Table of Contents
Table of Contents
Preface
Chapter 1. Introduction of Flashlamp Pumped Nd:YAG Laser (pp. 1-10)
Chapter 2. Concepts and Principle Working of Nd:YAG Laser (pp. 11-64)
Chapter 3. Research Methodology of Nd3+:YAG Laser Pumped by Flashlamp (pp. 65-76)
Chapter 4. Spectroscopic Results and Discussion on the Fluorescence Spectrum of the Pump Source to Excite Nd:YAG Laser Rod as Flashlamp (pp. 77-116)
Chapter 5. Conclusion and Future Work of Nd:YAG Laser (pp. 117-122)
About the Authors (pp. 123-124)
Index (pp. 125)
Total Pages: 128
References
Chapter 1
[1] Natarajan, V., Balakrishnan, V. & Mukunda, N. (2005). “Einstein’s Miraculous Year”, Resonance, 10, 35-56.
[2] Perlman, D. E. (1966). “Characteristics and Operation of Xenon Filled Linear Flashlamps. Review of Scientific Instruments”, Review of Scientific Instruments, 37, 340-343.
[3] Koechner, W. (2006). “Solid-State Laser Engineering”, 6th revised and updated version. USA: Springer.
[4] Rapaport, A., Zhao, S., Xiao, G., Howard, A. & Bass, M. (2002). “Temperature dependence of the 1.06-µm stimulated emission cross section of neodymium in YAG and in GSGG”, Applied Optics, 41, 7052-7057.
[5] Zhao, S., Rapaport, A., Dong, J., Chen, B., Deng, P. & Bass, M. (2005). “Temperature dependence of the 1.03 μm stimulated emission cross section of Cr:Yb:YAG crystal”, Optical Materials, 27, 1329–1332.
[6] Sardar, D. & Yow, R. (1998). “Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12”, Optical Materials, 10, 191–199.
[7] Sardar, D. & Yow, R. (2000). “Stark components of 4F3/2, 4I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd+3 in YVO4”, Optical Materials, 14, 5-11.
[8] Saiki, T., Nakatsuka, M., Fujioka, K., Motokoshi, S. & Imasaki, K. (2011). “Cross-relaxation and spectral broadening of gain for Nd/Cr:YAG ceramic lasers with white-light pump source under high-temperature operation. “, Optics Communications, 284, 2980-2984.
[9] Eichhorn, M. (2008). “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions”, Appl. Phys. B, 93, 269-316.
[10] Lupeia, V., Aka, G. & Vivien, D. (2002). “Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885nm into the emitting level”, Optics Communications, 204, 399–405.
[11] Dong, J., Rapaport, A., Bass, M., Szipocs, F. & Ueda, K. (2005). “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals”, Phys. Stat. Sol. (a), 202, 2565-2573.
[12] Turri, G., Jenssen, H. P., Cornacchia, F., Tonelli, M. & Bass, M. (2009). “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals”, J. Opt. Soc. Am. B., 26, 2084-2088.
[13] J. a. D. Dong, P. (2003). “Temperature dependent emission cross-section and fluorescence lifetime of Cr, Yb:YAG crystals”, Journal of Physics and Chemistry of Solids, 64, 1163-1171.
[14] Pourmand, S. E., Bidin, N. & Bakhtiar, H. (2012). “Effects of temperature and input energy on a quasi-three-level emission cross section of Nd3+:YAG pumped by a flashlamp”, Chin. Phys. Lett., 21, 094214.
[15] Zainal, R., Tamuri, A. R., Duad, Y. M. & Bidin, N. (2010). “Improvement in Ignition and simmer current supply into xenon flashlamp”, American Institute of Physics Procedings, 1250, 133-136.
[16] Kumar, G., Lu, J., Kaminskii, A., Ueda, K., Yagi. H., Yanagitani, T. & Unnikrishnan, N. (2004). “Spectroscopy and stimulated emission characteristics of Nd3+ in transparent YAG ceramics”, IEEE J. Quantum Electron., 40, 231-235.
[17] Dimov, S., Peik, E. & Walter, H. (1991). “A flashlamp-pumped 946 nm Nd:YAG laser”, Applied Physics B: Lasers and Optics, 53, 6-10.
Wang, C., Chow, Y. T., Yuan, D. R., Xu. D., Zhang, G. H., Liu. M., Lu. J., Shao, Z. & Jiang, M. H. (1999). “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal”, Optics Communications, 165, 231-235.
Chapter 2
[1] Wallace, S. E. W. a. H. (1969). “Oscillation and doubling of the 0.946-μ line in Nd:YAG”, Applied Physics Letter, 15, 111-112.
[2] Birnbaum, M., Tucker, A. W. & Pomphrey, P. J. (1972). “New Nd:YAG Laser Transitions 4F3/2→4I9/2”, IEEE J. of Quantum electron, 8, 501-501.
[3] Fan, T. Y. & Byer, R. L. (1987). “Continuous wave operation of a room temperature, diode-laser pumped, 946 nm Nd:YAG laser”, Optics Letter, 12, 809-811.
[4] Risk, W. P. & Length, W. (1987). “Room temperature, continuous wave, 946nm Nd:YAG laser, pumped by laser-diode arrays and intracavity frequency doubling to 473 nm”, Optics Letter, 12(993-995).
[5] Risk, W. P. (1988). “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses”, J. Opt. Soc. Am. B, 5, 1412-1423.
[6] Zhou, R., Cai, Z., Wen, W., Ding, X., Wang, P. & Yao, J. (2005). “High-power continuous-wave Nd:YAG laser at 946 nm and intracavity frequency-doubling with a compact three-element cavity”, Optics Communications, 225, 304-308.
[7] Dixon, G. J., Zhang, Z. M., Chang, R. & Djeu, N. (1988). “Efficient blue emission from an intracavity-doubled 946-nm Nd:YAG laser”, Optics Letter, 13, 137-139.
[8] Li, P. X., Li, D. H., Zhang, Z. G. & Zhang, S. W. (2003). “Diode-pumped high power cw blue laser at 473 nm with a compact three-element cavity”, Optics Communications, 215, 159-162.
[9] Li, P. X., Li, D. H., Zhang, Z. G. & Zhang, S. W. (2003). “Diode pumped compact cw frequency doubled Nd:YAG laser in the watt range at 473 nm”, Chinese Physics Letters, 20, 1064-1066.
[10] Rui, Z., Young, Z. S., Qiang, C. Z., Qi, W., Xin, D., Peng, W., Li, D. & Quan, Y. (2005). “High Power Diode-End-Pumped Nd:YAG 946-nm Laser and Its Eficient Frequency Doubling”, Chinese Physics Letters, 22, 1413-1415.
[11] Ling, Z., Yong, L. C., Hua, F. B., Yi, W. Z., Hua, L. D., Ming, F. U. & Guo, Z. Z. (2005). “Diode-Pumped Passive Q-Switched 946-nm Nd:YAG Laser with 2.1-W Average Output Power”, Chinese Physics Letters, 22, 1420-1422.
[12] Chen, Y., Peng, H., Hou, W., Peng, Q., Geng, A., Guo, L., Cui, D. & Xu, Z. (2006). “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO”, Appied Physics B, 83, 241-243.
[13] Bethea, C. G. (1973). “Megawatt Power at 1.318 μm in Nd3+:YAG and Simultaneous Oscillation at Both 1.06 and 1.318 μm”, IEEE J. OF Quantum. Electron, 9, 254-254.
[14] Vollmar, W., Knights, M. G., Rines, G. A., McCarthy, I. C. & Chicklis, E. P. (1983). “Five-color Nd:YLF laser”, Digest of Conference on Lasers and Electro Optics, 188-188.
[15] Shi, W. Q., Kurtz, R., Machan, J., Bass, M., Birnbaum, M. & Kokta, M. (1987). “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12”, Applied Physics Letter, 51, 1218-1220.
[16] Machan, J., Kurtz, R., Bass, M., Birnbaum, M. & Kokta, M. (1987). “Simultaneous, multiple wavelength lasing of (Ho, Nd):Y3Al5O12”, Applied Physics Letter, 51, 1313-1315.
[17] Nadtocheev, O. E. V. E. a. N. (1989). “Two-wave emission from a cw solid-state YAG:Nd3+ laser”, Soviet. J. of Quantum Electronics, 19, 444.
[18] Shen, H. Y., Zeng, R. R., Zhou, Y. P., Yu, G. F., Huang, C. H., Zeng, Z. D., Zhang, W. J. & Ye, Q. J. (1990). “Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transition from 4F3/2–4I11/2 and 4F3/2–4I13/2”, Applied Physics Letter, 56, 1937-1938.
[19] Shen, H. Y., Zeng, R. R., Zhou, Y. P., Yu, G. F., Huang, C. H., Zeng, Z. D., Zhang, W. J. & Ye, Q. J. (1991). “Simultaneous multiple wavelength laser action in various neodymium host crystals”, IEEE J. of Quantum Electron, 27, 2315-2318.
[20] Wang, C. Q., Chow, Y. T., Yuan, D. R., Xu, D., Zhang, G. H., Liu, M. G., Lu, J. R., Shao, Z. S. & Jiang, M. H. (1999). “Cw dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal”, Optics Communications, 165, 231-235.
[21] Li, P., Li, D., Li, C. & Zhang, Z. (2004). “Simultaneous dual-wavelength continuous wave laser operation at 1.06 lm and 946 nm in Nd:YAG and their frequency doubling”, Optics Communications, 235, 169-174.
[22] Lee, Y. P. H. C. a. K., (2008). “Simultaneous dual-wavelength oscillation at 1357 nm and 1444 nm in a Kr-flashlamp pumped Nd:YAG laser”, Optics Communications, 281 4455-4458.
[23] Zhu, H., Zhang, G., Huang, C. H., Wei, Y., Huang, L. X., Li, A. H. & Chen, Q. (2008). “1318.8/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser”, Applied Physics B, 90, 451-454.
[24] Huan, L., Gang, X. D. & Quan, Y. (2009). “Simultaneous all-solid-state multi-wavelength Lasers: a promising pump source for generating highly coherent terahertz waves”, Chinese Physics B, 18, 1077-1084.
[25] Li, C. Y., Bo, Y., Xu, J. L., Tian, C. Y., Peng, Q. J., Cui, D. F. & Xu, Z. Y. (2011). “Simultaneous dual-wavelength oscillation at 1116 and 1123 nm of Nd:YAG laser”, Optics Communications, 284, 4574-4576.
[26] Hongyuan, S. (1990). “Oscilation condition of simultaneous multiple wavelength lasing”, Chinese Physics Letters, 7, 174-176.
[27] Zhou, R., Li, E. B., Zhang, G., Ding, X., Cai, Z. Q., Wen, W. Q., Wang, P. & Yao, J. Q. (2006). “Simultaneous dual-wavelength CW operation using 4F3/2–4I13/2 transitions in Nd:YVO4 crystal”, Optics Communications, 260, 641-644.
[28] Wu, B., Jiang, P. P., Yang, D. Z., Chen, T., Kong, J. & Shen, Y. H. (2009). “Compact dual wavelength Nd:GdVO4 laser working at 1063 and 1065 nm”, Optics Express, 17, 6004-6009.
[29] Yu, H. H., Zhang, H. J., Wang, Z. P., Wang, J. Y., Yu, Y. G., Shi, Z. B., Zhang, X. Y. & Jiang, M. H. (2009). “High power dual wavelength laser with with disordered Nd:CNGG crystals”, Optics Letter, 34, 151-153.
[30] Maestre, H., Torregrosa, A. J., Pousa, C. R., Rico, M. L. & Capmany, J. (2008). “Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+-doped aperiodically poled lithium niobate”, optics letter, 33, 1008-1010.
[31] Yoshioka, H., Nakamura, S., Ogawa, T. & Wada, S. (2010). “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity”, Optics Express, 18, 1479-1486.
[32] Janousek, J., Lichtenberg, P. T., Mortensen, J. L. & Buchhave, P. (2006). “Investigation of passively synchronized dual-wavelength Q-switched lasers based on V:YAG saturable absorber”, Optics Communications, 265, 277-282.
[33] Yu, H. H., Zhang, H. J., Wang, Z. P., Wang, J. Y., Yu, Y. G., Zhang, X. Y., Lan, R. J. & Jiang, M. H. (2009). “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector”, Applied Physics Letter, 94 041126.
[34] Shen, H. Y. & Su, H. (1999). “Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals”, Applied physics, 86, 6647-6651.
[35] Guo, L., Lan, R. J., Liu, H., Yu, H. H., Zhang, H. J., Wang, J. Y., Hu, D. W., Zhang, S. D., Chen L. J., Zhao, Y. G., Xu, X. G. & Wang, Z. P. (2010). “1319 nm and 1338 nm dual-wavelength operation of LD end pumped Nd:YAG ceramic laser”, Optics Express, 18, 9098-9106.
[36] Xue, L. P., Hua, L. D., Yong, L. C. & Guo, Z. Z. (2004). “Oscillation conditions of cw simultaneous dual-wavelength Nd:YAG laser for transitions 4F3/2 → 4I9/2 and 4F3/2 →4I11/2”, chinese physics, 13, 1689-1693.
[37] Bjurshagen, S., Evekull, D. & Koch, R. (2002). “Generation of blue light at 469 nm by efficient frequency doubling of diode-pumped Nd:YAG laser”, Electronics Letters, 38, 324-325.
[38] Pavel, N. (2010). “Simultaneous Dual-Wavelength Emission at 0.90 and 1.06 μm in Nd-doped Laser Crystals”, laser physics, 20, 215–221.
[39] McCumber, D. & Sturge, M. (1963). “Linewidth and temperature shift of the R lines in Ruby”, Applied Physics, 34, 1682-1984.
[40] Vink, A. P. & Meijerink, A. (2000). “Electron-phonon coupling of Cr3+ in YAG and YGG”, Journal of Luminescence, 87, 601-604.
[41] Macfarlane, R. M. (2000). “Direct process thermal line broadening in Tm:YAG”, Journal of Luminescence, 85, 181-186.
[42] Sardar, D. K., Yow, R. M. & Salinas, F. S. (2001). “Stark components of lower lying manifolds and phonon effects on sharp spectral lines for inter-Stark transitions of Nd3+ in LLGG crystal host”, Optical Materials, 18 301-308.
[43] Sardar, D. K. & Stubblefield, S. C. (1998). “Temperature dependence of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germinate laser host”, Applied physics, 83, 1195-1199.
[44] Johhson, S. A., Freie, H. G., Schawlowa, A. L. & Yen W. M. (1967). “Thermal shifts in the energy levels of LaF3:Nd3+”, Journal of the Optical Society of America, 57, 734-737.
[45] Sardar, D. K., Yow, R. M. & Sayka, A. (2001). “Crystal-Field Splittings and Phonon Effects on a Sharp Emission Line within a Manifold of Pr3+ in Ca5(PO4)3F Laser Host”, Phys. Stat. Sol. (b), 223, 691-700.
[46] Kushida, T. (1989). “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates”, Physical Review, 185, 500-508.
[47] Xing, J. C. S. Z. a. B. (1988). “Thermal shifts of the spectral lines in the 4F3/2 to 4I9/2”, IEEE journal of quantum electronics, 24, 1829-1832.
[48] Sardar, R. M. D. K. a. Y. (1998). “Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12”, Optical Materials, 10, 191-199.
[49] Sardar, D. K., Yow, R. M. & Salinas, F. S. (2001). “Stark components of lower-lying manifolds and phonon effects of sharp spectral lines for inter-Stark transitions of Nd3+ in LLGG crystal host”, Optical Materials, 18, 301-308.
[50] Mao, Y., Huang, M. & Wang, C. (2004). “Temperature effect on emission lines and fluorescence lifetime of the 4F3/2 state of Nd:YVO4”, Chinese Optics Letters, 2, 102-105.
[51] Singh, S., Smith, R. G. & Van, L. G. (1974). “Stimulated emission cross section and fluorescent quantum efficiency Of Nd3+ in yttrium aluminium garnet at room temperature”, Physics Review B, 10, 2566-2572.
[52] Kaminskii, A. A. (1990). Laser Crystals (second edition, Springer series in optical science).
[53] Kushida, T., Marcos, H. M. & Geusic, J. E. (1968). “Laser transition cross section and fluorescence branching ratio for Nd3+ for yttrium aluminum garnet”, Physics Review, 167, 289-291.
[54] Krupke, W. F., Shin, M. D., Marion, J. E., Carid, J. A. & Stokowski, S. E. (1986). “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet”, J. Opt. Soc. Am. B., 3, 102-114.
[55] Powel, R. C. (1998). Physics of solid laser materials (AIP Press/Springer, New York).
[56] Rapaport, A., Zhao, S., Xiao, G., Howard, A. & Bass, M. (2002). “Temperature dependence of the 1.06-μm stimulated emission cross section of neodymium in YAG and in GSGG”, Applied physics, 41, 5052-7057.
[57] Zhaoa, S., Rapaport, A., Dong, J., Chen, B., Deng, P. & Bass, M. (2006). “Temperature dependence of the 1.064-mm stimulated emission cross-section of Cr:Nd:YAG crystal”, Optics & Laser Technology, 38, 645–648.
[58] Bass, M., Weichman, L. S., Vigil, S. & Brickeen, B. K. (2003). “The Temperature dependence of Nd3+ doped solid-state lasers”, IEEE J. of Quantum Electronics, 39, 741-748.
[59] Sardar, D. K., Yow, R. M., Gruber, J. B., Allik, T. H. & Zandi, B. (2006). “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-stark transitions of Nd+3 (4f3) in polycrystalline ceramic garnet Y3Al5O12”, Journal of Luminescence, 116, 145-150.
[60] Kumar, G. A., Lu, J., Kaminskii, A. A., Ueda, K. I., Yagi, H., Yanagitani, T. & Unnikrishnan, N. V. (2004). “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics”, IEEE J. of Quantum electronics, 40, 747-758.
[61] Krupke, W. F., Shin, M. D., Marion, J. E., Carid, J. A. & Stokowski, S. E. (1986). “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet”, J. Opt. Soc. Am. B, 3, 102-114.
[62] Svelto, O. (2010). Principles of laser. (5th ed.). New York: Springer.
[63] Luo, Z., Huang, Y. & Chen, X. (2007). “Spectroscopy of solid-state laser and luminescent materials”, Chinese Academy of Sciences.
[64] Powell, R. C. (1998). “Physics of solid-state laser materials”, Springer-Verlag.
[65] Bartolo, B. D. (2010). Optical interaction in solids, 2nd edition (Boston College, USA).
[66] Chen, B. D. X. a. B. (1993). “Phonon effects on sharp luminescence lines of Nd3+ in Gd3Sc2Ga3O12 garnet (GSGG)”, Journal of Luminescence, 54, 309-318.
[67] Csele, M. (2004). Fundamentals of light sources and lasers. (1st ed.). New Jersey: John Wiley & Sons, Inc.
[68] Li, F. Q., Zhang, X. F., Zong, N., Yang, J., Peng, Q. J., Cui, D. F & Xu, Z. Y. (2009). “High-Efficiency High-Power Nd:YAG Laser under 885nm Laser Diode Pumping”, Chinese Physics Letters, 26, 114206-3.
[69] Quimby, R. (2006). Photonics and Laser: An Introduction. (1st ed.). New Jersey: John Wiley & Sons.
[70] Foot, C. J. (2005). Atomic Physics. (1st ed.). USA: Oxford University Press.
[71] Fan, T. Y. & Byer, R. L. (1987). “Modeling and cw operation of a quasi three level 946 nm Nd:YAG Laser”, IEEE J. of Quantum Electonics, 23, 605-612.
[72] Verlinden, N. (2008). “The Excited State Absorption Cross Section of Neodymium-doped Silica Glass Fiber in the 1200-1500 nm Wavelength Range”, Master of sciences thesis, Worcester Polytechnic Institute.
[73] Trager, F. (2007). Springer Handbook of laser and optics. (1st ed.) New York: Springer.
Chapter 3
[1] Zainal, R. (2011). Design and construction of free running and variable repetitive rate of flashlamp pumped Nd:YAG Laser. PhD thesis, Universiti Teknologi Malaysia.
Chapter 4
[1] Rui, Z., Zhiqiang, C., Wuqi, W., Xin, D., Peng, W. & Jianquan, Y. (2005). “High-power continuous-wave Nd:YAG laser at 946 nm and intracavity frequency-doubling with a compact three-element cavity”, Opt. Commu., 255, 304-308.