Lysosomal Storage Diseases: Pathobiology and Therapeutic Consideration

Gregory M. Pastores
Consultant, Adult Metabolic Service, Dept. of Medicine/National Centre for Inherited Metabolic Disorders, Dept. of Medicine, Yale Univ. School of Medicine, New Haven, CT, USA

Series: Metabolic Diseases – Laboratory and Clinical Research
BISAC: MED027000




Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:



This monograph presents an overview of the lysosome and its different roles in the maintenance of cellular homeostasis. It also provides a description of the various pathophysiologic changes associated with the lysosomal storage disorders. Therapeutic considerations and aspects relating to genetic counselling are covered in the final section. Several diagrams are provided to facilitate greater understanding of relevant themes. Additionally, contextual material is given at the end of each chapter, which elaborates on some of the entries brought up in the discussions.

The book is written by an expert in the field who has been engaged in basic and clinical research. It offers a broad perspective and should appeal to both novices and experts in the field who seek a single resource that provides a comprehensive examination of the relevant topics. Issues covered should appeal to both the basic scientist and the clinician. (Imprint: Nova Biomedical)


Chapter 1. Introduction and General Aspects

Chapter 2. Pathobiology

Chapter 3. Therapeutic and Preventive Options

About the Author


Chapter 1

[1] Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R, Ballabio A. 2011. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell. 21(3):421-30.
[2] Eskelinen EL, Tanaka Y, Saftig P. 2003. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13(3):
[3] Luzio JP, Hackmann Y, Dieckmann NM, Griffiths GM. 2014. The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol. 6(9):a016840.
[4] Marks MS, Heijnen HF, Raposo G. 2013. Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol. 25(4):495-505.
[5] Odorizzi G. 2015. Membrane manipulations by the ESCRT machinery. F1000Res. 4(F1000 Faculty Rev):516.
[6] Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW. 2014. Trafficking regulation of proteins in Alzheimer’s disease. Mol Neurodegener. 9:6.
[7] Wilke S, Krausze J, Büssow K. 2012. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx. BMC Biol. 10:62.
[8] Endo Y, Furuta A, Nishino I. 2015. Danon disease: a phenotypic expression of LAMP-2 deficiency. Acta Neuropathol. 129(3):391-8.
[9] Amaya C, Fader CM, Colombo MI. 2015. Autophagy and proteins involved in vesicular trafficking. FEBS Lett. 589(22):3343-53.
[10] Tanaka Y, Chambers JK, Matsuwaki T, Yamanouchi K, Nishihara M. 2014. Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol Commun. 2:78.
[11] Thomas M, Alegre-Abarrategui J, Wade-Martins R. 2013. RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum. Brain. 136 (Pt 5):1345-60.
[12] Coutinho MF, Prata MJ, Alves S. 2012. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab. 105(4):542-50.
[13] Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B. 2009. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease - Lysosomal storage disorders caused by defects of non-lysosomal proteins. Biochim. Biophys. 1793(4):710-25.
[14] Coutinho MF, Prata MJ, Alves S. 2012. A shortcut to the lysosome: the mannose-6-phosphate-independent pathway. Mol Genet Metab. 107(3):257-66.
[15] Carlo AS, Nykjaer A, Willnow TE. 2014. Sorting receptor sortilin-a culprit in cardiovascular and neurological diseases. J Mol Med (Berl). 92(9):905-11.
[16] Cotter K, Stransky L, McGuire C, Forgac M. 2015. Recent Insights into the Structure, Regulation, and Function of the V-ATPases. Trends Biochem Sci. 40(10):611-22.
[17] Hu Y, Carraro-Lacroix LR, Wang A, Owen C, Bajenova E, Corey PN, Brumell JH, Voronov I. 2015. Lysosomal pH Plays a Key Role in Regulation of mTOR Activity in Osteoclasts. J Cell Biochem.
[18] Lee JH, McBrayer MK, Wolfe DM, Haslett LJ, Kumar A, Sato Y, Lie PP, Mohan P, Coffey EE, Kompella U, Mitchell CH, Lloyd-Evans E, Nixon RA. 2015. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. Cell Rep. 12(9):1430-44.
[19] Ramachandran N, Munteanu I, Wang P, Ruggieri A, Rilstone JJ, Israelian N, Naranian T, Paroutis P, Guo R, Ren ZP, Nishino I, Chabrol B, Pellissier JF, Minetti C, Udd B, Fardeau M, Tailor CS, Mahuran DJ, Kissel JT, Kalimo H, Levy N, Manolson MF, Ackerley CA, Minassian BA. 2013. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol. 125(3):
[20] Settembre C, Medina DL. 2015. TFEB and the CLEAR network. Methods Cell Biol. 126:45-62.
[21] Martina JA, Diab HI, Lishu L, Jeong-A L, Patange S, Raben N, Puertollano R. 2014. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal. 7(309):ra9.
[22] Settembre C, Fraldi A, Medina DL, Ballabio A. 2013. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 14(5):283-96.
[23] Jin M, Klionsky DJ. 2015. The amino acid transporter SLC38A9 regulates MTORC1 and autophagy. Autophagy. 11(10):1709-10.
[24] Patel S, Docampo R. 2010. Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signalling. Trends Cell Biol. 20(5):277-86.
[25] Marchant JS, Patel S. 2015. Two-pore channels at the intersection of endolysosomal membrane traffic. Biochem Soc Trans. 43(3):434-41.
[26] Hui L, Geiger NH, Bloor-Young D, Churchill GC, Geiger JD, Chen X. 2015. Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons. Cell Calcium.
[27] Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A. 2015. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol. 17(3):288-99.
[28] Cheng X, Zhang X, Yu L, Xu H. 2015. Calcium signalling in membrane repair. Semin Cell Dev Biol.
[29] Blazek AD, Paleo BJ, Weisleder N. 2015. Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology (Bethesda). 30(6):438-48.
[30] Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM. 2015. Cavin family proteins and the assembly of caveolae. J Cell Sci. 128(7):
[31] Duraes FV, Niven J, Dubrot J, Hugues S, Gannagé M. 2015. Macroautophagy in Endogenous Processing of Self- and Pathogen-Derived Antigens for MHC Class II Presentation. Front Immunol. 6:459.
[32] Michelet X, Garg S, Wolf BJ, Tuli A, Ricciardi-Castagnoli P, Brenner MB. 2015. MHC class II presentation is controlled by the lysosomal small GTPase, Arl8b. J Immunol. 194(5):2079-88.
[33] Ohkouchi S, Shibata M, Sasaki M, Koike M, Safig P, Peters C, Nagata S, Uchiyama Y. 2013. Biogenesis and proteolytic processing of lysosomal DNase II. PLoS One. 8(3):e59148.
[34] Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K. 2012. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 485(7397):

Chapter 2

[1] Clarke LA. 2011. Pathogenesis of skeletal and connective tissue involvement in the mucopolysaccharidoses: glycosaminoglycan storage is merely the instigator. Rheumatology (Oxford). 50 Suppl 5:v13-8.
[2] Novinec M, Lenarčič B, Turk B. 2014. Cysteine cathepsin activity regulation by glycosaminoglycans. Biomed Res Int. 2014:309718.
[3] Salazar DA, Rodríguez-López A, Herreño A, Barbosa H, Herrera J, Ardila A, Barreto GE, González J, Alméciga-Díaz CJ. 2015. Systems biology study of mucopolysaccharidosis using a human metabolic reconstruction network. Mol Genet Metab. S1096-7192(15)30036-6.
[4] Zhou K, Blom T. 2015. Trafficking and Functions of Bioactive Sphingolipids: Lessons from Cells and Model Membranes. Lipid Insights. 8(Suppl 1):11-20.
[5] McGlynn R, Dobrenis K, Walkley SU. 2004. Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol. 480(4):415-26.
[6] Lamanna WC, Lawrence R, Sarrazin S, Esko JD. 2011. Secondary storage of dermatan sulfate in Sanfilippo disease. J Biol Chem. 286(9):6955-62.
[7] Woloszynek JC, Coleman T, Semenkovich CF, Sands MS. 2007. Lysosomal dysfunction results in altered energy balance. J Biol Chem. 282(49):35765-71.
[8] Woloszynek JC, Kovacs A, Ohlemiller KK, Roberts M, Sands MS. 2009. Metabolic adaptations to interrupted glycosaminoglycan recycling. J Biol Chem. 284(43):29684-91.
[9] Kooper AJ, Janssens PM, de Groot AN, Liebrand-van Sambeek ML, van den Berg CJ, Tan-Sindhunata GB, van den Berg PP, Bijlsma EK, Smits AP, Wevers RA. 2006. Lysosomal storage diseases in non-immune hydrops fetalis pregnancies. Clin Chim Acta. 371(1-2):176-82.
[10] Walkley SU. 2003. Neurobiology and cellular pathogenesis of glycolipid storage diseases. Philos Trans R Soc Lond B Biol Sci. 358(1433):893-904.
[11] Passafaro M, Nakagawa T, Sala C, Sheng M. 2003. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature. 424(6949):677-81.
[12] Saglietti L, Dequidt C, Kamieniarz K, Rousset MC, Valnegri P, Thoumine O, Beretta F, Fagni L, Choquet D, Sala C, Sheng M, Passafaro M. 2007. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron. 54(3):461-77.
[13] Zhu Y, Matsumoto T, Nagasawa T, Mackay F, Murakami F. 2015. Chemokine Signalling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. J Neurosci. 35(24):9211-24.
[14] Uchihara T, Ohashi K, Kitagawa M, Kurata M, Nakamura A, Hirokawa K, Kasuga T, Kobayashi T. 2010. Sialidosis type I carrying V217M/G243R mutations in lysosomal sialidase: an autopsy study demonstrating terminal sialic acid in lysosomal lamellar inclusions and cerebellar dysplasia. Acta Neuropathol. 119(1):135-45.
[15] Annunziata I, Patterson A, Helton D, Hu H, Moshiach S, Gomero E, Nixon R, d’Azzo A. 2013. Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat Commun. 4:2734.
[16] Kielar C, Wishart TM, Palmer A, Dihanich S, Wong AM, Macauley SL, Chan CH, Sands MS, Pearce DA, Cooper JD, Gillingwater TH. 2009. Molecular correlates of axonal and synaptic pathology in mouse models of Batten disease. Hum Mol Genet. 18(21):4066-80.
[17] Wilkinson FL, Holley RJ, Langford-Smith KJ, Badrinath S, Liao A, Langford-Smith A, Cooper JD, Jones SA, Wraith JE, Wynn RF, Merry CL, Bigger BW. 2012. Neuropathology in mouse models of mucopolysaccharidosis type I, IIIA and IIIB. PLoS One. 7(4):e35787.
[18] Vitry S, Ausseil J, Hocquemiller M, Bigou S, Dos Santos Coura R, Heard JM. 2009. Enhanced degradation of synaptophysin by the proteasome in mucopolysaccharidosis type IIIB. Mol Cell Neurosci. 41(1):8-18.
[19] Bruyère J, Roy E, Ausseil J, Lemonnier T, Teyre G, Bohl D, Etienne-Manneville S, Lortat-Jacob H, Heard JM, Vitry S. 2015. Heparan sulfate saccharides modify focal adhesions: implication in mucopoly-saccharidosis neuropathophysiology. J Mol Biol. 427(4):775-91.
[20] Ohmi K, Zhao HZ, Neufeld EF. 2011. Defects in the medial entorhinal cortex and dentate gyrus in the mouse model of Sanfilippo syndrome type B. PLoS One. 6(11):e27461.
[21] Lojewski X, Staropoli JF, Biswas-Legrand S, Simas AM, Haliw L, Selig MK, Coppel SH, Goss KA, Petcherski A, Chandrachud U, Sheridan SD, Lucente D, Sims KB, Gusella JF, Sondhi D, Crystal RG, Reinhardt P, Sterneckert J, Schöler H, Haggarty SJ, Storch A, Hermann A, Cotman SL. 2014. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet. 23(8):2005-22.
[22] Plati T, Visigalli I, Capotondo A, Buono M, Naldini L, Cosma MP, Biffi A. 2009. Development and maturation of invariant NKT cells in the presence of lysosomal engulfment. Eur J Immunol. 39(10):2748-54.
[23] Gadola SD, Silk JD, Jeans A, Illarionov PA, Salio M, Besra GS, Dwek R, Butters TD, Platt FM, Cerundolo V. 2006. Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J Exp Med. 203(10):2293-303.
[24] Cartier N, Lewis CA, Zhang R, Rossi FM. 2014. The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol. 128(3):363-80.
[25] Ausseil J, Desmaris N, Bigou S, Attali R, Corbineau S, Vitry S, Parent M, Cheillan D, Fuller M, Maire I, Vanier MT, Heard JM. 2008. Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice. PLoS One. 3(5):e2296.
[26] Trudel S, Trécherel E, Gomila C, Peltier M, Aubignat M, Gubler B, Morlière P, Heard JM, Ausseil J. 2015. Oxidative stress is independent of inflammation in the neurodegenerative Sanfilippo syndrome type B. J Neurosci Res. 93(3):424-32.
[27] Saitoh S. 2009. Chaperones and transport proteins regulate TLR4 trafficking and activation. Immunobiology. 214(7):594-600.
[28] Aflaki E, Moaven N, Borger DK, Lopez G, Westbroek W, Chae JJ, Marugan J, Patnaik S, Maniwang E, Gonzalez AN, Sidransky E. 2015. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages. Aging Cell. doi: 10.1111/ acel.12409.
[29] Nair S, Boddupalli CS, Verma R, Liu J, Yang R, Pastores GM, Mistry PK, Dhodapkar MV. 2015. Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation. Blood. 125(8):1256-71.
[30] Vidal-Donet JM, Cárcel-Trullols J, Casanova B, Aguado C, Knecht E. 2013. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. PLoS One. 8(2):e55526.
[31] Smith KR, Dahl HH, Canafoglia L, Andermann E, Damiano J, Morbin M, Bruni AC, Giaccone G, Cossette P, Saftig P, Grötzinger J, Schwake M, Andermann F, Staropoli JF, Sims KB, Mole SE, Franceschetti S, Alexander NA, Cooper JD, Chapman HA, Carpenter S, Berkovic SF, Bahlo M. 2013. Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. 22(7):1417-23.
[32] Tang CH, Lee JW, Galvez MG, Robillard L, Mole SE, Chapman HA. 2006. Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease. Mol Cell Biol. 26(6):2309-16.
[33] Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, Taneike M, Misaka T, Omiya S, Shah AM, Yamamoto A, Nishida K, Ohsumi Y, Okamoto K, Sakata Y, Otsu K. 2015 Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 6:7527.
[34] de Pablo-Latorre R, Saide A, Polishhuck EV, Nusco E, Fraldi A, Ballabio A. 2012. Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Hum. Mol. Genet. 21:1770-81.
[35] Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A, Brandner S, Waddington SN, Schapira AH, Duchen MR. 2013. Mitochondria and quality control defects in a mouse model of Gaucher disease–links to Parkinson’s disease. Cell. Metab. 17:941-53.
[36] Lim JA, Li L, Raben N. 2014. Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci. 6:177.
[37] Li X, Gulbins E, Zhang Y. 2012. Oxidative stress triggers Ca-dependent lysosome trafficking and activation of acid sphingomyelinase. Cell Physiol Biochem. 30(4):815-26.
[38] Pelled D, Trajkovic-Bodennec S, Lloyd-Evans E, Sidransky E, Schiffmann R, Futerman AH. 2005. Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiol Dis. 18(1):
[39] Ginzburg L, Li SC, Li YT, Futerman AH. 2008. An exposed carboxyl group on sialic acid is essential for gangliosides to inhibit calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase: relevance to gangliosidoses. J Neurochem. 104(1):140-6.
[40] Ginzburg L, Futerman AH. 2005. Defective calcium homeostasis in the cerebellum in a mouse model of Niemann-Pick A disease. J Neurochem. 95(6):1619-28.
[41] Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d’Azzo A. 2009. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol Cell. 36(3):500-11.
[42] Chandrachud U, Walker MW, Simas AM, Heetveld S, Petcherski A, Klein M, Oh H, Wolf P, Zhao WN, Norton S, Haggarty SJ, Lloyd-Evans E, Cotman SL. 2015. Unbiased cell-based screening in a neuronal cell model of Batten disease highlights an interaction between Ca2+ homeostasis, autophagy, and CLN3 Protein Function. J Biol Chem. 290(23):14361-80.
[43] Borbon IA, Hillman Z, Duran E Jr, Kiela PR, Frautschy SA, Erickson RP. 2012. Lack of efficacy of curcumin on neurodegeneration in the mouse model of Niemann-Pick C1. Pharmacol Biochem Behav. 101(1):125-31.
[44] Cao Q, Zhong XZ, Zou Y, Zhang Z, Toro L, Dong XP. 2015. BK Channels alleviate lysosomal storage diseases by providing positive feedback regulation of lysosomal Ca2+ release. Dev Cell. 33(4):427-41.
[45] Abou-Ghali M, Stiban J. 2015. Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi J Biol Sci. 22(6):760-772.
[46] Bartsch U, Galliciotti G, Jofre GF, Jankowiak W, Hagel C, Braulke T. 2013. Apoptotic photoreceptor loss and altered expression of lysosomal proteins in the nclf mouse model of neuronal ceroid lipofuscinosis. Invest Ophthalmol Vis Sci. 54(10):6952-9.
[47] de Almagro MC, Vucic D. 2015. Necroptosis: Pathway diversity and characteristics. Semin Cell Dev Biol. 39:56-62.
[48] Vitner EB, Salomon R, Farfel-Becker T, Meshcheriakova A, Ali M, Klein AD, Platt FM, Cox TM, Futerman AH. 2014. RIPK3 as a potential therapeutic target for Gaucher’s disease. Nat Med. 20(2):204-8.
[49] Lipton P. 2013. Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a “lysosomocentric” hypothesis for ischemic brain damage. Transl Stroke Res. 4(6):672-84.
[50] Zeidan YH, Hannun YA. 2010. The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr Mol Med. 10(5):454-66.
[51] Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, Petralia CC, Petralia A, Maiolino L, Serra A, Calabrese EJ, Calabrese V. 2015. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing. 12:20.
[52] Cobb CA, Cole MP. 2015. Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis. S0969-9961(15)00177-1.
[53] Shichiri M. 2014. The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr. 54(3):151-60.
[54] Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB. 2008. ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet. 17(4):469-77.

Chapter 3

[1] Neufeld EF. Fro2011. m serendipity to therapy. Annu Rev Biochem. 80:1-15.
[2] Aldenhoven M, Wynn RF, Orchard PJ, O’Meara A, Veys P, Fischer A, Valayannopoulos V, Neven B, Rovelli A, Prasad VK, Tolar J, Allewelt H, Jones SA, Parini R, Renard M, Bordon V, Wulffraat NM, de Koning TJ, Shapiro EG, Kurtzberg J, Boelens JJ.2015. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: an international multicenter study. Blood. 125(13):2164-72.
[3] Duffner PK, Caviness VS Jr, Erbe RW, Patterson MC, Schultz KR, Wenger DA, Whitley C. 2009. The long-term outcomes of presymptomatic infants transplanted for Krabbe disease: report of the workshop held on July 11 and 12, 2008, Holiday Valley, New York. Genet Med. 11(6):450-4.
[4] Breen C, Wynn RF, O’Meara A, O’Mahony E, Rust S, Imrie J, Wraith JE. 2013. Developmental outcome post allogenic bone marrow transplant for Niemann Pick Type C2. Mol Genet Metab. 108(1):82-4.
[5] Watson HA, Holley RJ, Langford-Smith KJ, Wilkinson FL, van Kuppevelt TH, Wynn RF, Wraith JE, Merry CL, Bigger BW. 2014. Heparan sulfate inhibits hematopoietic stem and progenitor cell migration and engraftment in mucopolysaccharidosis I. J Biol Chem. 289(52):36194-203.
[6] Kuehn SC, Koehne T, Cornils K, Markmann S, Riedel C, Pestka JM, Schweizer M, Baldauf C, Yorgan TA, Krause M, Keller J, Neven M, Breyer S, Stuecker R, Muschol N, Busse B, Braulke T, Fehse B, Amling M, Schinke T. 2015. Impaired bone remodeling and its correction by combination therapy in a mouse model of mucopolysaccharidosis-I. Hum Mol Genet. 24(24):7075-86.
[7] Iglesias DM, El-Kares R, Taranta A, Bellomo F, Emma F, Besouw M, Levtchenko E, Toelen J, van den Heuvel L, Chu L, Zhao J, Young YK, Eliopoulos N, Goodyer P. 2012. Stem cell microvesicles transfer cystinosin to human cystinotic cells and reduce cystine accumulation in vitro. PLoS One. 7(8):e42840.
[8] Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH, Bae JS, Jin HK. 2010. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells. 28(4):821-31.
[9] Ripoll CB, Flaat M, Klopf-Eiermann J, Fisher-Perkins JM, Trygg CB, Scruggs BA, McCants ML, Leonard HP, Lin AF, Zhang S, Eagle ME, Alvarez X, Li YT, Li SC, Gimble JM, Bunnell BA. 2011. Mesenchymal lineage stem cells have pronounced anti-inflammatory effects in the twitcher mouse model of Krabbe’s disease. Stem Cells. 29(1):67-77.
[10] Scruggs BA, Zhang X, Bowles AC, Gold PA, Semon JA, Fisher-Perkins JM, Zhang S, Bonvillain RW, Myers L, Li SC, Kalueff AV, Bunnell BA. 2013. Multipotent stromal cells alleviate inflammation, neuropathology, and symptoms associated with globoid cell leukodystrophy in the twitcher mouse. Stem Cells. 31(8):1523-34.
[11] Coulson-Thomas VJ, Caterson B, Kao WW. 2013. Transplantation of human umbilical mesenchymal stem cells cures the corneal defects of mucopolysaccharidosis VII mice. Stem Cells 31(10):2116-26.
[12] Pelekanos RA, Ting MJ, Sardesai VS, Ryan JM, Lim YC, Chan JK, Fisk NM. 2014. Intracellular trafficking and endocytosis of CXCR4 in fetal mesenchymal stem/stromal cells. BMC Cell Biol. 15:15.
[13] Brady RO, Barton NW. 1994. Enzyme replacement therapy for Gaucher disease: critical investigations beyond demonstration of clinical efficacy. Biochem Med Metab Biol. 52(1):1-9.
[14] Ko Y, Lee C, Moon MH, Hong GR, Cheon CK, Lee JS. 2015. Unravelling the mechanism of action of enzyme replacement therapy in Fabry disease. J Hum Genet.
[15] Weidemann F, Sanchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, Ortiz A. 2013. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis. 8:116.
[16] Patel V, O’Mahony C, Hughes D, Rahman MS, Coats C, Murphy E, Lachmann R, Mehta A, Elliott PM. 2015. Clinical and genetic predictors of major cardiac events in patients with Anderson-Fabry Disease. Heart. 101(12):961-6.
[17] Falk DJ, Todd AG, Lee S, Soustek MS, ElMallah MK, Fuller DD, Notterpek L, Byrne BJ. 2015. Peripheral nerve and neuromuscular junction pathology in Pompe disease. Hum Mol Genet. 24(3):625-36.
[18] Harmatz P. 2015. Enzyme replacement therapies and immunogenicity in Lysosomal storage diseases: Is there a pattern? Clin Ther.
[19] Stenger EO, Kazi Z, Lisi E, Gambello MJ, Kishnani P. 2015. Immune tolerance strategies in siblings with infantile Pompe disease-Advantages for a preemptive approach to high-sustained antibody titers. Mol Genet Metab Rep. 4:30-34.
[20] Han SO, Pope R, Li S, Kishnani PS, Steet R, Koeberl DD. 2015. A beta-blocker, propranolol, decreases the efficacy from enzyme replacement therapy in Pompe disease. Mol Genet Metab.
[21] Koeberl DD, Austin S, Case LE, Smith EC, Buckley AF, Young SP, Bali D, Kishnani PS. 2014. Adjunctive albuterol enhances the response to enzyme replacement therapy in late-onset Pompe disease. FASEB J. 28(5):2171-6.
[22] Papademetriou J, Garnacho C, Serrano D, Bhowmick T, Schuchman EH, Muro S. 2013. Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor. J Inherit Metab Dis. 36(3):467-77.
[23] Hsu J, Northrup L, Bhowmick T, Muro S. 2012. Enhanced delivery of α-glucosidase for Pompe disease by ICAM-1-targeted nanocarriers: comparative performance of a strategy for three distinct lysosomal storage disorders. Nanomedicine. 8(5):731-9.
[24] Hsu J, Serrano D, Bhowmick T, Kumar K, Shen Y, Kuo YC, Garnacho C, Muro S. 2011. Enhanced endothelial delivery and biochemical effects of α-galactosidase by ICAM-1-targeted nanocarriers for Fabry disease. J Control Release.149(3):323-31.
[25] Boado RJ, Lu JZ, Hui EK, Sumbria RK, Pardridge WM. 2013. Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor. Biotechnol Bioeng. 110(5):1456-65.
[26] Prince WS, McCormick LM, Wendt DJ, Fitzpatrick PA, Schwartz KL, Aguilera AI, Koppaka V, Christianson TM, Vellard MC, Pavloff N, Lemontt JF, Qin M, Starr CM, Bu G, Zankel TC. 2004. Lipoprotein receptor binding, cellular uptake, and lysosomal delivery of fusions between the receptor-associated protein (RAP) and alpha-L-iduronidase or acid alpha-glucosidase. J Biol Chem. 279(33):35037-46.
[27] Böckenhoff A, Cramer S, Wölte P, Knieling S, Wohlenberg C, Gieselmann V, Galla HJ, Matzner U. 2014. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A. J Neurosci. 34(9):3122-9.
[28] Venier RE, Igdoura SA. 2012. Miglustat as a therapeutic agent: prospects and caveats. J Med Genet. 49(9):591-7.
[29] Lyseng-Williamson KA. 2014. Miglustat: a review of its use in Niemann-Pick disease type C. Drugs. 74(1):61-74.
[30] Cox TM, Drelichman G, Cravo R, Balwani M, Burrow TA, Martins AM, Lukina E, Rosenbloom B, Ross L, Angell J, Puga AC. 2015. Eliglustat compared with imiglucerase in patients with Gaucher’s disease type 1 stabilised on enzyme replacement therapy: a phase 3, randomised, open-label, non-inferiority trial. Lancet. 385(9985):2355-62.
[31] Mistry PK, Lukina E, Ben Turkia H, Amato D, Baris H, Dasouki M, Ghosn M, Mehta A, Packman S, Pastores G, Petakov M, Assouline S, Balwani M, Danda S, Hadjiev E, Ortega A, Shankar S, Solano MH, Ross L, Angell J, Peterschmitt MJ. 2015. Effect of oral eliglustat on splenomegaly in patients with Gaucher disease type 1: the ENGAGE randomized clinical trial. JAMA. 313(7):695-706.
[32] Brandvold KR, Morimoto RI. 2015. The chemical biology of molecular chaperones-implications for modulation of proteostasis. J Mol Biol. 427(18):2931-47.
[33] Germain DP, Giugliani R, Hughes DA, Mehta A, Nicholls K, Barisoni L, Jennette CJ, Bragat A, Castelli J, Sitaraman S, Lockhart DJ, Boudes PF. 2012. Safety and pharmacodynamic effects of a pharmacological chaperone on α-galactosidase A activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J Rare Dis. 7:91.
[34] Warnock DG, Bichet DG, Holida M, Goker-Alpan O, Nicholls K, Thomas M, Eyskens F, Shankar S, Adera M, Sitaraman S, Khanna R, Flanagan JJ, Wustman BA, Barth J, Barlow C, Valenzano KJ, Lockhart DJ, Boudes P, Johnson FK. 2015. Oral Migalastat HCl leads to greater systemic exposure and tissue levels of active α-Galactosidase A in Fabry patients when co-administered with infused Agalsidase. PLoS One. 10(8):e0134341.
[35] Bartolomeo R, Polishchuk EV, Volpi N, Polishchuk RS, Auricchio A. 2013. Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI. J Inherit Metab Dis. 36(2):363-71.
[36] Gunn G, Dai Y, Du M, Belakhov V, Kandasamy J, Schoeb TR, Baasov T, Bedwell DM, Keeling KM. 2014. Long-term nonsense suppression therapy moderates MPS I-H disease progression. Mol Genet Metab. 111(3):374-81.
[37] Miller JN, Kovács AD, Pearce DA. 2015. The novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy. Hum Mol Genet. 24(1):185-96.
[38] Tanaka Y, Yamada Y, Ishitsuka Y, Matsuo M, Shiraishi K, Wada K, Uchio Y, Kondo Y, Takeo T, Nakagata N, Higashi T, Motoyama K, Arima H, Mochinaga S, Higaki K, Ohno K, Irie T. 2015. Efficacy of 2-Hydroxypropyl-β-cyclodextrin in Niemann-Pick Disease Type C Model Mice and Its Pharmacokinetic Analysis in a Patient with the Disease. Biol Pharm Bull. 38(6):844-51.
[39] Song W, Wang F, Lotfi P, Sardiello M, Segatori L. 2014. 2-Hydroxypropyl-β-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy. J Biol Chem. 289(14):10211-22.
[40] Matsuo M, Togawa M, Hirabaru K, Mochinaga S, Narita A, Adachi M, Egashira M, Irie T, Ohno K. 2013. Effects of cyclodextrin in two patients with Niemann-Pick Type C disease. Mol Genet Metab. 108(1):76-81.
[41] Maarup TJ, Chen AH, Porter FD, Farhat NY, Ory DS, Sidhu R, Jiang X, Dickson PI. 2015. Intrathecal 2-hydroxypropyl-beta-cyclodextrin in a single patient with Niemann-Pick C1. Mol Genet Metab.
[42] Moskot M, Montefusco S, Jakóbkiewicz-Banecka J, Mozolewski P, Węgrzyn A, Di Bernardo D, Węgrzyn G, Medina DL, Ballabio A, Gabig-Cimińska M. 2014. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J Biol Chem. 289(24):17054-69.
[43] Warnock DG, Thomas CP, Vujkovac B, Campbell RC, Charrow J, Laney DA, Jackson LL, Wilcox WR, Wanner C. 2015. Antiproteinuric therapy and Fabry nephropathy: factors associated with preserved kidney function during agalsidase-beta therapy. J Med Genet. 52(12):860-6.
[44] Boentert M, Karabul N, Wenninger S, Stubbe-Dräger B, Mengel E, Schoser B, Young P. 2015. Sleep-related symptoms and sleep-disordered breathing in adult Pompe disease. Eur J Neurol. 22(2):369-76.
[45] Kishnani PS, Steiner RD, Bali D, Berger K, Byrne BJ, Case LE, Crowley JF, Downs S, Howell RR, Kravitz RM, Mackey J, Marsden D, Martins AM, Millington DS, Nicolino M, O’Grady G, Patterson MC, Rapoport DM, Slonim A, Spencer CT, Tifft CJ, Watson MS. 2006. Pompe disease diagnosis and management guideline. Genet Med. 8(5):267-88.
[46] Slonim AE, Bulone L, Goldberg T, Minikes J, Slonim E, Galanko J, Martiniuk F. 2007. Modification of the natural history of adult-onset acid maltase deficiency by nutrition and exercise therapy. Muscle Nerve. 35(1):70-7.
[47] Seehafer SS, Ramirez-Montealegre D, Wong AM, Chan CH, Castaneda J, Horak M, Ahmadi SM, Lim MJ, Cooper JD, Pearce DA. 2011. Immunosuppression alters disease severity in juvenile Batten disease mice. J Neuroimmunol. 230(1-2):169-72.
[48] Williams IM, Wallom KL, Smith DA, Al Eisa N, Smith C, Platt FM. 2014. Improved neuroprotection using miglustat, curcumin and ibuprofen as a triple combination therapy in Niemann-Pick disease type C1 mice. Neurobiol Dis. 67:9-17.
[49] Narita K, Choudhury A, Dobrenis K, Sharma DK, Holicky EL, Marks DL, Walkley SU, Pagano RE. 2005. Protein transduction of Rab9 in Niemann-Pick C cells reduces cholesterol storage. FASEB J. 19(11):1558-60.
[50] Helquist P, Maxfield FR, Wiech NL, Wiest O. 2013. Treatment of Niemann--pick type C disease by histone deacetylase inhibitors. Neurotherapeutics. 10(4):688-97.
[51] Macías-Vidal J, Girós M, Guerrero M, Gascón P, Serratosa J, Bachs O, Coll MJ. 2014. The proteasome inhibitor bortezomib reduced cholesterol accumulation in fibroblasts from Niemann-Pick type C patients carrying missense mutations. FEBS J. 281(19):4450-66.
[52] Barranger JA, Rice EO, Dunigan J, Sansieri C, Takiyama N, Beeler M, Lancia J, Lucot S, Scheirer-Fochler S, Mohney T, Swaney W, Bahnson A, Ball E. 1997. Gaucher’s disease: studies of gene transfer to haematopoietic cells. Baillieres Clin Haematol. 10(4):765-78.
[53] Kotterman MA, Chalberg TW, Schaffer DV. 2015. Viral vectors for gene therapy: Translational and clinical outlook. Annu Rev Biomed Eng. 17:63-89.
[54] Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, Baldoli C, Martino S, Calabria A, Canale S, Benedicenti F, Vallanti G, Biasco L, Leo S, Kabbara N, Zanetti G, Rizzo WB, Mehta NA, Cicalese MP, Casiraghi M, Boelens JJ, Del Carro U, Dow DJ, Schmidt M, Assanelli A, Neduva V, Di Serio C, Stupka E, Gardner J, von Kalle C, Bordignon C, Ciceri F, Rovelli A, Roncarolo MG, Aiuti A, Sessa M, Naldini L. 2013. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 341(6148):1233158.
[55] Zerah M, Piguet F, Colle MA, Raoul S, Deschamps JY, Deniaud J, Gautier B, Toulgoat F, Bieche I, Laurendeau I, Sondhi D, Souweidane MM, Cartier-Lacave N, Moullier P, Crystal RG, Roujeau T, Sevin C, Aubourg P. 2015. Intracerebral Gene Therapy Using AAVrh.10-hARSA Recombinant Vector to Treat Patients with Early-Onset Forms of Metachromatic Leukodystrophy: Preclinical Feasibility and Safety Assessments in Nonhuman Primates. Hum Gene Ther Clin Dev. 26(2):113-24.
[56] Tardieu M, Zérah M, Husson B, de Bournonville S, Deiva K, Adamsbaum C, Vincent F, Hocquemiller M, Broissand C, Furlan V, Ballabio A, Fraldi A, Crystal RG, Baugnon T, Roujeau T, Heard JM, Danos O. 2014. Intracerebral administration of adeno-associated viral vector serotype rh.10 carrying human SGSH and SUMF1 cDNAs in children with mucopolysaccharidosis type IIIA disease: results of a phase I/II trial. Hum Gene Ther. 25(6):506-16.
[57] Ruzo A, Garcia M, Ribera A, Villacampa P, Haurigot V, Marcó S, Ayuso E, Anguela XM, Roca C, Agudo J, Ramos D, Ruberte J, Bosch F. 2012. Liver production of sulfamidase reverses peripheral and ameliorates CNS pathology in mucopolysaccharidosis IIIA mice. Mol Ther. 20(2):254-66.
[58] Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. 2014. Non-viral vectors for gene-based therapy. Nat Rev Genet. 15(8):541-55.
[59] Quiviger M, Arfi A, Mansard D, Delacotte L, Pastor M, Scherman D, Marie C. 2014. High and prolonged sulfamidase secretion by the liver of MPS-IIIA mice following hydrodynamic tail vein delivery of antibiotic-free pFAR4 plasmid vector. Gene Ther. 21(12):1001-7.
[60] Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 32(6):551-3.
[61] Al-Jasmi FA, Tawfig N, Berniah A, Ali BR, Taleb M, Hertecant JL, Bastaki F, Souid AK. 2013. Prevalence and Novel Mutations of Lysosomal Storage Disorders in United Arab Emirates: LSD in UAE. JIMD Rep. 10:1-9.
[62] Kingma SD, Bodamer OA, Wijburg FA. 2015. Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best Pract Res Clin Endocrinol Metab. 29(2):145-57.
[63] Linthorst GE, Bouwman MG, Wijburg FA, Aerts JM, Poorthuis BJ, Hollak CE. 2010. Screening for Fabry disease in high-risk populations: a systematic review. J Med Genet. 47(4):217-22.
[64] Hoffman JD, Park JJ, Schreiber-Agus N, Kornreich R, Tanner AK, Keiles S, Friedman KJ, Heim RA. 2014. The Ashkenazi Jewish carrier screening panel: evolution, status quo, and disparities. Prenat Diagn. 34(12):1161-7.
[65] Lesage S, Anheim M, Condroyer C, Pollak P, Durif F, Dupuits C, Viallet F, Lohmann E, Corvol JC, Honoré A, Rivaud S, Vidailhet M, Dürr A, Brice A; French Parkinson’s Disease Genetics Study Group. 2011. Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Parkinson’s disease. Hum Mol Genet. 20(1):202-10.

If you have any questions or comments with regards to this book, please fill out the form below. Thank you!

You have not viewed any product yet.