Table of Contents
Table of Contents
Preface
Chapter 1. Unifying Semilocal and Local Convergence of Newton’s Method (pp. 1-14)
Chapter 2. Higher Order Methods for Nonlinear System of Equations (pp. 15-36)
Chapter 3. Semilocal Convergence of Newton’s Method (pp. 37-46)
Chapter 4. Newton-Kantorovich-Like Theorems under W Conditions (pp. 47-62)
Chapter 5. Unified Local Convergence for Newton-Kantorovich Method under W Condition (pp. 63-74)
Chapter 6. Mesh Independence for Solving Nonlinear Equations (pp. 75-88)
Chapter 7. Expanding the Applicability of Four Iterative Methods (pp. 89-102)
Chapter 8. Improved Complexity of a Homotopic Method for Locating an Approximate Zero (pp. 103-110)
Chapter 9. Convergence Analysis of Frozen Secant-Type Methods (pp. 111-128)
Chapter 10. Unified Convergence Analysis of Frozen Newton-Like Methods (pp. 129-144)
Chapter 11. Solvability of Equations Using Secant-Type Methods (pp. 145-156)
Chapter 12. Newton-Tikhonov Method for Ill-Posed Equations (pp. 157-176)
Chapter 13. Simplified Newton-Tikhonov Regularization Method (pp. 177-188)
Chapter 14. Two Step Newton Lavrentiev Method for Ill-Posed Problems (pp. 189-206)
Chapter 15. Two Step Newton-Tikhonov Methods for Ill-Posed Problems (pp. 207-228)
Chapter 16. Regularization Methods for Ill-Posed Problems (pp. 229-244)
Chapter 17. Expanding the Applicability of Lavrentiev Regularization Method (pp. 245-260)
Chapter 18. Iterated Lavrentiev Regularization (pp. 261-276)
Chapter 19. On The Semilocal Convergence of a Two-Step Newton-Like Projection Method for Ill-Posed Equations (pp. 277-296)
Chapter 20. Local Convergence of Lavrentiev Regularization for Ill-Posed Equations (pp. 297-308)
Chapter 21. Modified Gauss-Newton Method for Nonlinear Ill-Posed Problems (pp. 309-320)
Chapter 22. Two Step Newton-Type Projection Method for Ill-Posed Problems (pp. 321-344)
Chapter 23. Discretized Newtontikhonov Method for Ill-Posed Hammerstein Type Equations (pp. 345-366)
Authors Contact Information (pp. 367-368)
Index (pp. 369)
References
Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:
Chapter 10:
Chapter 11:
[1] Amat, S., Hern´andez, M. A. and Romero, N., A modified Chebyshev’s iterative
method with at least sixth order of convergence, Appl. Math. Comput. 206(1),
(2008), 164-174.
[2] Amat, S., Hern´andez, M.A. and Romero, N., Semilocal convergence of a sixth order
iterativemethod for quadratic equations, Applied NumericalMathematics, 62 (2012),
833-841.
[3] Argyros, I. K., A unifying local semi-local convergence analysis and applications for
two-point Newton-like methods in Banach space, Journal of Mathematical Analysis
and Applications, 298(2)(2004) 374-397,
[4] Argyros, I. K. and Ren, H., On an improved local convergence analysis for the Secant
method, Numer. Algor., 52(2009) 257–271.
[5] Argyros, I. K. and Hilout, S. Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, (2012), 364-387.
[6] Argyros, I. K., Magre˜n´an, A. A., Iterative methods and their dynamics with applications,
CRC Press, New York, 2017.
[7] Bosarge, W. E. and Falb, P. L., A multipoint method of third order, J. Optimiz. Th.
Appl., 4(1969), 156-166.
[8] Bosarge,W. E. and Falb, P. L., Infinite dimensional multipointmethods and the solution
of two point boundary value problems, Numer. Math., 14(1970), 264–286.
[9] Dennis, J. E., On the Kantorovich hypothesis for Newton’s method, SIAM. J. Numer.
Anal., 6(1969), 493-507.
[10] Dennis, J. E., Toward a unified convergence theory for Newton-likemethods, In Nonlinear
functional analysis and applications, L. B. Rall, Ed., Academic Press, 1971,
New York.
[11] Deuflhard, P. and Heindl, G., Affine invariant convergence theorems for Newton’s
method and extensions to related methods, Siam J. Numer. Anal. 16(1979) 1–10.
[12] Ezquerro, J. A., Hern´andez, M. A. and Rubio,M. J., Secant-like methods for solving
nonlinear integral equations of the Hammerstein type, J. Comput. Appl. Math. 115,
1-2(2000) 245–254.
[13] Gragg, W. B. and Tapia, R. A., Optimal error bounds for the Newton-Kantorovich
theorem, SIAM J. Numer. Anal., 11, 1(1974), 10-13.
[14] Hern´andez, M. A. and Rubio, M. J., A uniparameteric family of iterative processes
for solving nondifferentiable equations, J Math. Anal. Appl., 275(2002) 821–834.
[15] Hern´andez-Ver ´on, M. A. and Rubio, M. J., On the ball of convergence of Secantlikemethods
for non-differentiable operators, AppliedMathematics and Computation
(2015), https://doi.org/10.1016/j.amc.2015.10.007.
[16] Hern´andez, M. A., Rubio, M. J. and Ezquerro, J. A., Solving a special case of conservation
problems by Secant-like methods, Appl. Math. Comput., 169, 2(2005)
926–9420.
[17] Kornstaedt,H. J., Ein allgemeiner Konvergenzsatz f ¨ur verach¨arfte Newton-Verfahren
[A general convergence theorem for more stringent Newtonian methods], ISNM 28,
Birkha¨user Verlag, Basel and Stuttgart, 1975, 53-69.
[18] Laasonen, P., Ein ¨uberquadratisch konvergenter iterative algorithmus [An over-square
convergent iterative algorithm], Ann. Acad. Sci. Fenn. Ser I, 450(1969), 1-10.
[19] Magre˜n´an, A. A., Different anomalies in a Jarratt family of iterative root finding
methods, Appl. Math. Comput. 233, (2014), 29-38.
[20] Magre˜n´an, A. A., A new tool to study real dynamics: The convergence plane, Appl.
Math. Comput. 248, (2014), 29-38.
[21] Miel, G. J., The Kantorovich theorem with optimal error bounds, Amer. Math.
Monthly., 86(1979), 212-215.
[22] Miel, G. J., An updated version of the Kantorovich theorem for Newton’s method,
Technical summary report, Mathematical research center, University of Wisconsin,
Madison, 1980.
[23] Moret, I., On a general iterative scheme for Newton-type methods, Numer. Funct.
Anal. and Optimiz, 9(11-12), (1987-1988), 1115-1137.
[24] Ortega, J. M. and Rheinboldt. W.C., Iterative solution of nonlinear equations in
several variables, Academic Press, 1970, New York.
[25] Potra, F. A., On the convergence of a class of Newton-like methods, Iterative solution
of nonlinear systems of equations, Lecture notes in Mathematics 953, Springer
Verlag, 1982, New York.
[26] Potra, F. A. and Pt´ak, V., Nondiscrete Induction and Iterative methods, Pitman Publishing
Limited, London, 1984.
[27] Potra, F. A., Sharp error bounds for a class of Newton-like methods, Libertas Mathematica,
Vol., 5, (1985), 71–83.
[28] Ren, H. and Argyros, I. K., Local convergence of efficient Secant-type methods for
solving nonlinear equations, Appl. Math. Comput., 218(2012) 7655–7664.
[29] Traub, J. F., Iterative methods for the solutions of equations, Prentice-Hall, Englewood
Cliffs, New Jersey, 1964.
[30] Zabrejko, P. P. and Nguen. D. .F, The majorant method in the theory of Newton-
Kantorovich approximations and Pt´ak error estimates, Numer. Funct. Anal. and
Optimiz., 9(1987), 671-684.
[31] Zehnder, E. J., A remark on Newton’s method, Communus Pure Appl. Math, 27
(1974), 361-366.
[32] Yamamoto, T., Error bounds for Newton-like methods under Kantorovich type Assumptions,
MCR Technical Summary Report Nr. 2846, University of Wisconsin,
Madison (1985).
Chapter 12:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, I. K. (2007), Approximating solutions of equations using Newton’s method
with a modified Newton’s method iterate as a starting point. Rev. Anal. Numer.
Theor. Approx. 36, 123-138.
[3] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput.(AMS). 80, 327-343.
[4] Argyros, I. K. and Hilout, S. (2012),Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[5] Argyros, I. K., Cho, Y. J. and Hilout, S. (2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[6] Bakushinsky, A. and Smirnova, A. (2005), On application of generalized discrepancy
principle to iterativemethods for nonlinear ill-posed problems, Numerical Func.
Anal. and Optimization 26, 35-48.
[7] Binder, A., Engl, H.W. and Vessela, S. (1990), Some inverse problems for a nonlinear
parabolic equation connected with continuous casting of steel: stability estimate and
regularization, Numer. Funct. Anal. Optim., 11, 643-671.
[8] Engl. H.W, Hanke. Mand Neubauer. A (1990), Tikhonov regularization of nonlinear
differential equations, Inverse Methods in Action, P.C. Sabatier, ed., Springer-Verlag,
New York, 92-105.
[9] Engl, H. W., Kunisch, K. and Neubauer, A. (1989),Convrgence rates for Tikhonov
regularization of nonlinear ill-posed problems, Inverse Problems, 5, 523-540.
[10] Groetsch, C. W. (1984), Theory of Tikhonov regularization for Fredholm Equation of
the first kind, Pitmann Books, London.
[11] Groetsch, C.W. and Guacaneme, J. E. (1987), Arcangeli’smethod for Fredhomequations
of the first kind, Proc. Amer. Math. Soc. 99, 256-260.
[12] Guacaneme, J. E. (1990), Aparameter choice for simplified regularization, Rostak,
Math. Kolloq., 42, 59-68.
[13] George, S. (2006), Newton-Tikhonov regularization of ill-posed Hammerstein operator
equation, J. Inverse and Ill-Posed Problems, 2, 14, 135-146.
[14] George, S. (2006), Newton-Lavrentiev regularization of ill-posed Hammerstein type
operator equation, J. Inverse and Ill-Posed Problems, 6, 14, 573-582.
[15] George, S. and Elmahdy, A. I. (2012), A quadratic convergence yielding iterative
method for nonlinear ill-posed operator equations, Comput. Methods Appl. Math.
12, no.1, 32-45.
[16] George, S. and Kunhanandan, M. (2009), An iterative regularization method for Illposed
Hammerstein type operator equation, J. Inv. Ill-Posed Problems, 17, 831–844.
[17] George, S. and Kunhanandan, M. (2010), Iterative regularization methods for illposed
Hammerstein type operator equation with monotone nonlinear part, Int. Journal
of Math. Analysis, Vol. 4, no. 34, 1673-1685.
[18] George, S. and Nair. M. T. (1993), An a posteriori parameter choice for simplified
regularization of ill-posed problems, Integr. Equat. Oper. Th. Vol. 16, 392-399.
[19] George, S. and Nair, M. T. (1998), On a generalized Arcangeli’s method for
Tikhonov regularization with inexact data, Numer. Funct. Anal. and Optimiz., 19
(No. 7 and 8), 773-787.
[20] George, S. and Nair, M. T. (2008), A modified Newton-Lavrentiev regularization for
nonlinear ill-posed Hammerstein-Type operator equation, Journal of Complexity, 24,
228-240.
[21] Hanke, M., Neubauer. A. and Scherzer, O. (1995), A convergence analysis of
Landweber iteration of nonlinear ill-posed problems. Numer. Math., 72, 21-37.
[22] Qi-nian, J. and Zong-yi, H. (1996), Finite-dimensional approximations to the solutions
of nonlinear ill-posed problems. Appl. Anal., 62, 253-261.
[23] Qi-nian, J. and Zong-yi, H. (1999), On an a posteriori parameter choice strategy for
Tikhonov regularization of nonlinear ill-posed problems. Numer. Math., 83, 139-159.
[24] Kantorovich. L. V. and Akilov, G. P. (1964), Functional Analysis in Normed Spaces,
Pergamon Press, New York.
[25] Mair, B. A. (1994), Tikhonov regularization for finitely and infinitely smoothing operators,
SIAM J. Math. Anal; 25, 135-147.
[26] Pereverzev, S. and Schock, E. (2005), On the adaptive selection of the parameter in
regularization of ill-posed problems, SIAM. J. Numer. Anal., 43, 5, 2060-2076.
[27] Scherzer, O. (1993), A parameter choice for Tikhonov regularization for solving nonlinear
inverse problems leading to optimal rates. Appl. Math., 38, 479-487.
[28] Scherzer, O., Engl, H. W. and Kunisch, K. (1993), Optimal a posteriori parameter
choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM.
J. Numer. Anal, 30, No. 6, 1796-1838.
[29] Scherzer, O. (1992), The use of Tikhonov regularization in the identification of electrical
conductivities from overdetermined boundary data, Results Mathematics, 22,
pp. 599–618.
[30] Scherzer, O., Engl, H.W. and Anderssen, R. S. (1993), Parameter identification from
boundary measurements in parabolic equation arising from geophysics, Nonlinear
Anal., 20, 127-156.
[31] Raus, T. (1984), On the discrepancy principle for the solution of ill-posed problems,
Uch. Zap. Tartu. Gos. Univ., 672, pp. 16–26 (In Russian).
[32] Schock, E. (1984), On the asymptotic order of accuracy of Tikhonov regularization,
J. Optim. Th. and Appl., 44, 95-104.
[33] Tautenhahn, U. (2002), On the method of Lavrentiev regularization for nonlinear illposed
problems, Inverse Problems, 18, 191-207.
Chapter 13:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros., I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[3] Argyros, I. K. and Hilout, S. (2012), Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[4] Argyros, I. K., Cho, Y. J. and Hilout, S. (2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[5] Bakushinsky, A. and Smirnova, A. (2005), On application of generalized discrepancy
principle to iterativemethods for nonlinear ill-posed problems, Numerical Func.
Anal. and Optimization 26, 35-48.
[6] Binder, A., Engl, H. W., and Vessela, S. (1990), Some inverse problems for a nonlinear
parabolic equation connected with continuous casting of steel: stability estimate
and regularization, Numer. Funct. Anal. Optim., 11, 643-671.
[7] Engl, H. W., Hanke, M. and Neubauer, A. (1990), Tikhonov regularization of nonlinear
differential equations, Inverse Methods in Action, P.C. Sabatier, ed., Springer-
Verlag, New York, 92-105.
[8] Engl, H. W., Kunisch, K. and Neubauer, A. (1989), Convrgence rates for Tikhonov
regularization of nonlinear ill-posed problems, Inverse Problems, 5, 523-540.
[9] Groetsch, C. W. (1984), Theory of Tikhonov regularization for Fredholm Equation of
the first kind, Pitmann Books, London.
[10] Groetsch, C.W. and Guacaneme, J. E. (1987), Arcangeli’smethod for Fredhomequations
of the first kind, Proc. Amer. Math. Soc. 99, 256-260.
[11] Guacaneme, J. E. (1990), Aparameter choice for simplified regularization, Rostak,
Math. Kolloq., 42, 59-68.
[12] George, S. (2006), Newton-Tikhonov regularization of ill-posed Hammerstein operator
equation, J. Inverse and Ill-Posed Problems, 2, 14, 135-146.
[13] George, S. (2006), Newton-Lavrentiev regularization of ill-posed Hammerstein type
operator equation, J. Inverse and Ill-Posed Problems, 6, 14, 573-582.
[14] George, S. and Elmahdy, A. I. (2012), A quadratic convergence yielding iterative
method for nonlinear ill-posed operator equations, Comput. Methods Appl. Math.
12, no.1, 32-45.
[15] George, S. and Kunhanandan, M. (2009), An iterative regularization method for Illposed
Hammerstein type operator equation, J. Inv. Ill-Posed Problems, 17, 831–844.
[16] George, S. and Kunhanandan, M. (2010), Iterative regularization methods for illposed
Hammerstein type operator equation with monotone nonlinear part, Int. Journal
of Math. Analysis, Vol. 4, no. 34, 1673-1685.
[17] George, S. and Nair, M. T. (1993), An a posteriori parameter choice for simplified
regularization of ill-posed problems, Integr. Equat. Oper. Th. Vol. 16, 392-399.
[18] George, S. and Nair, M. T. (1998), On a generalized Arcangeli’s method for
Tikhonov regularization with inexact data, Numer. Funct. Anal. and Optimiz., 19(No.
7 and 8), 773-787.
[19] George, S. and Nair, M. T. (2008), A modified Newton-Lavrentiev regularization for
nonlinear ill-posed Hammerstein-Type operator equation, Journal of Complexity, 24,
228-240.
[20] Hanke, M., Neubauer, A. and Scherzer, O. (1995), A convergence analysis of
Landweber iteration of nonlinear ill-posed problems. Numer. Math., 72, 21-37.
[21] Qi-nian, J and Zong-yi, H. (1996), Finite-dimensional approximations to the solutions
of nonlinear ill-posed problems. Appl. Anal., 62, 253-261.
[22] Qi-nian, J. and Zong-yi, H. (1999), On an a posteriori parameter choice strategy for
Tikhonov regularization of nonlinear ill-posed problems. Numer. Math., 83, 139-159.
[23] Kantorovich, L. V. and Akilov, G. P. (1964), Functional Analysis in Normed Spaces,
Pergamon Press, New York.
[24] Mair, B. A. (1994), Tikhonov regularization for finitely and infinitely smoothing operators,
SIAM J. Math. Anal; 25, 135-147.
[25] Pereverzev, S. and Schock, E. (2005), On the adaptive selection of the parameter in
regularization of ill-posed problems, SIAM. J. Numer. Anal., 43, 5, 2060-2076.
[26] Scherzer, O. (1993), A parameter choice for Tikhonov regularization for solving nonlinear
inverse problems leading to optimal rates. Appl. Math., 38, 479-487.
[27] Scherzer, O., Engl, H. W. and Kunisch, K. (1993), Optimal a posteriori parameter
choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM.
J. Numer. Anal, 30, No.6, 1796-1838.
[28] Scherzer, O. (1989), The use of Tikhonov regularization in the identification of electrical
conductivities from overdetermined problems, Inverse Problems, 5, 227-238.
[29] Scherzer, O., Engl. H. W and Anderssen. R. S (1993), Parameter identification from
boundary measurements in parabolic equation arising from geophysics, Nonlinear
Anal., 20, 127-156.
[30] Raus, T. (1984), On the discrepancy principle for the solution of ill-posed problems,
Acta Comment. Univ. Tartuensis, 672, 16-26.
[31] Schock, E. (1984), On the asymptotic order of accuracy of Tikhonov regularization,
J. Optim. Th. and Appl., 44, 95-104.
[32] Tautenhahn, U. (2002), On the method of Lavrentiev regularization for nonlinear illposed
problems, Inverse Problems, 18, 191-207.
Chapter 14:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[3] Argyros, I. K. and Hilout, S. (2010), A convergence analysis for directional two-step
Newton methods, Numer. Algor., 55, 503-528.
[4] Argyros, I. K., Cho, Y. J. and Hilout, S. (2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[5] Argyros, I. K. and George, S., Expanding the applicability of a Newton-Lavrentiev
regularization method for ill-posed problems (communicated).
[6] Blaschke, B., Neubauer, A. and Scherzer, O. (1997), On convergence rates for the
iteratively regularized Gauss-Newton method, IMA Journal on Numerical Analysis,
17, 421- 436.
[7] Deuflhard, P., Engl, H. W. and Scherzer, O. (1998), A convergence analysis of iterative
methods for the solution of nonlinear ill-posed problems under affinely invariant
conditions, Inverse problems, 14, 1081-1106.
[8] Engl, H. W., Hanke, M., Neubauer, A. (1990), Tikhonov regularization of nonlinear
differential equations, Inverse Methods in Action, P.C. Sabatier, ed., Springer-Verlag,
New York, 92-105.
[9] Engl, H. W., Hanke, M., Neubauer, A. (1996), Regularization of Inverse Problems,
Kluwer, Dordrecht, 375.
[10] George, S. (2006), Newton-Lavrentiev regularization of ill-posed Hammerstein type
operator equation, J. Inv. Ill-Posed Problems, 14, no.6, 573-582.
[11] George, S. and Elmahdy, A. I. (2012), A quadratic convergence yielding iterative
method for nonlinear ill-posed operator equations, Comput. Methods Appl. Math.
12, 1, 32-45.
[12] George, S. and Nair, M. T. (2008), A modified Newton-Lavrentiev regularization for
nonlinear ill-posed Hammerstein-Type operator equation, Journal of Complexity, 24,
228-240.
[13] George, S. and Pareth, S. (2013), An Application of Newton-type IterativeMethod for
the Approximate Implementation of Lavrentiev Regularization, Journal of Applied
Analysis, 19, 181– 196.
[14] Groetsch, C. W., King, J. T. and Murio, D. (1982), Asymptotic analysis of a finite
element method for Fredholm equations of the first kind, in Treatment of Integral
Equations by Numerical Methods, Eds.: C. T. H. Baker and G. F. Miller, Academic
Press, London, 1-11.
[15] Jaan, J. and Tautenhahn, U. (2003), On Lavrentiev regularization for ill-posed problems
in Hilbert scales, Numer. Funct. Anal. Optim., 24, no. 5-6, 531-555.
[16] Jin, Qi-Nian (2000), Error estimates of some Newton-type methods for solving nonlinear
inverse problems in Hilbert scales, Inverse problems, 16, 187-197.
[17] Jin, Qi-Nian (2000), On the iteratively regularized Gauss-Newtonmethod for solving
nonlinear ill-posed problems, Mathematics of Computation, 69, no. 232, 1603-1623.
[18] Kaltenbacher, B. (1998), A posteriori parameter choice strategies for some Newton
type methods for the regularization of nonlinear ill-posed problems, Numer. Math,
79, 501-528.
[19] Kantorovich, L. V. and Akilov, G. P. (1964), Functional Analysis in Normed Spaces,
Pergamon Press, New York.
[20] Kelley, C. T. (1995), Iterative methods for linear and nonlinear equations, SIAM,
Philadelphia.
[21] Mahale, P. and Nair, M. T. (2003), Iterated Lavrentiev regularization for nonlinear
ill-posed problems, ANZIAM Journal, 51, 191-217.
[22] Mathe, M. and Perverzev, S. V. (2003), Geometry of linear ill-posed problems in
variable Hilbert scales, Inverse Problems, 19, no. 3, 789-803.
[23] Nair,M. T. and Ravishankar, P. (2008), Regularized versions of continuous Newton’s
method and continuous modified Newton’s method under general source conditions,
Numer. Funct.Anal. Optim. 29(9-10), 1140–1165.
[24] Ortega, J. M. and Rheinboldt. W. C. (1970), Iterative solution of nonlinear equations
in general variables, Academic Press, New York and London.
[25] Scherzer, O. (1989), The use of Tikhonov regularization in the identification of electrical
conductivities from overdetermined problems, Inverse Problems, 5, 227-238.
[26] Scherzer, O, Engl, H. W. and Anderssen, R. S. (1993), Parameter identification from
boundary measurements in parabolic equation arising from geophysics, Nonlinear
Anal., 20, 127-156.
[27] Perverzev, S. V. and Schock, E. (2005), On the adaptive selection of the parameter in
regularization of ill-posed problems, SIAM J. Numer. Anal. 43, 2060-2076.
[28] Ramm, A. G. (2007), Dynamical system method for solving operator equations, Elsevier,
Amsterdam.
[29] Semenova, E. V. (2010), Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods Appl. Math., no.4,
444-454.
[30] Tautanhahn, U. (2002), On the method of Lavrentiev regularization for nonlinear illposed
problems, Inverse Problems, 18, 191-207.
Chapter 15:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput.(AMS). 80, 327-343.
[3] Argyros, I. K. (2007), Approximating solutions of equations using Newton’s method
with a modified Newton’s method iterate as a starting point. Rev. Anal. Numer.
Theor. Approx. 36, 123-138.
[4] Argyros, I. K. and Hilout, S. (2012),Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[5] Argyros, I. K., Cho, Y. J. and Hilout, S. (2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[6] Argyros, I. K., George, S. and Shobha,M. E. (2016), Cubic convergence order yielding
iterative regularization methods for ill-posed Hammerstein type operator equations,
Rend. Circ. Mat. Palermo, DOI 10.1007/s12215-016-0254-x, 1-21.
[7] Argyros, I. K. and Hilout, S. (2010),A convergence analysis for directional two-step
Newton methods, Numer. Algor., 55, 503-528.
[8] Bakushinskii, A. B. and Kokurin, M. Y. (2004), Iterative Methods for Approximate
Solution of Inverse Problems, Springer, Dordrecht.
[9] Chuan-gang Kang and Guo-qiang He (2009), A mixed Newton-Tikhonovmethod for
nonlinear ill-posed problems, Appl. Math. Mech.-Engl. Ed., DOI: 10.1007/s10483-
009-0608-2, Shanghai University and Springer-Verlag, 30(6), 741-752.
[10] Deuflhard, P., Engl, H. W. and Scherzer, O. (1998), A convergence analysis of iterative
methods for the solution of nonlinear ill-posed problems under affinely invariant
conditions, Inverse Problems, 14(5), 1081-1106.
[11] Engl, H. W. (1993), Regularization methods for the stable solution of inverse problems,
Surveys on Mathematics for Industry, 3, 71 – 143.
[12] Engl, H. W., Hanke, M. and Neubauer, A. (1993), Regularization of Inverse Problems,
Dordrecht: Kluwer.
[13] Engl, H. W., Kunisch, K. and Neubauer, A. (1989), Convergence rates for Tikhonov
regularization of nonlinear ill-posed problems, Inverse Problems, 5, 523-540.
[14] George, S. (2006), Newton-Tikhonov regularization of ill-posed Hammerstein operator
equation, J. Inverse and Ill-Posed Probl., 2, 14, 135-146.
[15] George, S. and Kunhanandan, M. (2009), An iterative regularization method for Illposed
Hammerstein type operator equation, J. Inv. Ill-Posed Probl., 17, 831-844.
[16] George, S. and Nair, M. T. (2008), A modified Newton-Lavrentiev regularization for
nonlinear ill-posed Hammerstein-Type operator equation, Journal of Complexity, 24,
228-240.
[17] George, S. and Shobha, M. E. (2012), Two-Step Newton-Tikhonov Method for
Hammerstein-Type Equations: Finite-Dimensional Realization, ISRN Applied Mathematics,
vol. 2012, Article ID 783579, 22 pages, doi:10.5402/2012/783579. Vol.1,
no.1, 65-78.
[18] Hanke, M. (1997), A regularization Levenberg-Marquardt scheme with application
to inverse groundwater filtration problems. Inverse Problems, 13(1), 79-95.
[19] Hanke, M., Neubauer, A. and Scherzer, O. (1995), A convergence analysis of the
Landweber iteration for nonlinear ill-posed problems. Numerical Mathematics,
72(11), 21-37.
[20] Jin, Qi-nian (2000), On the iteratively regularized Gauss-Newton method for solving
nonlinear ill-posed problems. Math. Comp. 69(232), 1603-1623.
[21] Jin, Qi-nian (2008), A convergence analysis of the iteratively regularized Gauss-
Newton method under the lipschitz condition, Inverse Problems 24(4), 1-16.
[22] Jin, Qi-nian and Hou Zong-yi (1990), On an a posteriori parameter choice strategy for
Tikhonov regularization of nonlinear ill-posed problems, Numer. Math, 83, 139-159.
[23] Kaltenbacher, B., Neubauer, A. and Scherzer, O. (2008), Iterative regularisation
methods for non-linear ill-posed problems, De Gruyter, Berlin, New York.
[24] Kantorovich, L. V. and Akilov, G. P. (1964), Functional Analysis in Normed Spaces,
Pergamon Press, New York.
[25] Kelley, C. T. (1995) Iterative Methods for Linear and Nonlinear Equations, SIAM,
Philadelphia.
[26] Krasnoselskii, M. A., Zabreiko, P. P., Pustylnik, E. I. and Sobolevskii, P. E. (1976),
Integral operators in spaces of summable functions, Translated by T. Ando, Noordhoff
International publishing, Leyden
[27] Mahale, P. and Nair, M. T. (2009), A Simplified generalized Gauss-Newton method
for nonlinear ill-posed problems, Math. Comp., 78,(265), 171-184.
[28] Nair,M. T. and Ravishankar, P. (2008), Regularized versions of continuousNewton’s
method and continuous modified Newton’s method under general source conditions,
Numer. Funct. Anal. Optim., 29(9-10), 1140-1165.
[29] Pereverzev, S. V. and Schock, E. (2005), On the adaptive selection of the parameter
in regularization of ill-posed problems, SIAM. J. Numer. Anal., 43(5), 2060-2076.
[30] Ramm, A. G. (2005), Inverse Problems, Mathematical and Analytical Techniques
with Applications to Engineering, Springer.
[31] Ramm, A. G., Smirnova, A. B. and Favini, A., (2003), Continuous modified
Newton’s-typemethod for nonlinear operator equations. Ann. Mat. Pura Appl. 182,
37-52.
[32] Semenova, E. V., (2010), Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods in Appl. Math.,
4, 444-454.
[33] Tautenhahn, U., (2002), On the method of Lavrentiev regularization for nonlinear
ill-posed problems, Inverse Problems, 18, 191-207.
Chapter 16:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, Approximating solutions of equations using Newton’s method with a modified
Newton’s method iterate as a starting point. Rev. Anal. Numer. Theor. Approx.
36, (2007), 123-138.
[3] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[4] Argyros, I. K. and Hilout, S. (2012), Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[5] Argyros, I. K., Cho, Y. J. and Hilout, S. ( 2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[6] Hadamard, J. (1952), Lectures on Cauchy’s Problem in Linear Partial Differential
Equations, Dover Publ., New York.
[7] Engl, H. W., Hanke, M. and Neubauer, A. (1990), Tikhonov regularization of nonlinear
differential equations, Inverse Methods in Action, P.C. Sabatier, ed., Springer-
Verlag, New York, 92-105.
[8] Engl, H. W., Kunisch, K. and Neubauer, A. (1989), Convrgence rates for Tikhonov
regularization of nonlinear ill-posed problems, Inverse Problems, 5, 523-540.
[9] Guacaneme, J. E. (1990), A parameter choice for simplified regularization, Rostak,
Math. Kolloq., 42, 59-68.
[10] Groetsch, C. W. (1984), Theory of Tikhonov regularization for Fredholm Equation of
the first kind, Pitmann Books, London.
[11] George, S. (2006), Newton-Tikhonov regularization of ill-posed Hammerstein operator
equation, J. Inverse and Ill-Posed Prob., 2, 14, 135-146.
[12] George, S. (2006), Newton-Lavrentiev regularization of ill-posed Hammerstein type
operator equation, J. Inverse and Ill-Posed Probl., 6, 14, 573-582.
[13] George, S. and Kunhanandan,M. (2009), An Iterative Regularization Method for Illposed
Hammerstein Type Operator Equation, J. Inv. Ill-Posed Probl., 17, 831-844.
[14] George, S. and Kunhanandan, M. (2010),Iterative regularization methods for illposed
Hammerstein type operator equation with monotone nonlinear part, Int. Journal
of Math. Analysis, Vol. 4, no. 34, 1673-1685.
[15] George, S. and Nair, M. T. (1998), On a generalized Arcangeli’s method for
Tikhonov regularization with inexact data, Numer. Funct. Anal. and Optim., 19
(No. 7 and 8), 773-787.
[16] George, S. and Nair, M. T. (2008), A modified Newton-Lavrentiev regularization
for nonlinear ill-posed Hammerstein-Type operator equation, Journal of Complexity,
24, 228-240.
[16] Kantorovich, L. V. and Akilov, G. P. (1964), Functional Analysis in Normed Spaces,
Pergamon Press, New York.
[18] Nair, M. T. and Ravishankar, P. (2008), Regularized versions of continuous newton’s
method and continuous modified newton’s method under general source conditions,
Numer. Funct. Anal. Optim., 29(9-10), pp. 1140-1165.
[19] Ortega. J.M. and Rheinboldt,W. C. (1970), Iterative solution of nonlinear equations
in general variables, Academic Press, New York and London.
[20] Pereverzev, P. V. and Schock, E. (2005), On the adaptive selection of the parameter
in regularization of ill-posed problems, SIAM. J. Numer. Anal., 43, 5, 2060-2076.
[21] Ramm, A. G., Smirnova, A. B. and Favini, A. (2003), Continuous modified
Newton’s-type method for nonlinear operator equations. Ann. Mat. Pura Appl.,
182, pp.37-52.
[22] Scherzer, O., Engl, H. W. and Kunisch, K. (1993), Optimal a posteriori parameter
choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM.
J. Numer. Anal, 30, No.6, 1796-1838.
[23] Schock, E. (1984), On the asymptotic order of accuracy of Tikhonov regularization,
J. Optim. Th. and Appl., 44, 95-104.
[24] Tautenhahn, U. (2002), On the method of Lavrentiev regularization for nonlinear illposed
problems, Inverse Problems, 18,191-207.
Chapter 17:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, I. K. Approximating solutions of equations using Newton’s method with
a modified Newton’s method iterate as a starting point. Rev. Anal. Numer. Theor.
Approx. 36, (2007), 123-138.
[3] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[4] Argyros, I. K. and Hilout, S. (2012), Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[5] Argyros, I. K, Cho, Y. J. and Hilout, S. ( 2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[6] Bakushinskii,A. and Seminova, A. (2005), On application of generalized discrepancy
principle to iterative methods for nonlinear ill-posed problems, Numer. Funct. Anal.
Optim. 26, 35–48.
[7] Bakushinskii,A. and Seminova, A. (2006), A posteriori stopping rule for regularized
fixed point iterations, Nonlinear Anal. 64, 1255–1261.
[8] Bakushinskii, A. and Seminova, A. (2007), Iterative regularization and generalized
discrepancy principle for monotone operato equations, Numer. Funct. Anal. Optim.
28, 13–25.
[9] Binder, A., Engl, H. W., Groetsch, C. W., Neubauer, A. and Scherzer, O. (1994),
Weakly closed nonlinear operators and parameter identification in parabolic equations
by Tikhonov regularization, Appl. Anal. 55, 215–235.
[10] Engl, H. W., Hanke, M. and Neubauer, A. (1993), Regularization of Inverse Problems,
Dordrecht, Kluwer.
[11] Engl, H. W., Kunisch, K. and Neubauer, A. (1989), Convergence rates for Tikhonov
regularization of nonlinear ill-posed problems, Inverse Problems 5, 523–540.
[12] Jin, Q. (2000), On the iteratively regularized Gauss-Newton method for solving nonlinear
ill-posed problems, Math. Comp. 69, 1603–1623.
[13] Jin, Q. and Hou, Z. Y. (1997), On the choice of the regularization parameter for ordinary
and iterated Tikhonov regularization of nonlinear ill-posed problems, Inverse
Problems 13, 815–827.
[14] Jin, Q. and Hou, Z. Y. (1990), On an a posteriori parameter choice strategy for
Tikhonov regularization of nonlinear ill-posed problems, Numer. Math. 83, 139–
159.
[15] Mahale, P. and Nair, M. T. (2009), Iterated Lavrentiev regularization for nonlinear
ill-posed problems, ANZIAM 51, 191–217.
[16] Mahale, P. and Nair, M. T. (2007), General source conditions for nonlinear ill-posed
problems, Numer. Funct. Anal. Optim., 28, 111–126.
[17] Scherzer, O., Engl, H. W. and Kunisch, K. (1993), Optimal a posteriori parameter
choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J.
Numer. Anal. 30, 1796–1838.
[18] Semenova, E. V. (2010), Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods Appl. Math. 4, 444–
454.
[19] Tautenhahn, U. (2004), Lavrentiev regularization of nonlinear ill-posed problems,
Vietnam J. Math. 32, 29–41.
[20] Tautenhahn, U. (2002), On the method of Lavrentiev regularization for nonlinear illposed
problems, Inverse Problems 18, 191–207.
[21] Tautenhahn, U. and Jin, Q. (2003), Tikhonov regularization and a posteriori rule for
solving nonlinear ill-posed problems, Inverse Problems 19, 1–21.
Chapter 18:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, I. K., Approximating solutions of equations using Newton’s method with
a modified Newton’s method iterate as a starting point. Rev. Anal. Numer. Theor.
Approx. 36, (2007), 123-138.
[3] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[4] Argyros, I. K. and Hilout, S. (2012), Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[5] Argyros, I. K., Cho, Y. J. and Hilout, S. ( 2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[6] Bakushinskii,A. and Seminova, A. (2005), On application of generalized discrepancy
principle to iterative methods for nonlinear ill-posed problems, Numer. Funct. Anal.
Optim. 26, 35–48.
[7] Bakushinskii,A. and Seminova, A. (2006), A posteriori stopping rule for regularized
fixed point iterations, Nonlinear Anal. 64, 1255–1261.
[8] Bakushinskii, A. and Seminova, A. (2007), Iterative regularization and generalized
discrepancy principle for monotone operato equations, Numer. Funct. Anal. Optim.
28, 13–25.
[9] Binder, A., Engl, H. W., Groetsch, C. W., Neubauer, A. and Scherzer, O. (1994),
Weakly closed nonlinear operators and parameter identification in parabolic equations
by Tikhonov regularization, Appl. Anal. 55, 215–235.
[10] Binder, A., Engl, H. W., and Vessela, S. (1990), Some inverse problems for a nonlinear
parabolic equation connected with continuous casting of steel: stability estimate
and regularization, Numer. Funct. Anal. Optim. 11, 643 – 671.
[11] Engl,H.W, Hanke,M. and Neubauer, A. (1990), Tikhonov regularization of nonlinear
differential equations, Inverse Methods in Action, P.C. Sabatier, ed., Springer-Verlag,
New York, 92-105.
[12] Engl, H. W., Hanke, M. and Neubauer, A. (1993), Regularization of Inverse Problems,
Dordrecht: Kluwer.
[13] Engl, H. W., Kunisch, K. and Neubauer, A. (1989), Convergence rates for Tikhonov
regularization of nonlinear ill-posed problems, Inverse Problems 5, 523 – 540.
[14] Jin, Q. (2000), On the iteratively regularized Gauss-Newton method for solving nonlinear
ill-posed problems, Math. Comp. 69, 1603 – 1623.
[15] Jin, Q. and Zong-Yi, H. (1997), On the choice of the regularization parameter for ordinary
and iterated Tikhonov regularization of nonlinear ill-posed problems, Inverse
Problems, 13, 815-827.
[16] Jin, Q. and Zong-Yi, H. (1990), On an a posteriori parameter choice strategy for
Tikhonov regularization of nonlinear ill-posed problems, Numer. Math. 83, 139 –
159.
[17] Mahale, P. and Nair, M. T. (2009), Iterated Lavrentiev regularization for nonlinear
ill-posed problems, ANZIAM 51, 191 – 217.
[18] Scherzer, O., Engl, H. W. and Kunisch, K. (1993), Optimal a posteriori parameter
choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J.
Numer. Anal. 30 (6), 1796 – 1838.
[19] Scherzer, O. (1989), The use of Tikhonov regularization in the identification of electrical
conductivities from overdetermined problems, Inverse Problems 5, 227 – 238.
[20] Scherzer, O., Engl, H.W. and Anderssen, R. S. (1993), Parameter identification from
boundary measurements in parabolic equation arising from geophysics, Nonlinear
Anal. 20, 127 – 156.
[21] Semenova, E. V. (2010), Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods Appl. Math. 4, 444–
454.
[22] Tautenhahn, U. (2004), Lavrentiev regularization of nonlinear ill-posed problems,
Vietnam J. Math. 32, 29–41.
[23] Tautenhahn, U. (2002), On the method of Lavrentiev regularization for nonlinear illposed
problems, Inverse Problems 18, 191–207.
[24] Tautenhahn, U. and Jin, Q. (2003), Tikhonov regularization and a posteriori rule for
solving nonlinear ill-posed problems, Inverse Problems 19, 1–21.
Chapter 19:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, I. K., Approximating solutions of equations using Newton’s method with
a modified Newton’s method iterate as a starting point. Rev. Anal. Numer. Theor.
Approx. 36, (2007), 123-138.
[3] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[4] Argyros, I. K. and Hilout, S. (2012), Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[5] Argyros, I. K., Cho, Y. J. and Hilout, S. ( 2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[6] George, S. and Elmahdy, A. I. (2010), An analysis of Lavrentiev regularization for
nonlinear ill-posed problems using an iterative regularization method, Int. J. Comput.
Appl. Math., 5(3), 369-381.
[7] George, S. and Elmahdy, A. I. (2010), An iteratively regularized projection method
for nonlinear ill-posed problems, Int. J. Contemp. Math. Sciences, 5, no. 52, 2547-
2565.
[8] George, S. and Elmahdy, A. I. (2012), A quadratic convergence yielding iterative
method for nonlinear ill-posed operator equations, Comput. Methods Appl. Math,
12(1), 3245.
[9 George, S. and Elmahdy, A. I. (2010), An iteratively regularized projection method
with quadratic convergence for nonlinear ill-posed problems, Int. J. of Math. Analysis,
4, no. 45, 2211-2228.
[10] George, S. and Pareth, S. (2012), An application of Newton type iterative method
for Lavrentiev regularization for ill-posed equations: Finite dimensional realization,
IJAM, 42:3, 164-170.
[11] Groetsch, C. W., King, J. T. and Murio, D. (1982), Asymptotic analysis of a finite
element method for Fredholm equations of the first kind, in Treatment of Integral
Equations by Numerical Methods, Eds.: C. T. H. Baker and G. F. Miller, Academic
Press, London, 1-11.
[12] Jaan, J. and Tautenhahn, U. (2003), On Lavrentiev regularization for ill-posed problems
in Hilbert scales, Numer. Funct. Anal. Optim., 24, no. 5-6, 531-555.
[13] Kelley, C. T. (1995), Iterative methods for linear and nonlinear equations, SIAM,
Philadelphia.
[14] Mathe, P. and Perverzev, S. V. (2003), Geometry of linear ill-posed problems in variable
Hilbert scales, Inverse Problems, 19, no. 3, 789-803.
[15] Mahale, P. and Nair, M. T. (2009). Iterated Lavrentiev regularization for nonlinear
ill-posed problems. ANZIAM Journal, 51, 191-217.
[16] Perverzev, S. V. and Schock, E. (2005), On the adaptive selection of the parameter in
regularization of ill-posed problems, SIAM J. Numer. Anal., 43, 2060-2076.
[17] Semenova, E. V. (2010), Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods Appl. Math., no.4,
444-454.
[18] Tautanhahn, U. (2002), On the method of Lavrentiev regularization for nonlinear illposed
problems, Inverse Problems, 18, 191-207.
Chapter 20:
[1] Airapetyan, R. G. and Ramm, A. G. (2000), Dynamical systems and discretemethods
for solving nonlinear ill-posed problems, Appl. Math. Reviews 1, G. Anastassiou,
(Eds), 491-536.
[2] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[3] Argyros, I. K. (2007), Approximating solutions of equations using Newton’s method
with a modified Newton’s method iterate as a starting point. Rev. Anal. Numer.
Theor. Approx. 36, 123-138.
[4] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[5] Argyros, I. K. and Hilout, S. (2012),Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[6] Argyros, I. K., Cho, Y. J. and Hilout, S. (2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[7] Bakushinskii,A. and Goncharskii, A. (1994), Ill-posed Problems: Theory and Applications,
Dordrecht, Kluwer.
[8] Binder, A., Engl, H. W., Groetsch, C. W., Neubauer, A. and Scherzer, O. (1994),
Weakly closed nonlinear operators and parameter identification in parabolic equations
by Tikhonov regularization, Appl. Anal., 55, 215-235.
[9] Engl, H. W., Hanke, M. and Neubauer, A. (1990), Tikhonov regularization of nonlinear
differential-algebraic equations, Inverse Methods in Action, P.C. Sabatier, ed.,
Springer-Verlag, New York, 92-105.
[10] Engl, H. W., Hanke, M. and Neubauer, A. (1996), Regularization of Inverse Problems.
Dordrecht: Kluwer.
[11] Janno, J. (2000), Lavrentiev regularization of ill-posed problems containing
nonlinear-to-monotone operators with application to autoconvolution equation, Inverse
Problems, 16, 333-348.
[12] Lin, F. and Nashed, M. Z. (1996), Convergence of regularized solutions of nonlinear
ill-posed problems with monotone operators, Partial Differential Equations and
Applications, P. Marcellini et. al. (Eds.), New York, Dekker, 353-361.
[13] George, S. and Pareth, S. (2012), An Application of Newton Type Iterative Method
for Lavrentiev Regularization for Ill-Posed Equations: Finite Dimensional Realization,
IAENG International Journal of Applied Mathematics, 42:3, IJAM 42 3 07.
[14] Pareth, S. and George, S. (2013), Newton type methods for Lavrentiev regularization
of nonlinear ill-posed operator equations, Journal of Applied Analysis, 19, 181– 196.
[15] Krasnoselskii, M. A., Zabreiko, P. P., Pustylnik, E. I. and Sobolevskii, P. E. (1976),
Integral operators in spaces of summable functions, Translated by T. Ando, Noordhoff
International publishing, Leyden.
[16] Scherzer, O (1989), The use of Tikhonov regularization in the identification of electrical
conductivities from overdetermined problems, Inverse Problems, 5, 227-238.
[17] Scherzer, O., Engl, H.W. and Anderssen, R. S. (1993), Parameter identification from
boundary measurements in parabolic equation arising from geophysics, Nonlinear
Anal., 20, 127-156.
[18] Semenova, E. V. (2010), Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods Appl. Math., 4, 444-
454.
[19] Tautenhahn, U. (2004), Lavrentiev regularization of nonlinear ill-posed problems,
Vietnam. J. Math., 32, 29-41.
[20] Tautenhahn, U. (2002), On the method of Lavrentiev regularization for nonlinear illposed
problems, Inverse Problems, 18, 191-207.
Chapter 21:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, I. K. (2007), Approximating solutions of equations using Newton’s method
with a modified Newton’s method iterate as a starting point. Rev. Anal. Numer.
Theor. Approx. 36, 123-138.
[3] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[4] Argyros, I. K. and Hilout, S. (2012),Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[5] Argyros, I. K., Cho. Y. J. and Hilout, S. (2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[6 Bakushinsky, A, Smirnova, A. (2005), On application of generalized discrepancy
principle to iterative methods for nonlinear ill-posed problems, Numer. Funct. Anal.
Optim., 26, 35-48.
[7] Bakushinskii,A. B. (1992), The problemof convergence of the iteratively regularized
Gauss-Newton method, Comput. Math. Math. Phys., 32, 1353-1359.
[8] Bakushinskii, A. B.(1995), Iterative methods without saturation for solving degenerate
nonlinear operator equations, Dokl. Akad. Nauk, 344, 7-8.
[9] Blaschke, B., Neubauer, A. and Scherzer, O. (1997), On convergence rates for the
iteratively regularized Gauss-Newton method, IMA J. Numer. Anal., 17, 421-436.
[10] Hadamard, J. (1952), Lectures on Cauchy’s Problem in Linear Partial Differential
Equations, Dover Publ., New York.
[11] Groetsch, C. W., King, J. T. and Murio, D. (1982), Asymptotic analysis of a finite
element method for Fredholm equations of the first kind, In: Treatment of Integral
Equations by Numerical Methods, Eds: C.T.H. Baker and G.F. Miller. Academic
Press, London, 1-11.
[12] Hohage, T. (1997), Logarithmic convergence rate of the iteratively regularized Gauss-
Newton method for an inverse potential and an inverse scattering problem, Inverse
Problems, 13, 1279-1299.
[13] Hohage, T. (2000), Regularization of exponentially ill-posed problems, Numer.
Funct. Anal. Optim., 21, 439-464.
[14] Kaltenbacher, B. (1998), A posteriori parameter choice strategies for some Newtontype
methods for the regularization of nonlinear ill-posed problems, Numer. Math.,
79, 501-528.
[15] Kaltenbacher, B. (2008), A note on logarithmic convergence rates for nonlinear
Tikhonov regularization, J. Inverse Ill-Posed Probl., 16, 79-88.
[16] Langer, S. and Hohage, T. (2007), Convergence analysis of an inexact iteratively
regularized Gauss-Newton method under general source conditions, J. Inverse Ill-
Posed Probl., 15, 19-35.
[17] Engl, H. W., Kunisch, K. and Neubauer, A. (1996), Regularization of Inverse Problems,
Kluwer, Dordrecht.
[18] George, S. (2010), On convergence of regularized modified Newton’s method for
nonlinear ill-posed problems, J. Inverse Ill-Posed Probl., 18, 133-146.
[19] George, S. (2013), Newton type iteration for Tikhonov regularization of nonlinear
ill-posed problems, Journal of Mathematics, vol. 2013, Article ID 439316, 9 pages,
doi:10.1155/2013/439316.
[20] Engl, H. W., Kunisch, K. and Neubauer, A. (1989), Convergence rates for Tikhonov
regularization of nonlinear ill-posed problems, Inverse Problems, 5, 523-540.
[21] Mahale, P. and Nair, M. T. (2009), A simplified generalized Gauss-Newton method
for nonlinear ill-posed problems, Math. Comp., 78, no.265, 171-184.
[22] Pereverzev, S. V. and Schock, E. (2005), On the adaptive selection of the parameter
in regularization of ill-posed problems, SIAM.J. Numer. Anal., 43, 5, 2060-2076.
[23] Lu, S. and Pereverzev, S. V. (2008), Sparsity reconstruction by the standard Tikhonov
method, RICAM-Report No.17.
[24] Scherzer, O., Engl, H. W. and Kunisch, K. (1993), Optimal a posteriori parameter
choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J.
Numer. Anal., 30, 6, 1796-1838.
[25] Semenova, E. V. (2010), Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods Appl. Math., 4, 444-
454.
Chapter 22:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, I. K. (2007), Approximating solutions of equations using Newton’s method
with a modified Newton’s method iterate as a starting point. Rev. Anal. Numer.
Theor. Approx. 36, 123-138.
[3] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[4] Argyros, I. K. and Hilout, S. (2012),Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[5] Argyros, I. K. and Hilout, S. (2010), A convergence analysis for directional two-step
Newton methods, Numer. Algor., 55, 503-528.
[6] Argyros, I. K., Cho, Y. J. and Hilout, S. (2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[7] Engl, H. W., Hanke, M. and Neubauer, A. (1993), Regularization of Inverse Problems,
Dordrecht: Kluwer.
[8] George, S. (2006),Newton-Tikhonov regularization of ill-posed Hammerstein operator
equation, J. Inverse and Ill-Posed Problems, 2, 14, 135-146.
[9] George, S. and Elmahdy, A. I. (2012), A quadratic convergence yielding iterative
method for nonlinear ill-posed operator equations, Comput. Methods Appl. Math.,
12(1), 32-45.
[10] George, S. and Kunhanandan, M. (2009), An iterative regularization method for Illposed
Hammerstein type operator equation, J. Inv. Ill-Posed Problems 17, 831-844.
[11] George, S. and Nair, M. T. (2008), A modified Newton-Lavrentiev regularization for
nonlinear ill-posed Hammerstein-Type operator equation, Journal of Complexity 24,
228-240.
[12] George, S. and Shobha, M. E. (2013), On Improving the Semilocal Convergence of
Newton-Type Iterative method for Ill-posed Hammerstein type operator equations,
IAENG- International Journal of AppliedMathematics, 43:2, IJAM-43-2-03.
[13] George, S. and Shobha, M. E. (2012), Two-Step Newton-Tikhonov Method for
Hammerstein-Type Equations: Finite-Dimensional Realization, ISRN Applied Mathematics,
vol. 2012, Article ID 783579, 22 pages, doi:10.5402/2012/783579.
[14] Shobha,M. E., Argyros, I. K. and George, S. (2014), Newton-type iterative methods
for nonlinear ill-posed Hammerstein-type equations, Applicationes Mathematicae,
41, 107–129.
[15] Kelley, C. T. (1995), Iterative Methods for Linear and Nonlinear Equations, SIAM,
Philadelphia.
[16] Kaltenbacher, B., Neubauer, A. and Scherzer, O. (2008), Iterative regularisation
methods for nolinear ill-posed problems, de Gruyter, Berlin, New York.
[17] Krasnoselskii, M. A., Zabreiko, P. P., Pustylnik, E. I. and Sobolevskii, P. E. (1976),
Integral operators in spaces of summable functions, Translated by T. Ando, Noordhoff
International publishing, Leyden.
[18] Nair, M. T. and Ravishankar, P. (2008), Regularized versions of continuous newton’s
method and continuous modified Newton’s method under general source conditions,
Numer. Funct. Anal. Optim. 29(9-10), 1140-1165.
[19] Mahale, P. and Nair, M. T. (2009), A Simplified generalized Gauss-Newton method
for nonlinear ill-posed problems, Math. Comp., 78, no. 265, 171-184.
[20] Pereverzev, S. V. and Schock, E. (2005), On the adaptive selection of the parameter
in regularization of ill-posed problems, SIAM. J. Numer. Anal., 43, 5, 2060-2076.
[21] Ramm, A. G., Smirnova, A. B. and Favini, A. (2003), Continuous modified
Newton’s-typemethod for nonlinear operator equations. Ann. Mat. Pura Appl. 182,
37-52.
[22] Semenova, E. V. (2010), Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods Appl. Math., no.4,
444-454.
[23] Groetsch, C. W. and Neubauer, A. (1988), Convergence of a general projection
method for an operator equation of the first kind, Houstan. J. Math., 14, 201-208.
[24] Krisch, A. (1996), An introduction to the Mathematical Theory of inverse problems,
Springer, New York.
[25] Perverzev, S. V. and Probdorf, S. (2000), On the characterization of selfregularization
properties of a fully discrete projection method for Symms integral
equation, J. Integral Equat. Appl., 12, 113-130.
[26] Mahale, P. and Nair, M. T. (2009), Iterated Lavrentiev regularization for nonlinear
ill-posed problems, ANZIAM, 51,191-217.
[27] Tautenhahn, U. (2002), On the method of Lavrentiev regularization for nonlinear illposed
problems, Inverse Problems, 18, 191-207.
Chapter 23:
[1] Argyros, I. K. (2008), Convergence and Application of Newton-type Iterations,
Springer.
[2] Argyros, I. K. (2007), Approximating solutions of equations using Newton’s method
with a modified Newton’s method iterate as a starting point. Rev. Anal. Numer.
Theor. Approx. 36, 123-138.
[3] Argyros, I. K. (2011), A Semilocal convergence for directional Newton methods,
Math. Comput. (AMS). 80, 327-343.
[4] Argyros, I. K. and Hilout, S. (2012),Weaker conditions for the convergence of Newton’s
method, J. Complexity, 28, 364-387.
[5] Argyros, I. K. and Hilout, S. (2010), A convergence analysis for directional two-step
Newton methods, Numer. Algor., 55, 503-528.
[6] Argyros, I. K., Cho, Y. J. and Hilout, S. (2012), Numerical methods for equations
and its applications, CRC Press, Taylor and Francis, New York.
[7] Engl, H. W., Hanke, M. and Neubauer, A. (1993), Regularization of Inverse Problems,
Dordrecht: Kluwer.
[8] Engl, H. W. (1993), Regularization methods for the stable solution of inverse problems,
Surveys on Mathematics for Industry, 3, 71-143.
[9] George, S. (2006), Newton-Tikhonov regularization of ill-posed Hammerstein operator
equation, J. Inverse and Ill-Posed Problems, 2, 14, 135-146.
[10] George, S. and Kunhanandan, M. (2009), An iterative regularization method for Illposed
Hammerstein type operator equation, J. Inv. Ill-Posed Problems 17, 831-844.
[11] George, S. and Nair, M. T. (2008), A modified Newton-Lavrentiev regularization for
nonlinear ill-posed Hammerstein-Type operator equation, Journal of Complexity 24,
228-240.
[12] Shobha, M. E., Argyros, I. K. and George. S. (2014), Newton-type iterative methods
for nonlinear ill-posed Hammerstein-type equations, Applicationes Mathematicae,
41, 107–129.
[12] George, S. and Shobha, M. E (2012), A Two-Step Newton-Tikhonov Method for
Hammerstein-Type Equations: Finite-Dimensional Realization, ISRN Applied Mathematics,
vol. 2012, Article ID 783579, 22 pages, doi:10.5402/2012/783579.
[13] Kaltenbacher, B., Neubauer, A. and Scherzer. O. (2008), Iterative regularisation
methods for nolinear ill-posed porblems, de Gruyter, Berlin, New York.
[14] Kelley. C. T (1995), Iterative Methods for Linear and Nonlinear Equations, SIAM,
Philadelphia.
[15] Krisch. A (1996), An introduction to the Mathematical Theory of inverse problems,
Springer, New York.
[16] Nair, M. T. and Ravishankar, P. (2008), Regularized versions of continuous newton’s
method and continuous modified Newton’s method under general source conditions,
Numer. Funct. Anal. Optim. 29(9-10), 1140-1165.
[17] Pereverzev, S. V. and Schock, E. (2005), On the adaptive selection of the parameter
in regularization of ill-posed problems, SIAM. J. Numer. Anal., 43, 5, 2060-2076.
[18] Perverzev, S. V. and Probdorf, S. (2000), On the characterization of selfregularization
properties of a fully discrete projection method for Symms integral
equation, J. Integral Equat. Appl., 12, 113-130.
[19] Ramm, A. G., Smirnova. A. B. and Favini, A. (2003), Continuous modified
Newton’s-typemethod for nonlinear operator equations. Ann. Mat. Pura Appl. 182,
37-52.
[20] Semenova, E. V. (2010), Lavrentiev regularization and balancing principle for solving
ill-posed problems with monotone operators, Comput. Methods Appl. Math., no.4,
444-454.
[21] Shobha,M. E. and George, S. (2012), Dynamical SystemMethod for ill-posed Hammerstein
type operator equations with Monotone Operators, International Journal of
Pure and Applied Mathematics, 81(1), 129-143.