Table of Contents
Table of Contents
List of Figures
Chapter 1. Introduction
Chapter 2. Savings and Investment
Chapter 3. Economic Trends
Chapter 4. Models of the Crises
Chapter 5. Summary
References
Author’s Contact Information
Index
References
Krouglov, Alexei (2006). Mathematical Dynamics of Economic Markets. New York: Nova Science Publishers.Krouglov, Alexei (2009). Mathematical Dynamics of Economic Growth as Effect of Internal Savings. Finance India, Vol. 23, No. 1, 99-136.Krouglov, Alexei (2013). Simplified Mathematical Model of Financial Crisis. Journal of Advanced Studies in Finance, Vol. IV, No. 2 (8), 109-114.Krouglov, Alexei (2014a). Monetary Part of Abenomics: A Simplified Model. Available at SSRN: http://ssrn.com/abstract=2390372 or http://dx.doi.org/10.2139/ssrn.2390372.Krouglov, Alexei (2014b). Secular Stagnation and Decline: A Simplified Model. Available at SSRN: http://ssrn.com/abstract=2540408 or http://dx.doi.org/10.2139/ssrn.2540408.Krouglov, Alexei (2015a). Credit Expansion and Contraction: A Simplified Model. Available at SSRN: http://ssrn.com/abstract= 2604176 or http://dx.doi.org/10.2139/ssrn.2604176.Krouglov, Alexei (2015b). Economic Growth and Debt: A Simplified Model. Available at SSRN: http://ssrn.com/abstract=2621227 or http://dx.doi.org/10.2139/ssrn.2621227.Krouglov, Alexei (2015c). Mathematical Model of the Greek Crisis. Available at SSRN: https://ssrn.com/abstract=2644493 or http://dx.doi.org/10.2139/ssrn.2644493.Krouglov, Alexei (2016). Mathematical Model of the Economic Trend. Available at SSRN: https://ssrn.com/abstract=2864898.Petrovski, Ivan G. (1966). Ordinary Differential Equations. Englewoods Cliffs, New Jersey: Prentice Hall.Piskunov, Nikolai S. (1965). Differential and Integral Calculus. Groningen: P. Noordhoff.
Audience: Researchers and practitioners in the field of Mathematical Economics.