Pseudo-Matroids and Cuts of Matroids

Sergey A. Gizunov and V.N. Lyamin
Scientific Research Institute “KVANT”, Moscow, Russia

Series: Mathematics Research Developments
BISAC: MAT002050

Clear

$160.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

This book is dedicated to the study of algebraic characteristics of some structures of matroid type. The notions of pseudo-matroids generated by mappings of matroids, G-mappings of binary matroids and semi-matroids are introduced. Some results on general matroid theory and an algorithmic solution for exponential complexity of problems with enumeration of all non-isomorphic binary matroids are found. The theoretical results are applied to the solution of some practical problems. This monograph is beneficial to specialists in discrete mathematics and matroids, information transmission technologies, as well as students and post-graduates. (Imprint: Nova)

Preface

Introduction

Chapter 1. Introduction to the Theory of Matroids

Chapter 2. Pseudo-matroids and Semi-matroids

Chapter 3. Enumeration of All Non-isomorphic Matroids

Chapter 4. G-codes and their Practical Applications

Index

[1] Birkhoff, G. Lattice theory//Amer. Math, 1967.
[2] Crapo, HH. Erecting geometrics//Anuals N.Y. Acad. Sci., 1970 P. 89-92.
[3] Crapo, HH; Rota, GG. On the foundations of Combinatorial Theory. Combinatorial Geometrics. Cambridge, Mass.: M.I.T. Press, 1970.
[4] Dowling, TA; Kelly, DG. Elementary strong maps and transversal geometries//Discrete Math., 1974. Vol. 7. P. 209-214.
[5] Higgs, DA. Maps of geometries//J. London Math. Soc., 1966. Vol. 41 P. 612-618.
[6] Higgs, DA. Strong maps of geometries//J. Comb. Theory., 1968. Vol. 5. P. 185-191.
[7] Kelly, PJ; Kennedy, DG. The Higgs factorization of a geometric strong map//Discrete Math., 1978. Vol. 22. N. 2.P. 139-146.
[8] Kennedy, DG. Factorization and majors of geometric strong maps. Lecture Note Series. Univ. North Carolina, 1973.
[9] Lucas, D. Properties of rank preserving weak maps//Bull. Amer. Math. Soc., 1974. Vol. 80. N. 1. P. 127-131.
[10] Nguyen, HQ. Functors of the category of combinatorial geometries and strong map//Discrete Math., 1977. Vol. 20. N. 2. P. 143-158.
[11] Nguyen, HQ. Weak cuts of combinatorial geometries//Trans. Amer. Math., 1979. vol. 250.
[12] Oxley, JG. Matroid Theory. N.Y.: Oxford Univ. Press, 1992. P. 532.
[13] Tutte, WT. Introduction to the theory of matroids. N.Y.: Amer. Elsevire, 1970.
[14] Welsh, DJA. Matroid Theory. L.: Acad. Press, 1976. P. 433.
[15] Whitney, H. On the abstract properties of linear dependence//Amer. J. Math., 1935. Vol. 57. P. 509-533.
[16] Gizunov, SA; Lyamin, VN. Cuts of matroids//Uchen. Zapiski. Electronic journal of Kursk state university., 2010. N. 2(14). P. 21. http://scientific-notes.ru.
[17] Gizunov, SA; Lyamin, VN. Pseudo-matroids, generated by mapping of matroids // Uchen. Zapiski. Electronic journal of Kursk state university., 2011. N. 2(18). P. 26. http://scientific-notes.ru.
[18] Gizunov, SA; Lyamin, VN. Semi-matroids, generated by G-mappings of binary matroids//Uchen. Zapiski. Electronic journal of Kursk state university., 2011. N. 2(18). P. 26. http://scientific-notes.ru.
[19] Gizunov, SA; Grechkin, AO; Lyamin, VN. G-factorization of canonical mappings//Uchen. Zapiski. Electronic journal of Kursk state university., 2011. N. 2(18). P. 15. http://scientific-notes.ru.
[20] Gizunov, SA. Non-isomorphic binary matroids//Uchen. Zapiski. Electronic journal of Kursk state university., 2011. N. 2(18). P. 18. http://scientific-notes.ru.
[21] Gizunov, SA. Optimal linear codes and the critical problem for matroids. //Uchen. Zapiski. Electronic journal of Kursk state university., 2011. N. 2(18). P. 19. http://scientific-notes.ru.
[22] Revyakin, AM. The description of combinatory geometry’s factors. Combinatory analysis.//M.: MSU, 1976. Issue 4. P. 69-72.
[23] Revyakin, AM. Matroids: cryptomorphic systems of axioms and strict firms.//Vestnik MGADA. Series “Philosophical, humanity and social sciences”, 2010. N. 5. P. 96-106.

You have not viewed any product yet.