Monitoring of Thermal Stresses and Heating Optimization Including Industrial Applications

$160.00

, , , ,

Series: Materials Science and Technologies
BISAC: TEC027000

Wind farms and other renewable energy sources are characterized by the high unpredictability of generated power as a function of time. When the wind velocity decreases, the power generation diminishes rapidly. To offset the loss of power in the energy system, thermal power plants should be designed for quick start-ups and shutdowns, i.e., the flexibility of thermal power units should be improved. The pressure and temperature of the working fluid in the boiler should be increased quickly, so as to shorten the start-up of the boiler.
The subject of the book is inverse heat transfer problems occurring in the monitoring of thermal stress in pressurized thick-walled components. New methods of determining the optimum time variations of fluid temperature during heating and cooling of the pressure parts in thermal power plants are presented. A new technique for measuring the transient temperature of fluid flowing in the pipeline are also presented. Numerous examples that illustrate the practical application of theoretical methods developed are presented as well.

The book is meant for engineers, researchers, and scientists. It can also benefit the students of technical universities. The book may be helpful to manufacturers of large power boilers and users of thermal power plants, both conventional and nuclear. (Imprint: Nova)

Table of Contents

Table of Contents

Preface

List of Symbols

Chapter 1. Introduction

Chapter 2. Comparison of the Design and Operation of Supercritical and Drum Boilers with Natural Circulation

Chapter 3. Determining of Thermometer Time Constants and Measurement of Transient Fluid Temperature

Chapter 4. Measurement of Fluid Transient Temperature Under High-Pressure

Chapter 5. Monitoring of Thermal Stresses in Pressure Components Using Inverse Heat Conduction Methods

Chapter 6. Determination of Allowable Heating and Cooling Rates of Boiler Pressure Elements, Using the Quasi-Steady State Approach

Chapter 7. A New Method for Optimum Heating of Steam Boiler Pressure Components

Chapter 8. Determining Optimum Temperature Changes during Heating of Pressure Vessels with Holes

Chapter 9. Determination of Start-Up Curves for a Boiler with Natural Circulation based on the Analysis of Stress Distribution in Critical Pressure Components

References

Index


References

[1] Albrecht W, Instationäre Wärmespannungen in Hohlzylindern, Konstruktion 18 (1966) 224-231.
[2] Ansys, Release 13.0, ANSYS, Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, USA 2009.
[3] ASME, Policy on reporting uncertainties in experimental measurements and results, Journal of Heat Transfer 122 (2000) 411-413.
[4] Baba K, Ochi M., Monitoring of transient temperature distribution in piping, Transactions of the ASME, Journal of Pressure Vessel Technology, 116 (1994) 419-422.
[5] Baerts Ch., Van Gerwen P., European patent EP1069416 (A1), Method for decreasing the response time of a temperature sensor, Heraeus Electro Nite Int, 2001-01-17.
[6] Baliga B.R., Patankar S.V., Elliptic Systems, Finite-Element Method II, in Minkowycz W.J., Sparrow E.M., Schneider G.E., Pletcher R.H. (Eds.), Handbook of Numerical Heat Transfer, Wiley, New York, 1988, pp. 421-461.
[7] Bauer W.D., Wenisch J., Heywood J.B., Averaged and time-resolved heat transfer of steady and pulsating entry flow in intake manifold of a spark-ignition engine, International Journal of Heat and Fluid Flow 19 (1998) 1-9.
[8] BCLSF Subroutine, Chapter 8: Optimization, IMSL MATH/LIBRARY, FORTRAN subroutines for mathematical applications, Vol. 2, Visual Numerics Inc., 1994.
[9] Beck J.V., Sequential methods in parameter estimation, in: Woodbury K.A. (Ed.), Inverse Engineering Handbook, CRC Press, Boca Raton, 2003, pp. 1-39.
[10] Beck J.V., Blackwell B., Clair Ch.R.St., Inverse heat conduction, Ill-posed Problems, Wiley-Interscience Publication, New York, 1985.
[11] Blackwell B., Beck J.V., A technique for uncertainty analysis for inverse heat conduction problems, International Journal of Heat and Mass Transfer 53 (2010) 753-759.
[12] Brockel D., Prozeβführungsrechner für Kraftwerksdampferzeuger, VGB Kraftwerkstechnik 65 (1985) 510-515.
[13] Burggraf O.R., An exact solution of the inverse problem in heat conduction theory and applications, Transactions of the ASME, Journal of Heat Transfer 86 (1964) 373-382.
[14] Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, 2nd Ed., Oxford University Press, Oxford, 2008.
[15] Carver M.B., Hinds H.W., The method of lines and the advective equation, Simulation, August (1978) 59-69.
[16] Cebula A., Taler D., Finite volume method in heat conduction, in Hetnarski R. (Ed), Encyclopedia of Thermal Stresses, Springer, Berlin, 2014, pp. 1645-1658.
[17] Cebula A., Taler J., Determination of transient temperature and heat flux on the surface of a reactor control rod based on temperature measurements at the interior points, Applied Thermal Engineering 63 (2014) 158-169.
[18] Cisek P., Electric storage heating systems for buildings, District Heating, Heating, Ventilation 6 (2014) 218-225 (in Polish).
[19] Chang C.-L., Chang M., Inverse determination of thermal conductivity using semi-discretization method, Applied Mathematical Modelling 33 (2009) 1644-1655.
[20] Chen H.T., Wu X.Y., Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme, International Journal for Numerical Methods in Engineering 73 (2008) 107-122.
[21] Childs P.R.N., Practical Temperature Measurement, Buterworth-Heinemann, Oxford, 2001.
[22] Churchill S.W., Bernstein M., A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow, Journal of Heat Transfer 99 (1977) 300-306.
[23] Coleman H.W., Steele W.G., Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd Ed., Wiley, Hoboken, NY, 2009.
[24] Davidenko K.J., Ruszczinskij W.M., Algorithm for numerical determining transient processes in boilers with supercritical parameters, Izvestia Akademii Nauk SSSR, Energetics and Transport 3 (1974) 150-161 (in Russian).
[25] Dietmann S., Wienand K., German patent DE4424384 (A1), Fast response temperature probe especially for measuring temperature in range minus forty to plus one thousand degrees centigrade, Heraeus Sensor GmbH, 1996-01-18.
[26] Dormand J.R., Numerical Methods for Differential Equations, CRC Press, Boca Raton, USA, 1996.
[27] D’Souza N., Numerical solution of one-dimensional inverse transient heat conduction by finite difference method, ASME Paper 75 (1975) WA/HT1-81.
[28] Duda P., Taler J., Experimental verification of space marching methods for solving inverse heat conduction problems, Heat and Mass Transfer 36 (2000) 325-331.
[29] Duda P., Taler J. Numerical method for the solution of non-linear two-dimensional inverse heat conduction problem using unstructured meshes, International Journal for Numerical Methods in Engineering 48 (2000) 881-899.
[30] Duda P., Taler J., Roos E., Inverse method for temperature and stress monitoring in complex-shape-bodies, Nuclear Engineering and Design 227 (2004) 331-347.
[31] Dzierwa P., Determining of allowable heating rates for thick walled boiler pressure components using quasi – steady state approach, Energetyka 61(1) (2012) 601-606 (in Polish).
[32] Dzierwa P., Measuring of local heat flux to water walls in combustion chambers of steam boilers, Energetyka 5(682) (2011) 622-624 (in Polish).
[33] Dzierwa P., Optimization of heating and cooling of thick walled pressure components, PhD Thesis, Cracow University of Technology, Department of Mechanical Engineering, Cracow, Poland, 2007.
[34] Dzierwa P., Optimum heating of pressure components of complex shape, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 3532-3543.
[35] Dzierwa P., Quasi-steady-state approach for solving transient heat conduction problems, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 4083-4092.
[36] Dzierwa P., Taler D., Taler J., Optimum heating of cylindrical pressure vessels, Forschung im Ingenieurwesen (Engineering Research), 2016, DOI:10.1007/s10010-016-0196-7.
[37] Dzierwa P., Taler J., Optimization of pressure vessels with openings, Energetyka 65(5) (2012) 101-104 (in Polish).
[38] Dzierwa P., Taler J., Optimum heating of pressure vessels with holes, ASME Journal of Pressure Vessel Technology 137 (2014) 011202-1-8.
[39] Dzierwa P., Taler J., Taler D., Trojan M., Optimum heating of thick wall pressure components of steam boilers, Power2014-32080. Proceedings of the ASME 2014 Power Conference Power 2014 July 28-31, 2014, Baltimore, Maryland, pp. 1-9.
[40] Eldén L., Solving an inverse heat conduction problem by a “method of lines,” Transactions of the ASME, Journal of Heat Transfer 119 (1997) 406-412.
[41] Elizarov D.P., Thermal shock in steam lines of thermal power stations, Tieploenergetika (Thermal Engineering) 18(2) (1971) 78-82.
[42] EN 12952-3, Water-tube boilers and auxiliary installations – Part 3: Design and calculation for pressure parts, European Committee for Standardization, Brussele, 2012.
[43] Gerashchenko O.A., Gordov A.N., Lakh V.I., Stadnyk B.I., Yaryshev N.A., Temperaturnye Izmereniya, Naukova Dumka, Kiev, 1984 (in Russian).
[44] Ghosh S., Pratihar D.K., Maiti B., Das P.K., Inverse estimation of location of internal heat source in conduction, Inverse Problems in Science and Engineering 19 (2011) 337-361.
[45] Goidich S.J., Docherty R.J., Melzer K.P., World 1st in West Virginia: Longview supercritical Benson vertical PC boiler, Modern Power Systems 32(4) (2012) 29-32.
[46] Habib M.A., Emara-Shabaik H.E., Al-Zaharnah I., Ayinde T., A thermal nonlinear dynamic model for water tube drum boilers, International Journal of Energy Research 34 (2010) 20-35.
[47] Hensel E., Hills R.G., An initial value approach to the inverse heat conduction problem, Transactions of the ASME, Journal of Heat Transfer 108 (1986) 248-256.
[48] http://www.energy.siemens.com.
[49] Hubera M., Dimkovab D., Hamachera T., Integration of wind and solar power in Europe: Assessment of flexibility requirements, Energy 69 (2014) 236-246.
[50] Ijaz U.Z., Khambampati A.K., Kim M.-C., Kim S., Kim K.-Y., Estimation of time-dependent heat flux and measurement bias in two-dimensional inverse heat conduction problems, International Journal of Heat and Mass Transfer 50 (2007) 4117-4130.
[51] Jaremkiewicz M., Inverse heat transfer problem encountered in measurement of transient fluid temperature, Wydawnictwo Politechniki Krakowskiej, Cracow, 2012 (in Polish).
[52] Jaremkiewicz M., Method of lines in heat conduction, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 2990-2997.
[53] Jaremkiewicz M., Taler D., Sobota T., Measurement of transient fluid temperature, International Journal of Thermal Sciences 87 (2015) 241-250.
[54] Jaremkiewicz M., Taler D., Sobota T., Measuring transient temperature of the medium in power engineering machines and installations, Applied Thermal Engineering 29 (2009) 3374-3379.
[55] Han J.-Ch., Dutta S., Ekkad S.V., Gas Turbine Heat Transfer and Cooling Technology, Taylor&Francis, New York, London, 2000.
[56] Johnson M.P., Gilson A.G., Do Your Thermowells Meet the ASME Standard?, Flow Control 8 (2012), http://www.flowcontrolnetwork.com.
[57] Kabza Z., Kostyrko K., Zator S., Łobzowski A., Szkolnikowski W., Room Climate Control, Agenda Wydawnicza, Pomiary Automatyka Kontrola, Warsaw, 2005 (in Polish).
[58] Kerlin T.W., Johnson M., Practical Thermocouple Thermometry, 2nd Ed., International Society of Automation, Research Triangle Park, NC, 2012.
[59] Kim T.-H., Lee D.K., Ro S.T., Analysis of thermal stress evolution in the steam drum during start-up of a heat recovery steam generator, Applied Thermal Engineering 20 (2000) 977-992.
[60] Kolpatzik S., European patent EP1014061 (A1), Method for determining the gas temperature, averaged over the cross-section of a gas conduit, Ruhrgas AG, 2000-06-28.
[61] Korn G.A., Korn T.M., Mathematical Handbook, McGraw-Hill, New York, 1968.
[62] Krüger K., Franke R., Rode M., Optimization of boiler start-up using a nonlinear boiler model and hard constraints, Energy 29 (2004) 2239-2251.
[63] Leithner R., Steege F., Pich R., Erlmann K., Chi T.N., Vergleich verschiedener Verfahren zur Bestimmung der Temperaturdifferenz in dickwandigen Bauteilen für die Lebensdauer-berechnung, VGB Kraftwerkstechnik 70 (1990) 446-457.
[64] Levenberg K., A Method for the Solution of Certain Non-Linear Problems in Least Squares, The Quarterly of Applied Mathematics 2 (1944) 164-168.
[65] Littler D.J. et al., Instrumentation, Controls & Testing. Modern Power Station Practice, Pergamon Press, Oxford, 1991.
[66] Madejski P., Taler D., Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation, Energy Conversion and Management 71 (2013) 131-137.
[67] Marquardt D.W., An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11(2) (1963) 431-441.
[68] Meyer C.A., McClintock R.B., Silvestri G.J., Spencer R.C., ASME Steam Tables, The American Society of Mechanical Engineers, New York, 1993.
[69] Michalski L., Eckersdorf K., Kucharski J., McGhee J., Temperature Measurement, 2nd Ed., Wiley, Chichester, 2001.
[70] Moffat R.J., Describing the uncertainties in experimental results, Experimental Thermal and Fluid Science 1 (1988) 3-17.
[71] Morriesen A., Deschamps C.J., Experimental investigation of transient fluid flow and superheating in the suction chamber of a refrigeration reciprocating compressor, Applied Thermal Engineering 41 (2012) 61-70.
[72] Nicholas J.V., White D.R., Traceable Temperatures. An Introduction to Temperature Measurement and Calibration, 2nd Ed., Wiley, New York, 2001.
[73] Ocłoń P., Taler J., Mixed finite volume and finite element formulation Linear quadrilateral elements, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 3070-3086.
[74] Ocłoń P., Taler J., Mixed finite volume and finite element formulation Linear triangular elements, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 3086-3095.
[75] Olczyk A., Problems of unsteady temperature measurements in a pulsating flow of gas, Measurement Science and Technology 19(5) (2008) 1-11.
[76] Onyango T.T.M., Ingham D.B., Lesnic D., Inverse reconstruction of boundary condition coefficients in one-dimensional transient heat conduction, Applied Mathematics & Computation 207 (2009) 569-575.
[77] Pich R, Wärmespannungen in druckführenden Bauteilen und deren meβtechnische Überwachung, VGB Kraftwerkstechnik 59 (1979) 510-517.
[78] Pilarczyk M., Węglowski B., The thermal and structural analisys of steam boiler start-up on the example of OP-650 unit, Mechanics, Scientific Letters of Rzeszow University of Technology 86 (2014) 67-78 (in Polish).
[79] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipies in Fortran. The Art of Scientific Computing, Third Edition, Cambridge University Press, New York, 2007.
[80] Qian Z., Fu C.-L., Xiong X.-T., A modified method for determining the surface heat flux of IHCP, Inverse Problems in Science and Engineering 15(3) (2007) 249-265.
[81] Rakopoulos C.D., Rakopoulos D.C., Mavropoulos G.C., Giakoumis E.G., Experimental and theoretical study of the short term response temperature transients in the cylinder walls of a diesel engine at various operating conditions, Applied Thermal Engineering 24 (2004) 679-702.
[82] Rayaprolu K, Boilers for Power and Process, CRC Press, Taylor & Francis Group, Boca Raton, 2009.
[83] Raynaud M., Bransier J., A new finite difference method for nonlinear inverse heat conduction problem, Numerical Heat Transfer 9 (1986) 27-42.
[84] Robinson G.F., Holmes M.L., Transient modelling of operational upset in a special-purpose boiler, International Journal of Energy Research 8 (1984) 325-349.
[85] Rop P., Drum Plus: a drum type HRSG with Benson benefits, Modern Power Systems 30 (2010) 35-40.
[86] Sanaye S., Rezazadeh M., Transient thermal modelling of heat recovery steam generators in combined cycle power plants, International Journal of Energy Research 31 (2007) 1047-1063.
[87] Sanitjai S., Goldstein R.J., Forced convection heat transfer from a circular cylinder in crossflow to air and liquids, International Journal of Heat and Mass Transfer 47(2004) 4795-4805.
[88] Schneider G.E., Finite-element methods for conduction, in Hewitt G.F. (Ed.), Handbook of Heat Exchanger Design, Begell House, New York, 1992, pp..
[89] Seber G.A.F., Wild C.J., Nonlinear Regression, Wiley, Hoboken, NY, 1989.
[90] Serra J.J., Gineste J.M., Serror S., Experimental investigation of heat transfer in a gun barrel based on a space marching inverse conduction method, in Zabaras N., Woodbury K.A., Raynaud M. (Eds.), Inverse Problems in Engineering Theory and Practice, ASME, New York, 1993, pp 323-328.
[91] Speitkamp L., Bestimmung von Temperaturdifferenzen in dicken Druckbehälterwänden aus der zeitlichen Folge von Temperaturmeβwerten an der isolierten Wandauβenseite, VGB Kraftwerkstechnik 68 (1988) 182-189.
[92] Spliethoff H., Power Generation from Solid Fuels, Springer, Berlin, 2010.
[93] Staff report, Dealing with cycling: TRD 301 and Euro Norm compared, Modern Power Systems 27 (2007) 33-38.
[94] Strong B.R., Slagis G.C., TRANS2A An unconditionally stable code for thermal transient stress analysis in piping, Transactions of the ASME, Journal of Pressure Vessel Technology 103 (1981) 50-58.
[95] Subroutine NORNG − Normal Random Number Generator, FORTRAN Scientific Subroutine Library, IBM, 1984.
[96] TableCurve 2D v.5.0, Automated Curve Fitting&Equation Discovery, AISN Software Inc., 2000.
[97] Taler D., Calculations and experimental investigations of heat exchangers, Publishing House of Cracow University of Technology, Cracow, 2016 (in Polish).
[98] Taler D., Fins of rectangular and hexagonal geometry, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 1658-1670.
[99] Taler D., The dynamics of tubular heat exchangers, AGH University of Science and Technology Press, Cracow, 2009 (in Polish).
[100] Taler D., Taler J., Optimum heating of thick plate, International Journal of Heat and Mass Transfer 52 (2009) 2335-2342.
[101] Taler D, Trojan M, Taler J., Mathematical modelling of cross-flow tube heat exchangers with a complex flow arrangement, Heat Transfer Engineering 35(11-12) (2014) 1334-1343.
[102] Taler J., A new space marching method for solving inverse heat conduction problems, Forschung im Ingenieurwesen 64 (1999) 296-306.
[103] Taler J., A numerical method for the solution of the transient nonlinear inverse heat conduction, XVI Polish Conference on Thermodynamics in Kołobrzeg – Koszalin, Poland, Vol. II, 1996, pp: 413-424 (in Polish).
[104] Taler J., A semi-numerical method for solving inverse heat conduction problems, Heat and Mass Transfer 31 (1996) 105-111.
[105] Taler J., Analytical solution of the over-determined inverse heat conduction problem with an application to monitoring thermal stresses, Heat and Mass Transfer 33 (1997) 209-218.
[106] Taler J., Exact solution of inverse heat conduction problems, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 1440-1465.
[107] Taler J., Nonlinear steady-state inverse heat conduction problem with space-variable boundary conditions, Transactions of the ASME, Journal of Heat Transfer 114 (1992) 1048-1051.
[108] Taler J. (Ed.), Thermal and Flow Processes in Large Steam Boilers, PWN, Warsaw, 2011 (in Polish).
[109] Taler J., Theory and practice of identification of heat transfer processes, Ossolineum, Wroclaw, 1995 (in Polish).
[110] Taler J., Überwachung von instationären Wärmespannungen in dickwandigen Bauteilen, Forschung im Ingenieurwesen 63 (1997) 127-135.
[111] Taler J., Duda P., A space marching method for multidimensional transient inverse heat conduction problems, Heat and Mass Transfer 34 (1999) 349-356.
[112] Taler J., Duda P., Experimental verification of space marching methods for solving inverse heat conduction problems, Heat and Mass Transfer 36 (2000) 325-331.
[113] Taler J., Duda P., Solution of non-linear inverse heat conduction problem using the method of lines, Heat and Mass Transfer 37 (2001) 147-155.
[114] Taler J., Duda P., Solving Direct and Inverse Heat Conduction Problems, Springer-Verlag, Berlin, 2006.
[115] Taler J., Duda P., Space- and time marching methods for one-dimensional inverse heat conduction problems, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 4452-4473.
[116] Taler J., Duda P., Węglowski B., Thermal-strength monitoring and remnant lifetime assessment of pressure components of power steam boilers, in: Chmielniak T., Trela M. (Eds.), Diagnostics of New-Generation Thermal Power Plants, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Science, Gdańsk, 2008, pp. 253-338.
[117] Taler J., Dzierwa P., A new method for determining allowable medium temperature rates during heating and cooling of thick-walled boiler components, Proceedings of The Seventh International Congress on Thermal Stresses, Vol. 2, Taipei, Taiwan, 2007, pp. 437-440.
[118] Taler J., Dzierwa P., A new method for optimum heating of steam boiler pressure components, International Journal of Energy Research 35 (2011) 897-908.
[119] Taler J., Dzierwa P., Proposition of new rules for determining allowable medium temperature rates during heating and cooling of thick-walled steam boiler components, Archives of Thermodynamics 37 (2007) 91-108.
[120] Taler J., Dzierwa P., Taler D., Optimum Heating of Pressure Components of Large Steam Boilers, Forschung im Ingenieurwesen (Engineering Research) 73(3) 2009 183-192.
[121] Taler J., Dzierwa P., Taler D., Harchut P., Optimization of the boiler start-up taking into account thermal stresses, Energy 92 (2015) 160-170.
[122] Taler J., Lehne F., Bestimmung von Wärmespannungen in dickwandigen Bauteilen mittels einer Temperaturmeβstelle, Brennstoff-Wärme-Kraft 48 (1996) 57-60.
[123] Taler J., Taler D., Measurement of heat flux and heat transfer coefficient, in: Cirimele G., D’elia M. (Eds.), Heat Flux: Processes, Measurement Techniques and Applications, Nova Science Publishers, New York, 2012, pp. 1-104.
[124] Taler J., Taler D., Sobota T., Cebula A., Theoretical and Experimental Study of Flow and Heat Transfer in a Tube Bank, in: Petrova V.M., Advances in Engineering Research, Volume 1, Nova Science Publishers, Inc., New York, 2012, pp..
[125] Taler J., Trojan M., Taler D., Monitoring of ash fouling and internal scale deposits in pulverized coal fired boilers, Nova Science Publishers, Inc., Hauppauge, 2011.
[126] Taler J., Węglowski B., Monitoring of Thermal Stresses in Pressure Components of Steam Boilers, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 3181-3207.
[127] Taler J., Węglowski B., Grądziel S., Duda P., Zima W., Monitoring of thermal stresses in pressure components of large steam boilers, VGB PowerTech 82(1) (2002) 73-77.
[128] Taler J., Węglowski B., Sobota T., Jaremkiewicz M., Taler D., Inverse space marching method for determining temperature and stress distributions in pressure components, in: Marco Aurélio dos Santos Bernardes (Ed.), Developments in heat transfer. Intech, Rijeka, 2011, pp 273-292.
[129] Taler J., Węglowski B., Taler D., Sobota T., Dzierwa P., Trojan M., Madejski P., Pilarczyk M., Determination of start-up curves for a boiler with natural circulation based on the analysis of stress distribution in critical pressure components, Energy 92 (2015) 153-159.
[130] Taler J., Węglowski B., Zima W., Grądziel S., Zborowski M., Analysis of thermal stresses in boiler drum during start-up, Transactions of the ASME, Journal of Pressure Vessel Technology 121 (1999) 84-93.
[131] Taler J., Zborowski M., Solution of the inverse problems in heat transfer and thermal stress analysis, Journal of Thermal Stresses 21(1998) 563-579.
[132] Taler J., Zima W., Solution of inverse heat conduction problems using control volume approach, International Journal of Heat and Mass Transfer 42 (1999) 1123-1140.
[133] Taler J., Zima W., Jaremkiewicz M., Simple method for monitoring transient thermal stresses in pipelines, Journal of Thermal Stresses 39(4) (2016) 386-397.
[134] TRD: Technische Regeln für Dampfkessel, Carl Heymans Verlag, Köln und Beuth-Verlag, Berlin, 2002.
[135] Trojan M., Heat transfer in platen superheater with ash deposits, Energetyka 7(684) (2011) 419-423 (in Polish).
[136] Trojan M., Taler D., Thermal simulation of superheaters taking into account the processes occurring on the side of the steam and flue gas, Fuel 150 (2015) 75-87.
[137] Volle F., Gradeck M., Maillet D., Kouachi A., Lebouché M., Inverse Heat Conduction Applied to the Measurement of Heat Fluxes on a Rotating Cylinder Comparison Between an Analytical and a Numerical Technique, Journal of Heat Transfer 130 (2008) 81302-81308.
[138] Weber Ch.F., Analysis and solution of the ill-posed inverse heat conduction problem, Mass Transfer 24 (1981) 1783-1792.
[139] Węglowski B., Allowable Temperature Rates for Pressure Components Using European Standards, in: Hetnarski R. (Ed.), Encyclopedia of Thermal Stresses, Springer, Berlin, 2013, pp. 1604-1633.
[140] Węglowski B., Ocłoń P., Analysis of operating conditions for pressure components of steam boilers, Rynek Energii 6(103) (2012) 99-106.
[141] Węglowski B., Ocłoń P., Majcher A., Monitoring of the stress state in the boiler drum using finite element method, Advanced Materials Research 875-877 (2014) 1176-1182.
[142] Węglowski B., Ocłoń P., Pilarczyk M., Majcher A., Stress analisys for the start-up operation on the example of OP-210 boiler drum, Maintenance Problem 2 (2011) 19-28.
[143] Wiśniewski S., Temperature Measurement in Engines and Thermat Facilities, WNT, Warsaw, 1983 (in Polish).
[144] WT4401-S & WT4401-D Benchtop Wind Tunnels, Omega, Stamford, CT, USA.
[145] Zhang J., Delichatsios M.A., Determination of the convective heat transfer coefficient in three-dimensional inverse heat conduction problems, Fire Safety Journal 44 (2009) 681-690.
[146] Zhou J., Zhang Y., Chen J.K., Feng Z.C., Inverse estimation of spatially and temporally varying heating boundary conditions of a two-dimensional object, International Journal of Thermal Sciences 49 (2010) 1669-1679.
[147] Zima W., Prediction of transient temperature and heat flux distributions at inside surface based on temperature measurements at outside solid surface, Measurements in Production Processes, Proceedings of the fifth Polish Technical Conference, Cracow, 1994, pp 277-283 (in Polish).


The book is addressed to engineers, researchers, and scientists. It can also benefit the students of technical universities. The book may be helpful to manufacturers of large power boilers and users of thermal power plants, both conventional and nuclear.

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!