Table of Contents
Table of Contents
Preface
Introduction
Chapter 1. Introduction to the Theory of Matroids
Chapter 2. Pseudo-matroids and Semi-matroids
Chapter 3. Enumeration of All Non-isomorphic Matroids
Chapter 4. G-codes and their Practical Applications
Index
References
[1] Birkhoff, G. Lattice theory Amer. Math, 1967.[2] Crapo, HH. Erecting geometrics Anuals N.Y.Acad. Sci.1970 P. 89-92.[3] Crapo, HH; Rota, GG. On the foundations of Combinatorial Theory. Combinatorial Geometrics. Cambridge, Mass.: M.I.T. Press, 1970.[4] Dowling, TA; Kelly, DG. Elementary strong maps and transversal geometries Discrete Math. 1974. Vol. 7. P. 209-214.[5] Higgs, DA. Maps of geometries J. London Math. Soc, 1966. Vol. 41 P. 612-618.[6] Higgs, DA. Strong maps of geometries J. Comb. Theory.1968. Vol. 5. P. 185-191.[7] Kelly, PJ; Kennedy, DG. The Higgs factorization of a geometric strong map Discrete Math. 1978. Vol. 22. N. 2.P. 139-146.[8] Kennedy, DG. Factorization and majors of geometric strong maps. Lecture Note Series. Univ. North Carolina, 1973.[9] Lucas, D. Properties of rank preserving weak maps Bull. Amer. Math. Soc.1974. Vol. 80. N. 1. P. 127-131.[10] Nguyen, HQ. Functors of the category of combinatorial geometries and strong map Discrete Math. 1977. Vol. 20. N. 2. P. 143-158.[11] Nguyen, HQ. Weak cuts of combinatorial geometries Trans. Amer. Math. 1979. vol. 250.[12] Oxley, JG. Matroid Theory. N.Y.: Oxford Univ. Press, 1992. P. 532.[13] Tutte, WT. Introduction to the theory of matroids. N.Y.: Amer. Elsevire, 1970.[14] Welsh, DJA. Matroid Theory. L Acad. Press, 1976. P. 433.[15] Whitney, H. On the abstract properties of linear dependence Amer. J. Math. 1935. Vol. 57. P. 509-533.[16] Gizunov, SA; Lyamin, VN. Cuts of matroids//Uchen. Zapiski. Electronic journal of Kursk state university. 2010. N. 2(14). P. 21. http:scientific-notes.ru.[17] Gizunov, SA; Lyamin, VN. Pseudo-matroids, generated by mapping of matroids Uchen. Zapiski. Electronic journal of Kursk state university. 2011. N. 2(18). P. 26. http://scientific-notes.ru.[18] Gizunov, SA; Lyamin, VN. Semi-matroids, generated by -mappings of binary matroids Uchen. Zapiski. Electronic journal of Kursk state university. 2011. N. 2(18). P. 26. http://scientific-notes.ru.[19] Gizunov, SA; Grechkin, AO; Lyamin, VN. G-factorization of canonical mappings Uchen. Zapiski. Electronic journal of Kursk state university. 2011. N. 2(18). P. 15. http://scientific-notes.ru.[20] Gizunov, SA. Non-isomorphic binary matroids Uchen. Zapiski. Electronic journal of Kursk state university.2011. N. 2(18). P. 18. http://scientific-notes.ru.[21] Gizunov, SA. Optimal linear codes and the critical problem for matroids. //Uchen. Zapiski. Electronic journal of Kursk state university. 2011. N. 2(18). P. 19. http://scientific-notes.ru.[22] Rev yakin, AM. The description of combinatory geometry’s factors. Combinatory analysis.M.: MSU, 1976. Issue 4. P. 69-72.[23] Revyakin, AM. Matroids: cryptomorphic systems of axioms and strict firms.Vestnik MGADA series “Philosophical, humanity and social sciences” 2010. N. 5. P. 96-106.