Research Frontiers of Sedimentary Basin Interiors: A Case Study and Methodological Review on an Oblique Convergent Margin

Yasuto Itoh
Graduate School of Science, Osaka Prefecture University, Osaka, Japan

Shigekazu Kusumoto, PhD, MSc
University of Toyama, Toyama, Japan

Keiji Takemura, PhD
Kyoto University, Kyoto, Japan

Series: Geology and Mineralogy Research Developments
BISAC: TEC010020

Clear

$95.00

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

In this book, the leading edge of basin research is presented in the course of a detailed case study on an oblique convergent margin. Sedimentary basins are rich in natural resources and often overlain by densely populated residential areas, then draw attention of technical experts who are engaged in the field of civil engineering, disaster prevention, natural resource exploration, and so forth. Such a pragmatic viewpoint aside, clastic materials filling basins are a good example of the developmental process of the Earth’s surface. Detailed analysis reveals paleoenvironmental changes linked to eustatic sea-level changes and the uplift and exhumation process of hinterlands governed by longstanding tectonic episodes. The authors review the latest analytical methods of the gravity anomaly. Apart from conventional gravimetric prospecting, recently developed innovative methodologies have tremendous usability to aid in comprehending the deep three-dimensional structure of the sedimentary basins. Combining stratigraphic/sedimentological data of numerous boreholes and high resolution profiles of the reflection seismic survey, the authors visualize the deep interior of a fault-related basin in the Japanese Islands as an ideal example that has been studied by many researches and never been understood in a multidisciplinary way. Surely, this book provides audiences with an integrated vision of the basin evolution processes under the influence of dynamic spatial and temporal changes in tectonic regimes on active plate margins. (Imprint: Novinka)

Preface

Chapter 1. Basin Formation on Convergent Margins

Chapter 2. Estimations of Subsurface Structures by Gravity Anomaly and Gravity Gradient Tensor

Chapter 3. Subsurface Structure of Osaka Sedimentary Basin and its Tectonic Evolution

Chapter 4. Tectonic Implication of Basin Formation on the Basis of Paleogeography using Stratigraphy and Shallow Subsurface Structure from a Drilling Database

Index

Chapter 1

Itoh, Y. (Ed.) (2013). Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins. Rijeka: InTech. http://dx.doi.org/10.5772/50016.
Itoh, Y., Kusumoto, S., & Takemura, K. (2013a). Characteristic basin formation at terminations of a large transcurrent fault - basin configuration based on gravity and geomagnetic data. In Y. Itoh (Ed.), Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins. Rijeka (Croatia): InTech. http://dx.doi.org/10.5772/56702.
Itoh, Y., Takemura, K., & Kusumoto, S. (2013b). Neotectonic intra-arc basins within southwest Japan - conspicuous basin-forming process related to differential motion of crustal blocks. In Y. Itoh (Ed.), Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins. Rijeka (Croatia): InTech. http://dx.doi.org/10.5772/56588.
Komazawa, M. (2004). Gravity grid database of Japan, Gravity CD-ROM of Japan, ver. 2, Digital Geoscience Map P-2 [CD-ROM]. Tsukuba: Geological Survey of Japan.
Komazawa, M., Ohta, Y., Shibuya, S., Kumai, M., & Murakami, M. (1996). Gravity survey on the sea bottom of Osaka Bay and its subsurface structure. Butsuri-Tansa (Geophysical Exploration), 49, 459-473.
Nakagawa, K., Ryoki, K., Muto, N., Nishimura, S., & Ito, K. (1991). Gravity anomaly map and inferred basement structure in Osaka Plain, central Kinki, south-west Japan. Journal of Geosciences, Osaka City University, 34, 103-117.
Nakatsuka, T., & Okuma, S. (2005). Aeromagnetic anomalies database of Japan, Digital Geoscience Map P-6 [CD-ROM]. Tsukuba: Geological Survey of Japan.
Okada, A., & Togo, M. (2000). Active Faults in Kinki. Tokyo: University of Tokyo Press, 395pp.
Research Group for Active Faults (1991). The Active Faults in Japan: Sheet Maps and Inventories Rev. ed. Tokyo: University of Tokyo Press, 437pp.

Chapter 2

Barnes, G., & Lumley, J. (2011). Processing gravity gradient data. Geophysics, 76, I33–I47.
Barongo, J. O. (1984). Euler’s differential equation and the identification of the magnetic point-pole and point-dipole sources. Geophysics, 49, 1549-1553.
Beiki, M., & Pedersen, L. B. (2010). Eigenvector analysis of gravity
gradient tensor to locate geologic bodies. Geophysics, 75, I37–I49. doi:10.1190/1.3484098.
Beiki, M. (2013). TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: an example from the Asele area, Sweden. Journal of Applied Geophysics, 90, 82-91. doi:10.1016/ j.jappgeo2013.01.002.
Blakely, R., & Simpson, R. W. (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51, 1494-1498.
Cordell, L., & McCafferty, A. E. (1989). A terracing operator for physical property mapping with potential field data. Geophysics, 54, 621-634.
Cooper, G. R. J., & Cowan, D. R. (2006). Enhancing potential field data using filters based on the local phase. Computers and Geosciences, 32, 1585-1591.
Cooper, G. R. J. (2012). The removal of unwanted edge contours from gravity datasets. Exploration Geophysics, 44, 42-47.
Dransfield, M. H., & Christensen, A. N. (2013). Performance of airborne gravity gradiometers. The Leading Edge, 32, 908-922. doi:10.1190/ tle32080908.1.
Hofmann-wellenhof, B., & Moritz, H. (2005). Physical Geodesy. Berlin: Springer.
Itoh, Y., Kusumoto, S., & Takemura, K. (2013). Characteristic basin formation at terminations of a large transcurrent fault - basin configuration based
on gravity and geomagnetic data. In Y. Itoh (Ed.), Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins. Rijeka (Croatia): InTech. http://dx.doi.org/10.5772/56702.
Kudo, T., & Kono, Y. (1999). Relationship between distributions of shallow earthquakes and gradient of gravity anomaly field in southwest Japan. Zishin 2, 52, 341-350. (in Japanese with English abstract)
Kusumoto, S., Fukuda, Y., Takemoto, S., & Yusa, Y. (1996). Three-dimensional subsurface structure in the eastern part of the Beppu-Shimabara Graben, Kyushu, Japan, as revealed by gravimetric data. Journal of Geodetic Society of Japan, 42, 167-181.
Kusumoto, S. (2015). Estimation of dip angle of fault or structural boundary by eigenvectors of gravity gradient tensors. Butsuri-Tansa, 68, 277-287. (in Japanese with English abstract)
Lee, J. B. (2001). Falcon gravity gradiometer technology. Exploration Geophysics, 32, 247-250.
Li, L., Huang, D., Han, L., & Ma, G. (2014). Optimized detection filters in the interpretation of potential field data. Exploration Geophysics, doi: 10.1071/EG13059.
Ma, G. (2013). Edge detection of potential field data using improved local phase filter. Exploration Geophysics, 44, 36-41.
Mickus, K. L., & Hinojosa, J. H. (2001). The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform technique. Journal of Applied Geophysics, 46, 159-174.
Miller, H. G., & Singh, V. (1994). Potential field tilt – A new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213-217.
Marson, I., & Klingele, E. E. (1993). Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics, 58, 1588-1595.
Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37, 507-517.
Perdersen, L. B., & Rasmussen, T. M. (1990). The gradient tensor of potential field anomalies: some implications on data collection and data processing of maps. Geophysics, 55, 1558-1566.
Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55, 80-91.
Rodrigues, R. S., de Castro, D. L., & dos Reis, J. A. Jr. (2014). Characterization of the Potiguar rift structure based on Euler deconvolution. Revista Brasileira de Geofisica, 32, 109-121.
Shichi, R., Yamamoto, A., Kimura, A., & Aoki, H. (1992). Gravimetric evidences for active faults around Mt. Ontake,central Japan: specifically for the hidden faulting of the 1984 Western Nagano Prefecture Earthquake. Journal of Physics of the Earth, 40, 459-478.
Tedla, G. E., van der Meijde, M., Nyblade, A. A., & van der Meer, F. D. (2011). A crustal thickness map of Africa derived from a global
gravity field model using Euler deconvolution. Geophysical Journal International, 187, 1-9.
ten Brink, U. S., Ben-Avarham, Z., Bell, R. E., Hassouneh, M., Coleman, D. F., Andreasen, F., Tibor, G., & Coakley, B. (1993). Structure of the Dead Sea pull-apart basin from gravity analyses. Journal of Geophysical Research, 98, 21877-21894.
Thompson, D. T. (1982). EULDPH – A new technique for making computer assisted depth estimates from magnetic data. Geophysics, 47, 31-37.
Torge, W. (1989). Gravimetry. Berlin: Walter de Gruyter.

Chapter 3

Danhara, T., & Iwano, H. (2009). Determination of zeta values for fission-track age calibration using thermal neutron irradiation at the JRR-3 reactor of JAEA, Japan. Journal of the Geological Society of Japan, 115, 141-145.
Disaster Prevention Research Institute (2013). Integrated Research Project
for the Uemachi Active Fault System by METI. Uji: DPRI (Kyoto University).
Geological Survey of Japan (1997). Forgoing survey of main active fault in the Kinki Triangle No.18, Ikoma fault system, seismic reflection survey. In K. Shimokawa (Ed.), Open-File Report, No.285. Tsukuba: Geological Survey of Japan, AIST.
Geological Survey of Japan, AIST (Ed.) (2012). Seamless Digital Geological Map of Japan 1:200,000 (July 3, 2012 Version), Research Information Database DB084. Geological Survey of Japan, AIST (National Institute of Advanced Industrial Science and Technology), Tsukuba.
Hirota, Y. (1991). Geology of the Sambagawa metamorphic belt in western Kii Peninsula, Japan. Memoirs of Faculty of Science, Shimane University, 25, 131-142.
Horike, M., Takeuchi, Y., Toriumi, I., Fuzita, T., Yokota, H., & Noda, T. (1995). Seismic reflection survey of the boundary region between the Ikoma Mountains and the Osaka basin. Zisin (Bulletin of Seismological Society of Japan), 48, 37-49.
Horike, M., Takeuchi, Y., Imai, S., Fuzita, T., Yokota, H., Noda, T., & Ikawa, T. (1996). Survey of the subsurface structure in the east of the Osaka basin. Zisin (Bulletin of Seismological Society of Japan), 49, 193-203.
Huzita, K. (1980). Role of the Median Tectonic Line in the Quaternary tectonics of the Japanese Islands. Memoirs of Geological Society of Japan, 18, 129-153.
Huzita, K., & Kasama, T. (1982). Geology of the Osaka-Seihokubu District, with Geological Sheet Map at 1:50,000. Tsukuba: Geological Survey of Japan, 112pp.
Ikebe, N., Iwatsu, J., & Takenaka, J. (1970). Quaternary geology of Osaka with special reference to land subsidence. Journal of Geoscience, Osaka City University, 13, 39-98.
Itihara, M., Ichikawa, K., & Yamada, N. (1986). Geology of the Kishiwada District, with Geological Sheet Map at 1:50,000. Tsukuba: Geological Survey of Japan, 148pp.
Itoh, Y., Kusumoto, S., & Takemura, K. (2013a). Characteristic basin formation at terminations of a large transcurrent fault - basin configuration based on gravity and geomagnetic data. In Y. Itoh (Ed.), Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins. Rijeka (Croatia): InTech. http://dx.doi.org/10.5772/56702.
Itoh, Y., Kusumoto, S., & Takemura, K. (2014). Evolutionary process of Beppu Bay in central Kyushu, Japan: a quantitative study of the basin-forming process controlled by plate convergence modes. Earth, Planets and Space, 66, 74. doi:10.1186/1880-5981-66-74.
Itoh, Y., Kusumoto, S., & Takemura, K. (2015). Tectonically controlled asymmetric basin formation and evolution: an example from an active plate margin. In B. Veress, & J. Szigethy (Eds.), Horizons in Earth Science Research, Vol.14. New York: Nova Science Publishers, Inc., pp. 123-141. https://www.novapublishers.com/catalog/product_info.php?products_id=57536.
Itoh, Y., Takemura, K., & Kusumoto, S. (2013b). Neotectonic intra-arc basins within southwest Japan - conspicuous basin-forming process related to differential motion of crustal blocks. In Y. Itoh (Ed.), Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins. Rijeka (Croatia): InTech. http://dx.doi.org/10.5772/56588.
Itoh, Y., Takemura, K., Ishiyama, T., Tanaka, Y., & Iwaki, H. (2000). Basin formation at a contractional bend of a large transcurrent fault: Plio-Pleistocene subsidence of the Kobe and northern Osaka Basins, Japan. Tectonophysics, 321, 327-341.
Itoh, Y., Takemura, K., Kawabata, D., Tanaka, Y., & Nakaseko, K. (2001). Quaternary tectonic warping and strata formation in the southern Osaka Basin inferred from reflection seismic interpretation and borehole sequences. Journal of Asian Earth Sciences, 20, 45-58.
Kasahara, K., Aoi, S., Irikura, K., Iwata, T., Kudo, K., Horike, M., Ikawa, T., Kawanaka, T., & Mizohata, S. (1997). Seismic reflection and VSP servey on and around the deep well at Maishima and Kanku-Maejima. Programme and abstracts, the Seismological Society of Japan 1997, No. 2, P36.
Kondo, H., Sugito, N., Yoshioka, T., Tsutsumi, H., & Kimura, H. (2015). Revisited spatial distribution of the Uemachi fault zone, Osaka, revealed by digital elevation models. Active Fault Research, 42, 1-34.
Makimoto, H., Miyata, T., Mizuno, K., & Sangawa, A. (2004). Geology of the Kokawa District, with Geological Sheet Map at 1:50,000. Tsukuba: Geological Survey of Japan, AIST, 89pp.
Miyachi, Y., Tainosho, Y., Yoshikawa, T., & Sangawa, A. (1998). Geology of the Osaka-Tonambu District, with Geological Sheet Map at 1:50,000. Tsukuba: Geological Survey of Japan, 113pp.
Oka, Y. (1961). The geomorphology and the crustal movements in the southeastern part of the Osaka Plain. Geographical Review of Japan, 34, 523-535.
Oka, Y. (1978). The formation of the Izumi range and the Osaka Group. The Quaternary Research, 16, 201-210.
Okada, A., & Togo, M. (2000). Active Faults in Kinki. Tokyo: University of Tokyo Press, 395pp.
Osaka City (1995). Research Report for Uemachi Fault in 1995. http://www.hp1039.jishin.go.jp/danso/OsakaCtyfrm.htm (accessed 21 April 2016).
Osaka Prefecture (2004). Subsurface Structural Survey of the Osaka Plain in the Heisei 15 Fiscal Year. http://www.hp1039.jishin.go.jp/kozo/osaka8 frm.htm (accessed 25 March 2016).
Osaka Prefecture (2005). Subsurface Structural Survey of the Osaka Plain in the Heisei 16 Fiscal Year. http://www.hp1039.jishin.go.jp/kozo/Osaka9 frm.htm (accessed 25 March 2016).
Research and Development Bureau, MEXT, & DPRI, Kyoto University (2012). Reports of Comprehensive Research and Study on the Uemachi Fault Zone (FY2010-2012). http://www.jishin.go.jp/main/chousakenkyuu/ uemachi_juten/(accessed 21 April 2016).
Research Committee on Ground in Kansai (2007). Shin-Kansai Jiban (Ground of Kansai) - From Osaka Plain to Bay Area Rev. ed. Osaka: Association of Research on Geotechnical Information in Kansai, 354pp.
Research Group for Active Faults (1991). The Active Faults in Japan: Sheet Maps and Inventories Rev. ed. Tokyo: University of Tokyo Press, 437pp.
Satoguchi, Y., & Nagahashi, Y. (2012). Tephrostratigraphy of the Pliocene to Middle Pleistocene Series in Honshu and Kyushu Islands, Japan. Island Arc, 21, 149-169.
Wang, C. L., & Maekawa, H. (1997). Albite-biotite zone of the Sanbagawa metamorphic belt in the northwestern part of the Kii Peninsula, Japan. Journal of Mineralogy, Petrology and Economic Geology, 92, 43-54.

Chapter 4

Cho, C., Ichikawa, H., Takahashi, T., Ogura, T., Hirata, Y., Matsuda, J., & Tsujimoto, Y. (2014). Topography in and around Uemachi area and the outline of paleogeographic change. In O. Wakita (Ed.), Report on JSPS Kakenhi Kiban Kenkyu A No.21242031. (in Japanese)
Danhara, T., Yamashita, T., Iwano, H., Takemura, K., & Hayashida, A. (2010). Re-investigation of chronology for the 1400m sediment core obtained from the Lake Biwa in 1982~1983. The Quaternary Research (Japan), 49, 101-119. (in Japanese with English abstract)
Fujiki, T., Miyoshi, N., Morita, Y., Horie, S., & Takemura, K. (2001). Pollen analysis of an 800 m core sample from Lake Biwa, Japan. Proceedings of the IX International Palynological Congress USA (1996), Houston, Texas, 367-373.
Horie, S. (Ed.) (1983). Paleolimnology of Lake Biwa and the Japanese Pleistocene 11. Kyoto: Institute of Paleolimnology and Paleoenvironment on Lake Biwa of Kyoto University, 99pp.
Horie, S. (1991). Die Geschichte des Biwa - See in Japan: seine Entwicklung, dargestellt anhand eines 1400 m langen Tiefbohrkerns. Universitatsverlag Wagner, 349pp.
Huzita, K. (1969). Tectonic development of southwest Japan in the Quaternary Period. Journal of Geosciences, Osaka City University, 12, 53-70.
Ikebe, N., Iwatsu, J., & Takenaka, J. (1970). Quaternary geology of Osaka with special reference to land subsidence. Journal of Geoscience, Osaka City University, 13, 39-98.
Inoue, N., Kitada, N., & Takemura, K. (2013). Evaluation of Uemachi Fault zone based on borehole and underground survey data in Osaka Plain. 49th Annual Meeting of the Japanese Geotechnical Society, 299-300. (in Japanese)
Itihara, M. (Ed.) (1993). The Osaka Group. Sogensha, 340pp. (in Japanese)
Itoh, Y., Takemura, K., Ishiyama, T., Tanaka, Y., & Iwaki, H. (2000). Basin formation at a contractional bend of a large transcurrent fault: Plio-Pleistocene subsidence of the Kobe and northern Osaka Basins, Japan. Tectonophysics, 321, 327-341.
Itoh, Y., Kusumoto, S., & Takemura, K. (2015). Tectonically controlled asymmetric basin formation and evolution: an example from an active plate margin. In B. Veress, & J. Szigethy (Eds.), Horizons in Earth Science Research, Vol.14. New York: Nova Science Publishers, Inc., pp. 123-141. https://www.novapublishers.com/catalog/product_info.php?products_id=57536.
KG-NET/Kansai Geo-informatics Research Committee (2007). Shin Kansai Jiban; Osaka Plain to Osaka Bay. 354pp. (in Japanese)
KIX18-1 Editorial Committee (2011). Report on KIX18-1 in Kansai International Airport. 199pp. (in Japanese)
Matsuda, J. (2001). Development of tributary of Yamato River and human activity at the alluvial plain in South Kawachi Plain during the late Holocene. Abstract at 50th Research Committee of Buried Cultural Properties, 39-51. (in Japanese)
Meyers, P. A., Takemura, K., & Horie, S. (1993). Reinterpretation of Late Quaternary sediment chronology of Lake Biwa, Japan, from correlation with marine glacial - interglacial cycles. Quaternary Research, 39,154-162.
Miyoshi, N., Fujiki, T., & Morita, Y. (1999). Palynology of a 250-m core from Lake Biwa: A 430,000-year record of glacial-interglacial vegetation change in Japan. Review of Palaeobotany and Palynology, 104, 267-283, doi: 10.1016/S0034–6667(98)00058-X.
Sugiyama, Y. (1992). Neotectonics of the forarc zone and the Setouchi Province in southwest Japan. Memoirs of the Geological Society of Japan, 40, 219-233. (in Japanese with English abstract)
Takemura, K. (1985). The Plio-Pleistocene Tokai Group and the tectonic development around Ise Bay of central Japan since Pliocene. Memoirs of Faculty of Science, Kyoto University, Ser. Geology & Mineralogy, 51, 21-96.
Takemura, K. (1990). Tectonic and climatic record of the Lake Biwa, Japan, region provided by the sediments deposited since Pliocene times. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 185-193.
Takemura, K., Haraguchi, T., Kusumoto, S., & Itoh, Y. (2013). Tectonic basin formation in and around Lake Biwa, central Japan. In Y. Itoh
(Ed.), Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins. Rijeka (Croatia): InTech. http://
dx.doi.org/10.5772/56667
The Headquarter for Earthquake Research Promotion (2012). Report for Integrated Research Project on Uemachi Fault Zone. http://www. jishin.go.jp/main/chousakenkyuu/uemachi_juten/h24/index.htm delete
Torii, M., Shibuya, H., Hayashida, A., Katsura, I., Yoshida, S., Tagami,
T., Otofuji, Y., Maeda, Y., Sasajima, S., & Horie, S. (1986). Magnetostratigraphy of sub-bottom sediments from Lake Biwa. Proceedings of Japan Academy, 62, 333-336.
Yokoyama, T. (1969). Tephrochronology and paleogeography of the Plio-Pleistocene in the eastern Setouchi Geologic province, southwest Japan. Memoirs of Faculty of Science, Kyoto University, Geology & Mineralogy, 36, 19-85.
Yokoyama, T. (1984). Stratigraphy of the Quaternary System around Lake Biwa and geohistory of the ancient Lake Biwa. In S. Horie (Ed.), Lake Biwa. The Hague: Dr. W. Junk, 43-128.
Yokoyama, T., & Takemura, K. (1983). Geologic column obtained by the deep drilling from the bottom surface of Lake Biwa, Japan. IPPCCE Newsletter, 3, 21-23.

Wijns, C., Perez, C., & Kowalezyk, P. (2005). Theta map: edge detection in magnetic data. Geophysics, 70, L39-L43.
Yamamoto, A. (2003). Gravity anomaly atlas of the Ishikari Plain and its vicinity, Hokkaido, Japan. Geophysical Bulletin of Hokkaido, 66, 33-62. (in Japanese with English abstract)
Zhang, C., Mushayandebvu, M. F., Reid, A. B., Fairhead, J. D., & Odegrad, M. E. (2000). Euler deconvolution of gravity tensor gradient data. Geophysics, 65, 512-520.

Contents of this book should attract broad audiences such as corporate experts, university staffs, graduate and undergraduate students engaged in geologic/geophysical survey, and should be especially useful to professionals in the field of active tectonics and environmental analysis.

You have not viewed any product yet.