Microbial Communication and Microbiota-Host Interactivity: Neurophysiological, Biotechnological, and Biopolitical Implications


Alexander V. Oleskin
General Ecology Department, School of Biology, Moscow State University, Moscow, Russia

Boris A. Shenderov
Laboratory of Bacteriology and Parasitology, Center for Strategic Planning, Russian Ministry of Health, Moscow, Russia
Research Laboratory for Design and Implementation of Personalized Nutrition-Related Products and Diets, K.G. Razumovsky University of Technology and Management, Moscow, Russia

Series: Microbiology Research Advances
BISAC: SCI045000
DOI: 10.52305/EGCB8622

In light of recent data, microorganisms are construed in the present monograph as living organisms that are capable of communication and advanced social organization, which conspicuously manifests itself in the formation of extracellular matrix-enclosed biofilms. Microbial communication signals, including quorum sensing pheromones, are of paramount importance both for interactions among microbial cells and the dialogue between them and the host organism. The monograph sums up the facts that demonstrate the complexity of the human organism-inhabiting microbial consortium comprising a wide variety of biofilm-forming eukaryotic, bacterial and archean cells. The microbiota is involved in maintaining microecological, metabolic, epigenetic, neuro-endocrine and immune homeostasis that normally stabilizes the brain-gut-microbiota axis.

Microbially produced neuroactive chemicals include peptides, amino acids, amines, short-chain fatty acids, purines and gaseous substances that are used as nutrients, effectors, cofactors and signals by the host organism. In the present-day world, the human organism has to deal with a large number of environmental stress factors that overpower the organism’s protective system and disrupt the functioning of symbiotic microbiota predominantly located in the gastro-intestinal (GI) tract. Homeostasis disruption may impede communication between microbial cells and the human organism and cause physical or mental health problems.

The operation of the brain-gut-microbiota axis can be improved by useful microorganisms (probiotics) including psychobiotics that directly impact the human brain and behavior. In the authors’ opinion, the lifelong epigenetic developmental program of the organism can be ameliorated and genetic and epigenetic disruptions in the human metagenome (comprising all nuclear, mitochondrial and microbial genes) can be prevented by supplementing the diet with traditional, organic and individualized functional food items that relieve the effects of various detrimental stress factors and agents. A reasonably designed lifestyle based on gut microbiota optimization will undoubtedly help human individuals live a decent healthy life and attain active longevity. Current research on the population organization, social behavior and intercellular communication of microorganisms is expected to promote the interdisciplinary dialogue between microbiology, cytology and ethology. In addition, the results of this research are of significant potential importance for medicine and biotechnology.
(Imprint: Nova)

Table of Contents

Table of Contents

List of Figures

List of Tables



Chapter 1. The Social Behavior, Communication, and Supracellular Structures of Microorganisms

Chapter 2. The Microbiota-Host System: Bidirectional Communication

Chapter 3. Neurochemicals: Their Involvement in Interactivity among Microbial Cells and the Microbiota-Host Dialogue

Chapter 4. Theoretical and Practical Impact of the Biosocial Paradigm in Microbiology in Connection with the Microbiota-Host System





“A fascinating and contemporary book about networks and how microorganisms communicate and interact. This book has a plethora of interesting and thought provoking facts. Although it contains many technical words and biological jargon, the text is still understandable and it keeps the reader captivated. The analogy between the microorganism and humans is allegoric… This highly informative book should be made compulsory reading for anyone interested in microbiology, gastroenterology, bacteriology, endocrinology and neurology. It could be used a supplementary text in teaching biology, medicine, and even ethology.” – <strong>Dr. Ronald Herman, Humanities, Science and English Teacher, DIS</strong>

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!