Mathematical and Physical Aspects of Experimental Investigations on Electron and Relaxation Time Spectra in Bulk and Nano-Structured Semiconductors and Insulators

Valeri Ligatchev
Department of Physics and Technology of Electrotechnical Materials and Component, Moscow Power Engineering Institute, Moscow, Russia

Series: Physics Research and Technology
BISAC: SCI043000

Clear

$230.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Browse Wishlist
Browse Wishlist

Details

This book summarizes important outcomes of a quarter century of developments in advanced mathematical approaches and their implementations for deconvolution and analysis of ‘global’ electron and relaxation time spectra obtained based on results of appropriate physical experiments, carried out on real samples of bulk amorphous and crystalline semiconductors and insulators, as well as on nano-structured materials and devices. The second chapter of this book depicts key features of many well-known traditional and some modern techniques for experimental investigations of electron density and time relaxation spectra in such semiconductors and insulators. as Additionally, there is an emphasis on archetypal problems related to the analysis and interpretation of the results of those experimental techniques.

Some generic (though crucially important in the context of this book) physical and mathematical aspects of the polarization and relaxation processes in solids, well-known one-dimensional direct and inverse integral transforms, linear integral equations of the first and second kinds, “ill-posed” mathematical problems and specific mathematical approaches to solution(s) of those are discussed in the third, fourth and fifth chapters, respectively. A majority of the aforementioned mathematical approaches are essentially based on the so-called “regularization” concept, pioneered by famous Russian mathematicians (A. N. Tikhonov, M. M. Lavrentiev, V. K. Ivanov, V. Ya. Arsenin and their co-workers) in the second half of the twentieth century. Mathematical aspects of the regularization concept are discussed (to some extent) in the fifth chapter of the book in comparison to the similar aspects of the traditional “modelling” approach with multiple references on appropriate “original” articles and books. Thanks to distinctive features of the regularization concept, it endures a protracted history (which nowadays well exceeds 5 decades), becomes the dominant strategy for the solution of various “inverse problems”, and is widely used in many types of modern applications and computational packages. In particular, the regularization algorithms are incorporated into Mathematica, Matlab, Python and Octave packages.

This generic “regularization” concept had been successfully implemented by the author of this book during the development and practical realization (programming) of several essentially different regularization algorithms (described in detail in the sixth chapter of the book) for unambiguous investigations and the analysis of results of appropriated physical experiments, fulfilled over a period from 1984 to 2009, both in Russia and in Singapore. Furthermore, actual results of such experimental investigations are discussed in the seventh chapter following closely appropriate original publications, and in comparison with their counterparts obtained by traditional (e.g., “modelling”) approaches. As it is also demonstrated in the seventh chapter with the relevant examples and detailed discussion(s), the implementation of the aforementioned “regularization” algorithms allows one to identify (and interpret thereafter) new important features of the intra-gap and near-band-gap electronic spectra of the amorphous and polycrystalline semiconductors and insulators. The relaxation time spectra of those materials, which are usually unattainable via the implementation of the “modelling” approach is also analyzed.

It is important that the regularization concept (mathematically related to its alternative ones, e.g., the direct and inverse Radon integral transforms) has many other, very important implementations, e.g., in medical computerized tomography, security-related applications, archeology, geophysics, etc. Similar to the abovementioned spectroscopic techniques, the X-ray-based computerized tomography eventually yields vital information on features of electron density distribution in a studied object, though the desired function in the latter case rather depends on spatial variables than on energetic ones. The mathematical essence of the Radon-transform-based computerized tomography is also summarized very briefly in one of the sections of this book. A comprehensive reference list of this book comprises many other key references (for those who are interested in the aforementioned topics discussed herein).

Preface

Acknowledgements

Chapter 1. Introduction (pp. 1-8)

Chapter 2. Conventional Techniques for Experimental Study of Density of Electron States and Some of Their Modern Variations (pp. 9-102)

Chapter 3. Polarization and Relaxation Processes in Electron States Spectroscopy (pp. 103-124)

Chapter 4. One-Dimensional Integral Transforms and Equations (pp. 125-142)

Chapter 5. ‘Ill-Posed’ Problems and Tikhonov’s ‘Regularization’ Concept (pp. 143-178)

Chapter 6. Practical Examples of ‘Regularization’ Algorithms (pp. 179-262)

Chapter 7. Results of Implementation of ‘Regularization’ Algorithms (pp. 263-296)

Chapter 8. Conclusions (pp. 297-302)

References (pp. 303-322)

About the Author (pp. 323-324)

Index (pp. 325)

[1] Tikhonov, A. N. Doklady Acad. Sci. USSR 1943, 39, 176 – 179.
[2] Tikhonov, A. N. Dokl. Akad. Nauk SSSR 1963, 151, 501 – 504
(in Russian).
[3] Lavrentiev, M. M. Dokl. Akad. Nauk SSSR 1959, 127, 31 – 33
(in Russian).
[4] Ivanov, V. K. Dokl. Akad. Nauk SSSR 1962, 145, 270 – 272
(in Russian).
[5] Arsenin, V. Ya.; Savyolova, T. I. Zh. Vychisl. Mat. Mat. Fiz. 1969, 9, 1392 – 1396.
[6] Böer, K. W. Survey of Semiconductor Physics, Van Nostrand Reinhold, New-York, 1990, pp 1 – 1423.
[7] Schroder, D. K. Semiconductor Material and Device Characterization, John Wiley & Sons, 1990, New-York, pp 1 – 411.
[8] Street, R. A.; Biegelsen, D. K. In: The Physics of Hydrogenated Amorphous Silicon II. Vol 56 in Topics of Applied Physics/Ed. Joannopoulos, J. D.; Lukovsky, G. (Springer, New-York, USA, 1984), pp 195 – 259.
[9] Identification of Defects in Semiconductors, Contributors: Willardson, R. K.; Weber, E. R.; Stavola, M. Academic Press, 1998, pp 1 – 434.
[10] Prasankumar, R. P.; Taylor, A. J. Optical Techniques for Solid-State Materials Characterization, CRC Press Taylor & Francis Group, FL, USA, 2012, pp 1 – 784.
[11] Madan, A., Lecomber, P. G.; Spear, W. Journal of Non-Crystalline Solids 1976, 20, 239 – 257.
[12] Spear, W. E.; Le Comber, P. G. Philosophical Magazine, 1976, 33, 935 – 949.
[13] Grünewald, M.; Thomas, P.; Würtz, D. Phys. Stat. Sol. (b), 1980, 100, K139 – K143.
[14] Goodman, N. B.; Fritzsche, H.; Ozaki, H. J. Non-Cryst. Solids, 1980, 35-36, 599 – 604.
[15] Goodman, N. B.; Fritzsche, H. Philos. Mag. B, 1980, 42, 149 – 165.
[16] Weber, K.; Grünewald, M.; Fuhs, W.; Thomas, P.; Phys. Status Solidi B, 1982, 110, 133 – 142.
[17] Cohen, J. D. Hydrogenated Amorphous Silicon Electronic and Transport Properties, In: Semiconductors and Semimetals, Pankove, J. I., Willardson, R. K., Beer, A. C. Ed., 1984, Academic Press, Orlando, pp 9 – 98.
[18] Augelli, V.; Berardi, V.; Murri, R. et al. Phys Rev B, 1987, 35, 614 – 618.
[19] Augelli, V.; Leo, M.; Leo, R. A.; Soliani, G. Phys Rev B, 1986, 33, 7392 – 7394.
[20] Gazsó, J. Phys. Status Solidi (a), 1981, 68, 675 – 688.
[21] Hsieh, H.-H.; Kamiya, T.; Nomura, K.; Hosono, H.; Wu, Ch-Ch. Appl. Phys. Lett. 2008, 92, 133503-1 – 133503-3.
[22] Tal, O.; Rosenwaks, Y.; Preezant, Y.; et al. Phys. Rev. Lett. 2005, 95

, 256405-1– 256405-4.
[23] Mott, N. F.; Davis, E. A. Electron Processes in Non-Crystalline Materials, Clarendon Press, Oxford (1979), pp 1 – 368.
[24] Lang, D. V.; Chi, X.; Siegrist, T.; Sergent, A. M.; Ramirez, A. P. Phys. Rev. Lett. 2004, 93, 086802-1 – 086802-4.
[25] Cui, Y.; Wei, Q.; Park, H. K.; Lieber, C. M. Science, 2001, 293, 1289 – 1292.
[26] Kempa, Th. J.; Tian, B.; Kim, D. P.; Hu, J.; Zheng, X.; Lieber, C. M. Nano Letters, 8, 3456 – 3460 (2008).
[27] Hochbaum, A. I.; Chen, R.; Delgado, P. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163 – 167.
[28] Cui, Y.; Zhong, Z.; Wang, D.; Wang, W.; Lieber, C. M. Nano Lett. 2003, 3, 149 – 152.
[29] Daugé, F.; Pretet, J.; Cristoloveanu, S.; Vandooren, A.; Mathew, L.; Jomaah, J.; Nguyen, B.-Y. Solid State Electron. 2004, 48, 535 – 542.
[30] Singh, N.; Lim, F. Y.; Fang, W.; Rustagi, S. C.; Bera, L. K.; Agarwal, A.; Tung, C. H.; Hoe, K. M.; Omampuliyur, S. R.; Tripathi, D.; Adeyeye, A. O.; Lo, G. Q.; Balasubramanian, N.; Kwong, D. L. in IEDM Tech. Dig., 2006, 548 – 551.
[31] Hashemi, P.; Teherani, J. T.; Hoyt, J. L. Proc. Electron Devices Meeting (IEDM), 2010 IEEE International 6–8 Dec. 2010 San Francisco, CA, pp 34.5.1 – 34.5.4.
[32] Samuelson, L.; Bjork, M. T.; Deppert, K.; Larsson, M.; Ohlsson, B. J.; Panev, N.; Persson, A. I.; Skold, N.; Thelander, C.; Wallenberg, L. R. PHYSICA E, 2004, 21, 560 – 567.
[33] Wang, J.; Polizzi, E.; Lundstrom, M. IEEE International Electron Dev. Meeting (IEDM), Tech. Digest, 2003, 695 – 698, Dec. 8–10.
[34] Wang, J.; Rahman, A.; Ghosh, A.; Klimeck, G.; Lundstrom, M. Applied Physics Letters, 2005, 86, 093113.1 – 093113.3.
[35] Datta, Supriyo, Quantum Transport: Atom to Transistor. Cambridge University Press (2005), pp 1 – 404.
[36] Ligatchev, V.; Chin, S.-K. Book of abstracts of 1st NANO TODAY Conference, Biopolis, Singapore, 2–5 August 2009, Abstract P3-15.
[37] Ligatchev, V.; Chin, S. - K. Book of abstracts of 217th ECS Meeting in Vancouver, BC, Canada, April 24–30, 2010, Abstracts A2 #126 and H3 #1533.
[38] Mensch, P.; Moselund, K. E.; Karg, S.; Lortscher, E.; Bjork, M. T.; Riel, H. IEEE Transactions on Nanotechnology, 2013, 12, 279 – 282.
[39] Kortekaas, C. In Proc. IEEE Int. Conf. Microelectronic Test Structures, San Diego (USA), 1990, 3, pp 109 – 113.
[40] Song, H.; Dons, E.; Sun, X. Q.; Farmer, K. R. In: Proc. NIST Int. Conf. Characterization and Metrology for ULSI Technology, Gaithersburg (USA), 1998, 231 – 234.
[41] Chang, Y. W.; Chang, H. W.; Lu, T. C.; King, Y. C.; Ting, W.; Ku, Y.-H. J.; Lu, C.-Y. IEEE Electron Device Lett. 2006, 27, 390 – 392.
[42] Sutorý, T.; Kolka, Z, Radioengineering, 2008, 17, 9 – 14.
[43] Zhao, H.; Kim, R.; Paul, A.; Luisier, M.; Klimeck, G.; Ma, F.-J.; Rustagi, S. C.; Samudra, G. S.; Singh, N.; Lo, G.-Q.; Kwong, D. L. IEEE Electron Device Letters, 2009, 30, 526 – 528.
[44] Chin, S. K.; Ligatchev, V.; Rustagi, S. C.; Zhao, H.; Samudra, G. S.; Singh, N.; Lo, G. Q.; Kwong, D. L. IEEE Transactions on Electron Device, 2009, 56, 2312 – 2318.
[45] Schmidt, V.; Senz, S.; Gösele, U. Appl. Phys. A 2007, 86, 187 – 191.
[46] Yamashita, Y.; Namba, K.; Nakato, Y.; et al. J. Appl. Phys. 1996, 79, 7051 – 7057.
[47] Viktorovitch, P.; Jousse, D.; Chenevas-Paule, A.; Vieux-Rochas, L. Rev. Phys. Appl. (Paris) 1979, 14, 201 – 208.
[48] Mikhelashvili, V.; Eisenstein, G. Appl. Phys. Lett. 1999, 75, 2836 – 2838.
[49] Nedev, N.; Manolov, E.; Ivanov, Tz.; et al. Journal of Optoelectronics and Advanced Materials, 2005, 7, 507 – 511.
[50] Daleonibus, S.; Jousse, D. Journal de Physique (Paris), 1981, Coll. C4, 42, C4-487 – C4-490.
[51] Tittelbach-Helmrich, K. Semicond. Sci. Technol. 1993, 8, 1372 – 1376.
[52] Vishnyakov N. V.; Vikhrov S. P.; Ligachov, V. Proc. Conf. on Microelectronics, Warsaw, Poland, Sept. 1992, SPIE, 1783, 600 – 603.
[53] Kobayashi, H.; Asano, A.; Ivanco J.; Takahashi, M.; Nishioka, Y. Acta Physica Slovaca, 2000, 50, 461 – 475.
[54] Kawasaki, N.; Ohta, Y.; Kubozono, Y.; Konishi, A.; Fujiwara, A. Appl. Phys. Lett. 2008, 92, 163307-1 – 163307-3.
[55] Terman, L. M. Sol. St. Electron. 1962, 5, 285 – 299.
[56] Nicollian, E. H.; Brews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New Jersey, 1982), pp 1 – 928.
[57] Ozdag, P.; Atanassova, E.; Gunes, M. Journal of Optoelectronics and Advanced Materials. 2005, 7, 293 – 296.
[58] Lehovec, K. Solid-State Electron. 1968, 11, 135 – 137.
[59] Martens, K. et al. IEEE Trans. Electron Devices, 2008, 55, 547 – 556.
[60] Nishi, Y.; Tanaka, K.; Ohwada, A. Japan. J. Appl. Phys. 1972, 11,
85 – 91.
[61] Mott, N. F.; Gurney, R. W. Electronic Processes in Ionic Crystals (Oxford, Clarendon Press, 2nd Ed.; 1948), pp 1 – 275.
[62] Rose, A. Phys. Rev. 1955, 97, 1538 – 1544.
[63] Lampert, M. A. Physical Review 1956, 103, 1648 – 1656.
[64] Schauer, F. J. Non-Crystall. Solids 1998, 227 – 230, 659 – 663.
[65] Nicolet, M.-A. J. Appl. Phys. 1966, 37, 4224 – 4235.
[66] Den Böer, W. Journal de Physique (Paris), 1981, 42, C4-451 – C4-454.
[67] Weisfield, R. L. J. Appl. Phys. 1983, 54, 6401 – 6416.
[68] Neŝpurek, S.; Sworakowski, J. J. Appl. Phys. 1980, 51, 2098 – 2102.
[69] Mackenzie, K. D.; LeComber, P. G.; Spear, W. E. Philos. Mag. B 1982, 46, 377 – 389.
[70] Lang, D. V. J. Appl. Phys. 1974, 45, 3023 – 3032.
[71] Gan, B.; Ahn, J.; Rusli, Zhang, Q.; Yoon, S. F.; Ligatchev, V.; Chew, K.; Huang, Q. F. J. Appl. Phys. 2001, 89, 5747 – 5753.
[72] Ligatchev, Valeri. In: Focus on condensed matter physics research/J. V. Chang, Ed., Nova Science Publishers, Hauppauge, NY (2005), pp 1 – 81.
[73] Ligatchev, Valeri. ‘Polycrystalline and Spatially Non-Homogeneous Amorphous Semiconductors and Insulators.’ Nova Science Publishers, Hauppauge, NY, 2017, pp 1 – 289.
[74] Blom, P. W. M.; Tanase, C.; de Leeuw, D. M.; Coehoorn, R. Appl. Phys. Lett. 2005, 86, 092105-1 – 092105-3.
[75] Agrawal, R.; Kumar, P.; Ghosh, S.; Mahapatro, A. K. Appl. Phys. Lett. 2008, 93, 073311-1– 073311-3.
[76] Arkhipov, V. I.; Heremans, P. Appl. Phys. Lett. 2001, 79, 4154 – 4156.
[77] Pitarch, A.; Garcia-Belmonte, G.; Bisquert, J. Proceedings SPIE Int. Soc. Opt. Eng. 2004, 5519, 307 – 313.
[78] Lang, D. V. Space-Charge Spectroscopy in Semiconductors, in Thermally Stimulated Relaxation in Solids, Topics in Applied Physics, vol. 37, P. Braulich, Ed. (Springer, Berlin, 1979), pp 93 – 133.
[79] Yoshino, J.; Tachikawa, M.; Matsuda, N.; et al. Jap. Journ. Appl. Phys., 1984, 23, L29 – L31.
[80] Zhou, P.; Spencer, M. G.; Harris, G. L.; Fekade, K. Appl. Phys. Lett. 1987, 50, 1384 – 1386.
[81] Das, V.; Singh, V. A.; Lang, D. V. Semiconductor Science and Technology, 1988, 3, 1177 – 1183.
[82] Teate, A. A.; Halder, N. C. Journ. Appl. Phys. 1991, 70, 1455 – 1460.
[83] Batovski, D. A.; Hardalov, Ch. M. Journ. Appl. Phys. 1993, 74, 291 – 295.
[84] Benzohra, M.; Medeghri-Rachedi, N.; Hbib, H. Jap. Journ. Appl. Phys. 1996, 35, Pt. I, 2709 – 2013.
[85] Khattak, G. M.; Scott. C. G. J. Phys.: Condens. Matter, 1998, 10, 2807

– 2815.
[86] Eiche, C.; Maier, D.; Weese, J.; Honerkamp, J.; Benz, K. W. J. Appl. Phys. 1994, 75, 1242 (the only page).
[87] Ligatchev, V.; Yoon, S. F.; Ahn, J.; Zhang, Q.; Rusli, Radiation Effects and Defects in Solids, 2001, 154, 261 – 265.
[88] Okushi, H.; Tokumaru, Y. Jap. J. Appl. Phys. 1980, 19, L335 – L338.
[89] Yoshida, H.; Niu, H.; Kishino, S. J. Appl. Phys. 1993, 73, 4457 – 4461.
[90] Le Bloa, A.; Quan, D. T.; Guennouni, Z. Meas. Sci. Technol. 1993, 4

, 325 – 336.
[91] Dobaczewski L.; Kaczor P.; Missous M.; Peaker A. R.; Zitkewitch, Z. R. Phys. Rev. Lett. 1992, 68, 2508 – 2511.
[92] Dobaczewski L.; Kaczor P.; Hawkins I. D.; Peaker A. R. 1994, J. Appl. Phys. 76, 194 – 198.
[93] Korn G.; Korn T. Mathematical Handbook for Scientists and Engineers McGrew-Hill, 1968, New-York, pp 1 – 1130.
[94] Gradshtein, I. S.; Ryzhik I. M. Table of Integrals, Series, and Products, translated by Jeffrey Alan, Acadmic Press, London, 1980, pp 1 – 1160.
[95] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G. Tables of Integral Transforms, Vol. I/Erdélyi, A. Ed., New-York, McGraw-Hill, 1954, 391 p.
[96] Mellin, H. Acta Soc. Sci. Fennica 1896, 21, 1 – 115.
[97] Cohen, J. D.; Lang, D. V.; Harbison, J. P. Phys. Rev. Lett. 1980, 45, 197 – 200.
[98] Cohen, J. D.; Lang. D. V. Phys. Rev. B, 1982, 25, 5321 – 5350.
[99] Derhacobian, N.; Haegel, N. M. Phys. Rev. B 1991, 44, 12754 – 12760.
[100] Nadazhdy, V.; Durny, R.; Pincik, E. Phys. Rev. Lett. 1997, 78, 1102 – 1105.
[101] Van Roosbroeck, W.; Casey, Jr, H. C. Phys Rev B 1972, 5, 2154 – 2175.
[102] Hurtes, C.; Boulou, M.; Mitonneau, A.; Bois, D. Appl. Phys. Lett., 1978, 32, 821 – 823.
[103] Kremer, R. E.; Arikan, M. C.; Abele, J. C.; Blakemore, J. S. J. Appl. Phys. 1987, 62, 2424 – 2431.
[104] Chantre, A.; et al. Phys. Rev. B 1981, 23, 5335 – 5359.
[105] Cavalcoli, D.; Cavalliani, A.; Combia, E. Phys. Rev. B 1997, 56, 14890 – 14892.
[106] Farmer, J. W.; Lamp, C. D.; Meese, J. M. Appl. Phys. Lett. 1982, 41, 1063 – 1065.
[107] Polyakov, V. I.; Perov, P. I.; Ermakova, O. N.; Ermakov, M. G.; Rukovishnikov, A. I.; Sergeev, V. I. Sov. Phys. Semicond. 1989, 23, 76 – 79.
[108] Polyakov, V. I.; Rossukanyi, N. M.; Rukovishnikov, A. I.; Pimenov, S. M.; Karabutov, A. V.; Konov, V. I. J. Appl. Phys. 1998, 84, 2882 – 2289.
[109] Polyakov, V. I.; Rukovishnikov, A. I.; Rossukanyi, N. M. et al. Mat. Res. Soc. Symp. Proc. 1997, 442, 687 – 692.
[110] Barancok, D.; Kluvanek, P.; Thurzo, I.; Vajda, J. Phys. Stat. Sol. (a) 1999, 172, 519 – 528.
[111] Wessels, B. W. J. Appl. Phys. 1976, 47, 1131 – 1133.
[112] Polyakov, V. I.; Rukovishnikov, A. I.; Rossukanyi, N. M.; Ralchenko, V. G. Diam. Relat. Mater. 2001, 10, 593 – 600.
[113] Polyakov, V. I.; Rukovishnokov, A. I.; Rossukanyi, N. M.; Druz, B. Mat. Res. Soc. Symp. Proc. 2002, 699, 219 – 224.
[114] Polyakov, V. I.; Rukovishnikov, A. I.; Varnin, V. P.; Teremetskaya, I. G.; Laptev, V. A. Diam. Relat. Mater. 2003, 12, 1783 – 1787.
[115] The Electrical Characterisation of Semiconductors: Majority Carriers and Electron States, Ed. by P. Blood and J. W. Orton, Academic Press, London (1992). pp 1 – 768.
[116] Gross, B. Phys. Rev. 1944, 66, 26 – 28.
[117] Gross, B.; Denard, L. F. Phys. Rev. 1945, 67, 253 – 259.
[118] Gross, B. J. Chem. Phys. 1949, 17, 866 – 872.
[119] Bucci, C.; Fieschi, R. Phys. Rev. Lett. 1964, 12, 16 – 19.
[120] Bucci, C.; Fieschi, R.; Guidi, G. Phys. Rev. 1966, 148, 816 – 823.
[121] Zhou, J.-H.; Elliott, S. R. Phys. Rev. B 1992, 46, 9792 – 9795.
[122] Braunlich, P.; Kelly, P.; Fillard, J. P. in: Thermally Stimulated Relaxation in Solids (Ch 2), Vol 37 of Topics in Applied Physics/Braunhlich, P.; Ed.; Springer, Heidelberg, 1979, pp 35 – 92.
[123] Faubert, F.; Sanchez, M. J. Appl. Phys. 1998, 84, 1541 – 1545.
[124] Halpern, V. J. Phys. D: Appl. Phys. 2003, 36, 169 – 175.
[125] Kumar, D.; Kumar, S. Chalcogenide Letters 2004, 1, 49 – 55.
[126] Misra, D. S.; Singh, V. A.; Agarwal, S. C. Phys. Rev. B 1985, 32, 4052 – 4059.
[127] Grimmeiss, H. G.; Ledebo, L. A. J. Appl. Phys. 1975, 46, 2155 – 2162.
[128] Loveland, R. J.; Spear, W. E.; Al-Sharbaty, A. J. Non-Cryst. Solids 1973/1974, 13, 55 – 68.
[129] Abeles, B.; Wronski, C. R.; Tiedje, T.; Cody, G. D. Solid State Commun. 1980, 36, 537 – 540.
[130] Vanecek, M.; Kocka, J.; Stuchlik, J. Triska, A. Solid State Commun. 1981, 39, 1199 – 1202.
[131] Cody, G. D. In Semiconductors and Semimetals 21B, Pankove, J. I.; Ed.; 1984, Academic Press, New-York, pp 11 – 82.
[132] Moddel, G.; Anderson, D. A.; Paul, W. Phys. Rev. B 1980, 22

, 1918 – 1925.
[133] Crandall, R. S. Phys. Rev. Lett. 1980, 44

, 749 – 752.
[134] Rose, A. Concepts in Photoconductivity and Allied Problems. Interscience, New York (1963), pp 1 – 168.
[135] von Roedern, B.; Moddel, G. Solid State Commun. 1980, 35, 467 – 571.
[136] Pantelides, S. T. Rev. Mod. Phys. 1978, 50, 797 – 858.
[137] Tauc, J. In Amorphous and Liquid Semiconductors, Tauc, J.; Ed.; Plenum Press, New-York, 1984, pp 1 – 412.
[138] Connell, G. A. N. In Amorphous Semiconductors (Ed. M. J. L. Brodsky), Springer Topics in Applied Physics 3d

, Springer, Berlin (1979). pp 9 – 39.
[139] Pierz, K.; Mell, H.; Terukov, E. J. Non-Cryst. Sol. 1985, 77 & 78, 547 – 550.
[140] Vanecek, M.; Kocka, J.; Poruba, A.; Fejfar, J. J. Appl. Phys. 1995, 78, 6203 – 6210.
[141] Sasaki, M.; Okamoto, S.; Hishikawa, Y.; Tsuda, S.; Nakano, S. Sol. Energy Mater. Sol. Cells 1994, 34, 541 – 547.
[142] Main, C.; Reynolds, S.; Zrinscak, I.; Merazga, A. Journal of Non-Crystalline Solids 2004, 338–340, 228 – 231.
[143] LIGATCHEV, Valeri Alekseevich, ‘Role of Morphology in Formation Electron Spectra, Optical and Electro-Physical Properties of a-Si:H, a-C:H and a-Si1-xCx:H Thin Films’; Doctor of Science (equivalent of Habilitation) Dissertation in Specialty 01.04.10 – Physics of Semiconductors and Insulators, Moscow Power Engineering Institute, Moscow, Russia, 1998, pp 1 – 419.
[144] Boccara, A. C.; Fournier, D.; et al. Appl. Phys. Lett. 1979, 36, 130 – 132.
[145] Spear, J. D.; Russo, R. E.; Silva, R. J. Applied Optics 1990, 29, 4225 – 4234.
[146] Jackson, W. B.; Amer, N. M.; Boccara, A. C.; Fournier, D. Applied Optics 1981, 20

, 1333 – 1344.
[147] Rose, A.; Vyas, R.; Gupta, R. Applied Optics, 1986, 25, 4626 – 4643.
[148] Zhouy, W.-ya; Xiey, Si-sh.; Qiany, Sh.-fa.; Wangy, G.; Qian, Lu-xi. J. Phys.: Condens. Matter 1996, 8, 5793 – 5800.
[149] Mars, M.; Abdelkarim, M.; Fathallah, M.; Tresso, E.; Ferrero, S. Philosophical Magazine B, 2001, 81, 1951 – 1962.
[150] Pitz, R. W. Applied Optics 1990, 26, 2418 – 2423.
[151] Jackson, W. B.; Amer, N. M.; Baccara, A. C.; Fournier, D. Appl. Opt. 1981, 20

, 1333 – 1344.
[152] Aamodt, L. C.; Murphy, J. C. J. Appl. Phys. 1981, 52

, 4903 – 4914 .
[153] Glazov, A. L.; Muratikov, K. L. Opt. Commun. 1991, 84, 283 – 289.
[154] Zhao, J.; Shen, J.; Hu, Ch. Optic Letters 2002, 27, 1755 – 1757.
[155] Salazar, A.; Sanchez-Lavega, A.; Fernandez, J. J. Appl. Phys. 1989, 65

, 4150 – 4156.
[156] Almond, D. P.; Patel, P. M. Photothermal Science and Techniques, Chapman & Hall, 1996, pp 1 –241.
[157] Ezugwu, S.; Ahmed, M. S.; Bauld, R.; Divigalpitiya, R.; Fanchini, G. Thin Solid Films, 2013, 534,

520 – 528.
[158] Winer, K.; Ley, L. Phys. Rev. B, 1987, 36, 6072 – 6078.
[159] Tanaka, K.; Gotoh, T.; Yoshida, N.; Nomura, S. J. Appl. Phys. 2002, 91, 125 – 128.
[160] Optoacoustic Spectroscopy and Detection, Pao, Y.-H.; Ed. Academic Press, New York, USA, (1977), pp 1 – 256.
[161] Obraztsov, A. N.; Okushi, H.; Watanabe, H.; Pavlovsky, I. Yu. Phys. Sol. St. 1997, 39, 1594 – 1598.
[162] Losee, D. L. Appl. Phys. Lett. 1972, 21, 54 – 56.
[163] Beguwala, M.; Crowell, C. R. Sol. Stat. Electron. 1974, 17, 203 – 214.
[164] Losee, D. L. J. Appl. Phys. 1975, 46, 2204 – 2214.
[165] Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy, 2nd Ed., Wiley, New-York, 2005, pp 1 – 616.
[166] Walter, T.; Herberholz, R.; Müller, C.; Schock, H. W. J. Appl. Phys. 1996, 80, 4411 – 4420.
[167] Serin, T. Semicond. Sci. Technol. 1988, 13, 1272 – 1276.
[168] Marshall, J. M. Rep. Prog. Phys. 1983, 46, 1235 – 1282.
[169] Konkov, O. I.; Terukov, E. I.; Trapeznikova, I. N.; Chelnokov, V. E. Diam. Relat. Mater. 1994, 3, 1356 – 1359.
[170] Reynolds, S.; Smirnov, V.; Main, Ch.; Finger, F.; Carius, R. Mat. Res. Soc. Symp. Proc. 2004, 808, A.5.7.1 – A.5.7.6.
[171] Smirnov V.; Reynolds S.; Main, C.; Finger, F.; Carius, R. Journal of Non-Crystalline Solids 2004, 338–340, 421 – 424.
[172] Emelianova, E. V.; Brinza, M.; Arkhipova, V. I.; Adriaenssens, G. J. Journal of Optoelectronics and Advanced Materials 2005, 7, 951 – 954.
[173] Brinza, M.; Adriaenssens, G. J. Journal of Optoelectronics and Advanced Materials 2006, 8, 2028 – 2034.
[174] Fröhlich, H. Theory of Dielectrics, 2nd Edn. Clarendon Press, Oxford (1958), pp 1 – 192.
[175] Jonscher, A. K. Universal Relaxation Law. Chelsea Dielectrics Press, London, 1996, 415 p.
[176] Debye, P. J. W. Polare Moleceln. S. Hirzel, Leipzig, 1929, pp 1 – 200 (in German).
[177] Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341 – 350.
[178] Davidson, D. W.; Cole, R. H. J. Chem. Phys. 1951, 19, 1484 – 1490.
[179] Havriliak, S.; Negami, S. J. Polym. Sci. 1966, 14, 97 – 117.
[180] Hill, R. M.; Jonscher, A. K. Contemp. Phys. 1983, 24, 75 – 110.
[181] Wei, Yan-Zhen, Sridhar, S. J. Chem. Phys. 1993, 99, 3119 – 3124.
[182] Kohlrausch, R. Pogg. Annalen Der Physik und Chemie, 1854, 91, 179 – 214.
[183] Kohlrausch, R. Annalen Der Physik und Chemie (Poggendorfen Annalen), 1876, CLVII, 337 – 214.
[184] Williams, G.; Watts, D. C. Trans. Farad. Soc. 1970, 66, 80 – 85.
[185] Nigmatullin, R. R.; Ryabov, Ya. E. Physics of the Solid State, 1997, 39, 87 – 90.
[186] Matsuura, H.

Jpn. J. Appl. Phys.

1997,

36, 3569 – 3575.
[187] Meystre, P.; Sargent III, M. Elements of Quantum Optics, Springer Verlag (1990), pp 1 – 507.
[188] Hass, K. C.; Ehrenreich, H. Annals of Physics, 1985, 164, 77 – 102.
[189] Phillips, J. C. Rev. Mod. Phys. 1970, 42, 317 – 356.
[190] Ligachev, V. A.; Filikov, V. A. Sov. Phys. Semicond. 1992, 26, 865 – 868.
[191] Wemple, S. H.; Di-Domenico, M. (Jr.) Phys. Rev. B 1971, 3, 1338 – 1350.
[192] Wemple, S. H. J. Chem. Phys. 1977, 67, 2151 – 2168.
[193] Kronig, R. de L. J. Opt. Soc. Am. 1926, 12, 547 – 557.
[194] Kramers, H. A. Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) Como, 1927, 2, 545 – 557.
[195] Stone, M.; Goldbart, P. Mathematics for Physics: A Guided Tour for Graduate Students (Cambridge Univ. Press, Cambridge, UK, 2009), pp 1– 820.
[196] Oberhettinger, F. Tables of Fourier Transforms and Fourier Transforms of Distributions, Springer, 1990, Heidelberg, pp 1 – 261.
[197] Brychkov, Yu. A. and Prudnikov, A. P. Integral Transforms of Generalized Functions, Gordon and Breach Science Publishers, New York, 1989, pp 1 – 344.
[198] Doetsch, G. Guide to the Applications of the Laplace and Z Transforms, 2nd Ed. Van Nostrand Reinhold Company, NY, 1971, pp 1 – 230.
[199] Oberhettinger, F. Tables of Mellin Transform, 2nd Ed., Springer-Verlag, New York, NY, 1974, pp 1 – 278.
[200] Bertrand, Jacqueline; Bertrand, Pierre; Ovarlez, Jean-Philippe, The Mellin Transform, in Handbook of Formulas and Tables for Signal Processing, Alexander Poularikas, Ed., CRC Press, Boca Raton, Florida, 1996, Chapter 18, 11 pages .
[201] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G. Tables of integral transforms, Vol. II/Erdélyi, A. Ed., New-York, McGraw-Hill, 1954, 451 p.
[202] Tricomi, F. G. Integral Equations, Courier Corporation, New York, 1985, pp 1 – 238.
[203] Kanwal, R. P. Linear Integral Equations; Theory and Technique. London, Academic Press, 1971, pp 1 – 296.
[204] Volterra, V. Atti R. Accad. Sci. Torino, 1896, 31, 311 – 323.
[205] Fredholm, I. Acta Math. 1903, 27, 365 – 390 (in French).
[206] Brunner, H. Math. Comp. 1985, 45, 417 – 437.
[207] Vergés-Llahί, J. Appendix A in: Color Constancy and Image Segmentation Techniques for Applications to Mobile Robotics, PhD Thesis, University Politecnica de Catalunya, Barcelona, Spain (2005).
[208] Lingjearde, O. C.; Christophersen, N. Regularization Principles, Solving Ill-Posed Inverse Problems (Kompendium) 1998, pp 1 – 79.
[209] Zahoor, R. M. A.; Qureshi

, I. M.

European Journal of Scientific Research, ISSN 1450-216X 2009, 35, 14 – 21.
[210] Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993, pp 1 – 384.
[211] Oldham, K. B.; Spanier, J. The Fractional Calculus, Academic Press, New York, 1974, pp 1 – 234.
[212] Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Reading, 1993, pp 1 – 976.
[213] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Application of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier, 2006, pp 1 – 540.
[214] Hilfer, R. ‘Threefold Introduction to Fractional Derivatives,’ In: Anomalous Transport: Foundations and Applications, R. Klages
et al. (Eds.), Wiley-VCH, Weinheim, 2008, page 17, ISBN: 978-3-527-40722-4.
[215] Golubov, B. I. Matematicheskie Zametki, 2006, 79, 213 – 233 (In Russian).
[216] Grunwald, A. K. Z. Angew. Math. Phys. 1867, 12, 441 – 480.
[217] Vladimirov, S. V. Equations of Mathematical Physics, Marcel Dekker (1971), pp 1 – 424.
[218] Munkhammar, J. D. Project Report 2004:7, Uppsala University (Sweeden), Department of Mathematics, pp 1 – 19.
[219] Hadamard, J. In: Princeton University Bulletin, 1902, 49 – 52.
[220] Kabanikhin, S. I. J. Inv. Ill-Posed Problems 2008, 16, 317 – 357.
[221] Mroczka, J.; Szczuczyński, D. Metrol. Meas. Syst. 2009, XVI, 333 – 357.
[222] Press, W. H.; Flannery, B. P.; Teukolsky, S. A. Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (ISBN 0-521-43064-X) Copyright © 1986–1992, pp 1 – 933.
[223] Tikhonov, A. N. Soviet Math. 1963, 4, 1035 – 1038.
[224] Tikhonov, A. N. Soviet Math. Dokl. 1963, 4, 1624 –1627.
[225] Tikhonov, A. N.; Arsenin, V. Ya. Solutions of Ill-Posed Problems. Wiley, NewYork, 1977, pp 1 – 258.
[226] Tikhonov, A. N.; Goncharsky, A. V.; Stephanov, V. V.; Yagola, A. G. Numerical Methods for the Solution of Ill-Posed Problems. Springer Netherlands, 1995, pp 1 – 328.
[227] Phillips, D. L. J. Ass. Comput. Mach. 1962, 9, 84 – 96.
[228] Turchin, V. F. USSR Comp. Math. Math. Phys. 1967, 7, 79 – 96.
[229] Turchin, V. F.; Kozlov, V. P.; Malkevich, M. S. Sov’iet Phys. Uspekhi 1971, 13, 681 – 702.
[230] Voskoboynikov, Yu. E.; Preobrazhenski, N. G.; Sedel’nikov, A. I. Mathematical Treatment of Experiment in Molecular Gas Dynamics, Nauka, Novosibirsk, 1984, pp 1 – 238 (in Russian).
[231] Arsenin, V. Ya.; Timonov, A. A. Soviet Math. Dokl. 1985, 32, 566 – 570.
[232] Arsenin, V. Ya.; Kriksin, Yu. A.; Timonov, A. A. USSR Comput. Math. Math. Phys. 1988, 28, 113 – 125.
[233] Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. 1949, New York: Wiley. pp 1 – 165.
[234] Aref’eva, M. V. USSR Comput. Math. Math. Phys. 1974, 14, 19 – 33.
[235] Vasilenko, G. I. Signal Restoration Theory, Soviet Radio, Moscow, 1979, pp 1 – 272 (in Russian).
[236] Verlan, A. F.; Sizikov, V. S. Integral Equations: Methods, Algorithms, Programs, Naukova Dumka, Kiev, 1986, pp 1 – 544 (in Russian).
[237] Wazwaz, Abdul-Majid, Computers and Mathematics with Applications 2011, 61, 2981 – 2986.
[238] Brunner, H.; Sizikov, V. Journal of Mathematical Analysis and Applications 1998, 226

, 292 – 308.
[239] Freitag, M.; Nichols, N.; Budd, C. Proceedings of Applied Mathematics and Mechanics, 2010, 10, 665 – 668.
[240] Zemyan, S. M. The Classical Theory of Integral Equations: A Concise Treatment, 2012, Springer Science + Business Media, LLC, pp 1 – 344.
[241] Herman, G. T.; Tuy, H. K.; Langenberg, K. J.; Sabatier, P. C. Basic Methods of Tomography and Inverse Problems. Adam Hilger, Bristol and Philadelphia, 1987, pp 1 – 680.
[242] James, J. B. Integral Transforms for You and Me. Royal Observatory Edinburg, Institute for Astronomy, 2008, pp 1 – 35.
[243] Radon, Johann. Ber. Verh. Sach. Akad. 1917, 69, 262 – 277.
[244] Helgason, S. The Radon Transform, 2nd Ed., Birkhauser, Boston, 1999, pp 1 – 190.
[245] Nievergelt, Yves. Society for Industrial and Applied Mathematics Review, 1986, 28, 79 – 84.
[246] Sizikov, V. S.; Sidorov, D. N. Applied Numerical Mathematics, 2016, 106, 69 – 78.
[247] Natterer, F. The Mathematics of Computerized Tomography. Teubner, Stuttgart, 1986, pp 1 – 8.
[248] Kumar, S.; Singh, Om. P. Z. Naturforsch. 2010, 65a, 677 – 682.
[249] Tikhonov, A. N; Arsenin, V. Ya.; Timonov, A. A. Mathematical Problems of Computer Tomography, Nauka, Moscow, 1987, pp 1 – 160 (in Russian).
[250] Xu, Y.; Yang, P.; Dong, F. Flow Measurement and Instrumnetations 2016, 50, 1 – 12.
[251] Ligachev, V. A.; Filikov, V. A. Soviet Physics Semiconductors 1991, 25, 78 – 81.
[252] Ligachev, V. A.; Filikov, V. A. Sov. Phys. Sol. State 1991, 33, 1857 – 1862.
[253] Ligatchev, V.; Chin, S. K. ECS Transactions, 2009, 25, 19 – 27.
[254] Vanecek, M.; Abraham, A.; Stika, O.; Stuchlik, J.; Kochka, J. Phys. Status Solidi (A) 1984, 83, 617 – 623.
[255] Balagurov, L. A.; Karpova, N. Yu.; Omel’yanovskii, E. M.; Piniker, T. N.; Starikov, M. N. Sov. Phys. Semicond. 1986, 20, 454 – 457.
[256] Kazanskii, A. G.; Milichevich, E. P. Sov. Phys. Semicond. 1984, 18, 1137 – 1139.
[257] Cui, Y.; Zhong, Z.; Wang, D.; Wang, W. U.; Lieber, C. M. Nano Lett., 2003, 3, 149 – 152.
[258] Smith, A. W.; Rohatgi, A. J. Appl. Phys. 1993, 73, 7030 – 7034.
[259] Chen, N.-X.; Zhang, Ch.-Fu; Zhou, M.; Ren, G.-B.; Zhao, W.-B. Phys. Rev. E 1993, 48, 1558 – 1561.
[260] Ligatchev, V.; Chin, S.-K. ECS Transactions, 2010, 28 No. 7, pp 51 – 58 & No. 17, pp 27 – 32.
[261] Dattoli, G.; Mancho1, A. M.; Quattromini, M.; Torre, A. Radiation Physics and Chemistry 2001, 61, 99 – 108.
[262] Chin, S.-K.; Ligatchev, V. IEEE Electron Device Letters, 2009, 30, 395 – 397.
[263] Engblom, S. O. Analytical Chemistry 1992, 64, 2530 – 2538.
[264] Gibilisco, S. Desktop Database of Instant Math and Science Data, McGraw-Hill, (2001) (in p. 498).
[265] Kostyukov, N. S.; Muminov, M. I.; Chang, K. G. et al. Radiation Effects in Ceramic Insulators, Tashkent (1986), pp 1 – 160
(in Russian).
[266] Akhadov, Ya. Yu. Insulating Properties of Pure Liquids, Moscow (1972), pp 1 – 411 (in Russian).
[267] Perel’man, A. Ya.; Punina, V. A. Zh. Vychisl. Mat. Mat. Fiz. 1969, 9, 626 – 646 (in Russian).
[268] Ligatchev, V.; Rusli, Chapter 15 in: Handbook of Nanoceramics and Their Based Nanodevices, American Scientific Publishers, Tseng, T.-Y., Nalwa, H. S.; Eds.; vol. 3, pp 337 – 372, Valencia, CA, 2009.
[269] Yoshino, J.; Tachikawa, M.; Matsuda, N.; et al. Jap. Journ. Appl. Phys. 1984, 23, L29 – L31.
[270] Batovskii, D.; Hardalov, Ch. J. Appl. Phys. 1995, 78, 1808 – 1811.
[271] Eiche, C.; Maier, D.; Schneider, M.; et al. J. Phys. Condens. Matter 1992, 4, 6131 – 6140.
[272] Ligatchev, V.; Yoon, S. F.; Zhgoon, S.; Zhang, Q.; Ahn, J.; Rusli Radiation Effects & Defects in Solids, 2001, 156, 249 – 253.
[273] Street, R. A. Winer, K. Phys. Rev. B 1989, 40, 6236 – 6249.
[274] Ley, L. In Physics of Hydrogenated Amorphous Silicon II. Joannopoulos, J. D.; Lucovsky, G. Springer-Verlag, Heidelberg, 1984, pp. 140 – 198.
[275] Polyakov, V. I.; Rukovishnikov, A. I.; Varnin, V. P.; Ralchenko, V. G. Book of Abstract of Applied Diamond and Nanocarbon 2005 Conference, Argonne National Lab., Chicago, IL, USA, May 15 – 20, 2005, p. 5.3.1.
[276] Weese, J. Comp. Phys. Comm. 1993, 77, 429 – 440.
[277] Shockley, W.; Read, Jr., W. T. Phys. Rev. 1952, 87, 835 – 842.
[278] Auth, J.; Genzow, D.; Herrmann, K. H. Photoelektrische Erscheinungen, Akademie-Verlag, Berlin (1977), pp 1 – 208, (in German).
[279] Kittel, C.; Kroemer, H. Thermal Physics (Freeman, San Francisco, 1980), 2nd Ed., pp 78 – 80.
[280] Nesladek, M.; Meykens, K.; Stals, L. M.; Vanecek, M.; Rosa, J. Phys. Rev. B 1996, 54, 5552 – 5561.
[281] Zeisel, R.; Nebel, C. E.; Stutzmann, M. Phys. Rev. B 1999, 60

, 2476 – 2479.
[282] Ligatchev, V.; Gan, B. Diam. Relat. Mater. 2006, 15, 410 – 416.
[283] Suleman, Kh.; Ligachev, V. A.; Filikov, V. A. Semiconductors, 1993, 27, 186 – 188.
[284] Svirkova, N. N.; Filikov, V. A.; Ligachev, V. A. Semiconductors, 1994, 28, 1164 – 1169.
[285] Morigaki, K.; Sano, I.; Konagi M.; et al. Solid State Comm. 1982, 43, 751 – 758.
[286] Rohrer, E.; Graeff, C. F. O.; Janssen, R.; Nebel, C. E.; Stutzmann, M. Phys Rev B 1996, 54, 7874 – 7880.
[287] Suleman H.; Filikov V. A.; Vasileva N. D.; Ligachev V. A. Technical Physics, 1994, 39, 765 – 768.
[288] Ligatchev, V.; Yoon, S. F.; Ahn, J.; Zhang, Q.; Rusli, Zhgoon, S.; Chew, K. Diam. Relat. Mater. 2001, 10

, 1335 – 1339.
[289] Iriarte, G. F. J. Appl. Phys. 2003, 93, 9604 – 9609.
[290] Wraback, M.; Garrett, G. A.; Sampath, A. V.; Collins, C. J.; Shen, P. H. Proc. SPIE, 2004, 5617, 209 – 220.
[291] Chen, C. Q.; Zhang, J. P.; Adivarahan, V.; Koudymov, A.; Fatima, H.; Simin, G.; Yang, J.; Asif Khan, M. Appl. Phys. Lett. 2003, 82, 4593 – 4595.
[292] Jimenez, A.; Bougrioua, Z.; Tirado, J. M.; Brana, A. F.; Calleja, E.; Munoz, E.; Moerman, I. Appl. Phys. Lett. 2003, 82, 4828 – 4830.
[293] Dovidenko, K.; Oktyabrsky, S.; Narayan, J.; Razeghi, M. J. Appl. Phys. 1996, 79, 2439 – 2445.
[294] King, S. W.; Davis, R. F.; Ronning, C.; Benjamin, M. C.; Nemanich, R. J. J. Appl. Phys. 1999, 86, 4483 – 4490.
[295] Ligatchev, V.; Rusli; Zhao, P. Applied Physics Letters, 2005, 87, 242903-1 – 242903-3.
[296] Ligatchev, V.; Wong, T. K. S.; Yoon, S. F.; Ahn, J.; Rusli Diam. Relat. Mater. 2003, 12, 1897 – 1902.
[297] Weiss, S.; Kassing, R. Sol. St. Electronics 1988, 31

, 1733 – 1742.
[298]

Strassburg, M.; Senawirante, J.; Dietz, N.; Haboeck, U.; Hoffmann, A.; Noveski, V.; Dalmau, R.; Schlesser, R.; Sitar, Z. J. Appl. Phys

. 2004, 96

, 5870 – 5876

.
[299] Tansley, T. L.; Egan, R. J. Phys. Rev. B 1992, 45, 10942 – 10950.
[300] Zeisel, R.; Bayerl, M. W.; Goennenwein, S. T. B.; Dimitrov, R.; Ambacher, O.; Brandt, M. S.; Stutzmann, M. Phys. Rev. B 2000, 61

, R16283 – R16286.
[301] Goennenwein, S. T. B.; Zeisel, R.; Ambacher, O.; Brandt, M. S.; Stutzmann, M.; Baldovino, S. Appl. Phys. Lett. 2001, 79, 2396 – 2398.
[302] Jian, W.; Kaiming, Zh.; Xide, X. J. Phys.:Condens. Matter 1994, 6, 989 – 996.
[303] Zeng, Yu.; Russell, S. W.; McKerrow, A. J.; Chen, L.; Alford, T. L. Journ. Vac. Sci. Techn B, 2000, 18, 221 – 230.
[304] Masuda, A.; Itoh, K.-I.; Matsuda, K.; Yonezawa, Y.; Kumeda, M.; Shimizu, T. Journ. Appl. Phys. 1997, 81, 6729 – 6737.
[305] Northrup, J. E. Appl. Phys. Lett. 2005, 86, 071901-1 – 071901-3.
[306] Peters, L. Semicond. Int. 1998, 64, 64 – 68.
[307] Ligatchev, V.; Wong, T. K. S.; Liu, B.; Rusli, J. Appl. Phys. 2002, 92, 4605 – 4611.
[308] Ligatchev, V.; Wong, T. K. S. Electrochemical and Solid State Letters, 2004, 7, F89 – F92.
[309] Lebedev, A. A.; Davidova, V. S.; Savkina N. S.; et al. Physica i Technika Poluprovodnikov 2000, 34, 1183 – 1186 (in Russian).
[310] Zyweitz, A.; Furthmuller, J.; Bechstedt, F. Phys. Rev. B 1995, 59, 15166 – 15180.
[311] Characterization in silicon processing/Strusser, Y.; Brundle, C. R.; McGuire, G. E.; Fitzpatrick; L. E. (Eds.) Boston: Butterworth-Heinemann; Greenwich: Manning, 1993, pp 1 – 240.
[312] Characterization of ceramics/Loehman, R. E. (Ed.) Boston: Butterworth-Heineman; Greenwich, CT: Manning, 1993, pp 1 – 295.
[313] Bind, J. M.; Biggers, J. V. Journal of American Ceramic Society, 1975, 58, 304 – 306.
[314] Balzer, K.; Bonitz, M. Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems. Springer, Berlin, 2013, XII, pp 1 – 130.
[315] Ligatchev, V. Oral presentation on 7th International Conference on Materials for Advanced Technologies (ICMAT 2013), 30th June – 05th July 2013, Suntec, Singapore, Abstract ICMAT13-A-3146.

This book might be interested to post-graduate students, engineers, researches and academicians permanently working or involved in collaborations with the modern semiconductor manufacturing, especially to those who are routinely implementing different spectroscopic techniques at experimental studies of the various semiconductor materials and devices as well as to individuals aiming to ‘upgrade’ their generic knowledge and understanding of advanced mathematical concepts and techniques, which are currently in use in modern archeology, astronomy, computerized medical tomography, geophysics, spectroscopy etc.

You have not viewed any product yet.