Table of Contents
Table of Contents
Preface
Chapter 1. Newton-Secant Methods (pp. 1-12)
Chapter 2. Newton-Gauss Method (pp. 13-24)
Chapter 3. Newton Traub Method (pp. 25-36)
Chapter 4. The MMN-HSS Method (pp. 37-50)
Chapter 5. The Kantorovich Theorem and Finite Element Methods (pp. 51-58)
Chapter 6. Newton’s Method for Solving Optimal Shape Design Problems (pp. 59-70)
Chapter 7. Meuller’s Method (pp. 71-78)
Chapter 8. Meuller’s Method for Non-Differentiable Functions (pp. 79-88)
Chapter 9. The Shadowing Lemma for Operators with Chaotic Behaviour (pp. 89-94)
Chapter 10. Secant-Like Methods (pp. 95-104)
Chapter 11. Modified Secant Method (pp. 105-110)
Chapter 12. Newton’s Method for Generalized Equations (pp. 111-128)
Chapter 13. Variants of Jarratt’s Method (pp. 129-138)
Chapter 14. Super-Halley Methods (pp. 139-150)
Chapter 15. Semidefinite Programs (pp. 151-158)
Chapter 16. Moore’s Theorem (pp. 159-166)
Chapter 17. Miranda Results for Intermediate Value Theorem (pp. 167-172)
Chapter 18. Directional Newton Methods (pp. 173-182)
Chapter 19. Newton’s Method for a Class of Nonsmooth Operators (pp. 183-192)
Chapter 20. Newton-HSS Methods (pp. 193-206)
Chapter 21. Cauchy-Type Methods (pp. 207-216)
Chapter 22. Second Derivative Free Cauchy-Type Methods (pp. 217-224)
Chapter 23. Mesh Independence Principle of Newton’s Method (pp. 225-236)
Chapter 24. High Convergence Order Method (pp. 237-248)
Chapter 25. Two Step Method with Memory (pp. 249-262)
Chapter 26. Broyden’s Method (pp. 263-270)
Chapter 27. Existence and Uniqueness of Weak Solution (pp. 271-278)
Chapter 28. Existence of Optimal Parameters (pp. 279-282)
Chapter 29. Weak G^Ateaux Derivative of the Solution Map of Initial Boundary Value Problem (pp. 283-288)
Chapter 30. Spectral Method for Optimal Parameters (pp. 289-294)
Chapter 31. Variational Inequality Problems (pp. 295-300)
Chapter 32. Newton’s Method on Generalized Banach Spaces (pp. 301-316)
Authors Contact Information (pp. 317-318)
Index (pp. 319)
Keywords: Iterative procedures, Local semi-local convergence, Differential – Intergral equations.
The book is a valuable tool for researchers, practitioners, graduate students, and can also be used as a textbook or seminars in all computational and related disciplines.