Smart Miniaturized Wideband/Multiband and Reconfigurable Antenna for Modern Applications

Amel Boufrioua, PhD, MSc
University of Mentouri Brothers, Constantine, Algeria

Series: Electronics and Telecommunications Research
BISAC: TEC041000

Clear

$95.00

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

A telecommunications technology is continuously progressing. Its main areas of investigation are, for the most part, motivated by an increasing requirement in terms of data, but are more and more restricted by a hard spectrum of frequencies.

Reconfigurable antennas, as well as ultra broadband/multi-band communications systems, have experienced strong development in recent years. New multi-band/wide band antenna concepts have therefore emerged to meet this rising demand. These systems require a low-profile nature and ease of integration with associated electronics. Certainly, the use of such antennas has become extensive in the various modern telecommunications systems. However, the diversity of the characteristics of different bands to be covered (the shape of the radiation patterns, the type of polarization, and the bandwidth required) have increased the difficulty of designing these antennas.

The antennas allow for the control of these characteristics for different frequency bands and present a methodology of easy dimensions. Indeed, the miniaturization of the antennas is not without the cause of problems with their performances. The decrease in the size of the antennas is generally accompanied by a degradation of its efficiency and its bandwidth. As a result, designed miniaturized structures usually result from a compromise between bandwidth, efficiency and electrical size. To meet these needs and demands, several techniques will be used in this book to achieve multi-band/wideband performances which deal with the major patch antenna design challenges. In addition, some novel reconfigurable designs for recent applications will be addressed. The authors hope that this book will provide a full analysis and will present new research in this active field. This book will be divided into six chapters.

Preface

Chapter 1. Review of Basic Properties and Principles of Patch Antenna

Chapter 2. Patch Antenna Miniaturization Techniques

Chapter 3. General Background on Ultra Wide Band Technology

Chapter 4. Antenna Polarization Techniques

Chapter 5. Analysis and Design Techniques to Miniaturize and Increase Bandwidth Using Circuit Theory

Chapter 6. Reconfigurable Antenna for Frequency Diversity, Polarization and Radiation Pattern

Index

Chapter 1

[1] H. Ben Ibrahim Gaha, Analyse et conception des antennes fractales applications aux télécommunications large bande, Doctoral thesis, Polytechnical National Institute of Toulouse, France & National Engineering School, El Manar University, Tunisia, July 2007. [Analysis and design of fractal antennas applications to broadband telecommunications, Doctoral thesis, Polytechnical National Institute of Toulouse, France & National Engineering School, El Manar University, Tunisia, July 2007].
[2] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, “IEEE 802.11 wireless local area networks,” IEEE Commun. Mag, vol. 35, pp. 116-126, 1997.
[3] H. Schulze and C. Lüders, Theory and applications of OFDM and CDMA Wideband Wireless Communications, John Wiley & Sons, Ltd, England, 2005.
[4] L. Hanzo, M. Münster, B. J. Choi and T. Keller, OFDM and CDMA for broadband multi-user communications WLANs and broadcasting, Wiley-IEEE Press, 2003.
[5] J. Y. Siddiqui and D. Guha, “Applications of triangular microstrip patch: Circuit elements to modern wireless antennas,” Mikrotalasnarevija, vol. 13, pp. 8-11, 2007.
[6] Boufrioua, Contribution à l’étude des antennes à patch résistif et parfaitement conducteur tenant compte d’une source d’excitation et des nouvelles formes asymptotiques de courant, Doctoral thesis, Electronics Department, Constantine University, November 2006, Algeria. [Contribution to the study of resistive patch antennas and perfectly conducting patches taking into account an excitation source and new forms of asymptotic current, Doctoral thesis, Electronics Department, Constantine University, November 2006, Algeria].
[7] A. Balanis, Antenna theory: Analysis and design, third edition, John Wiley Sons, Hoboken, New Jersey, USA, 2005.
[8] G. Kumar and K. P. Ray, Broadband microstrip antennas, Norwood, MA: Artech House, 2003.
[9] D. M. Pozar, and D. H. Schaubert, Microstrip antennas: The analysis and design of microstrip antennas and arrays, John Wiley & Sons, New York, 1995.
[10] J. M. Fleuriault, Synthèse du diagramme de rayonnement d’un réseau de sources, Doctoral thesis, Rennes 1 University, 1996, France. [Synthesis of the radiation pattern of a source network, Doctoral thesis, Rennes 1 University, 1996, France].
[11] Antenna Standards Committee of the IEEE Antennas and Propagation Society, IEEE Standard Definitions of Terms for Antennas, IEEE std. 145-1993, The Institute of Electrical and Electronics Engineers Inc, New York, 1993.
[12] J. P. Damiano and A. Papiernik, “Survey of analytical and numerical models for probe-fed microstrip antennas,” IEE proceeding-Microwaves, Antennas and Propagation, vol. 141, pp. 15-22, 1994.
[13] D. Kearney, Small antenna options for ultra-wideband (UWB) applications, Master’s Thesis Dublin, Dublin Institute of Technology, 2009, Ireland.
[14] J. D. Kraus, Antennas, McGraw Hill. New York, 1950.
[15] Boufrioua, Microstrip antennas modeling for recent applications, Nova Science Publishers, New York, September 2016.
[16] P. Bhartia, K. V. S. Rao and R. S. Tomar, Millimeter wave microstrip and printed circuit antennas, Artech House, Boston, London. 1991.
[17] G. Singh and J. Singh, “Comparative analysis of microstrip patch antenna with different feeding techniques,” International Conference on Recent Advances and Future Trends in Information Technology, pp. 18-22, 2012.
[18] D. M. Pozar and B. Kaufman, “Increasing the bandwidth of a Microstrip antenna by proximity coupling,” Electronics letters, vol 23, pp. 368-369, 1987
[19] F. S. Fong, H. F. Pues and M. J. Wither, “Wideband multilayer coaxial-feed Microstrip antenna element,” Electronics letters, vol. 21, pp. 497-498, 1985.
[20] K. R. Carver, and J. W. Mink, “Microstrip antenna technology,” IEEE Transactions on Antennas and Propagation, vol. 29, pp. 2-24, 1981.
[21] F. Croq, A. Papiernik, and P. Brachat, “Wideband aperture-coupled microstrip subarray,” IEEE Antennas and Propagation Society International Symposium 1990, AP-S Merging Technologies for the 90’s Digest, 7-11 May 1990.
[22] J. F. Zurcher, and F. E. Gardiol, Broadband patch antennas, Norwood, MA: Artech House, 1995.
[23] R. L. Smith, and J. T. Williams, “Coplanar waveguide feed for microstrip patch antenna,” Electronics Letters, vol. 28, pp. 2272-2274, 1992.
[24] J. Wu, X. Ren, Z. Li, and Y. Yin, “Modified square slot antennas for broad-band circular polarization,” Progress in Electro-magnetics Research C, vol. 38, pp. 1-14, 2013.
[25] C. L. Mak, K. M. Luk and K. F. Lee, “Microstrip line-fed L-strip patch antenna,” IEEE Proceedings-Microwave Antennas and Propagation, vol. 146, pp. 282-284, 1999.
[26] Deshmukh and G. Kumar, “Formulation of resonant frequency for compact rectangular microstrip antennas,” Microwave and Optical Technology Letters, vol. 49, pp. 498-501, 2007.
[27] E. Wang and J. Zheng, “A novel dual-band patch antenna for WLAN communication,” Progress in Electromagnetics Research C, vol. 6, pp. 93-102, 2009.
[28] C. M. Su, H. T. Chen, F.S. Chang and K. L Wong, “Dualband slot antenna for 2.4/5.2 GHz WLAN operation,” Microwave and Optical Technology Lett., vol. 35, pp.306-308, 2002.
[29] J. Bahl, and P. Bhartia, Microstrip antennas, Dedham, MA: Artech House, 1980.

Chapter 2

[1] J. Costantine, K. Y Kabalan, A. El-Hajj and M. Rammal, “New multi-band microstrip antenna design for wireless communications,” IEEE Antennas and Propagation Magazine, vol. 49, pp. 181-186, 2007.
[2] M. Abu and M. K. A. Rahim, “Triple band printed dipole TAG antenna for RFID,” Progress in Electromagnetic Research C, vol. 9, pp. 145-153, 2009.
[3] D. F. Sievenpiper, D. C. Dawson, M. M. Jacob, T. Kanar, S. Kim, J. Long and R. G. Quarfoth, “Experimental validation of performance limits and design guidelines for small antennas,” IEEE Transactions on Antennas and Propagation, vol. 60, pp. 8-19, 2012.
[4] M. U. Khan, M. S. Sharawi and R. Mittra, “Microstrip patch antenna miniaturisation techniques: a review, IET Microwaves, Antennas and Propagation, vol. 9, pp. 913-922, 2015.
[5] H. Oraizi and S. Hedayati, “Miniaturization of microstrip antennas by the novel application of the Giuseppe Peano,” IEEE Transactions on Antennas and Propagation, vol. 60, pp. 3559-3567, 2012.
[6] R. O. Ouedraogo, E. J. Rothwell, A. R. Diaz, K. Fuchi and A. Temme, “Miniaturization of patch antennas using a metamaterial-inspired technique,” IEEE Transactions on Antennas and Propagation, vol. 60, pp. 2175-2182, 2012.
[7] Y. Dong, H. Toyao and T. Itoh, “Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators,” IEEE Transactions on Antennas and Propagation, vol. 60, pp. 772-785, 2012.
[8] Y. P. Zhang, T. K. C. Lo and Y. M. Hwang, “A dielectric-loaded miniature antenna for microcellular and personal communications,” IEEE Proceedings, AP Symposium, pp. 1152-1155, 1995.
[9] F. Rahmadani and A. Munir, “Microstrip patch antenna miniaturization using artificial magnetic conductor,” IEEE, Telecommunication Systems, Services, and Applications (TSSA), 2011 6th International Conference, 20-21 October 2011, Bali, Indonesia
[10] S. A. Tretyakov and M. Ermutlu, “Modeling of patch antennas partially loaded with dispersive backward-wave materials,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 206-269, 2005.
[11] R. C. Hansen and M. Burke, “Antennas with magneto-dielectrics,” Microwave and Optical Technology Letters, vol. 26, pp. 75-78, 2000.
[12] Thior, A.-C. Lepage and X. Begaud, “Low profile directive and ultra-wideband antenna on a high impedance surface,” EuCAP 2009, Berlin, Allemagne, 2009.
[13] A. Kramer, M. Lee and C. C. Chen, “Design and performance of an ultra-wideband ceramic-loaded slot spiral,” IEEE Transactions on Antennas and Propagation, vol. 53, pp. 2193-2199, 2005.
[14] Mehdipour, T. A. Denidni, and A. R. Sebak, “Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern,” IEEE Transactions on Antennas and Propagation, vol. 62, pp. 555-562, 2014.
[15] J. Kula, D. Psychoudakis, W. J. Liao, C. C. Chen, J. L. Volakis and J. W. Halloran, “Patch antenna miniaturization using recently available ceramic substrates,” IEEE Antennas and Propagation Magazine, vol. 48, pp. 13-20, 2006.
[16] Hoorfar and A. Perrotta, “An experimental study of microstrip antennas on very high permittivity ceramic substrates and very small ground planes,” IEEE Transactions on Antennas and Propagation, vol. 49, pp. 838-840, 2001.
[17] Lee and F. J. Harackiewicz, “Miniature microstrip antenna with a partially filled high-permittivity substrate,” IEEE Transactions on Antennas and Propagation, vol. 50, pp. 1160-1162, 2002.
[18] H. Schaubert and K. S. Yngvesson, “Experimental study of a microstrip array on high permittivity substrate,” IEEE Transactions on Antennas and Propagation, vol. 34, pp. 92-97, 1986.
[19] Psychoudakis, Y. H. Koh, J. Volakis and J. Halloran, “Design method for aperture-coupled microstrip patch antennas on textured dielectric substrates,” IEEE Transactions on Antennas and Propagation, vol. 52, pp. 2763-2765, 2004.
[20] J. Colburn and Y. Samii, “Patch antennas on externally perforated high dielectric constant substrate,” IEEE Transactions on Antennas and Propagation, vol. 47, pp. 1785-1794, 1999.
[21] F. Farzami, K. Forooraghi and M. Norooziarab, “Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1540-1542, 2012.
[22] P. M. T. Ikonen, K. N. Rozanov, A. V. Osipov, P. Alitalo and S. A. Tretyakov, “Magnetodielectric substrates in antenna miniaturization: potential and limitations,” IEEE Transactions on Antennas and Propagation, vol. 54, pp. 3391-3399, 2006.
[23] Boufrioua, “Bandwidth improvement of patch antenna printed on anisotropic substrate with modified ground plane,” Chapter 15 in the book entitled 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015), Editor: A.Y. Oral and Z.B. Bahsi Oral (eds.), Springer International Publishing AG 2017, pp. 123-131, 2017.
[24] J. Huang, “The finite ground plane effect on the microstrip antenna radiation patterns,” IEEE Transactions on Antennas and Propagation, vol. 31, pp. 649-653, 1983.
[25] Picher, J. Anguera, A. Bujalance, A. Andujar and C. Puente, “Analysis of a multiband monopole handset antenna combined with a slotted ground plane,” Microwave and Optical Technology Letters, vol. 55, pp. 173-180, January. 2013.
[26] Bhattacharyya, “Effects of finite ground plane on the radiation characteristics of a circular patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 38, pp. 152-159, 1990.
[27] E. Lier and K. Jakobsen, “Rectangular microstrip patch antennas with infinite and finite ground plane dimensions,” IEEE Transactions on Antennas and Propagation, vol. 31, pp. 978-984, 1983.
[28] J. S. Kuo and K. L. Wong, “A compact microstrip antenna with meandering slots in the ground plane,” Microwave and Optical Technology Letters, vol. 29, pp. 95-97, 2001.
[29] H. V. Prabhakar, U. K. Kummuri, R. M. Yadahalli and V. Munnappa, “Effect of various meandering slots in rectangular microstrip antenna ground plane for compact broadband operation,” Electronics Letters, vol. 43, pp. 16-17, 2007.
[30] S. Sarkar, A. D. Majumdar, S. Mondal, S. Biswas, D. Sarkar and P. P. Sarkar, “Miniaturization of rectangular microstrip patch antenna using optimized single-slotted ground plane,” Microwave and Optical Technology Letters, vol. 53, pp. 111-115, 2011.
[31] Holub and M. Polivka, “A novel microstrip patch antenna miniaturization technique: A meanderly folded shorted-patch antenna,” 14th Conference on Microwave Techniques, COMITE 2008. 23-24 April 2008, Prague.
[32] G. Kossiavas and A. Papiernik, “The C-patch: A small microstrip element,” IEEE Electronics Letters, vol. 25, pp. 253-254, 1989.
[33] P. Ciais, R. Staraj, G. Kossiavas and C. Luxey, “Design of an internal quad-band antenna for mobile phones,” IEEE Microwave and Wireless Components Letters, vol. 14, pp. 148-150, 2004.
[34] K. L. Wong, Compact and broadband microstrip antennas, Ed. Wiley, 2002.
[35] R. Garg, P. Bhartia, I. Bhal and A. Ittipiboon, Microstrip antenna design handbook, Artech House, MA, USA, 2001.
[36] K. Hirisawa and M. Haneishi, Analysis, design and measurement of small and low-profile antennas, Ed. Artech House, 2002.
[37] G. Ruvio and M. J. Ammann, “A novel wideband semi-planar miniaturized antenna,” IEEE Transactions on Antennas and Propagation, vol. 55, pp. 2679-2685, 2007.
[38] G. Ruvio, and M. J. Ammann, “A compact wide-band shorted folded antenna,” IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials (iWAT 2006), Mar. 2006. pp. 84-87.
[39] N. Fortino, J. Y. Dauvignac, G. Kossiavas and R. Staraj, “Design optimization of ULB printed antenna for omnidirectional pulse radiation,” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 1875-1881, 2008.
[40] R. Li, G. Dejean, M. M. Tentzeris and J. Laskar, “Development and analysis of a folded shorted-patch antenna with reduced size,” IEEE Transactions on Antennas and Propagation, vol. 52, pp. 555-562, 2004.
[41] Y. Chiu, C. H. Chan and K. M. Luk, “Study of a small wide-band patch antenna with double shorting walls,” IEEE Antennas and Wireless Propagation Letters, vol. 3, pp. 230-231, 2004.
[42] Loutridis, M. John and M. J. Ammann, “Folded meandered monopole for emerging smart metering and M2M applications in the lower UHF band,” IEEE Antennas and Propagation Magazine., vol. 58, pp. 60-65, 2016.
[43] Loutridis, M. John and M. J. Ammann, “Folded meander line antenna for wireless M-Bus in the VHF and UHF bands,” Electronics Letters. vol. 51, pp. 1138-1140, 2015.
[44] S. M. Moon, H. K. Ryu, J. M. Woo and H. Ling, “Miniaturisation of λ/4 microstrip antenna using perturbation effect and plate loading for low-VHF-band applications,” Electronics Letters., vol. 47, pp. 162-164, 2011.
[45] R. Porath, “Theory of miniaturized shorting-post microstrip antennas,” IEEE Transactions on Antennas and Propagation, vol. 48, pp. 41-47, 2000.
[46] Loutrids, M. John and M. J. Ammann, “Dual band LTE planar inverted-F antenna for M2M applications,” Microwave and Optical Technology Letters, vol. 55, pp. 2925-2929, 2013.
[47] S. Wang, H. W. Lai, K. K. So, K. B. Ng, Q. Xue and G. Liao, “Wideband shorted patch antenna with a modified half U-slot,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 689-692, 2012.
[48] G. Ruvio and M. J. Ammann, “From L-shaped planar monopoles to a novel folded antenna with wide bandwidth,” IEE Proceedings Microwaves, Antennas and Propagation, vol. 153, pp. 456-460, 2006.
[49] Z. N. Chen, “Miniaturization of ultra-wideband antennas,” Proceedings of the Asia-Pacific Microwave Conference 2011.
[50] M. Mohammadirad, N. Komjani and M. Yazdi, “Design and implementation of a new UWB microstrip antenna,” 14th International Symposium on Antenna and Applied Electro-magnetics [ANTEM] and the American Electromagnetics Conference [AMEREM], 2010.
[51] S. Tourette, N. Fortino, J. Y. Dauvignac and G. Kossiavas, “Compact UWB printed antennas for low frequency applications matched to different transmission lines,” Microwave and Optical Technology Letters, vol. 49, p. 1282-1287, 2007.
[52] M. A. P.Solis, G. M. G. Tejada and H. J. Aguilar, “A novel planar UWB monopole antenna formed on a printed circuit board,” Microwave and Optical Technology Letters, vol.48, pp.933-935, 2006.
[53] S. J. Liao, K. L. Wong, and L. C. Chou, “Small-size uniplanar coupled-fed PIFA for 2.4/5.2/5.8 GHz WLAN operation in the laptop computer,” Microwave and Optical Technology Letters, vol. 51, pp. 1023-1028, 2009.
[54] J. Gianvittorio and Y. R. Samii, “Fractal antennas: a novel antenna miniaturization technique, and applications,” IEEE Antennas and Propagation Magazine, vol. 44, pp. 20-36, 2002.
[55] J. S. Petk, and D. H. Werner, “Miniature reconfigurable three-dimensional fractal tree antennas,” IEEE Transactions on Antennas and Propagation, vol. 52, 1945-1956, 2004.
[56] J. Anguera, L. Boada, C. Puente, C. Borja and J. Soler, “Stacked H-shaped microstrip patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 52, pp. 983-993, 2004.
[57] Boufrioua, “Wideband slotted microstrip antennas for modern applications,” Chapter 2 in the Book entitled Advances in Communications and Media Research, vol 12, Editors: Anthony V. Stavros, Nova Publishers, pp. 35-56, 2017.
[58] M. Elsheakh and AM. E. Safwat, “Slow-wave quad-band printed inverted-F antenna (IFA),” IEEE Transactions on Antennas and Propagation, vol. 62, pp. 4396-4401, 2014.
[59] S. Chatterjee, K. Ghosh, J. Paul, S. K. Chowdhury, D. Chanda and P. P. Sarkar, “Compact microstrip antenna for mobile communication,” Microwave and Optical Technology. Letters, vol. 55, pp. 954-957, 2013.
[60] W. S. Chen, C. K. Wu and K. L. Wong, “Square-ring microstrip antenna with a cross strip for compact circular polarization operation,” IEEE Transactions on Antennas and Propagation, vol. 47, pp. 1566-1568, 1999.
[61] K. Shackelford, K.-F. Lee and K. M. Luk, “Design of small-size wide-bandwidth microstrip-patch antennas,” IEEE Antennas and Propagation Magazine, vol. 45, pp. 75-83, 2003.
[62] Z. Liang, Y. Li, and Y. Long, “Multiband monopole mobile phone antenna with circular polarization for GNSS application,” IEEE Transactions on Antennas and Propagation, vol. 62, 1910-1917, 2014.
[63] J. A. T. Mendez, H. J. Aguilar and F. I. Sanchez, “Application of the defected microstrip structure as a tuning technique for rectangular printed antennas,” Microwave and Optical Technology Letters, vol. 48, pp. 16-19, 2006.
[64] R. A. Bhatti, Y. T. Im and S. O. Park, “Compact PIFA for mobile terminals supporting multiple cellular and non-cellular standards,” IEEE Transactions on Antennas and Propagation, vol. 57, pp. 2534-2540, 2009.
[65] H. T. Nguyen, S. Noghanian and L. Shafai, “Microstrip patch miniaturization by slots loading,” IEEE Antennas and Propagation Society International Symposium, 3-8 July, 2005.
[66] S. W. Chen, D. Y. Wang, and W. H. Tu, “Dual-band/tri-band/
broadband CPW-fed stepped-impedance slot dipole antennas,” IEEE Transactions on Antennas and Propagation, vol. 62, pp. 485-490, 2014.
[67] Boufrioua, Microstrip antennas modeling for recent applications, Nova Science Publishers INC, September 2016.
[68] Z. N. Chen, S. P. S. Terence and Q. Xianming, “Small printed ultra-wideband antenna with reduced ground plane effect,” IEEE Transactions on Antennas and Propagation, vol.55, 2007.
[69] Chami, Miniaturisation et intégration d’antennes imprimées pour systèmes communicants ULB pulsés, Doctoral thesis in Electronics, Nice-Sophia Antipolis University, November 2011, France. [Miniaturization and integration of printed antennas for pulsed ULB communicating systems, Doctoral thesis in Electronics, Nice-Sophia Antipolis University, November 2011, France].
[70] Y. Ding and K. Wu, “Miniaturization techniques of substrate integrated waveguide circuits,” Art of Miniaturizing RF and Microwave Passive Components, 2008. IMWS 2008. IEEE MTT-S International Microwave Workshop Series on, 14-15 Dec. 2008.


Chapter 3

[1] T. W. Barrett, “History of ultra-wideband (UWB) radar & communications, pioneers and innovators,” Progress in Electromagnetics Symposium (PIERS2000), Cambridge, MA, USA, 2000.
[2] K. Siwiak, “Ultra-wideband radio: A new pan and positioning technology,” IEEE Vehicular Technology Society News, pp. 4-9, 2002.
[3] Chami, Miniaturisation et intégration d’antennes imprimées pour systèmes communicants ULB pulsés, Doctoral thesis in Electronics, Nice-Sophia Antipolis University, November 2011, France. [Miniaturization and integration of printed antennas for pulsed ULB communicating systems, Doctoral thesis in Electronics, Nice-Sophia Antipolis University, November 2011, France].
[4] G. F. Ross, and K. W. Robbins, Baseband radiation and reception system, U. S. Patent, June 1973.
[5] H. F. Harmuth, “A generalized concept of frequency and some applications,” IEEE Transactions on Information Theory, vol. 14, pp. 375-382, 1968.
[6] L. Barour, Etude et conception d’antennes ultra large bande miniaturisées en impulsionnel, Doctoral thesis, Polytechnic Institute of Grenoble, May 2009, France. [Study and design of ultra-wide band antennas miniaturized in pulses, Doctoral thesis, Polytechnic Institute of Grenoble, May 2009, France].
[7] L. Yang and G. B. Giannakis, “Ultra-wideband communications: an idea whose time has come,” IEEE Signal Processing Magazine, vol. 21, pp. 26-54, 2004.
[8] M. Z. Win, F. R. Mireles, R. A. Scholtz and M. A. Barnes, “Ultra-wide bandwidth (UWB) signal propagation for outdoor wireless communications,” IEEE 47th Vehicular Technology Conference, 4-7 May 1997, USA.
[9] N. Fortino, G. Kossiavas, J. Y. Dauvignac and R. Staraj, “Novel antenna for ultra-wideband communications,” Microwave Optical Technology. Letters, vol. 41, pp.166-169, 2004.
[10] S. Tourette, N. Fortino, J. Y. Dauvignac and G. Kossiavas, “Compact UWB printed antennas for low frequency applications matched to different transmission lines,” Microwave and Optical Technology Letters, pp 1282-1287, 2007.
[11] N. Fortino, J. Y Dauvignac, G. Kossiavas and R. Staraj, “Design optimization of UWB printed antenna for omnidirectional pulse radiation,” IEEE Transactions on Antennas and Propagation, vol. 56, pp.1875-1881, 2007.
[12] S. W. Su, K. L. Wong and C. L. Tang, “Ultra-wideband square planar monopole antenna for IEEE 802.16a operation in the 2-11-GHz band,” Microwave Optical Technology. Letters, vol. 42, pp. 463-465, 2004.
[13] M. A. P. Solis, G. M. G. Tejada and H. J. Aguilar, “A novel planar UWB monopole antenna formed on a printed circuit board,” Microwave and Optical Technology Letters, vol. 48, pp. 933-935, 2006.
[14] Z. N. Chen, T. S. P. See and X. Qing; “Small printed ultra-wideband antenna with reduced ground plane effect,” IEEE Transactions on Antennas and Propagation, vol. 55, 2007.
[15] N. Fortino, J. Y. Dauvignac, G. Kossiavas and R. Staraj, “Design optimization of ULB printed antenna for omnidirection al pulse radiation,” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 1875-1881, 2008.
[16] S. H. Choi, G. T. Jeong, H. H. Park, H. C. Lee and K. S. Kwak, “Compact band-notched ultra-wideband Y-shaped antenna with dual inverted-L slots,” Microwave and Optical Technology Letters, vol. 50, 2008.
[17] H. Zhou, Y. Yin, J. Deng, Q. Liu, “CPW-fed ultra-wideband antenna with dual band-notched characteristics,” Microwave and Optical Technology Letters, vol. 51, 2009.
[18] E. A. Daviu, M. C. Fabrés, M. F. Bataller and V. M. R. Penarrocha, “Modal analysis and design of band-notched UWB planar monopole antennas,” IEEE Transactions on Antennas and Propagation, vol. 58, pp. 1457-1467, 2010.
[19] D. Lamensdorf and L. Susman, “Baseband-pulse antenna techniques,” IEEE antennas and Propagation magazine, vol. 36, pp. 20-30, 1994
[20] J. S. McLean, R. Sutton and H. Foltz, “The effect of source pulse shape on the energy and correlation patterns of UWB antennas,” European Conference on Wireless Technology, pp. 113-116, 2004.
[21] X. Qing, Z. N. Chen and M. Y. W. Chia, “UWB characteristics of disc cone antenna,” IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, IWAT 2005, 7-9 March 2005, Singapore.
[22] J. S. McLean, H. Foltz and R. Sutton, “Pattern descriptors for UWB antennas,” IEEE Transaction on Antennas and Propagation, vol. 53, pp. 553-559, 2005.
[23] D. H. Kwon, “Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultra-wideband antennas,” IEEE Transaction on Antennas and Propagation, vol. 54, pp. 2208-2215, 2006.
[24] R. C. Hansen and M. Burke, “Antennas with magneto-dielectrics,” Microwave and Optical Technology Letters, vol. 26, pp. 75-78, 2000.
[25] B. A. Kramer, M. LEE and C. C. Chen, “Design and performance of an ultra-wideband ceramic loaded slot spiral,” IEEE Transactions on Antennas and Propagation, vol. 53, pp. 2193-2199, 2005.
[26] X. Li, S. C. Hagness, M. K. Choi, and D. W. Van Der Weide, “Numerical and experimental investigation of an ultra-wideband ridged pyramidal horn antenna with curved launching plane for pulse radiation,” IEEE Antennas and Wireless Propagation Letters, vol. 2, pp 259-262, 2003.
[27] N. Telzhensky and Y. Leviatan, “Planar differential elliptical UWB antenna optimization,” IEEE Transaction on. Antennas and Propagation, vol. 54, pp. 3400- 3406, 2006.
[28] D. Taylor, Ultra-Wideband Radar Technology, CRC Press, 2001.
[29] H. Nikookar and R. Prasad, Introduction to ultra-wideband for wireless communications, Springer, 2009.
[30] R. Fontana, “Current trends in UWB systems in the USA”, Advanced Radio Technology Symposium 2002, Tokyo, Japan, December, 2002.
[31] M. Rafie, “Opportunities for UWB design,” Host Web Seminar on design of Ultra-Wideband Wireless Networking Products, December 2003.
[32] C. L. Bennett, G. F. Ross, “Time domain electromagnetic and its applications,” Proceedings of the IEEE, vol. 66, pp. 299-318, 1978.
[33] N. Fortino, Conception et caractérisation d’antennes imprimées pour systèmes ultra large bande impulsionnels, Doctoral thesis, Nice-Sophia Antipolis University, February 2006, France. [Design and characterization of printed antennas for ultra-wide impulse systems, Doctoral thesis, Nice-Sophia Antipolis University, February 2006, France].

Chapter 4

[1] J. Wu, X. Ren, Z. Li and Y. Yin, “Modified square slot antennas for broad band circular polarization,” Progress In Electromagnetics Research C, vol. 38, pp. 1-14, 2013.
[2] F. Ramirez, D. Flaviis, and N. G. Alexopoulos, “Single-feed circularly polarized microstrip ring antenna and arrays,” IEEE Transactions on Antennas and Propagation, vol. 48, pp. 1040-1047, 2000.
[3] R. M. Sorbello and A. I. Zaghloul, “Wideband, high-efficiency, circularly polarized slot elements,” IEEE Antennas and Propagation Society International Symposium. AP-S. Digest, 26-30, June 1989.
[4] Linardou, C. Migliaccio, J. M. Laheurte and A. Papiernik, “Twin vivaldi antenna fed by coplanar waveguide,” Electronics Letters, vol. 33, pp. 1835-1837, 1997.
[5] C. Y. Huang and C. W. Ling, “CPW feed circularly polarized microstrip antenna using asymmetric coupling slot,” Electronics Letters, vol. 39, pp. 1627-1628, 2003.
[6] P. R. Prajapati, G. G. K. Murthy, A. Patnaik and M. V. Kartikeyan, “Design and testing of a compact circularly polarized microstrip antenna with fractal defected ground structure for L-band applications,” IET Microwaves, Antennas & Propagation, vol. 9, pp. 1179-1185, 2015.
[7] G. Q. Luo, Z. F. Hu, Y. Liang, L. Y. Yu and L. L. Sun, “Development of low profile cavity backed crossed slot antennas for planar integration,” IEEE Transactions on Antennas and Propagation, vol. 57, pp. 2972–2979, 2009.
[8] J. Ju and D. Kim, “Circularly-polarised high gain cavity antenna based on sequentially rotated phase feeding,” Electronics Letters, vol. 49, pp. 1198-1200, 2013.
[9] R. Vaidya, R. K. Gupta, S. K. Mishra and J. Mukherjee, “Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 431-434, 2014.
[10] R. Orr, G. Goussetis and V. Fusco, “Design method for circularly polarized Fabry-Perot cavity antennas,” IEEE Transactions on Antennas and Propagation, vol. 62, pp. 19-26, 2014.
[11] W. Han, F. Yang, R. Long, L. Zhou and F. Yan, “Single-fed low-profile high-gain circularly polarized slotted cavity antenna using a high-order mode,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp110-113, 2016.
[12] Z. G. Liu, Z. X. Cao and L. N. Wu, “Compact low-profile circularly polarized Fabry–Perot resonator antenna fed by linearly polarized microstrip patch,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 524-527, 2016.
[13] Z. G. Liu, W. Zhang, D. Fu, Y. Gu and Z. Ge, “Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size,” Microwave and Optical Technology Letters, vol. 50, pp. 1623-1627, 2008.
[14] Z. G. Liu, “Fabry-Perot resonator antenna,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 31, pp. 391-403, 2010.
[15] G. Q. Luo, X. H. Zhang, L. X. Dong, W. J. Li, and L. L. Sun, “A gain enhanced cavity backed slot antenna using high order cavity resonance,” Journal of Electromagnetic Waves and Applications, vol. 25, pp. 1273-1279, 2011.
[16] S. A. Muhammad, R. Sauleau and H. Legay, “Self-polarizing Fabry-Perot antennas based on polarization twisting element,” IEEE Transactions on Antennas and Propagation, vol. 61, pp. 1032-1040, 2013.
[17] Z. G. Liu, Y. X. Guo and Z. X. Cao, “Low-profile circularly polarized Fabry-Perot resonator antenna fed by linearly polarized patch,” IEEE Antennas and Propagation Society International Symposium (APSURSI), USA, 6-11 July 2014.
[18] W. Han, F. Yang and H. Zhou, “Slotted substrate integrated cavity antenna using mode with low profile and high gain,” Electronics Letters, vol. 50, pp. 488-490, 2014.
[19] R. Bayderkhani, K. Forooraghi and B. Abbasi-Arand, “Gain-enhanced SIW cavity-backed slot antenna with arbitrary levels of inclined polarization,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 931-934, 2015.
[20] S. Wu and T. Ma, “A wideband slotted bow-tie antenna with reconfigurable CPW-to-slot line transition for pattern diversity,” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 327-334, 2008.
[21] K. S. Min, J. Hirokawa, K. Sakurai, M. Ando and N. Goto, “Single-layer dipole array for linear-to-circular polarization conversion of slotted waveguide array,” IEE Proceeding-Microwaves, Antennas and Propagation, vol. 143, pp. 211-216, 1996.
[22] D. Kim, J. W. Lee, C. S. Cho and T. K. Lee, “X-band circular ring slot antenna embedded in single-layered SIW for circular polarization,” Electronics Letters, vol. 45, pp. 668-669, 2009.
[23] E. Y. Jung, J. W. Lee, T. K. Lee and W. K. Lee, “SIW-based array antennas with sequential feeding for X-band satellite communication,” IEEE Transactions on Antennas and Propagation, vol. 60, pp. 3632-3639, 2012.
[24] Y. Lang, S. W. Qu and J. X. Chen, “Wideband circularly polarized substrate integrated cavity-backed antenna array,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1513-1516, 2014.
[25] B. Guntupalli and K. Wu, “60-GHz circularly polarized antenna array made in low-cost fabrication process,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 864-867, 2014.
[26] M. Diblanc, Développement et conception de l'antenne résonateur BIE pour la génération de la polarisation circulaire, Doctoral thesis, Limoges University, March 2006, France. [Development and design of the BIE resonator antenna for the generation of circular polarization, Doctoral thesis, Limoges University, March 2006, France].
[27] J. D. Kraus, Antennas, McGraw Hill. New York, 1988.
[28] G. Trouillard, Contribution à l’étude des phénomènes électromagnétiques liés aux futurs systèmes mobiles de réception hertzienne à bord des véhicules automobiles. Conception, réalisation et tests des antennes correspondantes, Doctoral thesis, Limoges University, October 2003, France. [Contribution to the study of electromagnetic phenomena related to future mobile reception systems in motor vehicles. Design, production and testing of the corresponding antennas, Doctoral thesis, Limoges University, October 2003, France].
[29] Boufrioua, Microstrip antennas modeling for recent applications, Nova Science Publishers INC, New York, 2016.
[30] Allaedine, Contribution à l’étude des antennes à onde progressives et application à la réalisation de réseaux à polarisation linéaire et circulaire, Doctoral thesis, Limoges University, December 1993, France. [Contribution to the study of progressive wave antennas and application to the realization of networks with linear and circular polarization, Doctoral thesis, Limoges University, December 1993, France].
[31] K. H. Lu and T. N. Chang, “Circularly polarized array antenna with corporate-feed network and series-feed elements,” IEEE Transactions on Antennas and Propagation, vol. 53, pp. 3288-3292, 2005.
[32] G. Kumar and K. Ray, Broadband microstrip antennas, Artech House Inc., 2003.

Chapter 5

[1] E. Wang and J. Zheng, “A novel dual-band patch antenna for WLAN communication,” Progress in Electromagnetics Research C, vol. 6, pp. 93-102, 2009.
[2] J. A. Ansari, A. Mishra and B. R. Vishvakarma, “Half U-slot loaded semicircular disk patch antenna for GSM mobile phone and optical communications,” Progress in Electromagnetics Research C, vol. 18, pp. 31-45, 2011.
[3] Y. S. Zheng and S. J. Fang, “Dual-band rectangular patch antenna with a pair of L-shaped slots for WLAN application,” IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2005, China, 8-12 August 2005
[4] Boufrioua, “Analysis of L-Slot loaded rectangular patch antenna for dual band operation,” International Journal of Engineering and Advanced Technology (IJEAT), vol. 3, pp. 67-70, 2013.
[5] L. Mak, K. M. Luk and K. F. Lee, “Microstrip line-fed L-strip patch antenna,” IEEE Proceedings-Microwave Antennas and Propagation, vol. 146, pp. 282-284, 1999.
[6] K. L. Lau and K. M. Luk, “Wideband folded L-slot shorted -patch antenna,” Electronics Letters, vol.41, pp. 1098-1099, 2005.
[7] J. J. Bahl and P. Bhartia, Microstrip antennas, Edited by M. A Dedham, Artech House, 1980.
[8] Boufrioua, Microstrip antennas modeling for recent applications, Nova Publishers, New York, 2016.
[9] Bahl, Lumped Elements for RF and microwave circuits, Boston London, Artech House, 2003.
[10] A. Ansari, P. Singh, N. P. Yadav, B. R. Vishvakarma and I. T. Bhu, “Analysis of shorting PIN loaded half disk patch antenna for wideband operation,” Progress in Electromagnetics Research C, vol. 6, pp. 179-192, 2009.
[11] M. K. Meshram and B. R. Vishvakarma, “Gap-coupled microstrip array antenna for wide-band operation,” International Journal of Electronics, vol. 88, pp. 1161-1175, 2001.
[12] A. Ansari, S. K. Dubey, P. Singh, R. U. Khan and B. R. Vishvakarma, “Analysis of U-slot loaded patch for dualband operation,” International Journal of Microwave and Optical Technology, vol. 3, pp. 80-84, 2008.
[13] X. X. Zhang and F. N. Yang, “Study of slit cut on microstrip antenna and its application,” Microwave and Optical Technology Letters, vol. 18, pp. 297-300, 1998.
[14] Mishra, P. Singh, N. P. Yadav, J. A. Ansari, and B. R. Vishvakarma, “Compact shorted microstrip patch antenna for dual band operation,” Progress in Electromagnetics Research C, vol. 9, pp. 171-182, 2009.
[15] F. Yang, X. X. Zhang, X. Ye and Y. R. Samii, “Wide-band E-shaped patch antennas for wireless communications,” IEEE Transactions on Antennas and Propagation, vol. 49, pp. 1097-1100, 2001.
[16] Y. Ge, K. P. Esselle and T. S. Bird, “A compact E-shaped patch antenna with corrugated wings,” IEEE Transactions on Antennas and Propagation, vol. 54, pp. 2411-2413, 2006.
[17] J. A. Ansari and R. B. Ram, “Tunnel diode integrated E-shaped patch antenna for broadband operation,” Progress in Electromagnetics Research Letters, vol. 1, pp. 263-273, 2008.
[18] Shen, S. Long, M. Allerding and M. Walton, “Resonant frequency of circular disk printed circuit antenna,” IEEE Transactions on Antennas and Propagation, vol. 25, pp. 595-596, 1997.
[19] J. A. Ansari, P. Singh, S. K. Dubey R. U. Khan and B. R. Vishvakarma, “H-shaped stacked patch antenna for dual band operation,” Progress in Electromagnetics Research B, vol. 5, pp. 291-302, 2008.
[20] D. K. Srivastava, J. P. Saini and D. S. Chauhan, “Broadband stacked H-shaped patch antenna,” International Journal of Recent Trends in Engineering, vol. 2, pp. 385-389, 2009.
[21] C. L. Mak, R. Chair, K.F. Lee, K. M. Luk and A. A. Kishk, “Half U slot patch antenna with shorting wall,” Electronics Letters, vol. 39, pp. 1779-1780, 2003.
[22] Boufrioua, “Bilayer microstrip patch antenna loaded with U and half U-shaped slots,” ICMCS’14, 4th IEEE International Conference on Multimedia Computing and Systems, 14-16 April 2014, Marrakech, Morroco.
[23] A. Deshmukh, and G. Kumar, “Compact broadband U-slot loaded rectangular microstrip antennas,” Microwave and Optical Technology letters, vol.46, pp. 556-559, 2005.
[24] R. D. Heydari and M. N. Moghadasi, “Introduction of a novel technique for the reduction of cross-polarization of rectangular microstrip patch antenna with elliptical DGS,” Journal of Electromagnetic Waves and Applications, vol. 22, 1214-1222, 2008.
[25] S. Noghaanian and L. Safai, “Control of microstrip antenna radiation characteristics by ground plane size and shape,” IEE Proceeding-Microwaves, Antennas and Propagation, vol. 145, pp. 207-212, 1998.
[26] Boufrioua, “Bandwidth improvement of patch antenna printed on anisotropic substrate with modified ground plane,” Chapter 15 in the book entitled 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015), Editor: A.Y. Oral and Z.B. Bahsi Oral (eds.), Springer International Publishing AG 2017, pp. 123-131, 2017.
[27] G. Kumar and K. P. Ray, Broadband microstrip Antennas, Artech House, 2003.
[28] H. Weng, Y. C. Guo, X. W. Shi, and X. Q. Chen, “An overview on defected ground structure,” Progress in Electromagnetics Research B, vol. 7, pp. 173-189, 2008.
[29] Boufrioua, “Bandwidth enhancement of patch antenna with anisotropic substrate using inset L-shaped feed and L slots on ground plane,” Journal of Engineering Research and Technology, JERT, vol. 1, pp. 19-94, 2014.
[30] D. Guha, M. Biswas and Y. M. M. Antar, “Microstrip patch antenna with defected ground structure for cross polarization suppression,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 455-458, 2005.
[31] Ghosh, D. Ghosh, S. Chattopadhyay and L. L. K. Singh, “Rectangular microstrip antenna on slot type defected ground for reduced cross polarized radiation,” IEEE Antennas and Wireless Propagation Letters, vol. 14, 321-324, 2015.
[32] M. Harbadji and A. Boufrioua, “Compact slot multiband antenna with modified ground plane for wireless applications,” IJMET, International Journal of Microwave Engineering and Technology, vol. 3, pp. 1-5, 2017.
[33] D. Guha, S. Biswas, M. Biswas, J. Y. Siddiqui and Y. M. M. Antar, “Concentric ring-shaped defected ground structures for microstrip applications,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 402-405, 2006.
[34] J. S. Lim, J. S. Park, Y. T. Lee, D. Ahn and S. Nam, “Application of defected ground structure in reducing the size of amplifiers,” IEEE Microwave and Wireless Components Letters, vol. 12, pp. 261-263, 2002.
[35] S. Satthamsakul, N. Anantrasirichai, C. Benjangkaprasert and T. Wakabayashi, “Rectangular patch antenna with inset feed and modified ground-plane for wideband antenna,” SICE Annual Conference 2008, August 20-22, 2008, Japan.
[36] Boufrioua, “Wideband rectangular and circular microstrip antennas loaded with U-shaped slot,” Journal of Communication and Computer (JCC), pp. 395-402, vol. 11, 2014.
[37] Herscovici, “A wide-band single-layer patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 46, pp. 471-474. 1998.
[38] Boufrioua, “Wideband slotted microstrip antennas for modern applications,” Chapter 2 in the book entitled Advances in Communications and Media Research, vol 12, Editors: Anthony V. Stavros, Nova Publishers, pp. 35-56, 2017.
[39] A. Balanis, Antenna theory-Analysis and design, 2nd Edition, John Wiley and Sons, 2009.

Chapter 6

[1] C. H. Hu, T. R. Chen, J. F. Wu and J. S. Row, “Reconfigurable microruban antenna with polarisation diversity and frequency agility,” Electronics Letters, vol. 43, pp. 1329-1330, 2007.
[2] J. P. Carrier, P. P. Carrera and P. Miskovsky, “Modeling, design and characterization of a very wideband slot antenna with reconfigurable band rejection,” IEEE Transactions on Antennas and Propagation, vol. 58, pp. 2218-2226, 2010.
[3] Boufrioua, “A reconfigurable antenna for frequency diversity controlled by PIN diode,” IJRFD, International Journal of Radio Frequency Design, vol. 3, pp. 1-5, 2017.
[4] R. Azadegan and K. Sarabandi, “A novel approach for miniaturization of slot antennas,” IEEE Transactions on Antennas and Propagation, vol. 51, pp. 421-429, 2003.
[5] H. T. Nguyen, S. Noghanian and L. Shafai, “Microstrip patch antenna miniaturization by slots loading,” IEEE Antennas and Propagation Society International Symposium, 3-8 July, Washington, USA, 2005.
[6] W. B. Yan, “Aperture coupled H shape miniature patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 48, pp. 5816-5818, 2007.
[7] W. S. Jung, and M. T. Ghuang, “A wideband slotted Bow-Tie antenna with reconfigurable CPW-to-slot line transition for pattern diversity,” IEEE Transactions on Antennas and Propagation, vol. 6, pp. 327-334, 2008.
[8] S. V. Shynu, G. Augustin, C. K. Aanandan, P. Mohanan and K. Vasudevan, “Triple slot arm loaded reconfigurable dual frequency microstrip antenna using varactors,” IEEE Antennas and Propagation Society International Symposium, 3-8 July, Washington, USA, 2005.
[9] K. Boyon, B. Pan, S. Nikolaou, Y. S. Kim, J. Papapolymerou and M. M. Tentzeris, “A novel single-feed circular microruban antenna with reconfigurable polarization capability,” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 630-638, 2008.
[10] V. A. Nguyen, M. H. Jeong, M. T. Dao and S. O. Park, “Four-port beam reconfigurable antenna array for pattern diversity system,” IET Microwaves, Antennas & Propagation, vol. 6, pp. 1179-1186, 2012.
[11] S. Youngje, “Investigation into the polarization of asymmetrical-feed triangular microruban antennas and its application to reconfigurable antennas,” IEEE Transactions on Antennas and Propagation, vol. 58, pp. 1039-1046, 2010.
[12] Y. Liu, M. Wei, H. Liu and S. Gong, “A novel compact three-port dielectric resonator antenna with reconfigurable pattern for WLAN systems,” Progress in Electromagnetics Research C, vol. 47, pp. 37-45, 2014.
[13] F. Yang, Y. R. Samii, “Patch antennas with switchable slots (PASS) in wireless communications: concepts, designs, and applications,” IEEE Antennas and Propagation Magazine, vol. 47, pp. 13-29, 2005.
[14] S. Nikolaou, R. Bairavasubramanian, C. Lugo, I. Carrasquillo, D. C. Thompson, G. E. Ponchak, J. Papapolymerou and M. M. Tentzeris, “Pattern and frequency reconfigurable annular slot antenna using PIN diodes,” IEEE Transactions on Antennas and Propagation, vol.54, pp. 439-448, 2006.
[15] M. I. Lai, T. Y. Wu, J. C. Hsieh, C. H. Wang and S. K. Jeng, “Design of reconfigurable antennas based on an L-shaped slot and PIN diodes for compact wireless devices,” IET Microwaves, Antennas and Propagation, vol. 3, pp. 47-54, 2009.
[16] J. T. Bernhard, Reconfigurable Antennas, Morgan & Claypool Publishers; 2007.
[17] C. K. Mak, C. R. Rowell, R. D. Murch and C. L. Mak, “Reconfigurable multiband antenna designs for wireless communication devices,” IEEE Transactions on Antennas and Propagation, vol. 55, pp. 1919-1928, 2007.
[18] G. I. K. P. Esselle, A. R. Weily and K. L. F. Kiani, “Active frequency selective surface using PIN diodes,” International Symposium on Antennas and Propagation Society, June 2007.
[19] S. H. Hsu and K. Chang, “A novel reconfigurable microstrip antenna with switchable circular polarization,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 160-162, 2007.
[20] J. R. Kelly, P. Song, P. S. Hall and A. L. Borja, “Reconfigurable 460MHz to 12GHz antenna with integrated narrowband slot,” Progress in Electromagnetics Research C, vol 24, pp. 137-145, 2011.
[21] Y. B. Jung, S. O. Park and S. W. Choi, “Multi-band and multipolarised reconfigurable antenna for next generation mobile communication base station applications,” IET, Microwaves, Antennas and Propagation, vol.7, pp. 819-824, 2013.
[22] J. M. Laheurte, “Switchable CPW-fed slot antenna for multifrequency operation,” Electronics Letters, vol.37, pp. 1498-1500, 2001.
[23] D. Piazza, J. Kountouriotis, M. D’Amico and K. R. Dandekar, “A technique for antenna configuration selection for reconfigurable circular patch arrays,” IEEE Transactions on Antennas and Propagation, vol. 59, pp. 1456-1467, 2009.
[24] D. Jiawei, Y. Li, and B. Zhang, “A survey on radiation pattern reconfigurable antennas,” 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCON), 23-25 September, Wuhan, China, 2011.
[25] E. Ebrahimi and P. S. Hall, “A dual port wide-narrowband antenna for cognitive radio,” 3rd European Conference on Antenna and Propagation EuCAP 2009, 23-27 March 2009, Germany.
[26] D. Ladas, V. Mazauric, G. Meunier, O. Chadebec, M. Ebene-Ebene, Y. Marechal and P. Wendling, “An energy based approach of electromagnetism applied to adaptive meshing and error criteria,” IEEE Transactions on Magnetics, vol. 44, pp. 1246-1249, 2008.
[27] T. D. Nguyen, Conception d’antenne intelligente reconfigurable pour la radio cognitive, Doctoral thesis, Grenoble University, October 2012, France. [Reconfigurable intelligent antenna design for cognitive radio, Doctoral thesis, Grenoble University, October 2012, France].
[28] G. H. Huff and J. T. Bernhard. “Reconfigurable antennas,” In C.A. Balanis. Modern Antenna Handbook. John Wiley & Sons, 2008.
[29] G. H. Huff, J. Feng, S. Zhang, G. Cung and J. T. Bernhard, “Directional reconfigurable antennas on laptop computers: Simulation, measurement and evaluation of candidate integration positions,” IEEE Transactions on Antennas and Propagation, vol. 52, pp. 3220-3227, 2004.
[30] F. Yang, Y. R. Samii, “A reconfigurable patch antenna using switchable slots for circular polarization diversity,” IEEE Microwave and Wireless Components Letters, vol. 12, pp. 96-98, 2002.

The proposed book is designed to serve as a useful and simplified reference for students, researchers and for engineers who are interested in the analysis and design of modern patch antennas.

In this book, numerous techniques with appropriate design examples are clarified and explained and many simulations and parametric studies are mainly carried out to give physical insight into antenna without getting more into mathematical detail for most of the chapters given in this book.

You have not viewed any product yet.