Pseudo-Matroids and Cuts of Matroids

$160.00

Sergey A. Gizunov and V.N. Lyamin
Scientific Research Institute “KVANT”, Moscow, Russia

Series: Mathematics Research Developments
BISAC: MAT002050

This book is dedicated to the study of algebraic characteristics of some structures of matroid type. The notions of pseudo-matroids generated by mappings of matroids, G-mappings of binary matroids and semi-matroids are introduced. Some results on general matroid theory and an algorithmic solution for exponential complexity of problems with enumeration of all non-isomorphic binary matroids are found. The theoretical results are applied to the solution of some practical problems. This monograph is beneficial to specialists in discrete mathematics and matroids, information transmission technologies, as well as students and post-graduates. (Imprint: Nova)

Clear

Details

Table of Contents

Preface

Introduction

Chapter 1. Introduction to the Theory of Matroids

Chapter 2. Pseudo-matroids and Semi-matroids

Chapter 3. Enumeration of All Non-isomorphic Matroids

Chapter 4. G-codes and their Practical Applications

Index


References

[1] Birkhoff, G. Lattice theory Amer. Math, 1967.[2] Crapo, HH. Erecting geometrics Anuals N.Y.Acad. Sci.1970 P. 89-92.[3] Crapo, HH; Rota, GG. On the foundations of Combinatorial Theory. Combinatorial Geometrics. Cambridge, Mass.: M.I.T. Press, 1970.[4] Dowling, TA; Kelly, DG. Elementary strong maps and transversal geometries Discrete Math. 1974. Vol. 7. P. 209-214.[5] Higgs, DA. Maps of geometries J. London Math. Soc, 1966. Vol. 41 P. 612-618.[6] Higgs, DA. Strong maps of geometries J. Comb. Theory.1968. Vol. 5. P. 185-191.[7] Kelly, PJ; Kennedy, DG. The Higgs factorization of a geometric strong map Discrete Math. 1978. Vol. 22. N. 2.P. 139-146.[8] Kennedy, DG. Factorization and majors of geometric strong maps. Lecture Note Series. Univ. North Carolina, 1973.[9] Lucas, D. Properties of rank preserving weak maps Bull. Amer. Math. Soc.1974. Vol. 80. N. 1. P. 127-131.[10] Nguyen, HQ. Functors of the category of combinatorial geometries and strong map Discrete Math. 1977. Vol. 20. N. 2. P. 143-158.[11] Nguyen, HQ. Weak cuts of combinatorial geometries Trans. Amer. Math. 1979. vol. 250.[12] Oxley, JG. Matroid Theory. N.Y.: Oxford Univ. Press, 1992. P. 532.[13] Tutte, WT. Introduction to the theory of matroids. N.Y.: Amer. Elsevire, 1970.[14] Welsh, DJA. Matroid Theory. L Acad. Press, 1976. P. 433.[15] Whitney, H. On the abstract properties of linear dependence Amer. J. Math. 1935. Vol. 57. P. 509-533.[16] Gizunov, SA; Lyamin, VN. Cuts of matroids//Uchen. Zapiski. Electronic journal of Kursk state university. 2010. N. 2(14). P. 21. http:scientific-notes.ru.[17] Gizunov, SA; Lyamin, VN. Pseudo-matroids, generated by mapping of matroids Uchen. Zapiski. Electronic journal of Kursk state university. 2011. N. 2(18). P. 26. http://scientific-notes.ru.[18] Gizunov, SA; Lyamin, VN. Semi-matroids, generated by -mappings of binary matroids Uchen. Zapiski. Electronic journal of Kursk state university. 2011. N. 2(18). P. 26. http://scientific-notes.ru.[19] Gizunov, SA; Grechkin, AO; Lyamin, VN. G-factorization of canonical mappings Uchen. Zapiski. Electronic journal of Kursk state university. 2011. N. 2(18). P. 15. http://scientific-notes.ru.[20] Gizunov, SA. Non-isomorphic binary matroids Uchen. Zapiski. Electronic journal of Kursk state university.2011. N. 2(18). P. 18. http://scientific-notes.ru.[21] Gizunov, SA. Optimal linear codes and the critical problem for matroids. //Uchen. Zapiski. Electronic journal of Kursk state university. 2011. N. 2(18). P. 19. http://scientific-notes.ru.[22] Rev yakin, AM. The description of combinatory geometry’s factors. Combinatory analysis.M.: MSU, 1976. Issue 4. P. 69-72.[23] Revyakin, AM. Matroids: cryptomorphic systems of axioms and strict firms.Vestnik MGADA series “Philosophical, humanity and social sciences” 2010. N. 5. P. 96-106.

Additional information

Binding

,