] Pourmand, S. E., Bidin, N. & Bakhtiar, H. (2012). “Effects of temperature and input energy on a quasi-three-level emission cross section of Nd3+:YAG pumped by a flashlamp”, Chin. Phys. Lett., 21, 094214.
[15] Zainal, R., Tamuri, A. R., Duad, Y. M. & Bidin, N. (2010). “Improvement in Ignition and simmer current supply into xenon flashlamp”, American Institute of Physics Procedings, 1250, 133-136.
[16] Kumar, G., Lu, J., Kaminskii, A., Ueda, K., Yagi. H., Yanagitani, T. & Unnikrishnan, N. (2004). “Spectroscopy and stimulated emission characteristics of Nd3+ in transparent YAG ceramics”, IEEE J. Quantum Electron., 40, 231-235.
[17] Dimov, S., Peik, E. & Walter, H. (1991). “A flashlamp-pumped 946 nm Nd:YAG laser”, Applied Physics B: Lasers and Optics, 53, 6-10.
Wang, C., Chow, Y. T., Yuan, D. R., Xu. D., Zhang, G. H., Liu. M., Lu. J., Shao, Z. & Jiang, M. H. (1999). “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal”, Optics Communications, 165, 231-235.

Chapter 2
[1] Wallace, S. E. W. a. H. (1969). “Oscillation and doubling of the 0.946-μ line in Nd:YAG”, Applied Physics Letter, 15, 111-112.
[2] Birnbaum, M., Tucker, A. W. & Pomphrey, P. J. (1972). “New Nd:YAG Laser Transitions 4F3/2→4I9/2”, IEEE J. of Quantum electron, 8, 501-501.
[3] Fan, T. Y. & Byer, R. L. (1987). “Continuous wave operation of a room temperature, diode-laser pumped, 946 nm Nd:YAG laser”, Optics Letter, 12, 809-811.
[4] Risk, W. P. & Length, W. (1987). “Room temperature, continuous wave, 946nm Nd:YAG laser, pumped by laser-diode arrays and intracavity frequency doubling to 473 nm”, Optics Letter, 12(993-995).
[5] Risk, W. P. (1988). “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses”, J. Opt. Soc. Am. B, 5, 1412-1423.
[6] Zhou, R., Cai, Z., Wen, W., Ding, X., Wang, P. & Yao, J. (2005). “High-power continuous-wave Nd:YAG laser at 946 nm and intracavity frequency-doubling with a compact three-element cavity”, Optics Communications, 225, 304-308.
[7] Dixon, G. J., Zhang, Z. M., Chang, R. & Djeu, N. (1988). “Efficient blue emission from an intracavity-doubled 946-nm Nd:YAG laser”, Optics Letter, 13, 137-139.
[8] Li, P. X., Li, D. H., Zhang, Z. G. & Zhang, S. W. (2003). “Diode-pumped high power cw blue laser at 473 nm with a compact three-element cavity”, Optics Communications, 215, 159-162.
[9] Li, P. X., Li, D. H., Zhang, Z. G. & Zhang, S. W. (2003). “Diode pumped compact cw frequency doubled Nd:YAG laser in the watt range at 473 nm”, Chinese Physics Letters, 20, 1064-1066.
[10] Rui, Z., Young, Z. S., Qiang, C. Z., Qi, W., Xin, D., Peng, W., Li, D. & Quan, Y. (2005). “High Power Diode-End-Pumped Nd:YAG 946-nm Laser and Its Eficient Frequency Doubling”, Chinese Physics Letters, 22, 1413-1415.
[11] Ling, Z., Yong, L. C., Hua, F. B., Yi, W. Z., Hua, L. D., Ming, F. U. & Guo, Z. Z. (2005). “Diode-Pumped Passive Q-Switched 946-nm Nd:YAG Laser with 2.1-W Average Output Power”, Chinese Physics Letters, 22, 1420-1422.
[12] Chen, Y., Peng, H., Hou, W., Peng, Q., Geng, A., Guo, L., Cui, D. & Xu, Z. (2006). “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO”, Appied Physics B, 83, 241-243.
[13] Bethea, C. G. (1973). “Megawatt Power at 1.318 μm in Nd3+:YAG and Simultaneous Oscillation at Both 1.06 and 1.318 μm”, IEEE J. OF Quantum. Electron, 9, 254-254.
[14] Vollmar, W., Knights, M. G., Rines, G. A., McCarthy, I. C. & Chicklis, E. P. (1983). “Five-color Nd:YLF laser”, Digest of Conference on Lasers and Electro Optics, 188-188.
[15] Shi, W. Q., Kurtz, R., Machan, J., Bass, M., Birnbaum, M. & Kokta, M. (1987). “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12”, Applied Physics Letter, 51, 1218-1220.
[16] Machan, J., Kurtz, R., Bass, M., Birnbaum, M. & Kokta, M. (1987). “Simultaneous, multiple wavelength lasing of (Ho, Nd):Y3Al5O12”, Applied Physics Letter, 51, 1313-1315.
[17] Nadtocheev, O. E. V. E. a. N. (1989). “Two-wave emission from a cw solid-state YAG:Nd3+ laser”, Soviet. J. of Quantum Electronics, 19, 444.
[18] Shen, H. Y., Zeng, R. R., Zhou, Y. P., Yu, G. F., Huang, C. H., Zeng, Z. D., Zhang, W. J. & Ye, Q. J. (1990). “Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transition from 4F3/2–4I11/2 and 4F3/2–4I13/2”, Applied Physics Letter, 56, 1937-1938.
[19] Shen, H. Y., Zeng, R. R., Zhou, Y. P., Yu, G. F., Huang, C. H., Zeng, Z. D., Zhang, W. J. & Ye, Q. J. (1991). “Simultaneous multiple wavelength laser action in various neodymium host crystals”, IEEE J. of Quantum Electron, 27, 2315-2318.
[20] Wang, C. Q., Chow, Y. T., Yuan, D. R., Xu, D., Zhang, G. H., Liu, M. G., Lu, J. R., Shao, Z. S. & Jiang, M. H. (1999). “Cw dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal”, Optics Communications, 165, 231-235.
[21] Li, P., Li, D., Li, C. & Zhang, Z. (2004). “Simultaneous dual-wavelength continuous wave laser operation at 1.06 lm and 946 nm in Nd:YAG and their frequency doubling”, Optics Communications, 235, 169-174.
[22] Lee, Y. P. H. C. a. K., (2008). “Simultaneous dual-wavelength oscillation at 1357 nm and 1444 nm in a Kr-flashlamp pumped Nd:YAG laser”, Optics Communications, 281 4455-4458.
[23] Zhu, H., Zhang, G., Huang, C. H., Wei, Y., Huang, L. X., Li, A. H. & Chen, Q. (2008). “1318.8/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser”, Applied Physics B, 90, 451-454.
[24] Huan, L., Gang, X. D. & Quan, Y. (2009). “Simultaneous all-solid-state multi-wavelength Lasers: a promising pump source for generating highly coherent terahertz waves”, Chinese Physics B, 18, 1077-1084.
[25] Li, C. Y., Bo, Y., Xu, J. L., Tian, C. Y., Peng, Q. J., Cui, D. F. & Xu, Z. Y. (2011). “Simultaneous dual-wavelength oscillation at 1116 and 1123 nm of Nd:YAG laser”, Optics Communications, 284, 4574-4576.
[26] Hongyuan, S. (1990). “Oscilation condition of simultaneous multiple wavelength lasing”, Chinese Physics Letters, 7, 174-176.
[27] Zhou, R., Li, E. B., Zhang, G., Ding, X., Cai, Z. Q., Wen, W. Q., Wang, P. & Yao, J. Q. (2006). “Simultaneous dual-wavelength CW operation using 4F3/2–4I13/2 transitions in Nd:YVO4 crystal”, Optics Communications, 260, 641-644.
[28] Wu, B., Jiang, P. P., Yang, D. Z., Chen, T., Kong, J. & Shen, Y. H. (2009). “Compact dual wavelength Nd:GdVO4 laser working at 1063 and 1065 nm”, Optics Express, 17, 6004-6009.
[29] Yu, H. H., Zhang, H. J., Wang, Z. P., Wang, J. Y., Yu, Y. G., Shi, Z. B., Zhang, X. Y. & Jiang, M. H. (2009). “High power dual wavelength laser with with disordered Nd:CNGG crystals”, Optics Letter, 34, 151-153.
[30] Maestre, H., Torregrosa, A. J., Pousa, C. R., Rico, M. L. & Capmany, J. (2008). “Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+-doped aperiodically poled lithium niobate”, optics letter, 33, 1008-1010.
[31] Yoshioka, H., Nakamura, S., Ogawa, T. & Wada, S. (2010). “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity”, Optics Express, 18, 1479-1486.
[32] Janousek, J., Lichtenberg, P. T., Mortensen, J. L. & Buchhave, P. (2006). “Investigation of passively synchronized dual-wavelength Q-switched lasers based on V:YAG saturable absorber”, Optics Communications, 265, 277-282.
[33] Yu, H. H., Zhang, H. J., Wang, Z. P., Wang, J. Y., Yu, Y. G., Zhang, X. Y., Lan, R. J. & Jiang, M. H. (2009). “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector”, Applied Physics Letter, 94 041126.
[34] Shen, H. Y. & Su, H. (1999). “Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals”, Applied physics, 86, 6647-6651.
[35] Guo, L., Lan, R. J., Liu, H., Yu, H. H., Zhang, H. J., Wang, J. Y., Hu, D. W., Zhang, S. D., Chen L. J., Zhao, Y. G., Xu, X. G. & Wang, Z. P. (2010). “1319 nm and 1338 nm dual-wavelength operation of LD end pumped Nd:YAG ceramic laser”, Optics Express, 18, 9098-9106.
[36] Xue, L. P., Hua, L. D., Yong, L. C. & Guo, Z. Z. (2004). “Oscillation conditions of cw simultaneous dual-wavelength Nd:YAG laser for transitions 4F3/2 → 4I9/2 and 4F3/2 →4I11/2”, chinese physics, 13, 1689-1693.
[37] Bjurshagen, S., Evekull, D. & Koch, R. (2002). “Generation of blue light at 469 nm by efficient frequency doubling of diode-pumped Nd:YAG laser”, Electronics Letters, 38, 324-325.
[38] Pavel, N. (2010). “Simultaneous Dual-Wavelength Emission at 0.90 and 1.06 μm in Nd-doped Laser Crystals”, laser physics, 20, 215–221.
[39] McCumber, D. & Sturge, M. (1963). “Linewidth and temperature shift of the R lines in Ruby”, Applied Physics, 34, 1682-1984.
[40] Vink, A. P. & Meijerink, A. (2000). “Electron-phonon coupling of Cr3+ in YAG and YGG”, Journal of Luminescence, 87, 601-604.
[41] Macfarlane, R. M. (2000). “Direct process thermal line broadening in Tm:YAG”, Journal of Luminescence, 85, 181-186.
[42] Sardar, D. K., Yow, R. M. & Salinas, F. S. (2001). “Stark components of lower lying manifolds and phonon effects on sharp spectral lines for inter-Stark transitions of Nd3+ in LLGG crystal host”, Optical Materials, 18 301-308.
[43] Sardar, D. K. & Stubblefield, S. C. (1998). “Temperature dependence of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germinate laser host”, Applied physics, 83, 1195-1199.
[44] Johhson, S. A., Freie, H. G., Schawlowa, A. L. & Yen W. M. (1967). “Thermal shifts in the energy levels of LaF3:Nd3+”, Journal of the Optical Society of America, 57, 734-737.
[45] Sardar, D. K., Yow, R. M. & Sayka, A. (2001). “Crystal-Field Splittings and Phonon Effects on a Sharp Emission Line within a Manifold of Pr3+ in Ca5(PO4)3F Laser Host”, Phys. Stat. Sol. (b), 223, 691-700.
[46] Kushida, T. (1989). “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates”, Physical Review, 185, 500-508.
[47] Xing, J. C. S. Z. a. B. (1988). “Thermal shifts of the spectral lines in the 4F3/2 to 4I9/2”, IEEE journal of quantum electronics, 24, 1829-1832.
[48] Sardar, R. M. D. K. a. Y. (1998). “Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12”, Optical Materials, 10, 191-199.
[49] Sardar, D. K., Yow, R. M. & Salinas, F. S. (2001). “Stark components of lower-lying manifolds and phonon effects of sharp spectral lines for inter-Stark transitions of Nd3+ in LLGG crystal host”, Optical Materials, 18, 301-308.
[50] Mao, Y., Huang, M. & Wang, C. (2004). “Temperature effect on emission lines and fluorescence lifetime of the 4F3/2 state of Nd:YVO4”, Chinese Optics Letters, 2, 102-105.
[51] Singh, S., Smith, R. G. & Van, L. G. (1974). “Stimulated emission cross section and fluorescent quantum efficiency Of Nd3+ in yttrium aluminium garnet at room temperature”, Physics Review B, 10, 2566-2572.
[52] Kaminskii, A. A. (1990). Laser Crystals (second edition, Springer series in optical science).
[53] Kushida, T., Marcos, H. M. & Geusic, J. E. (1968). “Laser transition cross section and fluorescence branching ratio for Nd3+ for yttrium aluminum garnet”, Physics Review, 167, 289-291.
[54] Krupke, W. F., Shin, M. D., Marion, J. E., Carid, J. A. & Stokowski, S. E. (1986). “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet”, J. Opt. Soc. Am. B., 3, 102-114.
[55] Powel, R. C. (1998). Physics of solid laser materials (AIP Press/Springer, New York).
[56] Rapaport, A., Zhao, S., Xiao, G., Howard, A. & Bass, M. (2002). “Temperature dependence of the 1.06-μm stimulated emission cross section of neodymium in YAG and in GSGG”, Applied physics, 41, 5052-7057.
[57] Zhaoa, S., Rapaport, A., Dong, J., Chen, B., Deng, P. & Bass, M. (2006). “Temperature dependence of the 1.064-mm stimulated emission cross-section of Cr:Nd:YAG crystal”, Optics & Laser Technology, 38, 645–648.
[58] Bass, M., Weichman, L. S., Vigil, S. & Brickeen, B. K. (2003). “The Temperature dependence of Nd3+ doped solid-state lasers”, IEEE J. of Quantum Electronics, 39, 741-748.
[59] Sardar, D. K., Yow, R. M., Gruber, J. B., Allik, T. H. & Zandi, B. (2006). “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-stark transitions of Nd+3 (4f3) in polycrystalline ceramic garnet Y3Al5O12”, Journal of Luminescence, 116, 145-150.
[60] Kumar, G. A., Lu, J., Kaminskii, A. A., Ueda, K. I., Yagi, H., Yanagitani, T. & Unnikrishnan, N. V. (2004). “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics”, IEEE J. of Quantum electronics, 40, 747-758.
[61] Krupke, W. F., Shin, M. D., Marion, J. E., Carid, J. A. & Stokowski, S. E. (1986). “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet”, J. Opt. Soc. Am. B, 3, 102-114.
[62] Svelto, O. (2010). Principles of laser. (5th ed.). New York: Springer.
[63] Luo, Z., Huang, Y. & Chen, X. (2007). “Spectroscopy of solid-state laser and luminescent materials”, Chinese Academy of Sciences.
[64] Powell, R. C. (1998). “Physics of solid-state laser materials”, Springer-Verlag.
[65] Bartolo, B. D. (2010). Optical interaction in solids, 2nd edition (Boston College, USA).
[66] Chen, B. D. X. a. B. (1993). “Phonon effects on sharp luminescence lines of Nd3+ in Gd3Sc2Ga3O12 garnet (GSGG)”, Journal of Luminescence, 54, 309-318.
[67] Csele, M. (2004). Fundamentals of light sources and lasers. (1st ed.). New Jersey: John Wiley & Sons, Inc.
[68] Li, F. Q., Zhang, X. F., Zong, N., Yang, J., Peng, Q. J., Cui, D. F & Xu, Z. Y. (2009). “High-Efficiency High-Power Nd:YAG Laser under 885nm Laser Diode Pumping”, Chinese Physics Letters, 26, 114206-3.
[69] Quimby, R. (2006). Photonics and Laser: An Introduction. (1st ed.). New Jersey: John Wiley & Sons.
[70] Foot, C. J. (2005). Atomic Physics. (1st ed.). USA: Oxford University Press.
[71] Fan, T. Y. & Byer, R. L. (1987). “Modeling and cw operation of a quasi three level 946 nm Nd:YAG Laser”, IEEE J. of Quantum Electonics, 23, 605-612.
[72] Verlinden, N. (2008). “The Excited State Absorption Cross Section of Neodymium-doped Silica Glass Fiber in the 1200-1500 nm Wavelength Range”, Master of sciences thesis, Worcester Polytechnic Institute.
[73] Trager, F. (2007). Springer Handbook of laser and optics. (1st ed.) New York: Springer.

Chapter 3
[1] Zainal, R. (2011). Design and construction of free running and variable repetitive rate of flashlamp pumped Nd:YAG Laser. PhD thesis, Universiti Teknologi Malaysia.

Chapter 4
[1] Rui, Z., Zhiqiang, C., Wuqi, W., Xin, D., Peng, W. & Jianquan, Y. (2005). “High-power continuous-wave Nd:YAG laser at 946 nm and intracavity frequency-doubling with a compact three-element cavity”, Opt. Commu., 255, 304-308.

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!