Neuroimaging in Multiple Sclerosis

Yongxia Zhou, Ph.D.
New York University and Columbia University, New York, NY, USA
University of Pennsylvania, Columbia University and University of Southern California, CA, US

Series: Neurology – Laboratory and Clinical Research Developments
BISAC: SCI089000

Clear

$82.00

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the whole brain. Neuroimaging techniques that can help elucidate and characterize the nature and mechanism of tissue injury and disease progression in MS are of particular importance, given their roles in seeking successful preventive and therapeutic treatments for the disease. Imaging biomarkers of MS include multiple lesions, brain atrophy and normal appearing brain tissue abnormalities. Although MS is considered to be an autoimmune inflammatory disease that primarily activates hematogenous macrophages that destroy myelin, growing evidence strongly suggests that MS is a diffused neurodegenerative disease. Imaging myelin in the brain has great potential in revealing the myelination and maturation process in the brain, and can help further explain the link between the initial inflammatory event and subsequent degenerative processes of the disease. While myelin is most abundant in white matter, forefront studies suggest that demyelination could occur in grey matter during aging and MS. Further improvements are expected in this active research field in terms of quantification and improvement of myelin detection accuracy. The neuroimaging techniques in MS detection can be further extended to other neurodegenerative diseases including Alzheimer’s disease, schizophrenia and white matter injuries following stroke. Furthermore, cerebrovascular reactivity (CVR) describes the compensatory dilatory capacity of cerebral vasculature in upregulating perfusion. Investigating the hypercapnia-induced CVR characteristics using well-validated pseudo-continuous ASL (pCASL) for CBF and BOLD fMRI acquisitions could provide a physiological clue to the underlying neurovascular and vascular inflammatory mechanism in the etiology of MS.

The authors hope to introduce the readers to some perspectives using multi-modality imaging for MS disease detection and diagnosis, including two imaging hallmark-demyelination and inflammation. Various advanced technical developments and applications will be demonstrated, including conventional and homotopic functional and structural connectivity, underlying pathological investigation with robust blood-flow and BOLD-based vascular reactivity techniques, and longitudinal monitoring of multiparametric MRI data.

Therefore, the book will present some forefront, up-to-date and interesting examples in the MS research field. This book will hopefully capture the interests of colleagues in this challenging field and help convey the technical and developmental information of the neuroimaging applications in MS.

Preface

Chapter 1. Multi-parametric Structural and Functional MRI Pattern Recognition and Correlation in Multiple Sclerosis - Baseline and Longitudinal Findings

Chapter 2. Demyelination and Related Structural and Functional Homotopic Changes - Applications in Multiple Sclerosis and Neuromyelitis Optica

Chapter 3. Cerebrovascular Reactivity at Hypercapnia Measured with Arterial Spin Labeling and BOLD

Chapter 4. Development of MRI Myelin Imaging Technique and Implications in Multiple Sclerosis

About the Author

Index

Chapter 1

Ali EN, Buckle GJ (2009) Neuroimaging in multiple sclerosis. Neurol Clin 27:203-219, ix.
Audoin B, Ibarrola D, Ranjeva JP, Confort-Gouny S, Malikova I, Ali-Cherif A, Pelletier J, Cozzone P (2003) Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp 20:51-58.
Battiti R (1994) Using Mutual Information for Selecting Features in Supervised Neural-Net Learning. Ieee T Neural Networ 5:537-550.
Bendfeldt K, Kuster P, Traud S, Egger H, Winklhofer S, Mueller-Lenke N, Naegelin Y, Gass A, Kappos L, Matthews PM, Nichols TE, Radue EW, Borgwardt SJ (2009) Association of regional gray matter volume loss and progression of white matter lesions in multiple sclerosis - A longitudinal voxel-based morphometry study. Neuroimage 45:60-67.
Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206:165-171.
Bodini B, Khaleeli Z, Cercignani M, Miller DH, Thompson AJ, Ciccarelli O (2009) Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an in vivo study with TBSS and VBM. Hum Brain Mapp 30:2852-2861.
Chen Q (2011) Neuroimaging by voxel-based morphometry: possible approach to finding the correlation between brain structural changes and fatigue severity in patients with multiple sclerosis. AJNR Am J Neuroradiol 32:880-881.
Forn C, Barros-Loscertales A, Escudero J, Benlloch V, Campos S, Antonia Parcet M, Avila C (2007) Compensatory activations in patients with multiple sclerosis during preserved performance on the auditory N-back task. Hum Brain Mapp 28:424-430.
Giorgio A, De Stefano N (2016) Advanced Structural and Functional Brain MRI in Multiple Sclerosis. Semin Neurol 36:163-176.
Guizard N, Nakamura K, Coupe P, Fonov VS, Arnold DL, Collins DL (2015) Non-Local Means Inpainting of MS Lesions in Longitudinal Image Processing. Front Neurosci 9:456.
Hagiwara A, Hori M, Yokoyama K, Takemura MY, Andica C, Kumamaru KK, Nakazawa M, Takano N, Kawasaki H, Sato S, Hamasaki N, Kunimatsu A, Aoki S (2016) Utility of a Multiparametric Quantitative MRI Model That Assesses Myelin and Edema for Evaluating Plaques, Periplaque White Matter, and Normal-Appearing White Matter in Patients with Multiple Sclerosis: A Feasibility Study. AJNR Am J Neuroradiol.
Iglesias JE, Liu CY, Thompson PM, Tu Z (2011) Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans Med Imaging 30:1617-1634.
Kincses ZT, Ropele S, Jenkinson M, Khalil M, Petrovic K, Loitfelder M, Langkammer C, Aspeck E, Wallner-Blazek M, Fuchs S, Jehna M, Schmidt R, Vecsei L, Fazekas F, Enzinger C (2011) Lesion probability mapping to explain clinical deficits and cognitive performance in multiple sclerosis. Mult Scler 17:681-689.
Kolasa M, Hakulinen U, Helminen M, Hagman S, Raunio M, Rossi M, Brander A, Dastidar P, Elovaara I (2015) Longitudinal assessment of clinically isolated syndrome with diffusion tensor imaging and volumetric MRI. Clin Imaging 39:207-212.
Lisak RP (2007) Neurodegeneration in multiple sclerosis: defining the problem. Neurology 68:S5-12; discussion S43-54.
Lowe MJ, Beall EB, Sakaie KE, Koenig KA, Stone L, Marrie RA, Phillips MD (2008) Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp 29:818-827.

Mikheev A, Nevsky G, Govindan S, Grossman R, Rusinek H (2008) Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm. J Magn Reson Imaging 27:1235-1241.
Preziosa P, Rocca MA, Pagani E, Stromillo ML, Enzinger C, Gallo A, Hulst HE, Atzori M, Pareto D, Riccitelli GC, Copetti M, De Stefano N, Fazekas F, Bisecco A, Barkhof F, Yousry TA, Arevalo MJ, Filippi M, Group MS (2016) Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: A Multicenter Study. Hum Brain Mapp 37:1627-1644.
Rashid W, Miller DH (2008) Recent advances in neuroimaging of multiple sclerosis. Semin Neurol 28:46-55.
Raz E, Cercignani M, Sbardella E, Totaro P, Pozzilli C, Bozzali M, Pantano P (2010) Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of white and gray matter. Radiology 254:227-234.
Rocca MA, De Meo E, Filippi M (2016a) Functional MRI in investigating cognitive impairment in multiple sclerosis. Acta Neurol Scand 134 Suppl 200:39-46.
Rocca MA, Preziosa P, Mesaros S, Pagani E, Dackovic J, Stosic-Opincal T, Drulovic J, Filippi M (2016b) Clinically Isolated Syndrome Suggestive of Multiple Sclerosis: Dynamic Patterns of Gray and White Matter Changes-A 2-year MR Imaging Study. Radiology 278:841-853.
Rocca MA, Vacchi L, Rodegher M, Meani A, Martinelli V, Possa F, Comi G, Falini A, Filippi M (2016c) Mapping face encoding using functional MRI in multiple sclerosis across disease phenotypes. Brain Imaging Behav.
Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487-1505.
Soneson C, Fontes M, Zhou Y, Denisov V, Paulsen JS, Kirik D, Petersen A, Huntington Study Group P-HDi (2010) Early changes in the hypothalamic region in prodromal Huntington disease revealed by MRI analysis. Neurobiol Dis 40:531-543.
Stadelmann C, Wegner C, Bruck W (2011) Inflammation, demyelination, and degeneration - Recent insights from MS pathology. Biochim Biophys Acta 1812:275-282.
Werring DJ, Brassat D, Droogan AG, Clark CA, Symms MR, Barker GJ, MacManus DG, Thompson AJ, Miller DH (2000) The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain 123 ( Pt 8):1667-1676.
Zhou Y, Milham M, Zuo XN, Kelly C, Jaggi H, Herbert J, Grossman RI, Ge Y (2013) Functional homotopic changes in multiple sclerosis with resting-state functional MR imaging. AJNR Am J Neuroradiol 34:1180-1187.
Zivadinov R, Cox JL (2007) Neuroimaging in multiple sclerosis. Int Rev Neurobiol 79:449-474.
Zivadinov R, Minagar A (2009) Evidence for gray matter pathology in multiple sclerosis: a neuroimaging approach. J Neurol Sci 282:1-4.
Zivadinov R, Ramasamy DP, Vaneckova M, Gandhi S, Chandra A, Hagemeier J, Bergsland N, Polak P, Benedict RH, Hojnacki D, Weinstock-Guttman B (2016) Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: A retrospective, pilot, observational longitudinal study. Mult Scler.
Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, Grzadzinski R, Evans AC, Zang YF, Castellanos FX, Milham MP (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034-15043.

Chapter 2

Abdollahi RO, Kolster H, Glasser MF, Robinson EC, Coalson TS, Dierker D, Jenkinson M, Van Essen DC, Orban GA (2014) Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99:509-524.
Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143-153.
Beall EB, Lowe MJ (2010) The non-separability of physiologic noise in functional connectivity MRI with spatial ICA at 3T. J Neurosci Methods 191:263-276.
Brown LN, Zhang Y, Mitchell JR, Zabad R, Metz LM (2010) Corpus callosum volume and interhemispheric transfer in multiple sclerosis. Can J Neurol Sci 37:615-619.
Chao YP, Cho KH, Yeh CH, Chou KH, Chen JH, Lin CP (2009) Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum Brain Mapp 30:3172-3187.
Chawla S, Kister I, Wuerfel J, Brisset JC, Liu S, Sinnecker T, Dusek P, Haacke EM, Paul F, Ge Y (2016) Iron and Non-Iron-Related Characteristics of Multiple Sclerosis and Neuromyelitis Optica Lesions at 7T MRI. AJNR Am J Neuroradiol 37:1223-1230.
Codeca C, Mori F, Kusayanagi H, Monteleone F, Boffa L, Paolillo A, Bernardi G, Koch G, Centonze D (2010) Differential patterns of interhemispheric functional disconnection in mild and advanced multiple sclerosis. Mult Scler 16:1308-1316.
Collins BE, Fralich TJ, Itonori S, Ichikawa Y, Schnaar RL (2000) Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiology 10:11-20.
Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050-11055.
Fling BW, Bernard JA, Bo J, Langan J (2008) Corpus callosum and bimanual coordination in multiple sclerosis. J Neurosci 28:7248-7249.
Fracasso A, van Veluw SJ, Visser F, Luijten PR, Spliet W, Zwanenburg JJ, Dumoulin SO, Petridou N (2016) Lines of Baillarger in vivo and ex vivo: Myelin contrast across lamina at 7T MRI and histology. Neuroimage 133:163-175.
Ge Y, Law M, Grossman RI (2005) Applications of diffusion tensor MR imaging in multiple sclerosis. Ann N Y Acad Sci 1064:202-219.
Ge Y, Law M, Johnson G, Herbert J, Babb JS, Mannon LJ, Grossman RI (2004) Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging. J Magn Reson Imaging 20:1-7.
Geisseler O, Pflugshaupt T, Bezzola L, Reuter K, Weller D, Schuknecht B, Brugger P, Linnebank M (2016) Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients’ fluency performance in a lateralised manner. Neuroimage Clin 10:89-95.
Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597-11616.
Glasser MF, Goyal MS, Preuss TM, Raichle ME, Van Essen DC (2014) Trends and properties of human cerebral cortex: correlations with cortical myelin content. Neuroimage 93 Pt 2:165-175.
Glasser MF, Smith SM, Marcus DS, Andersson JL, Auerbach EJ, Behrens TE, Coalson TS, Harms MP, Jenkinson M, Moeller S, Robinson EC, Sotiropoulos SN, Xu J, Yacoub E, Ugurbil K, Van Essen DC (2016) The Human Connectome Project's neuroimaging approach. Nat Neurosci 19:1175-1187.
Haberling IS, Badzakova-Trajkov G, Corballis MC (2011) Callosal tracts and patterns of hemispheric dominance: a combined fMRI and DTI study. Neuroimage 54:779-786.
Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci U S A 107:13135-13140.
Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989-994.
Hunt BA, Tewarie PK, Mougin OE, Geades N, Jones DK, Singh KD, Morris PG, Gowland PA, Brookes MJ (2016) Relationships between cortical myeloarchitecture and electrophysiological networks. Proc Natl Acad Sci U S A 113:13510-13515.
Keshavan MS, Diwadkar VA, Harenski K, Rosenberg DR, Sweeney JA, Pettegrew JW (2002) Abnormalities of the corpus callosum in first episode, treatment naive schizophrenia. J Neurol Neurosurg Psychiatry 72:757-760.
Kim EY, Park HJ, Kim DH, Lee SK, Kim J (2008) Measuring fractional anisotropy of the corpus callosum using diffusion tensor imaging: mid-sagittal versus axial imaging planes. Korean J Radiol 9:391-395.
Kister I, Herbert J, Zhou Y, Ge Y (2013a) Ultrahigh-Field MR (7 T) Imaging of Brain Lesions in Neuromyelitis Optica. Mult Scler Int 2013:398259.
Kister I, Ge Y, Herbert J, Sinnecker T, Wuerfel J, Paul F (2013b) Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 81:1966.
Larson PE, Han M, Krug R, Jakary A, Nelson SJ, Vigneron DB, Henry RG, McKinnon G, Kelley DA (2016) Ultrashort echo time and zero echo time MRI at 7T. MAGMA 29:359-370.
Lee K, Cherel M, Budin F, Gilmore J, Consing KZ, Rasmussen J, Wadhwa PD, Entringer S, Glasser MF, Van Essen DC, Buss C, Styner M (2015) Early Postnatal Myelin Content Estimate of White Matter via T1w/T2w Ratio. Proc SPIE Int Soc Opt Eng 9417.
Lenzi D, Conte A, Mainero C, Frasca V, Fubelli F, Totaro P, Caramia F, Inghilleri M, Pozzilli C, Pantano P (2007) Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapp 28:636-644.
Liu Y, Liang P, Duan Y, Jia X, Wang F, Yu C, Qin W, Dong H, Ye J, Li K (2011) Abnormal baseline brain activity in patients with neuromyelitis optica: a resting-state fMRI study. Eur J Radiol 80:407-411.
Ma YJ, Chang EY, Bydder GM, Du J (2016) Can ultrashort-TE (UTE) MRI sequences on a 3-T clinical scanner detect signal directly from collagen protons: freeze-dry and D2 O exchange studies of cortical bone and Achilles tendon specimens. NMR Biomed 29:912-917.
Mesulam M (2000) Brain, mind, and the evolution of connectivity. Brain Cogn 42:4-6.
Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P, Fischl B, Pappu V, Onorato C, Cha JH, Salat DH, Hersch SM (2010) Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection.” Neuroimage 49:2995-3004.
Sigal T, Shmuel M, Mark D, Gil H, Anat A (2010) Diffusion Tensor Imaging of Corpus Callosum Integrity in Multiple Sclerosis: Correlation with Disease Variables. J Neuroimaging.
Sinnecker T, Schumacher S, Mueller K, Pache F, Dusek P, Harms L, Ruprecht K, Nytrova P, Chawla S, Niendorf T, Kister I, Paul F, Ge Y, Wuerfel J (2016) MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurol Neuroimmunol Neuroinflamm 3:e259.
Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487-1505.
Stark DE, Margulies DS, Shehzad ZE, Reiss P, Kelly AM, Uddin LQ, Gee DG, Roy AK, Banich MT, Castellanos FX, Milham MP (2008) Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J Neurosci 28:13754-13764.
Steenwijk MD, Geurts JJ, Daams M, Tijms BM, Wink AM, Balk LJ, Tewarie PK, Uitdehaag BM, Barkhof F, Vrenken H, Pouwels PJ (2016) Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 139:115-126.
Varma G, Duhamel G, de Bazelaire C, Alsop DC (2015) Magnetization transfer from inhomogeneously broadened lines: A potential marker for myelin. Magn Reson Med 73:614-622.
Vu AT, Jamison K, Glasser MF, Smith SM, Coalson T, Moeller S, Auerbach EJ, Ugurbil K, Yacoub E (2016) Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project. Neuroimage.
Werring DJ, Brassat D, Droogan AG, Clark CA, Symms MR, Barker GJ, MacManus DG, Thompson AJ, Miller DH (2000) The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain 123 (Pt 8):1667-1676.
Whitaker KJ, Vertes PE, Romero-Garcia R, Vasa F, Moutoussis M, Prabhu G, Weiskopf N, Callaghan MF, Wagstyl K, Rittman T, Tait R, Ooi C, Suckling J, Inkster B, Fonagy P, Dolan RJ, Jones PB, Goodyer IM, Consortium N, Bullmore ET (2016) Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci U S A 113:9105-9110.
Zhou Y, Lui YW, Zuo XN, Milham MP, Reaume J, Grossman RI, Ge Y (2014) Characterization of thalamo-cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury. J Magn Reson Imaging 39:1558-1568.
Zhou Y, Milham M, Zuo XN, Kelly C, Jaggi H, Herbert J, Grossman RI, Ge Y (2013) Functional homotopic changes in multiple sclerosis with resting-state functional MR imaging. AJNR Am J Neuroradiol 34:1180-1187.
Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, Grzadzinski R, Evans AC, Zang YF, Castellanos FX, Milham MP (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034-15043.

Chapter 3 Part I

Alsop DC (2012) Arterial spin labeling: its time is now. Magma 25:75-77.
Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism 16:1236-1249.
Bangen KJ, Restom K, Lui TT, Jak AJ, Wierenga CE, Salmon DP, Bondid MW (2009) Differential age effects on cerebral blood flow and BOLD response to encoding: Associations with cognition and stroke risk. Neurobiology of Aging 30:1276-1287.
Barua RS, Ambrose JA, Srivastava S, DeVoe MC, Eales-Reynolds LJ (2003) Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells. Circulation 107:2342-2347.
Bhogal AA, Siero JC, Fisher JA, Froeling M, Luijten P, Philippens M, Hoogduin H (2014) Investigating the non-linearity of the BOLD cerebrovascular reactivity response to targeted hypo/hypercapnia at 7T. Neuroimage 98:296-305.
Birn RM, Cox RW, Bandettini PA (2004) Experimental designs and processing strategies for fMRI studies involving overt verbal responses. Neuroimage 23:1046-1058.
Blockley NP, Griffeth VE, Simon AB, Buxton RB (2013) A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. NMR Biomed 26:987-1003.
Blockley NP, Driver ID, Francis ST, Fisher JA, Gowland PA (2011) An Improved Method for Acquiring Cerebrovascular Reactivity Maps. Magn Reson Med 65:1278-1286.
Bright MG, Bulte DP, Jezzard P, Duyn JH (2009) Characterization of regional hetergeneity in cerebrovascular reactivity dynamics using novel hypercapnia task and BOLD fMRI. Neuroimage 48:166-175.
Buijs PC, Krabbe-Hartkamp MJ, Bakker CJ, de Lange EE, Ramos LM, Breteler MM, Mali WP (1998) Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 209:667-674.

Bulte DP, Kelly M, Germuska M, Xie J, Chappell MA, Okell TW, Bright MG, Jezzard P (2012) Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 60:582-591.
Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383-396.
Chen Y, Wang DJ, Detre JA (2011) Test-retest reliability of arterial spin labeling with common labeling strategies. J Magn Reson Imaging 33:940-949.
Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489-509.
Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95:1834-1839.
Donahue MJ, Ayad M, Moore R, van Osch M, Singer R, Clemmons P, Strother M (2013) Relationships between hypercarbic reactivity, cerebral blood flow, and arterial circulation times in patients with moyamoya disease. J Magn Reson Imaging 38:1129-1139.
Duhamel G, de Bazelaire C, Alsop DC (2003) Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 50:145-153.
Duhamel G, Callot V, Tachrount M, Alsop DC, Cozzone PJ (2012) Pseudo-continuous arterial spin labeling at very high magnetic field (11.75 T) for high-resolution mouse brain perfusion imaging. Magn Reson Med 67:1225-1236.
Faraco CC, Strother MK, Dethrage LM, Jordan L, Singer R, Clemmons PF, Donahue MJ (2015) Dual echo vessel-encoded ASL for simultaneous BOLD and CBF reactivity assessment in patients with ischemic cerebrovascular disease. Magn Reson Med 74(4):1579-1592.
Fernandez-Seara MA, Wang Z, Wang J, Rao H, Guenther M, Feinberg DA, Detre JA (2005) Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3T. Magnetic resonance in medicine 54:1241-1247.
Fülesdi B, Limburg M, Bereczki D (1999) Cerebrovascular reactivity and reserve capacity in type II diabetes mellitus. J Diabetes Complications 13:191-199.
Gao JH, Miller I, Lai S, Xiong J, Fox PT (1996) Quantitative assessment of blood inflow effects in functional MRI signals. Magn Reson Med 36:314-319.
Ge Y, Zhou Y, Lu H, Xu F, Kister I, Jaggi H, Herbert J, Grossman RI (2012) Impaired cerebrovascular reactivity in multiple sclerosis measured with hypercapnia perfusion magnetic resonance imaging. Multiple Sclerosis Journal International Conference:56.
Griffeth VE, Buxton RB (2011) A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: modeling the effects of blood volume distribution, hematocrit,oxygen extraction fraction, and tissue signal properties on the BOLD signal. Neuroimage 58:198-212.
Gur RC, Gur RE, Obrist WD, Skolnick BE, Reivich M (1987) Age and Regional Cerebral Blood Flow at Rest and During Cognitive Activity. Arch Gen Psychiatry 44:617-621.
Hare HV, Germuska M, Kelly ME, Bulte DP (2013) Comparison of CO2 in air versus carbogen for the measurement of cerebrovascular reactivity with magnetic resonance imaging. J Cereb Blood Flow Metab 33:1799-1805.
Heijtel DF, Mutsaerts HJ, Bakker E, Schober P, Stevens MF, Petersen ET, van Berckel BN, Majoie CB, Booij J, van Osch MJ, Vanbavel E, Boellaard R, Lammertsma AA, Nederveen AJ (2014) Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography. Neuroimage 92:182-192.
Iglesias JE, Liu CY, Thompson PM, Tu ZW (2011) Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods. IEEE Transactions on Medical Imaging 30:1617-1634.
Jain V, Langham MC, Floyd TF, Jain G, Magland JF, Wehrli FW (2011) Rapid magnetic resonance measurement of global cerebral metabolic rate of oxygen consumption in humans during rest and hypercapnia. J Cereb Blood Flow Metab 31:1504-1512.
Kassner A, Winter JD, Poublanc J, Mikulis DJ, Crawley AP (2010) Blood-Oxygen Level Dependent MRI Measures of Cerebrovascular Reactivity Using a Controlled Respiratory Challenge: Reproducibility and Gender Differences. J Magn Reson Imaging 31:298-304.
Kastrup A, Kruger G, Glover GH (1999) Regional variability of cerebral blood oxygenation response to hypercapnia. Neuroimage 10:675-681.
Lawrence KS, Ye FQ, Lewis BK, Weinberger DR, Frank JA, McLaughlin AC (2002) Effects of Indomethacin on Cerebral Blood Flow at Rest and During Hypercapnia: An Arterial Spin Tagging Study in Humans. J Magn Reson Imaging 15:628-635.
Lee SP, Duong TQ, Yang G, Iadecola C, Kim SG (2001) Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn Reson Med 45:791-800.
Leoni RF, Mazzetto-Betti KC, Silva AC, Dos Santos AC, de Araujo DB, Leite JP, Pontes-Neto OM (2012) Assessing cerebrovascular reactivity in carotid steno-occlusive disease using MRI BOLD and ASL techniques. Radiol Res Pract 2012:1-28.
Leontiev O, Dubowitz DJ, Buxton RB (2007) CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias. Neuroimage 36:1110-1122.

Liu P, Hebrank AC, Rodrigue KM, Kennedy KM, Section J, Park DC, Lu H (2013) Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity. Neuroimage 78:415-425.
Mandell DM, Han JS, Poublanc J, Crawley AP, Stainsby JA, Fisher JA, Mikulis DJ (2008) Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke 39:2021-2028.
Mark CI, Slessarev M, Ito S, Han J, Fisher JA, Pike GB (2010) Precise control of end-tidal carbon dioxide and oxygen improves BOLD and ASL cerebrovascular reactivity measures. Magn Reson Med 64:749-756.
Mohtasib RS, Lumley G, Goodwin JA, Emsley HCA, Slumin V (2012) Calibrated fMRI during a cognitive Stroop task reveals reduced metabolic response with increasing age. NeuroImage 12:1143-1151.
Naqvi TZ, H.K. H (2009) Cerebrovascular mental stress reactivity is impaired in hypertension. Cardiovascular Ultrasound 7:32-45.
Okell TW, Chappell MA, Kelly ME, Jezzard P (2013) Cerebral blood flow quantification using vessel-encoded arterial spin labeling. J Cereb Blood Flow Metab 33(11):1716-1724.
Pattinson KT, Rogers R, Mayhew SD, Tracey I, Wise RG (2007) Pharmacological FMRI: measuring opioid effects on the BOLD response to hypercapnia. J Cereb Blood Flow Metab 27:414-423.
Pillai JJ, Zaca D (2011) Clinical utility of cerebrovascular reactivity mapping in patients with low grade gliomas. World Journal of Clinical Oncology 2:397-403.
Rodgers ZB, Jain V, Englund EK, Langham MC, Wehrli FW (2013) High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge. Journal of Cerebral Blood Flow and Metabolism 33(10):1514-1522.
Rostrup E, Law I, Blinkenberg M, Larsson HBW, Born AP, Hom S, Paulson OB (2000) Regional differences in the CBF and BOLD responses to hypercapnia: A combined PET and fMRI study. Neuroimage 11:87-97.
Rostrup E, Larsson HB, Toft PB, Garde K, Thomsen C, Ring P, Søndergaard L, Henriksen O (1994) Functional MRI of CO2 induced increase in cerebral perfusion. NMR Biomed 7:29-34.
Rusinek H, Glodzik L, Brys M, Haas F, Mcgorty KA, Chen Q, de Leon MJ (2010) Hippocampal blood flow and vascular reactivity in normal aging. Proceedings of the 18th scientific meeting ISMRM.
Saxena I, Kumar G, Kumar M, Kumar J (2013) The stress-induced cardiovascular reactivity in the fasting and fed states of healthy young indian males. J Clinical and Diagnostic Research 7:635-637.
Schmid S, Ghariq E, Teeuwisse WM, Webb A, van Osch MJP (2014) Acceleration-Selective Arterial Spin Labeling. Magn Reson Med 71:191-199.
Shen Q, Ren H, Duong TQ (2008) CBF, BOLD, CBV, and CMRO2 fMRI Signal Temporal Dynamics at 500-msec Resolution. J Magn Reson Imaging 27:599-606.
Sicard KM, Duong TQ (2005) Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25:850-858.
Singh M, Sungkarat W, Jeong JW, Zhou YX (2002) Extraction of temporal information in functional MRI. IEEE Transactions on Nuclear Science 49:2284-2290.
Song AW (2001) Single-shot EPI with signal recovery from the susceptibility-induced losses. Magn Reson Med 46:407-411.
Spano VR, Mandell DM, Poublanc J, Sam K, Battisti-Charbonney A, Pucci O, Han JS, Crawley AP, Fisher JA, Mikulis DJ (2013) CO2 blood oxygen level-dependent MR mapping of cerebrovascular reserve in a clinical population: safety, tolerability, and technical feasibility. Radiology 266:592-598.
Tancredi FB, Hoge RD (2013) Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation. J Cereb Blood Flow Metab 33:1066-1074.
Tancredi FB, Gauthier CJ, Madjar C, Bolar DS, Fisher JA, Wang DJ, Hoge RD (2012) Comparison of pulsed and pseudocontinuous arterial spin-labeling for measuring CO2 -induced cerebrovascular reactivity. J Magn Reson Imaging 36:312-321.
Thomas BP, Liu P, Park DC, van Osch MJ, Lu H (2014) Cerebrovascular reactivity in the brain white matter: magnitude, temporal characteristics, and age effects. J Cereb Blood Flow Metab 34:242-247.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcriox N, al. e (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273-289.
Wang Z, Aguirre GK, Rao H, Wang J, Fernandez-Seara MA, Childress AR, Detre JA (2008) Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magn Reson Imaging 26:261-269.
Wey HY, Wang DJ, Duong TQ (2009) Baseline CBF, and BOLD, CBF, and CMRO2 fMRI of visual and vibrotactile stimulations in baboons. J Cereb Blood Flow Metab 31:715-724.
Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic-Resonance-Imaging of Perfusion Using Spin Inversion of Arterial Water. Proceedings of the National Academy of Sciences of the United States of America 89:212-216.
Wong EC (2007) Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 58:1086-1091.
Wu WC, Fernandez-Seara M, Detre JA, Wehrli FW, Wang J (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020-1027.
Xu F, Uh J, Brier MR, Hart J, Jr., Yezhuvath US, Gu H, Yang Y, Lu H (2011) The influence of carbon dioxide on brain activity and metabolism in conscious humans. J Cereb Blood Flow Metab 31:58-67.
Ye FQ, Berman KF, Ellmore T, Esposito G, van Horn JD, Yang Y, Duyn J, Smith AM, Frank JA, Weinberger DR, McLaughlin AC (2000) H215O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 44:450-456.
Yezhuvath US, Lewis-Amezcua K, Varghese R, Xiao G, Lu H (2009) On the assessment of cerebrovascular reactivity using hypercapnia BOLD MRI. NMR Biomed 22:779-786.
Yonas H, Smith HA, Durham SR, Pentheny SL, Johnson DW (1993) Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg 79:483-489.
Zhou Y, Lu H, Xu F, Kenul D, Jaggi H, Herbert J, Kister I, Grossman RI, Ge Y (2013) Impaired Cerebrovascular Reactivity (CVR) in MS Measured with Hypercapnia Perfusion MRI. Neuroimage 62:
774-781.

Chapter 3 Part II

Audoin B, Ibarrola D, Ranjeva JP, Confort-Gouny S, Malikova I, Ali-Cherif A, Pelletier J, Cozzone P (2003) Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp 20:51-58.
Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458-468.
Bastos-Leite AJ, Kuijer JP, Rombouts SA, Sanz-Arigita E, van Straaten EC, Gouw AA, van der Flier WM, Scheltens P, Barkhof F (2008) Cerebral blood flow by using pulsed arterial spin-labeling in elderly subjects with white matter hyperintensities. AJNR Am J Neuroradiol 29:1296-1301.
Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206:165-171.
Bulte DP, Kelly M, Germuska M, Xie J, Chappell MA, Okell TW, Bright MG, Jezzard P (2012) Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 60:582-591.
Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383-396.
Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95:1834-1839.
De Keyser J, Steen C, Mostert JP, Koch MW (2008) Hypoperfusion of the cerebral white matter in multiple sclerosis: possible mechanisms and pathophysiological significance. J Cereb Blood Flow Metab 28:1645-1651.
Duhamel G, Callot V, Tachrount M, Alsop DC, Cozzone PJ (2012) Pseudo-continuous arterial spin labeling at very high magnetic field (11.75 T) for high-resolution mouse brain perfusion imaging. Magn Reson Med 67:1225-1236.
Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, Ghezzi A, Martinelli V, Grossman RI, Scotti G, Comi G, Falini A (2003) Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 126:433-437.
Ge Y, Law M, Johnson G, Herbert J, Babb JS, Mannon LJ, Grossman RI (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol 26:1539-1547.

Grossman EJ, Zhang K, An J, Voorhees A, Inglese M, Ge Y, Oesingmann N, Xu J, McGorty KA, Chen Q (2009) Measurement of deep gray matter perfusion using a segmented true-fast imaging with steady-state precession (True-FISP) arterial spin-labeling (ASL) method at 3T. J Magn Reson Imaging 29:1425-1431.
Inglese M, Park SJ, Johnson G, Babb JS, Miles L, Jaggi H, Herbert J, Grossman RI (2007) Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch Neurol 64:196-202.
Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202-2212.
Law M, Saindane AM, Ge Y, Babb JS, Johnson G, Mannon LJ, Herbert J, Grossman RI (2004) Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology 231:645-652.
Leontiev O, Dubowitz DJ, Buxton RB (2007) CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias. Neuroimage 36:1110-1122.
Lisak RP (2007) Neurodegeneration in multiple sclerosis: defining the problem. Neurology 68:S5-12; discussion S43-54.
Mikheev A, Nevsky G, Govindan S, Grossman R, Rusinek H (2008) Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm. J Magn Reson Imaging 27:1235-1241.
Offner H, Sinha S, Wang C, Burrows GG, Vandenbark AA (2008) Recombinant T cell receptor ligands: immunomodulatory, neuroprotective and neuroregenerative effects suggest application as therapy for multiple sclerosis. Rev Neurosci 19:327-339.
Penner IK, Rausch M, Kappos L, Opwis K, Radu EW (2003) Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. J Neurol 250:461-472.
Prineas JW, McDonald WI (1997) Demyelinating diseases. In: Greenfield’s Neuropathology (Graham DI, Lantos PL, eds), pp 813-896. London: Oxford University Press.
Rashid W, Parkes LM, Ingle GT, Chard DT, Toosy AT, Altmann DR, Symms MR, Tofts PS, Thompson AJ, Miller DH (2004) Abnormalities of cerebral perfusion in multiple sclerosis. J Neurol Neurosurg Psychiatry 75:1288-1293.
Rocca MA, Filippi M (2007) Functional MRI in multiple sclerosis. J Neuroimaging 17 Suppl 1:36S-41S.
Stadelmann C, Wegner C, Bruck W (2011) Inflammation, demyelination, and degeneration - Recent insights from MS pathology. Biochim Biophys Acta 1812:275-282.
Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247-269.
Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280-291.
Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295-302.
Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278-285.
Wakefield AJ, More LJ, Difford J, McLaughlin JE (1994) Immunohistochemical study of vascular injury in acute multiple sclerosis. J Clin Pathol 47:129-133.
Wuerfel J, Bellmann-Strobl J, Brunecker P, Aktas O, McFarland H, Villringer A, Zipp F (2004) Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain 127:111-119.
Xu F, Ge Y, Lu H (2009) Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO(2)) by MRI. Magn Reson Med.
Yezhuvath US, Lewis-Amezcua K, Varghese R, Xiao G, Lu H (2009) On the assessment of cerebrovascular reactivity using hypercapnia BOLD MRI. NMR Biomed 22:779-786.
Zhou Y, Rodgers ZB, Kuo AH (2015) Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques. Magn Reson Imaging 33:566-576.
Zhou Y, Milham M, Zuo XN, Kelly C, Jaggi H, Herbert J, Grossman RI, Ge Y (2013) Functional Homotopic Changes in Multiple Sclerosis with Resting-State Functional MR Imaging. AJNR Am J Neuroradiol.

Chapter 4

Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333-344.
Chawla S, Kister I, Wuerfel J, Brisset JC, Liu S, Sinnecker T, Dusek P, Haacke EM, Paul F, Ge Y (2016) Iron and Non-Iron-Related Characteristics of Multiple Sclerosis and Neuromyelitis Optica Lesions at 7T MRI. AJNR Am J Neuroradiol 37:1223-1230.
Deoni SC, Dean DC, 3rd, Remer J, Dirks H, O'Muircheartaigh J (2015) Cortical maturation and myelination in healthy toddlers and young children. Neuroimage 115:147-161.
Deoni SC, Mercure E, Blasi A, Gasston D, Thomson A, Johnson M, Williams SC, Murphy DG (2011) Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 31:784-791.
Eskreis-Winkler S, Deh K, Gupta A, Liu T, Wisnieff C, Jin M, Gauthier SA, Wang Y, Spincemaille P (2015) Multiple sclerosis lesion geometry in quantitative susceptibility mapping (QSM) and phase imaging. J Magn Reson Imaging 42:224-229.
Horch RA, Gore JC, Does MD (2011) Origins of the ultrashort-T2 1H NMR signals in myelinated nerve: a direct measure of myelin content? Magn Reson Med 66:24-31.
Kulikova S, Hertz-Pannier L, Dehaene-Lambertz G, Poupon C, Dubois J (2016) A New Strategy for Fast MRI-Based Quantification of the Myelin Water Fraction: Application to Brain Imaging in Infants. PLoS One 11:e0163143.
Larson PE, Han M, Krug R, Jakary A, Nelson SJ, Vigneron DB, Henry RG, McKinnon G, Kelley DA (2016) Ultrashort echo time and zero echo time MRI at 7T. MAGMA 29:359-370.
Sinnecker T, Schumacher S, Mueller K, Pache F, Dusek P, Harms L, Ruprecht K, Nytrova P, Chawla S, Niendorf T, Kister I, Paul F, Ge Y, Wuerfel J (2016) MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurol Neuroimmunol Neuroinflamm 3:e259.
Stikov N, Perry LM, Mezer A, Rykhlevskaia E, Wandell BA, Pauly JM, Dougherty RF (2011) Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure. Neuroimage 54:1112-1121.
Varma G, Duhamel G, de Bazelaire C, Alsop DC (2015) Magnetization transfer from inhomogeneously broadened lines: A potential marker for myelin. Magn Reson Med 73:614-622.
Wisnieff C, Ramanan S, Olesik J, Gauthier S, Wang Y, Pitt D (2015) Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron. Magn Reson Med 74:564-570.
Zhou D, Cho J, Zhang J, Spincemaille P, Wang Y (2016) Susceptibility underestimation in a high-susceptibility phantom: Dependence on imaging resolution, magnitude contrast, and other parameters. Magn Reson Med.
Zhou J, Hong X, Zhao X, Gao JH, Yuan J (2013) APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magn Reson Med 70:320-327.

If you have any questions or comments with regards to this book, please fill out the form below. Thank you!

You have not viewed any product yet.