Hydroxyapatite and Other Calcium Orthophosphates: Nanodimensional, Multiphasic and Amorphous Formulations

Sergey V. Dorozhkin
Moscow, Russia

Series: Biomaterials – Properties, Production and Devices
BISAC: TEC021000

Clear

$195.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

As the inorganic constituents of skeletons, dentine and the enamel of teeth in all vertebrates, as well as antlers of male deer, calcium orthophosphates (CaPO4) appear to be the key materials to sustain all life on Earth. Therefore, biologically relevant CaPO4 possess all the necessary features of the biomaterials, such as biocompatibility, bioactivity, bioresorbability, osteoconductivity, osteoinductivity, and appear to be non-toxic, non-inflammatory and non-immunogenic. In this book, the author presents current state-of-the-art applications on three popular types of CaPO4: nano-scaled (nano-dimensional), multiphasic (polyphasic) and amorphous CaPO4. Topics discussed include the preparation, structure, composition, properties and biomedical applications of these types of CaPO4 combined with the specific information for each type. Namely, occurrence in the calcified tissue of mammals is discussed for both nano-scaled and amorphous types of CaPO4; both known and potential formulations, as well as their stability are discussed for multiphasic CaPO4, while both the morphology and the available knowledge on amorphous-to-crystalline transformations are discussed for amorphous CaPO4. (Imprint: Nova)

Preface

PART I. Nano-scaled calcium orthophosphates (CaPO4): preparation, properties and applications

Chapter 1. Introduction

Chapter 2. General Information on “Nano”

Chapter 3. Micron- and Submicron-sized CaPO4 Versus the Nano-scaled Ones

Chapter 4. Nano-scaled CaPO4 in Calcified Tissues of Mammals

Chapter 5. The Structure of the Nano-scaled Apatites

Chapter 6. Synthesis of the Nano-scaled CaPO4

Chapter 7. Biomedical Applications of the Nano-scaled CaPO4

Chapter 8. Non-biomedical Applications of the Nano-scaled CaPO4

Chapter 9. Summary and perspectives

Chapter 10. Conclusions

References

PART II. Multiphasic Calcium Orthophosphate (CaPO4) Bioceramics and their Biomedical Applications

Chapter 11. Introduction

Chapter 12. General Definitions and Knowledge

Chapter 13. Various Types of Biphasic, Triphasic and Multiphasic CaPO4

Chapter 14. Stability

Chapter 15. Preparation

Chapter 16. Structure

Chapter 17. Properties

Chapter 18. Biomedical Applications

Chapter 19. Conclusions

References

Part III. Amorphous Calcium Phosphates (ACPs): Composition, Structure, Properties and Applications

Chapter 20. Introduction

Chapter 21. Basic Definitions and Knowledge on the Amorphous State of Solids

Chapter 22. Amorphous Calcium Orthophosphates (ACPs)

Chapter 23. ACPs in Vivo

Chapter 24. Biomedical Applications of ACPs

Chapter 25. Conclusions

References

Author's Contact Information

Index

Part I

[1] Mann, S. Biomineralization principles and concepts in bioinorganic materials chemistry. Oxford University Press: New York, USA, 2001; 216 pp.
[2] Lowenstam, H.A., Weiner, S. On biomineralization. Oxford University Press: New York, USA, 1989; 324 pp.
[3] Vallet-Regiì, M., González-Calbet, J.M. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 2004, 32, 1-31.
[4] Weiner, S., Addadi, L. Design strategies in mineralized biological materials. J. Mater. Chem. 1997, 7, 689-702.
[5] Weiner, S., Wagner, H.D. The material bone: structure-mechanical function relations. Ann. Rev. Mater. Sci. 1998, 28, 271-298.
[6] Pasteris, J.D., Wopenka, B., Valsami-Jones, E. Bone and tooth mineralization: why apatite? Elements 2008, 4, 97-104.
[7] Giachelli, C.M. Ectopic calcification: gathering hard facts about soft tissue mineralization. Am. J. Pathol. 1999, 154, 671-675.
[8] Kirsch, T. Determinants of pathological mineralization: crystal deposition diseases. Curr. Opin. Rheumatol. 2006, 18, 174-180.
[9] Christian, R.C., Fitzpatrick, L.A. Vascular calcification. Curr. Opin. Nephrol. Hypertens. 1999, 8, 443-448.
[10] Boskey, A. Bone mineral crystal size. Osteoporosis Int. 2003, 14, Suppl. 5, S16-S20; discussion S20-S21.
[11] Alivisatos, A.P. Enhanced naturally aligned nanocrystals. Science 2000, 289, 736-737.
[12] Narayan, R.J., Kumta, P.N., Sfeir, C., Lee, D.H., Choi, D., Olton, D. Nanostructured ceramics in medical devices: applications and prospects. JOM 2004, 56, 38-43.
[13] Cai, Y., Tang, R. Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem. 2008, 18, 3775-3787.
[14] Ginebra, M.P., Driessens, F.C.M., Planell, J.A. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials 2004, 25, 3453-3462.
[15] http://www.nano.gov/nanotech-101/what/definition (accessed in December 2016).
[16] Karch, J., Birringer, R., Gleiter, H. Ceramics ductile at low temperature. Nature 1987, 330, 556-558.
[17] Webster, T.J. Nanophase ceramics: the future of orthopedic and dental implant material. In: Nanostructured materials. Ying, J.Y. Ed., Academic Press: New York, USA, 2001; pp. 125-166.
[18] Tasker, L.H., Sparey-Taylor, G.J., Nokes, L.D. Applications of nanotechnology in orthopaedics. Clin. Orthop. Relat. Res. 2007, 456, 243-249.
[19] Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., Penn, R.L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751-754.
[20] Cölfen, H. Bio-inspired mineralization using hydrophilic polymers. Top. Curr. Chem. 2007, 271, 1-77.
[21] Oaki, Y., Imai, H. Nanoengineering in echinoderms: the emergence of morphology from nanobricks. Small 2005, 2, 66-70.
[22] Lee, S.H., Shin, H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv. Drug Delivery Rev. 2007, 59, 339-359.
[23] Ben-Nissan, B. Nanoceramics in biomedical applications. MRS Bulletin 2004, 29, 28-32.
[24] Rehman, I. Nano bioceramics for biomedical and other applications. Mater. Technol. 2004, 19, 224-233.
[25] Cacciotti, I., Bianco, A., Lombardi, M., Montanaro, L. Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J. Eur. Ceram. Soc. 2009, 29, 2969-2978.
[26] Bianco, A., Cacciotti, I., Lombardi, M., Montanaro, L. Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater. Res. Bull. 2009, 44, 345-354.
[27] Capuccini, C., Torricelli, P., Boanini, E., Gazzano, M., Giardino, R., Bigi, A. Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J. Biomed. Mater. Res. A 2009, 89A, 594-600.
[28] Jiang, H., Li, Y., Zuo, Y., Yang, W., Zhang, L., Li, J., Wang, L., Zou, Q., Cheng, L., Li, J. Physical and chemical properties of superparamagnetic Fe-incorporated nano hydroxyapatite. J. Nanosci. Nanotechnol. 2009, 9, 6844-6850.
[29] Al-Kattan, A., Dufour, P., Dexpert-Ghys, J., Drouet, C. Preparation and physicochemical characteristics of luminescent apatite-based colloids. J. Phys. Chem. C 2010, 114, 2918-2924.
[30] Hou, C.H., Chen, C.W., Hou, S.M., Li, Y.T., Lin, F.H. The fabrication and characterization of dicalcium phosphate dihydrate-modified magnetic nanoparticles and their performance in hyperthermia processes in vitro. Biomaterials 2009, 30, 4700-4707.
[31] Hanifi, A., Fathi, M.H., Sadeghi, H.M.M., Varshosaz, J. Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J. Mater. Sci. Mater. Med. 2010, 21, 2393-2401.
[32] Stojanović, Z., Veselinović, L., Marković, S., Ignjatović, N., Uskoković, D. Hydrothermal synthesis of nanosize pure and cobalt-exchanged hydroxyapatite. Mater. Manuf. Process 2009, 24, 1096-1103.
[33] Veselinović, L., Karanović, L., Stojanović, Z., Bračko, I., Marković, S., Ignjatović, N., Uskoković, D. Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing. J. Appl. Crystallogr. 2010, 43, 320-327.
[34] Evis, Z., Webster, T.J. Nanosize hydroxyapatite: doping with various ions. Adv. Appl. Ceram. 2011, 110, 311-320.
[35] Al-Kattan, A., Girod-Fullana, S., Charvillat, C., Ternet-Fontebasso, H., Dufour, P., Dexpert-Ghys, J., Santran, V., Bordère, J., Pipy, B., Bernad, J., Drouet, C. Biomimetic nanocrystalline apatites: emerging perspectives in cancer diagnosis and treatment. Int. J. Pharm. 2012, 423, 26-36.
[36] Kaflak, A., Kolodziejski, W. Complementary information on water and hydroxyl groups in nanocrystalline carbonated hydroxyapatites from TGA, NMR and IR measurements. J. Mol. Struct. 2011, 990, 263-270.
[37] Kaflak, A., Ślósarczyk, A., Kolodziejski, W. A comparative study of carbonate bands from nanocrystalline carbonated hydroxyapatites using FT-IR spectroscopy in the transmission and photoacoustic modes. J. Mol. Struct. 2011, 997, 7-14.
[38] Li, Y., Widodo, J., Lim, S., Ooi, C.P. Synthesis and cytocompatibility of manganese (II) and iron (III) substituted hydroxyapatite nanoparticles. J. Mater. Sci. 2012, 47, 754-763.
[39] Tampieri, A., d’Alessandro, T., Sandri, M., Sprio, S., Landi, E., Bertinetti, L., Panseri, S., Pepponi, G., Goettlicher, J., Bañobre-López, M., Rivas, J., Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 2012, 8, 843-851.
[40] Delgado-López, J.M., Iafisco, M., Rodríguez, I., Tampieri, A., Prat, M., Gómez-Morales, J. Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater. 2012, 8, 3491-3499.
[41] Peetsch, A., Greulich, C., Braun, D., Stroetges, C., Rehage, H., Siebers, B.,
Köller, M., Epple, M. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids Surf. B Biointerfaces 2013, 102, 724-729.
[42] Han, Y., Wang, X., Dai, H., Li, S. Synthesis and luminescence of Eu3+ doped hydroxyapatite nanocrystallines: effects of calcinations and Eu3+ content. J. Luminescence 2013, 135, 281-287.
[43] Hayakawa, S., Kanaya, T., Tsuru, K., Shirosaki, Y., Osaka, A., Fujii, E., Kawabata, K., Gasqueres, G., Bonhomme, C., Babonneau, F., Jäger, C., Kleebe, H.J. Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles. Acta Biomaterialia 2013, 9, 4856-4867.
[44] Kheradmandfard, M., Fathi, M.H. Fabrication and characterization of nanocrystalline Mg-substituted fluorapatite by high energy ball milling. Ceram. Int. 2013, 39, 1651-1658.
[45] Alshemary, A.Z., Goh, Y.F., Akram, M., Razali, I.R., Kadir, M.R.A., Hussain, R. Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite. Mater. Res. Bull. 2013, 48, 2106-2110.
[46] Liu, Z., Wang, Q., Yao, S., Yang, L., Yu, S., Feng, X., Li, F. Synthesis and characterization of Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite nanoparticles. Ceram. Int. 2014, 40, 2613-2617.
[47] Ignjatovic, N., Ajdukovic, Z., Rajkovic, J., Najman, S., Mihailovic, D., Uskokovic, D. Enhanced osteogenesis of nanosized cobalt-substituted hydroxyapatite. J. Bionic Eng. 2015, 12, 604-612.
[48] Ma, J., Qin, J. Graphene-like zinc substituted hydroxyapatite. Cryst. Growth Des. 2015, 15, 1273-1279.
[49] Zheng, X., Liu, M., Hui, J., Fan, D., Ma, H., Zhang, X., Wang, Y., Wei, Y. Ln3+-doped hydroxyapatite nanocrystals: controllable synthesis and cell imaging. Phys. Chem. Chem. Phys. 2015, 17, 20301-20307.
[50] Ciobanu, G., Bargan, A.M., Luca, C. New bismuth-substituted hydroxyapatite nanoparticles for bone tissue engineering. JOM 2015, 67, 2534-2542.
[51] AlHammad, M.S. Nanostructure hydroxyapatite based ceramics by sol gel method. J. Alloys Compd. 2016, 661, 251-256.
[52] Wilberforce, S.I., Finlayson, C.E., Best, S.M., Cameron, R.E. The influence
of the compounding process and testing conditions on the compressive
mechanical properties of poly(D,L-lactide-co-glycolide)/α-tricalcium phosphate nanocomposites. J. Mech. Behav. Biomed. Mater. 2011, 4, 1081-1089.
[53] Wilberforce, S.I., Finlayson, C.E., Best, S.M., Cameron, R.E. A comparative study of the thermal and dynamic mechanical behaviour of quenched and annealed bioresorbable poly-L-lactide/α-tricalcium phosphate nanocomposites. Acta Biomater. 2011, 7, 2176-2184.
[54] Tolmachev, D.A., Lukasheva, N.V. Interactions binding mineral and organic phases in nanocomposites based on bacterial cellulose and calcium phosphates. Langmuir 2012, 28, 13473-13484.
[55] Frohbergh, M.E., Katsman, A., Botta, G.P., Lazarovici, P., Schauer, C.L., Wegst, U.G.K., Lelkes, P.I. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 2012, 33, 9167-9178.
[56] Liang, Y.H., Liu, C.H., Liao, S.H., Lin, Y.Y., Tang, H.W., Liu, S.Y., Lai, I.R.,
Wu, K.C.W. Cosynthesis of cargo-loaded hydroxyapatite/alginate core-shell nanoparticles (HAP@Alg) as pH-responsive nanovehicles by a pre-gel method. ACS Appl. Mater. Interfaces 2012, 4, 6720-6727.
[57] Son, K.D., Kim, Y.J. Morphological structure and characteristics of hydroxyapatite/β-cyclodextrin composite nanoparticles synthesized at different conditions. Mater. Sci. Eng. C 2013, 33, 499-506.
[58] Thien, D.V.H., Hsiao, S.W., Ho, M.H., Li, C.H., Shih, J.L. Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J. Mater. Sci. 2013, 48, 1640-1645.
[59] Abdal-Hay, A., Sheikh, F.A., Lim, J.K. Air jet spinning of hydroxyapatite/
poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf. B Biointerfaces 2013, 102, 635-643.
[60] Soltani, Z., Ziaie, F., Ghaffari, M., Afarideh, H., Ehsani, M. Mechanical and thermal properties and morphological studies of 10MeV electron beam irradiated LDPE/hydroxyapatite nano-composite. Radiat. Phys. Chem. 2013, 83, 79-85.
[61] Sahni, G., Gopinath, P., Jeevanandam, P. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli. Colloids Surf. B Biointerfaces 2013, 103, 441-447.
[62] Aminzare, M., Eskandari, A., Baroonian, M.H., Berenov, A., Hesabi, Z.R., Taheri, M., Sadrnezhaad, S.K. Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceram. Int. 2013, 39, 2197-2206.
[63] Zhang, H., Fu, Q.W., Sun, T.W., Chen, F., Qi, C., Wu, J., Cai, Z.Y., Qian, Q.R., Zhu, Y.J. Amorphous calcium phosphate, hydroxyapatite and poly(D,L-lactic acid) composite nanofibers: electrospinning preparation, mineralization and in vivo bone defect repair. Colloids Surf. B Biointerfaces 2015, 136, 27-36.
[64] Kollath, V.O., Mullens, S., Luyten, J., Traina, K., Cloots, R. Protein-calcium phosphate nanocomposites: benchmarking protein loading via physical and chemical modifications against co-precipitation. RSC Adv. 2015, 5, 55625-55632.
[65] Hannora, A.E., Ataya, S. Structure and compression strength of hydroxyapatite/
titania nanocomposites formed by high energy ball milling. J. Alloys Compd. 2016, 658, 222-233.
[66] Garai, S., Sinha, A. Three dimensional biphasic calcium phosphate nanocomposites for load bearing bioactive bone grafts. Mater. Sci. Eng. C 2016, 59, 375-383.
[67] Pan, Y., Xiong, D., Chen, X. Mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. J. Mater. Sci. 2007, 42, 5129-5134.
[68] Deng, C., Weng, J., Lu, X., Zhou, S.B., Wan, J.X., Qu, S.X., Feng, B., Li, X.H., Cheng, Q.Y. Mechanism of ultrahigh elongation rate of poly(D,L-lactide)-matrix composite biomaterial containing nano-apatite fillers. Mater. Lett. 2008, 62, 607-610.
[69] Meng, Y.H., Tang, C.Y., Tsui, C.P., Chen, D.Z. Fabrication and characterization of needle-like nano-HA and HA/MWNT composites. J. Mater. Sci. Mater. Med. 2008, 19, 75-81.
[70] Lin, J., Zhu, J., Gu, X., Wen, W., Li, Q., Fischer-Brandies, H., Wang, H., Mehl, C. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater. 2011, 7, 1346-1353.
[71] Gemelli, E., de Jesus, J., Camargo, N.H.A., de Soares, G.D.A., Henriques, V.A.R., Nery, F. Microstructural study of a titanium-based biocomposite produced by the powder metallurgy process with TiH2 and nanometric β-TCP powders. Mater. Sci. Eng. C 2012, 32, 1011-1015.
[72] Liu, D., Zuo, Y., Meng, W., Chen, M., Fan, Z. Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology. Mater. Sci. Eng. C 2012, 32, 1253-1258.
[73] Zheng, F., Wang, S., Wen, S., Shen, M., Zhu, M., Shi, X. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/
poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 2013, 34, 1402-1412.
[74] Li, H., Fu, Y., Niu, R., Zhou, Z., Nie, J., Yang, D. Study on the biocomposites
with poly(ethylene glycol) dimethacrylate and surfaced-grafted hydroxyapatite nanoparticles. J. Appl. Polym. Sci. 2013, 127, 1737-1743.
[75] Jia, L., Duan, Z., Fan, D., Mi, Y., Hui, J., Chang, L. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes. Mater. Sci. Eng. C 2013, 33, 727-734.
[76] Viswanathan, K., Rathish, P., Gopinath, V.P., Janice, R., Raj, G.D. In ovo delivery of Newcastle disease virus conjugated hybrid calcium phosphate nanoparticle and to study the cytokine profile induction. Mater. Sci. Eng. C 2014, 45, 564-572.
[77] Dorozhkin, S.V. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J. Funct. Biomater. 2015, 6, 708-832.
[78] Williams, D.F. The relationship between biomaterials and nanotechnology. Biomaterials 2008, 29, 1737-1738.
[79] Feynman, R.P. There’s plenty of room at the bottom. J. Microelectromechanical Systems 1992, 1, 60-66.
[80] European Commission, Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Opinion on “the scientific aspects of the existing and proposed definitions relating to products of nanoscience and nanotechnologies”. Adopted Brussels: European Commission; 29 November 2007.
[81] http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm (accessed in December 2016).
[82] Moriarty, P. Nanostructured materials. Rep. Prog. Phys. 2001, 64, 297-381.
[83] Webster, T.J., Ahn, E.S. Nanostructured biomaterials for tissue engineering bone. Adv. Biochem. Eng. Biotechnol. 2006, 103, 275-308.
[84] Streicher, R.M., Schmidt, M., Fiorito, S. Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine 2007, 2, 861-874.
[85] Havancsak, K. Nanotechnology at present and its promises in the future. Mater. Sci. Forum 2003, 414-415, 85-94.
[86] Duncan, R. Nanomedicines in action. Pharm. J. 2004, 273, 485-488.
[87] Williams, D.F. On the nature of biomaterials. Biomaterials 2009, 30, 5897-5909.
[88] Liu, H., Webster, T.J. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 2007, 28, 354-369.
[89] Sun, L., Chow, L.C., Frukhtbeyn, S.A., Bonevich, J.E. Preparation and properties of nanoparticles of calcium phosphates with various Ca/P ratios. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 243-255.
[90] Sylvie, J., Sylvie, T.D., Pascal, P.M., Fabienne, P., Hassane, O., Guy, C. Effect of hydroxyapatite and β-tricalcium phosphate nanoparticles on promonocytic U937 cells. J. Biomed. Nanotechnol. 2010, 6, 158-165.
[91] Sokolova, V., Knuschke, T., Kovtun, A., Buer, J., Epple, M., Westendorf, A.M. The use of calcium phosphate nanoparticles encapsulating Toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomaterials 2010, 31, 5627-5633.
[92] Wu, H.C., Wang, T.W., Bohn, M.C., Lin. F.H., Spector, M. Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene. Adv. Funct. Mater. 2010, 20, 67-77.
[93] Gergely, G., Wéber, F., Lukács, I., Illés, L., Tóth, A.L., Horváth, Z.E., Mihály, J., Balázsi, C. Nano-hydroxyapatite preparation from biogenic raw materials. Cent. Eur. J. Chem. 2010, 8, 375-381.
[94] Ergun, C., Evis, Z., Webster, T.J., Sahin, F.C. Synthesis and microstructural characterization of nano-size calcium phosphates with different stoichiometry. Ceram. Int. 2011, 37, 971-977.
[95] Ge, X., Leng, Y., Ren, F., Lu, X. Integrity and zeta potential of fluoridated hydroxyapatite nanothick coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 2011, 4, 1046-1056.
[96] Wang, J., Chen, X., Yang, X., Xu, S., Zhang, X., Gou, Z. A facile pollutant-free approach toward a series of nutritionally effective calcium phosphate nanomaterials for food and drink additives. J. Nanopart. Res. 2011, 13, 1039-1048.
[97] Sokolova, V., Knuschke, T., Buer, J., Westendorf, A.M., Epple, M. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater. 2011, 7, 4029-4036.
[98] Mostaghaci, B., Loretz, B., Haberkorn, R., Kickelbick, G., Lehr, C.M. One-step synthesis of nanosized and stable amino-functionalized calcium phosphate particles for DNA transfection. Chem. Mater. 2013, 25, 3667-3674.
[99] Lee, D.S.H., Pai, Y., Chang, S., Kim, D.H. Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules. Mater. Sci. Eng. C 2016, 58, 971-976.
[100] Traykova, T., Aparicio, C., Ginebra, M.P., Planell, J.A. Bioceramics as nanomaterials. Nanomedicine 2006, 1, 91-106.
[101] Grainger, D.W., Castner, D.G. Nanobiomaterials and nanoanalysis: opportunities for improving the science to benefit biomedical technologies. Adv. Mater. 2008, 20, 867-877.
[102] Nelson, K.G. The Kelvin equation and solubility of small particles. J. Pharmac. Sci. 1972, 61, 479-480.
[103] Fan, C., Chen, J., Chen, Y., Ji, J., Teng, H.H. Relationship between solubility and solubility product: the roles of crystal sizes and crystallographic directions. Geochim. Cosmochim. Acta 2006, 70, 3820-3829.
[104] Sato, M., Webster, T.J. Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev. Med. Dev. 2004, 1,
105-114.
[105] Hahn, H. Unique features and properties of nanostructured materials. Adv. Eng. Mater. 2003, 5, 277-284.
[106] Aronov, D., Karlov, A., Rosenman, G. Hydroxyapatite nanoceramics: basic physical properties and biointerface modification. J. Eur. Ceram. Soc. 2007, 27, 4181-4186.
[107] Ramsden, J.J., Freeman, J. The nanoscale. Nanotechnol. Percept. 2009, 5, 3-25.
[108] Rempel, A.A. Nanotechnologies. Properties and applications of nanostructured materials. Russ. Chem. Rev. 2007, 76, 435-461.
[109] Thomas, V., Dean, D.R., Vohra, Y.K. Nanostructured biomaterials for regenerative medicine. Curr. Nanosci. 2006, 2, 155-177.
[110] Catledge, S.A., Fries, M.D., Vohra, Y.K., Lacefield, W.R., Lemons, J.E., Woodard, S., Venugopalan, R. Nanostructured ceramics for biomedical implants. J. Nanosci. Nanotechnol. 2002, 2, 1-20.
[111] Balasundarama, G., Webster, T.J. A perspective on nanophase materials for orthopedic implant applications. J. Mater. Chem. 2006, 16, 3737-3745.
[112] Balasundarama, G., Webster, T.J. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine 2006, 1, 169-176.
[113] Padilla, S., Izquierdo-Barba, I., Vallet-Regiì, M. High specific surface area in nanometric carbonated hydroxyapatite. Chem. Mater. 2008, 20, 5942-5944.
[114] Kalita, S.J., Bhardwaj, A., Bhatt, H.A. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng. C 2007, 27, 441-449.
[115] LeGeros, R.Z. Calcium phosphates in oral biology and medicine. Karger: Basel, Switzerland, 1991; 210 pp.
[116] Mann, S. The study of biominerals by high resolution transmission electron microscopy. Scan. Electron. Microsc. 1986, Pt. 2, 393-413.
[117] Katsura, N. Nanospace theory for biomineralization. Dent. Jpn. (Tokyo) 1990, 27, 57-63.
[118] Cuisinier, F.J.G., Voegel, J.C., Yacaman, J., Frank, R.M. Structure of initial crystals formed during human amelogenesis. J. Cryst. Growth 1992, 116, 314-318.
[119] Cuisinier, F.J.G., Steuer, P., Senger, B., Voegel, J.C., Frank, R.M. Human amelogenesis: high resolution electron microscopy of nanometer-sized particles. Cell Tissue Res. 1993, 273, 175-182.
[120] Brès, E.F., Moebus, G., Kleebe, H.J., Pourroy, G., Werkmann, J., Ehret, G. High resolution electron microscopy study of amorphous calcium phosphate. J. Cryst. Growth 1993, 129, 149-162.
[121] Layrolle, P., Lebugle, A. Characterization and reactivity of nanosized calcium phosphate prepared in anhydrous ethanol. Chem. Mater. 1994, 6, 1996-2004.
[122] Cui, F.Z., Wen, H.B., Zhang, H.B., Ma, C.L., Li, H.D. Nanophase hydroxyapatite-like crystallites in natural ivory. J. Mater. Sci. Lett. 1994, 13, 1042-1044.
[123] Li, Y.B., de Wijn, J., Klein, C.P.A.T., de Meer, S.V., de Groot, K. Preparation and characterization of nanograde osteoapatite-like rod crystals. J. Mater. Sci. Mater. Med. 1994, 5, 252-255.
[124] Li, Y.B., de Groot, K., de Wijn, J., Klein, C.P.A.T., de Meer, S.V. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J. Mater. Sci. Mater. Med. 1994, 5, 326-331.
[125] Shirkhanzadeh, M. X-ray diffraction and Fourier transform infrared analysis of nanophase apatite coatings prepared by electrocrystallization. Nanostruct. Mater. 1994, 4, 677-684.
[126] Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 2000, 51, 475-483.
[127] Chan, C.K., Kumar, T.S.S., Liao, S., Murugan, R., Ngiam, M., Ramakrishnan, S. Biomimetic nanocomposites for bone graft applications. Nanomedicine 2006, 1, 177-188.
[128] Mukhopadhyay, A., Dasgupta, A.K., Chattopadhyay, D., Chakrabarti, K. Improvement of thermostability and activity of pectate lyase in the presence of hydroxyapatite nanoparticles. Bioresour. Technol. 2012, 116, 348-354.
[129] Okada, M., Furukawa, K., Serizawa, T., Yanagisawa, Y., Tanaka, H., Kawai, T., Furuzono, T. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates. Langmuir 2009, 25, 6300-6306.
[130] Mikołajczyk, T., Rabiej, S., Bogun, M. Analysis of the structural parameters of polyacrylonitrile fibers containing nanohydroxyapatite. J. Appl. Polym. Sci. 2006, 101, 760-765.
[131] Wilberforce, S.I.J., Finlayson, C.E., Best, S.M., Cameron, R.E. The influence of hydroxyapatite (HA) microparticles (m) and nanoparticles (n) on the thermal and dynamic mechanical properties of poly-L-lactide. Polymer 2011, 52, 2883-2890.
[132] Sung, Y.M., Lee, J.C., Yang, J.W. Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder. J. Cryst. Growth 2004, 262, 467-472.
[133] Wang, J., Shaw, L.L. Morphology-enhanced low-temperature sintering of nanocrystalline hydroxyapatite. Adv. Mater. 2007, 19, 2364-2369.
[134] Fomin, A.S., Barinov, S.M., Ievlev, V.M., Smirnov, V.V., Mikhailov, B.P., Belonogov, E.K., Drozdova, N.A. Nanocrystalline hydroxyapatite ceramics produced by low-temperature sintering after high-pressure treatment. Dokl. Chem. 2008, 418, 22-25.
[135] Drouet, C., Bosc, F., Banu, M., Largeot, C., Combes, C., Dechambre, G., Estournes, C., Raimbeaux, G., Rey, C. Nanocrystalline apatites: from powders to biomaterials. Powder Technol. 2009, 190, 118-122.
[136] Ramesh, S., Tan, C.Y., Bhaduri, S.B., Teng, W.D., Sopyan, I. Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J. Mater. Process. Technol. 2008, 206, 221-230.
[137] Skorokhod, V.V., Solonin, S.M., Dubok, V.A., Kolomiets, L.L., Katashinskii, V.P., Shinkaruk, A.V. Pressing and sintering of nanosized hydroxyapatite powders. Powder Metall. Metal Ceram. 2008, 47, 518-524.
[138] Lin, K., Chang, J., Lu, J., Wu, W., Zeng, Y. Properties of β-Ca3(PO4)2 bioceramics prepared using nanosized powders. Ceram. Int. 2007, 33, 979-985.
[139] Lin, K., Chen, L., Qu, H., Lu, J., Chang, J. Improvement of mechanical properties of macroporous β-tricalcium phosphate bioceramic scaffolds with uniform and interconnected pore structures. Ceram. Int. 2011, 37, 2397-2403.
[140] Tanaka, Y., Hirata, Y., Yoshinaka, R. Synthesis and characteristics of ultra-fine hydroxyapatite particles. J. Ceram. Proc. Res. 2003, 4, 197-201.
[141] Wang, J., Shaw, L.L. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 2009, 30, 6565-6572.
[142] Stupp, S.I., Ciegler, G.W. Organoapatites: materials for artificial bone. I. Synthesis and microstructure. J. Biomed. Mater. Res. 1992, 26, 169-183.
[143] Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 2001, 22, 1327-1333.
[144] Huang, J., Best, S.M., Bonfield, W., Brooks, R.A., Rushton, N., Jayasinghe, S.N., Edirisinghe, M.J. In vitro assessment of the biological response to nanosized hydroxyapatite. J. Mater. Sci. Mater. Med. 2004, 15, 441-445.
[145] Kim, H.W., Kim, H.E., Salih, V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 2005, 26, 5221-5230.
[146] Webster, T.J., Siegel, R.W., Bizios, R. Osteoblast adhesion on nanophase ceramics. Biomaterials 1999, 20, 1221-1227.
[147] Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R. Enhanced functions of osteoblast on nanophase ceramics. Biomaterials 2000, 21, 1803-1810.
[148] Smith, I.O., McCabe, L.R., Baumann, M.J. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Int. J. Nanomed. 2006, 1, 189-194.
[149] Nelson, M., Balasundaram, G., Webster, T.J. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Int. J. Nanomed. 2006, 1, 339-349.
[150] Liu, H., Yazici, H., Ergun, C., Webster, T.J., Bermek, H. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater. 2008, 4, 1472-1479.
[151] Sato, M., Sambito, M.A., Aslani, A., Kalkhoran, N.M., Slamovich, E.B., Webster, T.J. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials 2006, 27, 2358-2369.
[152] Thian, E.S., Huang, J., Best, S.M. Barber, Z.H., Brooks, R.A., Rushton, N., Bonfield, W. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials 2006, 27, 2692-2698.
[153] Palin, E., Liu, H., Webster, T.J. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 2005, 16, 1828-1835.
[154] Smoak, M., Hogan, K., Kriegh, L., Chen, C., Terrell, L.K.B., Qureshi, A.T., Monroe, T.W., Gimble, J.M., Hayes, D.J. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures. J. Nanopart. Res. 2015, 17, 182, (14 pages).
[155] Sun, W., Chu, C., Wang, J., Zhao, H. Comparison of periodontal ligament cells responses to dense and nanophase hydroxyapatite. J. Mater. Sci. Mater. Med. 2007, 18, 677-683.
[156] Ergun, C., Liu, H., Webster, T.J., Olcay, E., Yılmaz, Ş., Sahin, F.C. Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher Ca/P ratios. J. Biomed. Mater. Res. A 2008, 85A, 236-241.
[157] Lewandrowski, K.U., Bondre, S.P., Wise, D.L., Trantolo, D.J. Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite. Biomed. Mater. Eng. 2003, 13, 115-124.
[158] Zhou, D.S., Zhao, K.B., Li, Y., Cui, F.Z., Lee, I.S. Repair of segmental defects with nano-hydroxyapatite / collagen / PLA composite combined with mesenchymal stem cells. J. Bioactive Compat. Polym. 2006, 21, 373-384.
[159] Khanna, R., Katti, K.S., Katti, D.R. Bone nodules on chitosan-polygalacturonic acid-hydroxyapatite nanocomposite films mimic hierarchy of natural bone. Acta Biomater. 2011, 7, 1173-1183.
[160] Xu, Z., Sun, J., Liu, C.S., Wei, J. Effect of hydroxyapatite nanoparticles of different concentrations on rat osteoblast. Mater. Sci. Forum 2009, 610-613, 1364-1369.
[161] Okada, S., Nagai, A., Oaki, Y., Komotori, J., Imai, H. Control of cellular activity of fibroblasts on size-tuned fibrous hydroxyapatite nanocrystals. Acta Biomater. 2011, 7, 1290-1297.
[162] Kalia, P., Vizcay-Barrena, G., Fan, J.P., Warley, A., di Silvio, L., Huang, J. Nanohydroxyapatite shape and its potential role in bone formation: an analytical study. J. R. Soc. Interface 2014, 11, 20140004 (11 pages).
[163] Bansal, M., Kaushik, M., Khattak, B.B.P., Sharma, A. Comparison of nanocrystalline hydroxyapatite and synthetic resorbable hydroxyapatite graft in the treatment of intrabony defects: a clinical and radiographic study. J. Indian Soc. Periodontol. 2014, 18, 213-219.
[164] Krut’ko, V.K., Kulak, A.I., Lesnikovich, L.A., Trofimova, I.V., Musskaya, O.N., Zhavnerko, G.K., Paribok, I.V. Influence of the dehydration procedure on the physicochemical properties of nanocrystalline hydroxylapatite xerogel. Russ. J. General Chem. 2007, 77, 336-342.
[165] Severin, A.V., Komarov, V.F., Bozhevol’nov, V.E., Melikhov, I.V. Morphological selection in suspensions of nanocrystalline hydroxylapatite leading to spheroidal aggregates. Russ. J. Inorg. Chem. 2005, 50, 72-77.
[166] Biggemann, D., da Silva, M.H.P., Rossi, A.M., Ramirez, A.J. High-resolution transmission electron microscopy study of nanostructured hydroxyapatite. Microsc. Microanal. 2008, 14, 433-438.
[167] Hagmeyer, D., Ganesan, K., Ruesing, J., Schunk, D., Mayer, C., Dey, A., Sommerdijk, N.A.J.M., Epple, M. Self-assembly of calcium phosphate nanoparticles into hollow spheres induced by dissolved amino acids. J. Mater. Chem. 2011, 21, 9219-9223.
[168] Kester, M., Heakal, Y., Fox, T., Sharma, A., Robertson, G.P., Morgan, T.T., Altinoğlu, E.I., Tabakovicì, A., Parette, M.R., Rouse, S.M., Ruiz-Velasco, V., Adair, J.H. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett. 2008, 8, 4116-4121.
[169] Welzel, T., Meyer-Zaika, W., Epple, M. Continuous preparation of functionalised calcium phosphate nanoparticles with adjustable crystallinity. Chem. Commun. 2004, 1204-1205.
[170] Nichols, H.L., Zhang, N., Zhang, J., Shi, D., Bhaduri, S., Wen, X. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. J. Biomed. Mater. Res. A 2007, 82A, 373-382.
[171] Bouladjine, A., Al-Kattan, A., Dufour, P., Drouet, C. New advances in nanocrystalline apatite colloids intended for cellular drug delivery. Langmuir 2009, 25, 12256-12265.
[172] Rey, C., Hina, A., Tofighi, A., Glimcher, M.J. Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro. Cell Mater. 1995, 5, 345-356.
[173] Dorozhkin, S.V. Calcium orthophosphate bioceramics. Ceram. Int. 2015, 41, 13913-13966.
[174] Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates; Elsevier: Amsterdam, Holland, 1994; 404 pp.
[175] Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.Y., Kaufmane, M.J., Douglas, E.P., Gower, L.B. Bone structure and formation: a new perspective. Mater. Sci. Eng. R 2007, 58, 77-116.
[176] Reznikov, N., Shahar, R., Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815-3826.
[177] Rubin, M.A., Jasiuk, I., Taylor, J., Rubin, J., Ganey, T., Apkarian, R.P. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 2003, 33, 270-282.
[178] Hartgerink, J.D., Beniash, E., Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.
[179] Ji, B., Gao, H. Elastic properties of nanocomposite structure of bone. Compos. Sci. Technol. 2006, 66, 1212-1218.
[180] Wang, L., Nancollas, G.H., Henneman, Z.J., Klein, E., Weiner, S. Nanosized particles in bone and dissolution insensitivity of bone mineral. Biointerphases 2006, 1, 106-111.
[181] Xie, B., Nancollas, G.H. How to control the size and morphology of apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 2011, 107, 22369-22370.
[182] Hu, Y.Y., Rawal, A., Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 2011, 107, 22425-22429.
[183] Gao, H., Ji, B., Jager, I.L., Arz, E., Fratzl, P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 2003, 100, 5597-5660.
[184] Gupta, H.S., Seto, J., Wagermaier, W., Zaslansky, P., Boesecke, P., Fratzl, P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl. Acad. Sci. USA 2006, 103, 17741-17746.
[185] Currey, J.D. Bones: structure and mechanics. Princeton University Press: Princeton, USA, 2006; 456 pp.
[186] Porter, A.E., Nalla, R.K., Minor, A., Jinschek, J.R., Kisielowski, C., Radmilovic, V., Kinney, J.H., Tomsia, A.P., Ritchie, R.O. A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials 2005, 26, 7650-7660.
[187] Kirkham, J., Brookes, S.J., Shore, R.C., Wood, S.R., Smith, D.A., Zhang, J., Chen, H., Robinson, C. Physico-chemical properties of crystal surfaces in matrix-mineral interactions during mammalian biomineralisation. Curr. Opin. Colloid Interf. Sci. 2002, 7, 124-132.
[188] Daculsi, G., Mentanteau, J., Kerebel, L.M., Mitre, D. Length and shape of enamel crystals. Calcif. Tissue Int. 1984, 36, 550-555.
[189] Robinson, C., Connell, S., Kirkham, J., Shorea, R., Smith, A. Dental enamel – a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J. Mater. Chem. 2004, 14, 2242-2248.
[190] Chen, H., Tang, Z., Liu, J., Sun, K., Chang, S.R., Peters, M.C., Mansfield, J.F., Czajka-Jakubowska, A., Clarkson, B.H. Acellular synthesis of a human enamel-like microstructure. Adv. Mater. 2006, 18, 1846-1851.
[191] Chen, H., Clarkson, B.H., Sun, K., Mansfield, J.F. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J. Colloid Interf. Sci. 2005, 288, 97-103.
[192] Robinson, C. Self-oriented assembly of nano-apatite particles: a subunit mechanism for building biological mineral crystals. J. Dent. Res. 2007, 86, 677-679.
[193] Cui, F.Z., Ge, J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J. Tiss. Eng. Regen. Med. 2007, 1, 185-191.
[194] He, L.H., Swain, M.V. Enamel – a “metallic-like” deformable biocomposite. J. Dent. 2007, 35, 431-437.
[195] Nelson, S.J. Wheeler’s dental anatomy, physiology and occlusion. 9th Ed., W. B. Saunders: Philadelphia, USA. 2009; 368 pp.
[196] Lenton, S., Nylander, T., Teixeira, S.C.M., Holt, C. A review of the biology of calcium phosphate sequestration with special reference to milk. Dairy Sci. Technol. 2015, 95, 3-14.
[197] Suvorova E.I., Buffat P.A. Electron diffraction from micro- and nanoparticles of hydroxyapatite. J. Microscopy 1999, 196, 46-58.
[198] Panda, R.N., Hsieh, M.F., Chung, R.J., Chin, T.S. X-ray diffractometry and X-ray photoelectron spectroscopy investigations of nanocrytalline hydroxyapatite synthesized by a hydroxide gel technique. Jpn. J. Appl. Phys. 2001, 40, 5030-5035.
[199] Panda, R.N., Hsieh, M.F., Chung, R.J., Chin, T.S. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J. Phys. Chem. Solids 2003, 64, 193-199.
[200] Eichert, D. Sfihi, H., Combes, C., Rey, C. Specific characteristics of wet nanocrystalline apatites. Consequences on biomaterials and bone tissue. Key Eng. Mater. 2004, 254-256, 927-930.
[201] Rey, C., Combes, C., Drouet, C., Sfihi, H., Barroug, A. Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater. Sci. Eng. C 2007, 27, 198-205.
[202] Eichert, D., Drouet, C., Sfihi, H., Rey, C., Combes, C. Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization. In: Biomaterials research advances. Kendall J.B. Ed., Nova Science Publishers, Inc., USA, 2007; Chapter 5, pp. 93-143.
[203] Aronov, D., Rosenman, G. Trap state spectroscopy studies and wettability modification of hydroxyapatite nanobioceramics. J. Appl. Phys. 2007, 101, 034701 (5 pages).
[204] Jäger, C., Welzel, T., Meyer-Zaika, W., Epple, M. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn. Reson. Chem. 2006, 44, 573-580.
[205] Isobe, T., Nakamura, S., Nemoto, R., Senna, M., Sfihi, H. Solid-state double nuclear magnetic resonance of calcium phosphate nanoparticules synthesized by wet-mechanochemical reaction. J. Phys. Chem. B 2002, 106, 5169-5176.
[206] Bertinetti, L., Tampieri, A., Landi, E., Ducati, C., Midgley, P.A., Coluccia, S., Martra, G. Surface structure, hydration, and cationic sites of nanohydroxyapatite: UHR-TEM, IR, and microgravimetric studies. J. Phys. Chem. C 2007, 111, 4027-4035.
[207] Bertinetti, L., Tampieri, A., Landi, E., Bolis, V., Busco, C., Martra, G. Surface structure, hydration and cationic sites of nanohydroxyapatite. Key Eng. Mater. 2008, 361-363, 87-90.
[208] Bertinetti, L., Drouet, C., Combes, C., Rey, C., Tampieri, A., Coluccia, S., Martra, G. Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir 2009, 25, 5647-5654.
[209] Gopi, D., Indira, J., Prakash, V.C.A., Kavitha, L. Spectroscopic characterization of porous nanohydroxyapatite synthesized by a novel amino acid soft solution freezing method. Spectrochim. Acta A 2009, 74A, 282-284.
[210] Ospina, C.A., Terra, J., Ramirez, A.J., Farina, M., Ellis, D.E., Rossi, A.M. Experimental evidence and structural modeling of nonstoichiometric (010) surfaces coexisting in hydroxyapatite nano-crystals. Colloids Surf. B Biointerfaces 2012, 89, 15-22.
[211] Song, K., Kim, Y.J., Kim, Y.I., Kim, J.G. Application of theta-scan precession electron diffraction to structure analysis of hydroxyapatite nanopowder. J. Electron Microscopy 2012, 61, 9-15.
[212] Bian, S., Du, L.W., Gao, Y.X., Huang, J., Gou, B.D., Li, X., Liu, Y., Zhang, T.L. Wang, K. Crystallization in aggregates of calcium phosphate nanocrystals: a logistic model for kinetics of fractal structure development. Cryst. Growth Des. 2012, 12, 3481-3488.
[213] Gómez-Morales, J., Iafisco, M., Delgado-López, J.M., Sarda, S., Drouet, C. Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog. Cryst. Growth Character. Mater. 2013, 59, 1-46.
[214] Pajchel, L., Kolodziejski, W. Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling. J. Nanopart. Res. 2013, 15, 1868 (15 pages).
[215] Sakhno, Y., Ivanchenko, P., Iafisco, M., Tampieri, A., Martra, G. A step toward control of the surface structure of biomimetic hydroxyapatite nanoparticles: effect of carboxylates on the {010} P-rich/Ca-rich facets ratio. J. Phys. Chem. C 2015, 119, 5928-5937.
[216] Ospina, C.A., Terra, J., Ramirez, A.J., Ellis, D.E., Rossi, A.M. Simulations of hydroxyapatite nanocrystals for HRTEM images calculations. Key Eng. Mater. 2012, 493-494, 763-767.
[217] Rossi, A.M., da Silva, M.H.P., Ramirez, A.J., Biggemann, D., Caraballo, M.M., Mascarenhas, Y.P., Eon, J.G., Moure, G.T. Structural properties of hydroxyapatite with particle size less than 10 nanometers. Key Eng. Mater. 2007, 330-332, 255-258.
[218] Ramirez, C.A.O., Costa, A.M., Bettini, J., Ramirez, A.J., da Silva, M.H.P., Rossi, A.M. Structural properties of nanostructured carbonate apatites. Key Eng. Mater. 2009, 396-398, 611-614.
[219] Pasteris, J.D., Wopenka, B., Freeman, J.J., Rogers, K., Valsami-Jones, E., van der Houten, J.A.M., Silva, M.J. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 2004, 25, 229-238.
[220] Sakhno, Y., Bertinetti, L., Iafisco, M., Tampieri, A., Roveri, N., Martra, G. Surface hydration and cationic sites of nanohydroxyapatites with amorphous or crystalline surfaces: a comparative study. J. Phys. Chem. C 2010, 114, 16640-16648.
[221] Bolis, V., Busco, C., Martra, G., Bertinetti, L., Sakhno, Y., Ugliengo, P., Chiatti, F., Corno, M., Roveri, N. Coordination chemistry of Ca sites at the surface of nanosized hydroxyapatite: interaction with H2O and CO. Phil. Transact. A: Math. Phys. Eng. Sci. 2012, 370, 1313-1336.
[222] Zyman, Z.Z., Epple, M., Rokhmistrov, D., Glushko, V. On impurities and the internal structure in precipitates occurring during the precipitation of nanocrystalline calcium phosphate. Mater.-Wiss. u. Werkstofftech. 2009, 40, 297-301.
[223] Delgado-López, J.M., Frison, R., Cervellino, A., Gómez-Morales, J., Guagliardi, A., Masciocchi, N. Crystal size, morphology, and growth mechanism in bio-inspired apatite nanocrystals. Adv. Funct. Mater. 2014, 24, 1090-1099.
[224] Rey, C., Combes, C., Drouet, C., Cazalbou, S., Grossin, D., Brouillet, F., Sarda, S. Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials. Prog. Cryst. Growth Character. Mater. 2014, 60, 63-73.
[225] Cazalbou, S., Combes, C., Eichert, D., Rey, C. Adaptative physico-chemistry of bio-related calcium phosphates. J. Mater. Chem. 2004, 14, 2148-2153.
[226] Eichert, D., Salomé, M., Banu, M., Susini, J., Rey, C. Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy. Spectrochim. Acta B 2005, 60B, 850-858.
[227] Rosenman, G., Aronov, D., Oster, L., Haddad, J., Mezinskis, G., Pavlovska, I., Chaikina, M., Karlov, A. Photoluminescence and surface photovoltage spectroscopy studies of hydroxyapatite nano-bio-ceramics. J. Luminescence 2007, 122-123, 936-938.
[228] Melikhov, I.V., Teterin, Y.A., Rudin, V.N., Teterin, A.Y., Maslakov, K.I., Severin, A.V. An X-ray electron study of nanodisperse hydroxyapatite. Russ. J. Phys. Chem. A 2009, 83, 91-97.
[229] Wu, C.Y., Young, D., Martel, J., Young, J.D. A story told by a single nanoparticle in the body fluid: demonstration of dissolution-reprecipitation of nanocrystals in a biological system. Nanomedicine (Lond.) 2015, 10, 2659-2676.
[230] Aronov, D., Rosenman, G., Karlov, A., Shashkin, A. Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification. Appl. Phys. Lett. 2006, 88, 163902 (3 pages).
[231] Rau, J.V., Generosi, A., Ferro, D., Minozzi, F., Paci, B., Albertini, V.R., Dolci, G., Barinov, S.M. In situ time-resolved X-ray diffraction study of evolution of nanohydroxyapatite particles in physiological solution. Mater. Sci. Eng. C 2009, 29, 1140-1143.
[232] Zhao, W., Xu, Z., Yang, Y., Sahai, N. Surface energetics of the hydroxyapatite nanocrystal – water interface: a molecular dynamics study. Langmuir 2014, 30, 13283-13292.
[233] Arora, A. Ceramics in nanotech revolution. Adv. Eng. Mater. 2004, 6, 244-247.
[234] Mao, Y., Park, T.J., Zhang, F., Zhou, H., Wong, S.S. Environmentally friendly methodologies of nanostructure synthesis. Small 2007, 3, 1122-1139.
[235] Ioku, K., Yoshimura, M. Stochiometric apatite fine single crystals by hydrothermal synthesis. Phosphorus Res. Bull. 1991, 1, 15-20.
[236] Chen, J.D., Wang, Y.J., Wei, K., Zhang, S.H., Shi, X.T. Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials 2007, 28, 2275-2280.
[237] Guo, X., Xiao, P., Liu, J., Shen, Z. Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering. J. Am. Ceram. Soc. 2004, 88, 1026-1029.
[238] Brown, P.W., Constantz B. (Eds.), Hydroxyapatite and related materials. CRC Press: Boca Raton, FL, USA, 1994; 343 pp.
[239] Amjad, Z. (Ed.), Calcium phosphates in biological and industrial systems. Kluwer Academic Publishers: Boston, MA, USA, 1997; 529 pp.
[240] Dorozhkin, S.V. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford: Singapore, 2012; 850 pp.
[241] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016; 405 pp.
[242] Komarov, V.F., Kibalchitz, V. Precipitation of apatite through highly saturated solutions. Moscow Univ. Bull. Chem. Dic. 1979, 2680-2685.
[243] Prakash, K.H., Kumar, R., Ooi, C.P., Cheang, P., Khor, K.A. Conductometric study of precursor compound formation during wet-chemical synthesis of nanocrystalline hydroxyapatite. J. Phys. Chem. B 2006, 110, 24457-24462.
[244] Tao, J., Pan, H., Wang, J., Wu, J., Wang, B., Xu, X., Tang, R. Evolution of amorphous calcium phosphate to hydroxyapatite probed by gold nanoparticles. J. Phys. Chem. C 2008, 112, 14929-14933.
[245] Chane-Ching, J.Y., Lebugle, A., Rousselot, I., Pourpoint, A., Pelle, F. Colloidal synthesis and characterization of monocrystalline apatite nanophosphors. J. Mater. Chem. 2007, 17, 2904-2913.
[246] Zyman, Z.Z., Rokhmistrov, D.V., Glushko, V.I. Structural and compositional features of amorphous calcium phosphate at the early stage of precipitation. J. Mater. Sci. Mater. Med. 2010, 21, 123-130.
[247] Wei, M., Ruys, A.J., Milthorpe, B.K., Sorrell, C.C. Solution ripening of hydroxyapatite nanoparticles: effects on electrophoretic deposition. J. Biomed. Mater. Res. 1999, 45, 11-19.
[248] Zhu, X., Eibl, O., Berthold, C., Scheideler, L., Geis-Gerstorfer, J. Structural characterization of nanocrystalline hydroxyapatite and adhesion of pre-osteoblast cells. Nanotechnology 2006, 17, 2711-2721.
[249] Rusu, V.M., Ng, C.H., Wilke, M., Tiersch, B., Fratzl, P., Peter, M.G. Size-controlled hydroxyapatite nanoparticles as self-organized organic – inorganic composite materials. Biomaterials 2005, 26, 5414-5426.
[250] Wang, Y.J., Lai, C., Wei, K., Tang, S.Q. Influence of temperature, ripening time and cosurfactant on solvothermal synthesis of calcium phosphate nanobelts. Mater. Lett. 2005, 59, 1098-1104.
[251] Li, Y.B., Li, D., Weng, W. Preparation of nano carbonate-substituted hydroxyapatite from an amorphous precursor. Int. J. Appl. Ceram. Technol. 2008, 5, 442-448.
[252] Zhang, S., Gonsalves, K.E. Preparation and characterization of thermally stable nanohydroxyapatite. J. Mater. Sci. Mater. Med. 1997, 8, 25-28.
[253] Ferraz, M.P., Monteiro, F.J., Manuel, C.M. Hydroxyapatite nanoparticles: a review of preparation methodologies. J. Appl. Biomater. Biomech. 2004, 2, 74-80.
[254] Ahn, E.S., Gleason, N.J., Nakahira, A., Ying, J.Y. Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 2001, 1, 149-153.
[255] Mazelsky, R., Hopkins, R.H., Kramer, W.E. Czochralski-growth of calcium fluorophosphates. J. Cryst. Growth 1968, 3-4, 260-264.
[256] Loutts, G.B., Chai, B.H.T. Growth of high-quality single crystals of FAP (Ca5(PO4)3F) and its isomorphs. Proc. SPIE – Int. Soc. Optical Eng. 1993, 1863, 31-34.
[257] Siegel, R.W. Creating nanophase materials. Sci. Am. 1996, 275, 42-47.
[258] Hu, J., Odom, T.W., Lieber, C.M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435-445.
[259] Schmidt, H.K. Nanoparticles for ceramic and nanocomposite processing. Mol. Cryst. Liq. Cryst. 2000, 353, 165-179.
[260] Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104, 3893-3946.
[261] Wang, X., Zhuang, J., Peng, Q., Li, Y. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.
[262] Yin, Y., Alivisatos, A.P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664-670.
[263] de Mello Donegá, C., Liljeroth, P., Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1, 1152-1162.
[264] Ma, M.G., Zhu, J.F. Recent progress on fabrication of calcium-based inorganic biodegradable nanomaterials. Rec. Pat. Nanotechnol. 2010, 4, 164-170.
[265] Chen, F., Zhu, Y., Wu, J., Huang, P., Cui, D. Nanostructured calcium phosphates: preparation and their application in biomedicine. Nano Biomed. Eng. 2012, 4, 41-49.
[266] Takagi, S., Chow, L.C., Ishikawa, K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 1998, 19, 1593-1599.
[267] Melikhov, I.V., Komarov, V.F., Severin, A.V., Bozhevol’nov, V.E., Rudin, V.N. Two-dimensional crystalline hydroxyapatite. Dokl. Phys. Chem. 2000, 373, 355-358.
[268] Kumta, P., Sfeir, C., Lee, D.H., Olton, D., Choi, D. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater. 2005, 1, 65-83.
[269] Mollazadeh, S., Javadpour, J., Khavandi, A. In situ synthesis and characterization of nanosized hydroxyapatite in poly(vinyl alcohol) matrix. Ceram. Int. 2007, 33, 1579-1583.
[270] Bouyer, E., Gitzhofer, F., Boulos, M.I. Morphological study of hydroxyapatite nanocrystal suspension. J. Mater. Sci. Mater. Med. 2000, 11, 523-531.
[271] Pang, Y.X., Bao, X. Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Eur. Ceram. Soc. 2003, 23, 1697-1704.
[272] Kumar, R., Prakash, K.H., Cheang, P., Khor, K.A. Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 2004, 20, 5196-5200.
[273] Cao, L.Y., Zhang, C.B., Huang, J.F. Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method. Mater. Lett. 2005, 59, 1902-1906.
[274] Afshar, A., Ghorbani, M., Ehsani, N., Saeri, M.R., Sorrell, C.C. Some important factors in the wet precipitation process of hydroxyapatite. Mater. Des. 2003, 24, 197-202.
[275] Liu, Y., Hou, D., Wang, G. A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mater. Chem. Phys. 2004, 86, 69-73.
[276] Saha, S.K., Banerjee, A., Banerjee, S., Bose, S. Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: role of templates in controlling morphology. Mater. Sci. Eng. C 2009, 29, 2294-2301.
[277] Shanthi, P.M.S.L., Ashok, M., Balasubramanian, T., Riyasdeen, A., Akbarsha, M.A. Synthesis and characterization of nano-hydroxyapatite at ambient temperature using cationic surfactant. Mater. Lett. 2009, 63, 2123-2125.
[278] Phillips, M.J., Darr, J.A., Luklinska, Z.B., Rehman, I. Synthesis and characterization of nanobiomaterials with potential osteological applications. J. Mater. Sci. Mater. Med. 2003, 14, 875-882.
[279] Ramesh, S., Tan, C.Y., Sopyan, I., Hamdi, M., Teng, W.D. Consolidation of nanocrystalline hydroxyapatite powder. Sci. Technol. Adv. Mater. 2007, 8, 124-130.
[280] Shi, H.B., Zhong, H., Liu, Y., Gu, J.Y., Yang, C.S. Effect of precipitation method on stoichiometry and morphology of hydroxyapatite nanoparticles. Key Eng. Mater. 2007, 330-332, 271-274.
[281] Poinern, G.E., Brundavanam, R.K., Mondinos, N., Jiang, Z.T. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason. Sonochem. 2009, 16, 469-474.
[282] Doğan, Ö., Öner, M. The influence of polymer architecture on nanosized hydroxyapatite precipitation. J. Nanosci. Nanotechnol. 2008, 8, 667-674.
[283] Loo, S.C.J., Siew, Y.E., Ho, S., Boey, F.Y.C., Ma, J. Synthesis and hydrothermal treatment of nanostructured hydroxyapatite of controllable sizes. J. Mater. Sci. Mater. Med. 2008, 19, 1389-1397.
[284] Guo, X., Gough, J.E., Xiao, P., Liu, J., Shen, Z. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J. Biomed. Mater. Res. A 2007, 82A, 1022-1032.
[285] Iafisco, M., Palazzo, B., Marchetti, M., Margiotta, N., Ostuni, R., Natile, G., Morpurgo, M., Gandin, V., Marzano, C., Roveri, N. Smart delivery of antitumoral platinum complexes from biomimetic hydroxyapatite nanocrystals. J. Mater. Chem. 2009, 19, 8385-8392.
[286] Wang, P., Li, C., Gong, H., Jiang, X., Wang, H., Li, K. Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol. 2010, 203, 315-321.
[287] Leskiv, M., Lagoa, A.L.C., Urch, H., Schwiertz, J., da Piedade, M.E.M., Epple, M. Energetics of calcium phosphate nanoparticle formation by the reaction of Ca(NO3)2 with (NH4)2HPO4. J. Phys. Chem. C 2009, 113, 5478-5484.
[288] Rodrigues, L.R., Motisuke, M., Zavaglia, C.A.C. Synthesis of nanostructured hydroxyapatite: a comparative study between sol-gel and aqueous solution precipitation. Key Eng. Mater. 2009, 396-398, 623-626.
[289] Okada, M., Furuzono, T. Low-temperature synthesis of nanoparticle-assembled, transparent, and low-crystallized hydroxyapatite blocks. J. Coll. Interf. Sci. 2011, 360, 457-462.
[290] Alobeedallah, H., Coster, H., Dehghani, F., Ellis, J., Rohanizadeh, R. The preparation of nanostructured hydroxyapatite in organic solvents for clinical applications. Trends Biomater. Artif. Organs 2011, 25, 12-19.
[291] Lagno, F., Rocha, S.D.F., Katsarou, L., Demopoulos, G.P. Supersaturation-controlled synthesis of dicalcium phosphate dihydrate and nanocrystalline calcium-deficient hydroxyapatite. Ind. Eng. Chem. Res. 2012, 51, 6605-6612.
[292] Shafiei, F., Behroozibakhsh, M., Moztarzadeh, F., Haghbin-Nazarpak, M.,
Tahriri, M. Nanocrystalline fluorine-substituted hydroxyapatite [Ca5(PO4)3(OH)1-xFx (0≤x≤1)] for biomedical applications: preparation and characterization. Micro Nano Lett. 2012, 7, 109-114.
[293] Khalid, M., Mujahid, M., Amin, S., Rawat, R.S., Nusair, A., Deen, G.R. Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceram. Int. 2013, 39, 39-50.
[294] Iyyappan, E., Wilson, P. Synthesis of nanoscale hydroxyapatite particles using triton X-100 as an organic modifier. Ceram. Int. 2013, 39, 771-777.
[295] Gao, S., Sun, K., Li, A., Wang, H. Synthesis and characterization of hydroxyapatite nanofiber by chemical precipitation method using surfactants. Mater. Res. Bull. 2013, 48, 1003-1006.
[296] Mohandes, F., Salavati-Niasari, M., Fathi, M., Fereshteh, Z. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism. Mater. Sci. Eng. C 2014, 45, 29-36.
[297] Pokale, P., Shende, S., Gade, A., Rai, M. Biofabrication of calcium phosphate nanoparticles using the plant Mimusops elengi. Environment. Chem. Lett. 2014, 12, 393-399.
[298] Ji, X., Su, P., Liu, C., Song, J., Liu, C., Li, J., Tan, H., Wu, F., Yang, L., Fu, R., Tang, C., Cheng, B. A novel ethanol induced and stabilized hierarchical nanorods: hydroxyapatite nanopeanut. J. Am. Ceram. Soc. 2015, 98, 1702-1705.
[299] Roche, K.J., Stanton, K.T. Measurement of fluoride substitution in precipitated fluorhydroxyapatite nanoparticles. J. Fluor. Chem. 2014, 161, 102-109.
[300] Stanić, V., Dimitrijević, S., Antonović, D.G., Jokić, B.M., Zec, S.P., Tanasković, S.T., Raičević, S. Synthesis of fluorine substituted hydroxyapatite nanopowders and application of the central composite design for determination of its antimicrobial effects. Appl. Surf. Sci. 2014, 290, 346-352.
[301] Palanivelu, R., Saral, A.M., Kumar, A.R. Nanocrystalline hydroxyapatite prepared under various pH conditions. Spectrochim. Acta A 2014, 131, 37-41.
[302] Mohandes, F., Salavati-Niasari, M., Fereshteh, Z., Fathi, M. Novel preparation of hydroxyapatite nanoparticles and nanorods with the aid of complexing agents. Ceram. Int. 2014, 40, 12227-12233.
[303] Bi, Y.G., Xu, X.S. Study on nano-hydroxyapatite assisted preparing by ionic liquids. Adv. Mater. Res. 2014, 1015, 501-504.
[304] Sundrarajan, M., Jegatheeswaran, S., Selvam, S., Sanjeevi, N., Balaji, M. The ionic liquid assisted green synthesis of hydroxyapatite nanoplates by Moringa oleifera flower extract: a biomimetic approach. Mater. Des. 2015, 88, 1183-1190.
[305] Gentile, P., Wilcock, C.J., Miller, C.A., Moorehead, R., Hatton, P.V.
Process optimisation to control the physico-chemical characteristics of biomimetic nanoscale hydroxyapatites prepared using wet chemical precipitation. Materials 2015, 8, 2297-2310.
[306] Karimi, M., Hesaraki, S., Alizadeh, M., Kazemzadeh, A. Synthesis of
calcium phosphate nanoparticles in deep-eutectic choline chloride-urea medium: investigating the role of synthesis temperature on phase characteristics and physical properties. Ceram. Int. 2016, 42, 2780-2788.
[307] López-Macipe, A., Gómez-Morales, J., Rodríguez-Clemente, R. Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv. Mater. 1998, 10, 49-53.
[308] Siddharthan, A., Seshadri, S.K., Kumar, T.S.S. Rapid synthesis of calcium deficient hydroxyapatite nanoparticles by microwave irradiation. Trends Biomater. Artif. Organs 2005, 18, 110-113.
[309] Ioku, K., Yamauchi, S., Fujimori, H., Goto, S., Yoshimura, M. Hydrothermal preparation of fibrous apatite and apatite sheet. Solid State Ionics 2002, 151, 147-150.
[310] Chaudhry, A.A., Haque, S., Kellici, S., Boldrin, P., Rehman, I., Khalid, F.A., Darr, J.A. Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chem. Commun. 2006, 2286-2288.
[311] Cao, M., Wang, Y., Guo, C., Qi, Y., Hu, C. Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions. Langmuir 2004, 20, 4784-4786.
[312] Guo, X., Xiao, P. Effects of solvents on properties of nanocrystalline hydroxyapatite produced from hydrothermal process. J. Eur. Ceram. Soc. 2006, 26, 3383-3391.
[313] Xin, R., Yu, K. Ultrastructure characterization of hydroxyapatite nanoparticles synthesized by EDTA-assisted hydrothermal method. J. Mater. Sci. 2009, 44, 4205-4209.
[314] Zhang, H.B., Zhou, K.C., Li, Z.Y., Huang, S.P. Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J. Phys. Chem. Solids 2009, 70, 243-248.
[315] Sun, Y., Guo, G., Tao, D., Wang, Z. Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J. Phys. Chem. Solids 2007, 68, 373-377.
[316] Xin, R., Ren, F., Leng, Y. Synthesis and characterization of nano-crystalline calcium phosphates with EDTA-assisted hydrothermal method. Mater. Des. 2010, 31, 1691-1694.
[317] Yan, L., Li, Y., Deng, Z., Zhuang, J., Sun, X. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int. J. Inorg. Mater. 2001, 3, 633-637.
[318] Zhang, F., Zhou, Z., Yang, S., Mao, L., Chen, H., Yu, X. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Mater. Lett. 2005, 59, 1422-1425.
[319] Pathi, S.P., Lin, D.D., Dorvee, J.R., Estroff, L.A., Fischbach, C. Hydroxyapatite nanoparticle-containing scaffolds for the study of breast cancer bone metastasis. Biomaterials 2011, 32, 5112-5122.
[320] Zhu, A., Lu, Y., Si, Y., Dai, S. Frabicating hydroxyapatite nanorods using a biomacromolecule template. Appl. Surf. Sci. 2011, 257, 3174-3179.
[321] Wang, Y.Z., Fu, Y. Microwave-hydrothermal synthesis and characterization of hydroxyapatite nanocrystallites. Mater. Lett. 2011, 65, 3388-3390.
[322] Lin, K., Liu, X., Chang, J., Zhu, Y. Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors. Nanoscale 2011, 3, 3052-3055.
[323] Ren, F., Ding, Y., Ge, X., Lu, X., Wang, K., Leng, Y. Growth of one-dimensional single-crystalline hydroxyapatite nanorods. J. Cryst. Growth 2012, 349, 75-82.
[324] Nathanael, A.J., Hong, S.I., Mangalaraj, D., Ponpandian, N., Chen, P.C. Template-free growth of novel hydroxyapatite nanorings: formation mechanism and their enhanced functional properties. Cryst. Growth Des. 2012, 12, 3565-3574.
[325] Nathanael, A.J., Mangalaraj, D., Hong, S.I., Masuda, Y., Rhee, Y.H., Kim, H.W. Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method. Mater. Chem. Phys. 2013, 137, 967-976.
[326] Nagata, F., Yamauchi, Y., Tomita, M., Kato, K. Hydrothermal synthesis of hydroxyapatite nanoparticles and their protein adsorption behavior. J. Ceram. Soc. Jpn. 2013, 121, 797-801.
[327] Ramedani, A., Yazdanpanah, A., Moztarzadeh, F., Mozafari, M. On the use of nanoliposomes as soft templates for controlled nucleation and growth of hydroxyapatite nanocrystals under hydrothermal conditions. Ceram. Int. 2014, 40, 9377-9381.
[328] Nga, N.K., Giang, L.T., Huy, T.Q., Viet, P.H., Migliaresi, C. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering. Colloids Surf. B Biointerfaces 2014, 116, 666-673.
[329] Taheri, M.M., Kadir, M.R.A., Shokuhfar, T., Hamlekhan, A., Assadian, M., Shirdar, M.R., Mirjalili, A. Surfactant-assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods. Ceram. Int. 2015, 41, 9867-9872.
[330] Jin, X., Zhuang, J., Zhang, Z., Guo, H., Tan, J. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. J. Colloid Interf. Sci. 2015, 443, 125-130.
[331] Jin, X., Chen, X., Cheng, Y., Wang, L., Hu, B., Tan, J. Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate. J. Colloid Interf. Sci. 2015, 450, 151-158.
[332] Wang, Y., Ren, X., Ma, X., Su, W., Zhang, Y., Sun, X., Li, X. Alginate-intervened hydrothermal synthesis of hydroxyapatite nanocrystals with nanopores. Cryst. Growth Des. 2015, 15, 1949-1956.
[333] Byrappa, K., Haber, M. Handbook of hydrothermal technology: a technology for crystal growth and materials processing. Noyes Publications: New Jersey, USA, 2002; 893 pp.
[334] Yu-Song, P. Surface modification of nanocrystalline hydroxyapatite. Micro Nano Lett. 2011, 6, 129-132.
[335] Gopi, D., Govindaraju, K.M., Victor, C.A.P., Kavitha, L., Rajendiran,
N. Spectroscopic investigations of nanohydroxyapatite powders synthesized by conventional and ultrasonic coupled sol-gel routes. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2008, 70, 1243-1245.
[336] Rajabi-Zamani, A.H., Behnamghader, A., Kazemzadeh, A. Synthesis of nanocrystalline carbonated hydroxyapatite powder via nonalkoxide sol-gel method. Mater. Sci. Eng. C 2008, 28, 1326-1329.
[337] Sopyan, I., Toibah, A.R., Natasha, A.N. Nanosized bioceramic hydroxyapatite powders via sol-gel method. Int. J. Mech. Mater. Eng. 2008, 3, 133-138.
[338] Yuan, Y., Liu, C., Zhang, Y., Shan, X. Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template. Mater. Chem. Phys. 2008, 112, 275-280.
[339] Kuriakose, T.A., Kalkura, S.N., Palanichamy, M., Arivuoli, D., Dierks, K., Bocelli, G., Betzel, C. Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature. J. Cryst. Growth 2004, 263, 517-523.
[340] Sanosh, K.P., Chu, M.C., Balakrishnan, A., Lee, Y.J., Kim, T.N., Cho, S.J. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr. Appl. Phys. 2009, 9, 1459-1462.
[341] Darroudi, M., Eshtiagh-Hosseini, H., Housaindokht, M.R., Youssefi, A. Preparation and characterization of fluorohydroxyapatite nanopowders by nonalkoxide sol-gel method. Digest J. Nanomater. Biostruct. 2010, 5, 29-33.
[342] Jadalannagari, S., More, S., Kowshik, M., Ramanan, S.R. Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique. Mater. Sci. Eng. C 2011, 31, 1534-1538.
[343] Montazeri, N., Jahandideh, R., Biazar, E. Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations. Int. J. Nanomed. 2011, 6, 197-201.
[344] Vijayalakshmi, U., Rajeswari, S. Influence of process parameters on the sol-gel synthesis of nano hydroxyapatite using various phosphorus precursors. J. Sol-Gel Sci. Technol. 2012, 63, 45-55.
[345] Salimi, M.N., Bridson, R.H., Grover, L.M., Leeke, G.A. Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technol. 2012, 218, 109-118.
[346] Rogojan, R., Andronescu, E., Ghitulica, C., Birsan, M., Voicu, G., Stoleriu, S., Melinescu, A., Ianculescu, A. Analysis of the structure and morphology of hydroxyapatite nanopowder obtained by sol-gel and pirosol methods. Adv. Mater. Res. 2012, 590, 63-67.
[347] Bakan, F., Laçin, O., Sarac, H. A novel low temperature sol-gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol. 2013, 233, 295-302.
[348] Kurgan, N., Karbivskyy, V., Kasyanenko, V. Morphology and electronic structure of nanoscale powders of calcium hydroxyapatite. Nanoscale Res. Lett. 2015, 10, 41 (5 pages).
[349] Li, B., Wang, X.L., Guo, B., Xiao, Y.M., Fan, H.S., Zhang, X.D. Preparation and characterization of nano hydroxyapatite. Key Eng. Mater. 2007, 330-332, 235-238.
[350] Tas, A.C. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials 2000, 21, 1429-1438.
[351] Wu, Y.S., Lee, Y.H., Chang, H.C. Preparation and characteristics of nanosized carbonated apatite by urea addition with coprecipitation method. Mater. Sci. Eng. C 2009, 29, 237-241.
[352] Swain, S.K., Sarkar, D. A comparative study: hydroxyapatite spherical nanopowders and elongated nanorods. Ceram. Int. 2011, 37, 2927-2930.
[353] Martínez-Pérez, C.A., García-Montelongo, J., Garcia Casillas, P.E., Farias-Mancilla, J.R., Romero, M.H. Preparation of hydroxyapatite nanoparticles facilitated by the presence of β-cyclodextrin. J. Alloys Compd. 2012, 536, Suppl. 1, S432-S436.
[354] Rameshbabu, N., Kumar, T.S.S., Murugan, R., Rao, K.P. Mechanochemical synthesis of nanocrystalline fluorinated hydroxyapatite. Int. J. Nanosci. 2005, 4, 643-649.
[355] Yeong, K.C.B., Wang, J., Ng, S.C. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 2001, 22, 2705-2712.
[356] Coreno, J.A., Coreno, O.A., Cruz, R.J.J., Rodriguez, C.C. Mechanochemical synthesis of nanocrystalline carbonate-substituted hydroxyapatite. Optical Mater. 2005, 27, 1281-1285.
[357] el Briak-Ben Abdeslam, H., Mochales, C., Ginebra, M.P., Nurit, J., Planell J.A., Boudeville, P. Dry mechanochemical synthesis of hydroxyapatites from dicalcium phosphate dihydrate and calcium oxide: a kinetic study. J. Biomed. Mater. Res, A 2003, 67A, 927-937.
[358] Nakamura, S., Isobe, T., Senna, M. Hydroxyapatite nano sol prepared via a mechanochemical route. J. Nanopart. Res. 2001, 3, 57-61.
[359] Nasiri-Tabrizi, B., Honarmandi, P., Ebrahimi-Kahrizsangi, R., Honarmandi, P. Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater. Lett. 2009, 63, 543-546.
[360] Sharifah, A., Iis, S., Mohd, H., Singh, R. Mechanochemical synthesis of nanosized hydroxyapatite powder and its conversion to dense bodies. Mater. Sci. Forum 2011, 694, 118-122.
[361] Fereshteh, Z., Fathi, M., Mozaffarinia, R. Synthesis and characterization of fluorapatite nanoparticles via a mechanochemical method. J. Cluster Sci. 2014, 26, 1041-1053.
[362] Silva, C.C., Graça, M.P.F., Valente, M.A., Sombra, A.S.B. Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling. J. Mater. Sci. 2007, 42, 3851-3855.
[363] Zahrani, E.M., Fathi, M.H. The effect of high-energy ball milling parameters on the preparation and characterization of fluorapatite nanocrystalline powder. Ceram. Int. 2009, 35, 2311-2323.
[364] Mochales, C., Wilson, R.M., Dowker, S.E.P., Ginebra, M.P. Dry mechanosynthesis of nanocrystalline calcium deficient hydroxyapatite: structural characterization. J. Alloys Compd. 2011, 509, 7389-7394.
[365] Nasiri-Tabrizi, B., Fahami, A., Ebrahimi-Kahrizsangi, R. Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials. Ceram. Int. 2013, 39, 5751-5763.
[366] Fahami, A., Nasiri-Tabrizi, B. Mechanochemical behavior of CaCO3–P2O5–CaF2 system to produce carbonated fluorapatite nanopowder. Ceram. Int. 2014, 40, 14939-14946.
[367] Mandal, T., Mishra, B.K., Garg, A., Chaira, D. Optimization of milling parameters for the mechanosynthesis of nanocrystalline hydroxyapatite. Powder Technol. 2014, 253, 650-656.
[368] Fathi, M.H., Zahrani, E.M. Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying. J. Alloys Compd. 2009, 475, 408-414.
[369] Fathi, M.H., Zahrani, E.M. Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite. J. Cryst. Growth 2009, 311, 1392-1403.
[370] Xu, J.L., Khor, K.A., Dong, Z.L., Gu, Y.W., Kumar, R., Cheang, P. Preparation and characterization of nanosized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Mater. Sci. Eng. A 2004, 374, 101-108.
[371] Xu, J.L., Khor, K.A., Kumar, R., Cheang, P. RF induction plasma synthesized calcium phosphate nanoparticles. Key Eng. Mater. 2006, 309-311, 511-514.
[372] Ruksudjarit, A., Pengpat, K., Rujijanagul, G., Tunkasiri, T. Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Curr. Appl. Phys. 2008, 8, 270-272.
[373] Cho, J.S., Kang, Y.C. Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J. Alloys Compd. 2008, 464, 282-287.
[374] Cho, J.S., Rhee, S.H. Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. J. Eur. Ceram. Soc. 2013, 33, 233-241.
[375] Wang, X., Zhuang, J., Peng, Q., Li, Y. Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods. Adv. Mater. 2006, 18, 2031-2034.
[376] Shirkhanzadeh, M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J. Mater. Sci. Mater. Med. 1998, 9, 67-72.
[377] Montalbert-Smith, R., Palma, C.A., Arias, J.D., Montero, M.L. Formation of hydroxyapatite nanosized and other apatites by electrolysis process. Key Eng. Mater. 2009, 396-398, 579-582.
[378] Gao, J.H., Guan, S.K., Chen, J., Wang, L.G., Zhu, S.J., Hu, J.H., Ren, Z.W. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg–Zn–Ca alloy. Appl. Surf. Sci. 2011, 257, 2231-2237.
[379] Nur, A., Rahmawati, A., Ilmi, N.I., Affandi, S., Widjaja, A., Setyawan, H. Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method. AIP Conf. Proc. 2014, 1586, 86-91.
[380] Krishna, D.S.R., Siddharthan, A., Seshadri, S.K., Kumar, T.S.S. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J. Mater. Sci. Mater. Med. 2007, 18, 1735-1743.
[381] Lak, A., Mazloumi, M., Mohajerani, M.S., Zanganeh, S., Shayegh, M.R., Kajbafvala, A., Arami, H., Sadrnezhaad, S.K. Rapid formation of mono-dispersed hydroxyapatite nanorods with narrow-size distribution via microwave irradiation. J. Am. Ceram. Soc. 2008, 91, 3580-3584.
[382] Kalita, S.J., Verma, S. Nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization. Mater. Sci. Eng. C 2010, 30, 295-303.
[383] Mishra, V.K., Srivastava, S.K., Asthana, B.P., Kumar, D. Structural and spectroscopic studies of hydroxyapatite nanorods, formed via microwave-assisted synthesis route. J. Am. Ceram. Soc. 2012, 95, 2709-2715.
[384] Smolen, D., Chudoba, T., Malka, I., Kedzierska, A., Lojkowski, W., Swieszkowski, W., Kurzydlowski, K.J., Kolodziejczyk-Mierzynska, M., Lewandowska-Szumiel, M. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation. Int. J. Nanomed. 2013, 8, 653-668.
[385] Amer, W., Abdelouahdi, K., Ramananarivo, H.R., Zahouily, M., Fihri, A., Djessas, K., Zahouily, K., Varma, R.S., Solhy, A. Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates. CrystEngComm 2014, 16, 543-549.
[386] Nabiyouni, M., Zhou, H., Luchini, T.J.F., Bhaduri, S.B. Formation of nanostructured fluorapatite via microwave assisted solution combustion synthesis. Mater. Sci. Eng. C 2014, 37, 363-368.
[387] Shavandi, A., Bekhit, A.E.D.A., Ali, A., Sun, Z. Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater. Chem. Phys. 2015, 149, 607-616.
[388] Hassan, M.N., Mahmoud, M.M., El-Fattah, A.A., Kandil, S. Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceram. Int. 2016, 42, 3725-3744.
[389] Shih, W.J., Chen, Y.F., Wang, M.C., Hon, M.H. Crystal growth and morphology of the nanosized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method. J. Cryst. Growth 2004, 270, 211-218.
[390] Furuichi, K., Oaki, Y., Imai, H. Preparation of nanotextured and nanofibrous hydroxyapatite through dicalcium phosphate with gelatin. Chem. Mater. 2006, 18, 229-234.
[391] Zhang, Y., Lu, J. The transformation of single-crystal calcium phosphate ribbon-like fibres to hydroxyapatite spheres assembled from nanorods. Nanotechnology 2008, 19, 155608 (10 pages).
[392] Ito, H., Oaki, Y., Imai, H. Selective synthesis of various nanoscale morphologies of hydroxyapatite via an intermediate phase. Cryst. Growth Des. 2008, 8, 1055-1059.
[393] Hajiloo, N., Ziaie, F., Mehtieva, S.I. Gamma-irradiated EPR response of nano-structure hydroxyapatite synthesised via hydrolysis method. Radiat. Prot. Dosim. 2012, 148, 487-491.
[394] Chen, F., Zhu, Y. Microwave-assisted synthesis of calcium phosphate nanostructured materials in liquid phase. Prog. Chem. 2015, 27, 459-471.
[395] Wang, M.C., Chen, H.T., Shih, W.J., Chang, H.F., Hon, M.H., Hung, I.M. Crystalline size, microstructure and biocompatibility of hydroxyapatite nanopowders by hydrolysis of calcium hydrogen phosphate dihydrate (DCPD). Ceram. Int. 2015, 41, 2999-3008.
[396] Yoruç, A.B.H., Koca, Y. Double step stirring: a novel method for precipitation of nano-sized hydroxyapatite powder. Digest J. Nanomater. Biostructures 2009, 4,
73-81.
[397] Jarudilokkul, S., Tanthapanichakoon, W., Boonamnuayvittaya, V. Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloids Surf. A Physicochem. Eng. Asp. 2007, 296, 149-153.
[398] Guo, G., Sun, Y., Wang, Z., Guo, H. Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceram. Int. 2005, 31, 869-872.
[399] Lim, G.K., Wang, J., Ng, S.C., Gan, L.M. Formation of nanocrystalline hydroxyapatite in nonionic surfactant emulsions. Langmuir 1999, 15, 7472-7477.
[400] Sun, Y., Guo, G., Wang, Z., Guo, H. Synthesis of single-crystal HAP nanorods. Ceram. Int. 2006, 32, 951-954.
[401] Bose, S., Saha, S.K. Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem. Mater. 2003, 15, 4464-4469.
[402] Jiang, F.X., Lu, X.Y., Zhang, M.L., Weng, J. Regulating size, morphology and dispersion of nano-crystallites of hydroxyapatite by pH value and temperature in microemulsion system. Key Eng. Mater. 2008, 361-363, 195-198.
[403] Li, H., Zhu, M.Y., Li, L.H., Zhou, C.R. Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions. J. Mater. Sci. 2008, 43, 384-389.
[404] Koetz, J., Baier, J., Kosmella, S. Formation of zinc sulfide and hydroxylapatite nanoparticles in polyelectrolyte-modified microemulsions. Colloid Polym. Sci. 2007, 285, 1719-1726.
[405] Lim, H.N., Kassim, A., Huang, N.M. Preparation and characterization of calcium phosphate nanorods using reverse microemulsion and hydrothermal processing routes. Sains Malaysiana 2010, 39, 267-273.
[406] Furuzono, T., Walsh, D., Sato, K., Sonoda, K., Tanaka, J. Effect of reaction temperature on the morphology and size of hydroxyapatite nanoparticles in an emulsion system. J. Mater. Sci. Lett. 2001, 2, 111-114.
[407] Sadjadi, M.A.S., Akhavan, K., Zare, K. Preparation of hydroxyapatite nanoparticles by reverse microemulsions and polyelectrolyte-modified microemulsions. Res. J. Chem. Environment 2011, 15, 959-962.
[408] García, C., García, C., Paucar, C. Controlling morphology of hydroxyapatite nanoparticles through hydrothermal microemulsion chemical synthesis. Inorg. Chem. Commun. 2012, 20, 90-92.
[409] Fan, T., Sun, Y., Ma, L. Controllable synthesis of spheroid hydroxyapatite nanoparticles by reverse microemulsion method. Adv. Mater. Res. 2013, 602-604, 227-230.
[410] Amin, S., Siddique, T., Mujahid, M., Shah, S.S. Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors. J. Chem. Soc. Pakistan 2015, 37, 79-85.
[411] Shen, S.C., Chia, L., Ng, W.K., Dong, Y.C., Tan, R.B.H. Solid-phase steam-assisted synthesis of hydroxyapatite nanorods and nanoparticles. J. Mater. Sci. 2010, 45, 6059-6067.
[412] Jevtić, M., Mitrić, M., Škapin, S., Jančar, B., Ignjatović, N., Uskoković, D. Crystal structure of hydroxyapatite nano-rods synthesized by sonochemical homogenous precipitation. Cryst. Growth Des. 2008, 8, 2217-2222.
[413] Utara, S., Klinkaewnarong, J. Sonochemical synthesis of nano-hydroxyapatite using natural rubber latex as a templating agent. Ceram. Int. 2015, 41, 14860-14867.
[414] Cóta, L.F., Licona, K.P.M., Lunz, J.N., Ribeiro, A.A., Morejón, L., de Oliveira, M.V., Pereira, L.C. Hydroxyapatite nanoparticles: synthesis by sonochemical method and assessment of processing parameters via experimental design. Mater. Sci. Forum 2016, 869, 896-901.
[415] Wang, Y.J., Lai, C., Wei, K., Chen, X., Ding, Y., Wang, Z.L. Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology 2006, 17, 4405-4412.
[416] Chen, F., Zhu, Y.J., Wang, K.W., Zhao, K.L. Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. Cryst. Eng. Comm. 2011, 13, 1858-1863.
[417] Cao, L.Y., Zhang, C.B., Huang, J.F. Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceram. Int. 2005, 31, 1041-1044.
[418] Liu, J., Wu, Q., Ding, Y. Self-assembly and fluorescent modification of hydroxyapatite nanoribbon spherulites. Eur. J. Inorg. Chem. 2005, 20, 4145-4149.
[419] Huang, J., Jayasinghe, S.N., Su, X., Ahmad, Z., Best, S.M., Edirisinghe, M.J., Brooks, R.A., Rushton, N., Bonfield, W. Electrostatic atomisation spraying: a novel deposition method for nano-sized hydroxyapatite. Key Eng. Mater. 2006, 309-311, 635-638.
[420] Okada, M., Furuzono, T. Hydroxylapatite nanoparticles: fabrication methods and medical applications. Sci. Technol. Adv. Mater. 2012, 13, 064103 (14 pages).
[421] Uota, M., Arakawa, H., Kitamura, N., Yoshimura, T., Tanaka, J., Kijima, T. Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach. Langmuir 2005, 21, 4724-4728.
[422] Chu, M., Liu, G. Preparation and characterization of hydroxyapatite/liposome core – shell nanocomposites. Nanotechnology 2005, 16, 1208-1212.
[423] Huang, F., Shen, Y., Xie, A., Zhu, J., Zhang, C., Li, S., Zhu, J. Study on synthesis and properties of hydroxyapatite nanorods and its complex containing biopolymer. J. Mater. Sci. 2007, 42, 8599-8605.
[424] Wang, A., Liu, D., Yin, H., Wu, H., Wada, Y., Ren, M., Jiang, T., Cheng, X., Xu, Y. Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers. Mater. Sci. Eng. C 2007, 27, 865-869.
[425] Ye, F., Guo, H., Zhang, H. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants. Nanotechnology 2008, 19, 245605 (7 pages).
[426] Han, Y., Wang, X., Li, S. A simple route to prepare stable hydroxyapatite nanoparticles suspension. J. Nanoparticle Res. 2009, 11, 1235-1240.
[427] Tseng, Y.H., Kuo, C.S., Li, Y.Y., Huang, C.P. Polymer-assisted synthesis of hydroxyapatite nanoparticle. Mater. Sci. Eng. C 2009, 29, 819-822.
[428] Klinkaewnarong, J., Swatsitang, E., Maensiri, S. Nanocrystalline hydroxyapatite powders by a chitosan-polymer complex solution route: synthesis and characterization. Solid State Sci. 2009, 11, 1023-1027.
[429] Li, Y., Li, D., Xu, Z. Synthesis of hydroxyapatite nanorods assisted by Pluronics. J. Mater. Sci. 2009, 44, 1258-1263.
[430] Nayar, S., Sinha, M.K., Basu, D., Sinha, A. Synthesis and sintering of biomimetic hydroxyapatite nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med. 2006, 17, 1063-1068.
[431] Yao, X., Yao, H., Li, G., Li, Y. Biomimetic synthesis of needle-like nano-hydroxyapatite templated by double-hydrophilic block copolymer. J. Mater. Sci. 2010, 45, 1930-1936.
[432] Hong, Y., Fan, H., Li, B., Guo, B., Liu, M., Zhang, X. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater. Sci. Eng. R 2010, 70, 225-242.
[433] Mostaghaci, B., Fathi, M.H., Sheikh-Zeinoddin, M., Soleimanian-Zad, S. Bacterial synthesis of nanostructured hydroxyapatite using Serratia marcescens PTCC 1187. Int. J. Nanotechnol. 2009, 6, 1015-1030.
[434] Nathanael, A.J., Hong, S.I., Mangalaraj, D., Chen, P.C. Large scale synthesis of hydroxyapatite nanospheres by high gravity method. Chem. Eng. J. 2011, 173, 846-854.
[435] Parisi, M., Stoller, M., Chianese, A. Production of nanoparticles of hydroxy apatite by using a rotating disk reactor. Chem. Eng. Trans. 2011, 24, 211-216.
[436] Yuan, J., Wu, Y., Zheng, Q., Xie, X. Synthesis and characterization of nano hydroxylapatite by reaction precipitation in impinging streams. Adv. Mater. Res. 2011, 160-162, 1301-1308.
[437] Mohn, D., Doebelin, N., Tadier, S., Bernabei, R.E., Luechinger, N.A., Stark, W.J., Bohner, M. Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. J. Mater. Chem. 2011, 21, 13963-13972.
[438] Kandori, K., Kuroda, T., Togashi, S., Katayama, E. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption. J. Phys. Chem. B 2011, 115, 653-659.
[439] He, W., Kjellin, P., Currie, F., Handa, P., Knee, C.S., Bielecki, J., Wallenberg, L.R., Andersson, M. Formation of bone-like nanocrystalline apatite using self-assembled liquid crystals. Chem. Mater. 2012, 24, 892-902.
[440] Chandanshive, B.B., Rai, P., Rossi, A.L., Ersen, O., Khushalani, D. Synthesis of hydroxyapatite nanotubes for biomedical applications. Mater. Sci. Eng. C 2013, 33, 2981-2986.
[441] Mousa, S., Hanna, A. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste. Mater. Res. Bull. 2013, 48, 823-828.
[442] Wang, X., Qian, C., Yu, X. Synthesis of nano-hydroxyapatite via microbial method and its characterization. Appl. Biochem. Biotechnol. 2014, 173, 1003-1010.
[443] Zhang, Y., Wang, J., Sharma, V.K. Designed synthesis of hydroxyapatite nanostructures: bullet-like single crystal and whiskered hollow ellipsoid. J. Mater. Sci. Mater. Med. 2014, 25, 1395-1401.
[444] Omori, Y., Okada, M., Takeda, S., Matsumoto, N. Fabrication of dispersible calcium phosphate nanocrystals via a modified Pechini method under non-stoichiometric conditions. Mater. Sci. Eng. C 2014, 42, 562-568.
[445] He, W., Fu, Y., Andersson, M. Morphological control of calcium phosphate nanostructures using lyotropic liquid crystals. J. Mater. Chem. B 2014, 2, 3214-3220.
[446] Holopainen, J., Santala, E., Heikkilä, M., Ritala, M. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite. Mater. Sci. Eng. C 2015, 45, 469-476.
[447] Okada, M., Matsumoto, T. Synthesis and modification of apatite nanoparticles for use in dental and medical applications. Jpn. Dent. Sci. Rev. 2015, 51, 85-95.
[448] Peng, H., Wang, J., Lv, S., Wen, J., Chen, J.F. Synthesis and characterization of hydroxyapatite nanoparticles prepared by a high-gravity precipitation method. Ceram. Int. 2015, 41, 14340-14349.
[449] Costa, D.O., Dixon, S.J., Rizkalla, A.S. One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis. ACS Appl. Mater. Interf. 2012, 4, 1490-1499.
[450] He, J., Zhang, K., Wu, S., Cai, X., Chen, K., Li, Y., Sun, B., Jia, Y., Meng, F., Jin, Z., Kong, L., Liu, J. Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water. J. Hazard. Mater. 2016, 303, 119-130.
[451] Shuk, P., Suchanek, W.L., Hao, T., Gulliver, E., Riman, R.E., Senna, M., TenHuisen, K.S., Janas, V.F. Mechanochemical-hydrothermal preparation of crystalline hydroxyapatite powders at room temperature. J. Mater. Res. 2001, 16, 1231-1234.
[452] Suchanek, W.L., Shuk, P., Byrappa, K., Riman, R.E., TenHuisen, K.S., Janas, V.F. Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 2002, 23, 699-710.
[453] Abdel-Aal, E.A., El-Midany, A.A., El-Shall, H. Mechanochemical-hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design. Mater. Chem. Phys. 2008, 112, 202-207.
[454] Ji, Y., Wang, A., Wu, G., Yin, H., Liu, S., Chen, B., Liu, F., Li, X. Synthesis of different sized and porous hydroxyapatite nanorods without organic modifiers and their 5-fluorouracil release performance. Mater. Sci. Eng. C 2015, 57, 14-23.
[455] Yang, Q., Wang, J.X., Guo, F., Chen, J.F. Preparation of hydroxyaptite nanoparticles by using high-gravity reactive precipitation combined with hydrothermal method. Ind. Eng. Chem. Res. 2010, 49, 9857-9863.
[456] Song, X., Ling, F., Li, H., Gao, Z., Chen, X. Tuned morphological electrospun hydroxyapatite nanofibers via pH. J. Bionic Eng. 2012, 9, 478-483.
[457] Tadic, D., Veresov, A., Putlayev, V.I., Epple, M. In-vitro preparation of nanocrystalline calcium phosphates as bone substitution materials in surgery. Mater.-Wiss. u. Werkstofftech. 2003, 34, 1048-1051.
[458] Yang, Q., Wang, J.X., Shao, L., Wang, Q.A., Guo, F., Chen, J.F., Gu, L., An, Y.T. High throughput methodology for continuous preparation of hydroxyapatite nanoparticles in a microporous tube-in-tube microchannel reactor. Ind. Eng. Chem. Res. 2010, 49, 140-147.
[459] Liu, K., Qin, J. Droplet-fused microreactors for room temperature synthesis of nanoscale needle-like hydroxyapatite. Nanotechnology 2013, 24, 125602 (7 pages).
[460] Fujii, E., Kawabata, K., Shirosaki, Y., Hayakawa, S., Osaka, A. Fabrication of calcium phosphate nanoparticles in a continuous flow tube reactor. J. Ceram. Soc. Jpn. 2015, 123, 101-105.
[461] An, G.H., Wang, H.J., Kim, B.H., Jeong, Y.G., Choa, Y.H. Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition. Mater. Sci. Eng. A 2007, 448-451, 821-824.
[462] Qiu, Y., Xia, H., Jiang, H. Fabrication of nano-hydroxyapatite using a novel ultrasonic atomization precipitation method. J. Nanosci. Nanotechnol. 2010, 10, 2213-2218.
[463] Rouhani, P., Taghavinia, N., Rouhani, S. Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrason. Sonochem. 2010, 17, 853-856.
[464] Giardina, M.A., Fanovich, M.A. Synthesis of nanocrystalline hydroxyapatite from Ca(OH)2 and H3PO4 assisted by ultrasonic irradiation. Ceram. Int. 2010, 36, 1961-1969.
[465] Girija, E.K., Kumar, G.S., Thamizhavel, A., Yokogawa, Y., Kalkura, S.N. Role of materialprocessing on the thermalstability and sinterability of nanocrystalline hydroxyapatite. Powder Technol. 2012, 225, 190-195.
[466] Gopi, D., Indira, J., Kavitha, L., Sekar, M., Mudali, U.K. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method. Spectrochim. Acta A 2012, 93, 131-134.
[467] Kojima, Y., Kitazawa, K., Nishimiya, N. Synthesis of nano-sized hydroxyapatite by ultrasound irradiation. J. Phys. Conf. Series 2012, 339, 12001 (4 pages).
[468] Zhang, Y.G., Zhu, Y.J., Chen, F., Wu, J. Ultralong hydroxyapatite nanowires synthesized by solvothermal treatment using a series of phosphate sodium salts. Mater. Lett. 2015, 144, 135-137.
[469] Brundavanam, S., Poinern, G.E.J., Fawcett, D. Synthesis of a hydroxyapatite nanopowder via ultrasound irradiation from calcium hydroxide powders for potential biomedical applications. Nanosci. Nanoeng. 2015, 3, 1-7.
[470] Sadjadi, M.S., Meskinfam, M., Sadeghi, B., Jazdarreh, H., Zare, K. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Mater. Chem. Phys. 2010, 124, 217-222.
[471] Pandi, K., Viswanathan, N. In situ precipitation of nano-hydroxyapatite in gelatin polymatrix towards specific fluoride sorption. Int. J. Biol. Macromol. 2015, 74, 351-359.
[472] Mhin, S.W., Ryu, J.H., Kim, K.M., Park, G.S., Ryu, H.W., Shim, K.B., Sasaki, T., Koshizaki, N. Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium. Appl. Phys. A 2009, 96A, 435-440.
[473] Musaev, O.R., Dusevich, V., Wieliczka, D.M., Wrobel, J.M., Kruger, M.B. Nanoparticle fabrication of hydroxyapatite by laser ablation in water. J. Appl. Phys. 2008, 104, 084316 (5 pages).
[474] Boutinguiza, M., Lusquiños, F., Riveiro, A., Comesaña, R., Pou, J. Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture. Appl. Surf. Sci. 2009, 255, 5382-5385.
[475] Boutinguiza, M., Pou, J., Lusquiños, F., Comesaña, R., Riveiro, A. Production of calcium phosphate nanoparticles by laser ablation in liquid. Physics Procedia 2011, 12, 54-59.
[476] Boutinguiza, M., Comesaña, R., Lusquiños, F., Riveiro, A., Pou, J. Production of nanoparticles from natural hydroxylapatite by laser ablation. Nanoscale Res. Lett. 2011, 6, 1-5.
[477] Zuo, Y., Li, Y.B., Wei, J., Yan, Y. Influence of ethylene glycol on the formation of calcium phosphate nanocrystals. J. Mater. Sci. Technol. 2003, 19, 628-630.
[478] Barinov, S.M., Belonogov, E.K., Ievlev, V.M., Kostyuchenko, A.V., Putlyaev, V.I., Tret’yakov, Y.D., Smirnov, V.V., Fadeeva, I.V. Synthesis of dense nanocrystalline hydroxyapatite films. Dokl. Phys. Chem. 2007, 412, 15-18.
[479] Mello, A., Mavropoulos, E., Hong, Z., Ketterson, J.B., Rossi, A.M. Nanometer coatings of hydroxyapatite characterized by glancing-incidence X-ray diffraction. Key Eng. Mater. 2009, 396-398, 369-372.
[480] Nassif, N., Martineau, F., Syzgantseva, O., Gobeaux, F., Willinger, M., Coradin, T., Cassaignon, S., Azaïs, T., Giraud-Guille, M.M. In vivo inspired conditions to synthesize biomimetic hydroxyapatite. Chem. Mater. 2010, 22, 3653-3663.
[481] Iafisco, M., Morales, J.G., Hernández-Hernández, M.A., García-Ruiz, J.M., Roveri, N. Biomimetic carbonate-hydroxyapatite nanocrystals prepared by vapor diffusion. Adv. Eng. Mater. 2010, 12, B218-B223.
[482] Iafisco, M., Delgado-López, J.M., Gómez-Morales, J., Hernández- Hernández, M.A., Rodríguez-Ruiz, I., Roveri, N. Formation of calcium phosphates by vapour diffusion in highly concentrated ionic micro-droplets. Cryst. Res. Technol. 2011, 46, 841-846.
[483] Rivera-Muñoz, E.M., Velázquez-Castillo, R., Huirache-Acuña, R., Cabrera-Torres, J.L., Arenas-Alatorre, J. Synthesis and characterization of hydroxyapatite-based nanostructures: nanoparticles, nanoplates, nanofibers and nanoribbons. Mater. Sci. Forum 2012, 706-709, 589-594.
[484] Zhou, C., Hong, Y., Zhang, X. Applications of nanostructured calcium phosphate in tissue engineering. Biomater. Sci. 2013, 1, 1012-1028.
[485] Zhao, H., Zhu, Y.D., Sun, J., Wei, D., Wang, K.F., Liu, M., Fan, H.S., Zhang, X.D. Synthesis of hollow hydroxyapatite nanospheres by the control of nucleation and growth in a two phase system. Chem. Comm. 2014, 50, 12519-12522.
[486] Lee, J.H., Kim, Y.J. Hydroxyapatite nanofibers fabricated through electrospinning and sol-gel process. Ceram. Int. 2014, 40, 3361-3369.
[487] Hui, J., Wang, X. Hydroxyapatite nanocrystals: colloidal chemistry, assembly and their biological applications. Inorg. Chem. Front. 2014, 1, 215-225.
[488] Luo, P., Nieh, T.G. Synthesis of ultrafine hydroxyapatite particles by a spray dry method. Mater. Sci. Eng. C 1995, 3, 75-78.
[489] Chen, F., Wang, Z.C., Chang, J.L. Preparation and characterization of nanosized hydroxyapatite particles and hydroxyapatite / chitosan nano-composite for use in biomedical materials. Mater. Lett. 2002, 57, 858-861.
[490] Sarig, S., Kahana, F. Rapid formation of nanocrystalline apatite. J. Cryst. Growth 2002, 237-239, 55-59.
[491] Bose, S., Saha, S.K. Synthesis of hydroxyapatite nanopowders via sucrose-templated sol-gel method. J. Am. Ceram. Soc. 2003, 86, 1055-1057.
[492] Han, Y., Li, S., Wang, X., Chen, X. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method. Mater. Res. Bull. 2004, 39, 25-32.
[493] Liu, D.M., Yang, Q., Troczynski, T., Tseng, W.J. Structural evolution of sol-gel-derived hydroxyapatite. Biomaterials 2002, 23, 1679-1687.
[494] Liu, D.M., Troczynski, T., Tseng, W.J. Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 2001, 22, 1721-1730.
[495] Wang, F., Li, M.S., Lu, Y.P., Ge, S.S. Synthesis of nanocrystalline hydroxyapatite powders in stimulated body fluid. J. Mater. Sci. 2005, 40, 2073-2076.
[496] Wang, J., Shaw, L.L. Synthesis of high purity hydroxyapatite nanopowder via sol-gel combustion process. J. Mater. Sci. Mater. Med. 2009, 20, 1223-1227.
[497] Varma, H.K., Kalkura, S.N., Sivakumar, R. Polymeric precursor route for the preparation of calcium phosphate compounds. Ceram. Int. 1998, 24, 467-470.
[498] Ghosh, S.K., Roy, S.K., Kundu, B., Datta, S., Basu, D. Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Mater. Sci. Eng. B 2011, 176, 14-21.
[499] Loher, S., Stark, W.J., Maciejewski, M., Baiker, A., Pratsinis, S.E., Reichardt, D., Maspero, F., Krumeich, F., Günther, D. Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis. Chem. Mater. 2005, 17, 36-42.
[500] Zheo, J., Dong, X., Bian, M., Zhao, J., Zhang, Y. Sun, Y., Chen, J., Wang, X. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite. Appl. Surf. Sci. 2014, 314, 1026-1033.
[501] Wagner, D.E., Lawrence, J., Bhaduri, S.B. Microwave-assisted solution combustion synthesis of high aspect ratio calcium phosphate nanoparticles. J. Mater. Res. 2013, 28, 3119-3129.
[502] Trommer, R.M., Santos, L.A., Bergmann, C.P. Nanostructured hydroxyapatite powders produced by a flame-based technique. Mater. Sci. Eng. C 2009, 29, 1770-1775.
[503] Chow, L.C., Sun, L., Hockey, B. Properties of nanostructured hydroxyapatite prepared by a spray drying technique. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 543-551.
[504] Li, J., Chen, Y.P., Yin, Y., Yao, F., Yao, K. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 2007, 28, 781-790.
[505] Zhai, Y., Cui, F.Z., Wang, Y. Formation of nano hydroxyapatite on recombinant human like collagen fibrils. Curr. Appl. Phys. 2005, 5, 429-432.
[506] Liou, S.C., Chen, S.Y., Liu, D.M. Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect ratios. Biomaterials 2003, 24, 3981-3988.
[507] Liou, S.C., Chen, S.Y., Liu, D.M. Manipulation of nanoneedle and nanosphere apatite/poly(acrylic acid) nanocomposites. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 73B, 117-122.
[508] Amjad, Z. Performance of polymeric additives as HA crystal growth inhibitors. Phosphorus Res. Bull. 1995, 5, 1-12.
[509] Kamitahara, M., Kawashita, M., Kokubo, T., Nakamura, T. Effect of polyacrylic acid on the apatite formation of a bioactive ceramic in a simulated body fluid: fundamental examination of the possibility of obtaining bioactive glass-ionomer cements for orthopedic use. Biomaterials 2001, 22, 3191-3196.
[510] Wang, X., Li, Y., Wei, J., de Groot, K. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials 2002, 23, 4787-4791.
[511] Sinha, A., Nayar, S., Agrawak, A.C. Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic polymers and biopolymers. J. Am. Ceram. Soc. 2003, 86, 357-359.
[512] Liao, S., Watari, F., Zhu, Y., Uo, M., Akasaka, T., Wang, W., Xu, G., Cui, F. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dent. Mater. 2007, 23, 1120-1128.
[513] Gonzalez-McQuire, R., Chane-Ching, J.Y., Vignaud, E., Lebugle, A., Mann, S. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. J. Mater. Chem. 2004, 14, 2277-2281.
[514] Rosseeva, E.V., Golovanova, O.A., Frank-Kamenetskaya, O.V. The influence of amino acids on the formation of nanocrystalline hydroxyapatite. Glass Phys. Chem. 2007, 33, 283-286.
[515] Zhan, J., Tseng, Y.H., Chan, J.C.C., Mou, C.Y. Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation. Adv. Funct. Mater. 2005, 15, 2005-2010.
[516] Xu, A.W., Ma, Y., Cölfen, H. Biomimetic mineralization. J. Mater. Chem. 2007, 17, 415-449.
[517] Pileni, M. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater. 2003, 12, 145-150.
[518] Wu, Y., Bose, S. Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir 2005, 21, 3232-3234.
[519] Wei, K., Lai, C., Wang, Y. Solvothermal synthesis of calcium phosphate nanowires under different pH conditions. J. Macromol. Sci. A 2006, 43A, 1531-1540.
[520] Lai, C., Tang, S.Q., Wang, Y.J., Wei, K., Zhang, S.Y. Insight into shape control mechanism of calcium phosphate nanopartiles in reverse micelles solution. Synth. React. Inorg. Met. Met. Org. Nano-Metal Chem. 2005, 35, 717-725.
[521] Banerjee, A., Bandyopadhyay, A., Bose, S. Hydroxyapatite nanopowders: synthesis, densification and cell-materials interaction. Mater. Sci. Eng. C 2007, 27, 729-735.
[522] Han, J.Y., Tan, T.T.Y., Loo, J.S.C. Utilizing inverse micelles to synthesize calcium phosphate nanoparticles as nano-carriers. J. Nanoparticle Res. 2011, 13, 3441-3454.
[523] Shchukin, D.G., Sukhorukov, G.B., Möhwald, H. Biomimetic fabrication of nanoengineered hydroxyapatite/polyelectrolyte composite shell. Chem. Mater. 2003, 15, 3947-3950.
[524] Mateus, A.Y.P., Ferraz, M.P., Monteiro, F.J. Microspheres based on hydroxyapatite nanoparticles aggregates for bone regeneration. Key Eng. Mater. 2007, 330-332, 243-246.
[525] Nguyen, N.K., Leoni, M., Maniglio, D., Migliaresi, C. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests. J. Biomater. Appl. 2012, 28, 49-61.
[526] Mossaad, C., Tan, M.C., Starr, M., Payzant, E.A., Howe, J.Y., Riman, R.E. Size-dependent crystalline to amorphous uphill phase transformation of hydroxyapatite nanoparticles. Cryst. Growth Des. 2011, 11, 45-52.
[527] Šupová, M. Isolation and preparation of nanoscale bioapatites from natural sources: a review. J. Nanosci. Nanotechnol. 2014, 14, 546-563.
[528] Guo, Y., Shi, D., Lian, J., Dong, Z., Wang, W., Cho, H., Liu, G., Wang, L., Ewing, R.C. Quantum dot conjugated hydroxylapatite nanoparticles for in vivo imaging. Nanotechnology 2008, 19, 175102 (6 pages).
[529] Wang, X., Fang, Z., Liu, J., Zhong, X., Ye, B. High sensibility of quantum dots to metal ions inspired by hydroxyapatite microbeads. Chin. J. Chem. 2010, 28, 1005-1012.
[530] Liu, Q., de Wijn, J.R., de Groot, K., van Blitterswijk, C.A. Surface modification of nano-apatite by grafting organic polymer. Biomaterials 1998, 19, 1067-1072.
[531] Palazzo, B., Iafisco, M., Laforgia, M., Margiotta, N., Natile, G., Bianchi, C.L., Walsh, D., Mann, S., Roveri, N. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv. Funct. Mater. 2007, 17, 2180-2188.
[532] Lee, H.J., Choi, H.W., Kim, K.J., Lee, S.C. Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem. Mater. 2006, 18, 5111-5118.
[533] Lee, S.C., Choi, H.W., Lee, H.J., Kim, K.J., Chang, J.H., Kim, S.Y., Choi, J., Oh, K.S., Jeong, Y.K. In-situ synthesis of reactive hydroxyapatite nanocrystals for a novel approach of surface grafting polymerization. J. Mater. Chem. 2007, 17, 174-180.
[534] Li, L., Liu, Y.K., Tao, J.H., Zhang, M., Pan, H.H., Xu, X.R., Tang, R.K. Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe. J. Phys. Chem. C 2008, 112, 12219-12224.
[535] Neumeier, M., Hails, L.A., Davis, S.A., Mann, S., Epple, M. Synthesis of fluorescent core-shell hydroxyapatite nanoparticles. J. Mater. Chem. 2011, 21, 1250-1254.
[536] Wang, W., Shi, D., Lian, J., Guo, Y., Liu, G., Wang, L., Ewing, R.C. Luminescent hydroxylapatite nanoparticles by surface functionalization. Appl. Phys. Lett. 2006, 89, 183106 (3 pages).
[537] Liu, H., Xi, P., Xie, G., Chen, F., Li, Z., Bai, D., Zeng, Z. Biocompatible hydroxyapatite nanoparticles as a redox luminescence switch. J. Biol. Inorg. Chem. 2011, 16, 1135-1140.
[538] Saoiabi, S., El Asri, S., Laghzizil, A., Masse, S., Ackerman, J.L. Synthesis and characterization of nanoapatites organofunctionalized with aminotriphosphonate agents. J. Solid State Chem. 2012, 185, 95-100.
[539] Sharma, R., Pandey, R.R., Gupta, A.A., Kar, S., Dhayal, M. In situ amino acid functionalization and microstructure formation of hydroxyapatite nanoparticles synthesized at different pH by precipitation route. Mater. Chem. Phys. 2012, 133, 718-725.
[540] Escudero, A., Calvo, M.E., Rivera-Fernández, S., de la Fuente, J.M., Ocaña,
M. Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). Langmuir 2013, 29, 1985-1994.
[541] Parthiban, S.P., Kim, I.Y., Kikuta, K., Ohtsuki, C. Formation of serrated nanorods of hydroxyapatite through organic modification under hydrothermal processing. J. Nanopart. Res. 2013, 15, 1657 (10 pages).
[542] Sharma, S., Verma, A., Teja, B.V., Pandey, G., Mittapelly, N., Trivedi, R., Mishra, P.R. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: trends and transitions. Colloids Surf. B Biointerfaces 2015, 133, 120-139.
[543] Sadat-Shojai, M., Khorasani, M.T., Dinpanah-Khoshdargi, E., Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013, 9 7591-7621.
[544] Bow, J.S., Liou, S.C., Chen, S.Y. Structural characterization of room-temperature synthesized nanosized β-tricalcium phosphate. Biomaterials 2004, 25, 3155-3161.
[545] Brunner, T.J., Bohner, M., Dora, C., Gerber, C., Stark, W.J. Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83B, 400-407.
[546] Brunner, T.J., Grass, R.N., Bohner, M., Stark, W.J. Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J. Mater. Chem. 2007, 17, 4072-4078.
[547] Döbelin, N., Brunner, T.J., Stark, W.J., Eggimann, M., Fisch, M., Bohner, M. Phase evolution of thermally treated amorphous tricalcium phosphate nanoparticles. Key Eng. Mater. 2009, 396-398, 595-598.
[548] Bohner, M., Brunner, T.J., Döbelin, N., Tang, R., Stark, W.J. Effect of thermal treatments on the reactivity of nanosized tricalcium phosphate powders. J. Mater. Chem. 2008, 18, 4460-4467.
[549] Liu, Y.H., Zhang, S.M., Liu, L., Zhou, W., Hu, W., Li, J., Qiu, Z.Y. Rapid wet synthesis of nano-sized β-TCP by using dialysis. Key Eng. Mater. 2007, 330-332, 199-202.
[550] Abdel-Fattah, W.I., Reicha, F.M., Elkhooly, T.A. Nano-beta-tricalcium phosphates synthesis and biodegradation: 1. Effect of microwave and SO42- ions on β-TCP synthesis and its characterization. Biomed. Mater. 2008, 3, 034121 (13 pages).
[551] Vecbiskena, L., Gross, K.A., Riekstina, U., Yang, T.C.K. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response. Biomed. Mater. 2015, 10, 025009.
[552] Sanosh, K.P., Chu, M.C., Balakrishnan, A., Kim, T.N., Cho, S.J. Sol-gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders. Curr. Appl. Phys. 2010, 10, 68-71.
[553] Dasgupta, S., Bandyopadhyay, A., Bose, S. Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin. Acta Biomater. 2009, 5, 3112-3121.
[554] Xia, C., Deng, X., Lin, Y.H., Nan, C.W. Preparation and characterisation of nano-sized beta-tricalcium phosphate with a ps template method. Int. J. Mater. Product Technol. 2010, 37, 257-262.
[555] Bucur, A.I., Bucur, R., Vlase, T., Doca, N. Thermal analysis and high-temperature X-ray diffraction of nano-tricalcium phosphate crystallization. J. Thermal Analysis Calorimetry 2012, 107, 249-255.
[556] Hoonnivathana, E., Pankaew, P., Klumdoung, P., Limsuwan, P., Naemchanthara, K. Synthesis of nanocrystalline β-tricalcium phosphate from chicken eggshells by precipitation method. Adv. Mater. Res. 2012, 506, 86-89.
[557] Choi, D., Kumta, P.N. Mechano-chemical synthesis and characterization of nanostructured β-TCP powder. Mater. Sci. Eng. C 2007, 27, 377-381.
[558] Nikcević, I., Maravić, D., Ignjatović, N., Mitrić, M., Makoveć, D., Uskoković, D. The formation and characterization of nanocrystalline phases by mechanical milling of biphasic calcium phosphate/poly-L-lactide biocomposite. Mater. Transact. 2006, 47, 2980-2986.
[559] Cho, J.S., Jung, D.S., Han, J.M., Kang, Y.C. Nano-sized α and β-TCP powders prepared by high temperature flame spray pyrolysis. Mater. Sci. Eng. C 2009, 29, 1288-1292.
[560] Ataol, S., Tezcaner, A., Duygulu, O., Keskin, D., Machin, N.E. Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells. J. Nanopart. Res. 2015, 17, 95 (14 pages).
[561] Nasiri-Tabrizi, B., Fahami, A. Production of poorly crystalline tricalcium phosphate nanopowders using different mechanochemical reactions. J. Ind. Eng. Chem. 2014, 20, 1236-1242.
[562] Boutinguiza, M., Pou, J., Lusquiños, F., Comesaña, R., Riveiro, A. Laser-assisted production of tricalcium phosphate nanoparticles from biological and synthetic hydroxyapatite in aqueous medium. Appl. Surf. Sci. 2011, 257, 5195-5199.
[563] Jalota, S., Tas, A.C., Bhaduri, S.B. Microwave-assisted synthesis of calcium phosphate nanowhiskers. J. Mater. Res. 2004, 19, 1876-1881.
[564] Rameshbabu, N., Rao, K.P. Microwave synthesis, characterization and in-vitro evaluation of nanostructured biphasic calcium phosphates. Curr. Appl. Phys. 2009, 9, S29-S31.
[565] Li, B., Chen, X., Guo, B., Wang, X., Fan, H., Zhang, X. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater. 2009, 5, 134-143.
[566] Pasand, E.G., Nemati, A., Solati-Hashjin, M., Arzani, K., Farzadi, A. Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate. Int. J. Minerals, Metall. Mater. 2012, 19, 441-445.
[567] Guha, A.K., Singh, S., Kumaresan, R., Nayar, S., Sinha, A. Mesenchymal cell response to nanosized biphasic calcium phosphate composites. Colloids Surf. B Biointerfaces 2009, 73, 146-151.
[568] Reddy, S., Wasnik, S., Guha, A., Kumar, J.M., Sinha, A., Singh, S. Evaluation of nano-biphasic calcium phosphate ceramics for bone tissue engineering applications: in vitro and preliminary in vivo studies. J. Biomater. Appl. 2013, 27, 565-575.
[569] Layrolle, P., Lebugle, A. Synthesis in pure ethanol and characterization of nanosized calcium phosphate fluoroapatite. Chem. Mater. 1996, 8, 134-144.
[570] Andres, C., Sinani, V., Lee, D., Gun’ko, Y., Kotov, N. Anisotropic calcium phosphate nanoparticles coated with 2-carboxyethylphosphonic acid. J. Mater. Chem. 2006, 16, 3964-3968.
[571] Lim, H., Kassim, A., Huang, N., Hashim, R., Radiman, S., Khiew, P., Chiu, W. Fabrication and characterization of 1D brushite nanomaterials via sucrose ester reverse microemulsion. Ceram. Int. 2009, 35, 2891-2897.
[572] Maity, J.P., Lin, T.J., Cheng, H.P., Chen, C,Y., Reddy, A.S., Atla, S.B., Chang, Y.F., Chen, H.R., Chen, C.C. Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin. Int. J. Mol. Sci. 2011, 12, 3821-3830.
[573] Rodrigues, M.C., Hewer, T.L.R., de Souza Brito, G.E., Arana-Chavez, V.E., Braga, R.R. Calcium phosphate nanoparticles functionalized with a dimethacrylate monomer. Mater. Sci. Eng. C 2014, 45, 122-126.
[574] Shirkhanzadeh, M., Sims, S. Immobilization of calcium phosphate nano-clusters into alkoxy-derived porous TiO2 coatings. J. Mater. Sci. Mater. Med. 1997, 8, 595-601.
[575] Schmidt, H.T., Ostafin, A.E. Liposome directed growth of calcium phosphate nanoshells. Adv. Mater. 2002, 14, 532-535.
[576] Schmidt, H.T., Gray, B.L., Wingert, P.A., Ostafin, A.E. Assembly of aqueous-cored calcium phosphate nanoparticles for drug delivery. Chem. Mater. 2004, 16, 4942-4947.
[577] Yeo, C.H., Zein, S.H.S., Ahmad, A.L., McPhail, D.S. Comparison of DOPA and DPPA liposome templates for the synthesis of calcium phosphate nanoshells. Ceram. Int. 2012, 38, 561-570.
[578] Singh, S., Bhardwaj, P., Singh, V., Aggarwal, S., Mandal, U.K. Synthesis of nanocrystalline calcium phosphate in microemulsion – effect of nature of surfactants. J. Colloid Interf. Sci. 2008, 319, 322-329.
[579] Singh, S., Singh, V., Aggarwal, S., Mandal, U.K. Synthesis of brushite nanoparticles at different temperatures. Chem. Papers 2010, 64, 491-498.
[580] Walsh, D., Mann, S. Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions. Chem. Mater. 1996, 8, 1944-1953.
[581] Xu, H.H.K., Sun, L., Weir, M.D., Antonucci, J.M., Takagi, S., Chow, L.C., Peltz, M. Nano DCPA – whisker composites with high strength and Ca and PO4 release. J. Dent. Res. 2006, 85, 722-727.
[582] Xu, H.H.K., Weir, M.D., Sun, L., Takagi, S., Chow, L.C. Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J. Dent. Res. 2007, 86, 378-383.
[583] Xu, H.H.K., Weir, M.D., Sun, L. Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent. Mater. 2007, 23, 1482-1491.
[584] Reardon, P.J.T., Huang, J., Tang, J. Mesoporous calcium phosphate bionanomaterials with controlled morphology by an energy-efficient microwave method. J. Biomed. Mater. Res. A 2015, 103A, 3781-3789.
[585] Djošić, M.S., Mišković-Stanković, V.B., Kačarević-Popović, Z.M., Jokić, B.M., Bibić, N., Mitrić, M., Milonjić, S.K., Jančić-Heinemann, R., Stojanović, J. Electrochemical synthesis of nanosized monetite powder and its electrophoretic deposition on titanium. Colloids Surf. A Physicochem. Eng. Asp. 2009, 341, 110-117.
[586] Wei, K., Lai, C., Wang, Y. Formation of monetite nanoparticles and nanofibers in reverse micelles. J. Mater. Sci. 2007, 42, 5340-5346.
[587] Ma, Z., Chen, F., Zhu, Y.J., Cui, T., Liu, X.Y. Amorphous calcium phosphate/poly(D,L-lactic acid) composite nanofibers: electrospinning preparation and biomineralization. J. Coll. Interf. Sci. 2011, 15, 371-379.
[588] Urch, H., Vallet-Regiì, M., Ruiz, L., Gonzalez-Calbet, J.M., Epple, M. Calcium phosphate nanoparticles with adjustable dispersability and crystallinity. J. Mater. Chem. 2009, 19, 2166-2171.
[589] Holt, C., Wahlgren, N.M., Drakenberg, T. Ability of a β-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters. Biochem. J. 1996, 314, 1035-1039.
[590] Holt, C., Timmins, P.A., Errington, N., Leaver, J. A core-shell model of calcium phosphate nanoclusters stabilized by β-casein phosphopeptides, derived from sedimentation equilibrium and small-angle X-ray and neutron-scattering measurements. Eur. J. Biochem. 1998, 252, 73-78.
[591] Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L. Synthesis of Ca-P nanoparticles and fabrication of Ca-P/PHBV nanocomposite microspheres for bone tissue engineering applications. Appl. Surf. Sci. 2008, 255, 529-533.
[592] Zhou, H., Bhaduri, S. Novel microwave synthesis of amorphous calcium phosphate nanospheres. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1142-1150.
[593] Zhao, J., Zhu, Y.J., Cheng, G.F., Ruan, Y.J., Sun, T.W., Chen, F., Wu, J., Zhao, X.Y., Ding, G.J. Microwave-assisted hydrothermal rapid synthesis of amorphous calcium phosphate nanoparticles and hydroxyapatite microspheres using cytidine 5′-triphosphate disodium salt as a phosphate source. Mater. Lett. 2014, 124, 208-211.
[594] Ding, G.J., Zhu, Y.J., Qi, C., Sun, T.W., Wu, J., Chen, F. Amorphous calcium phosphate nanowires prepared using beta-glycerophosphate disodium salt as an organic phosphate source by a microwave-assisted hydrothermal method and adsorption of heavy metals in water treatment. RSC Adv. 2015, 5, 40154-40162.
[595] Hwang, K.S., Jeon, K.O., Jeon, Y.S., Kim, B.H. Hydroxyapatite forming ability of electrostatic spray pyrolysis derived calcium phosphate nano powder. J. Mater. Sci. 2006, 41, 4159-4162.
[596] Hwang, K.S., Jeon, K.O., Jeon, Y.S., Kim, B.H. Hydroxyapatite forming ability of electrostatic spray pyrolysis derived calcium phosphate nano powder. J. Mater. Sci. Mater. Med. 2007, 18, 619-622.
[597] Nasiri-Tabrizi, B., Fahami, A. Mechanochemical synthesis and structural characterization of nano-sized amorphous tricalcium phosphate. Ceram. Int. 2013, 39, 8657-8666.
[598] Perkin, K.K., Turner, J.L., Wooley, K.L., Mann, S. Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages. Nano Lett. 2005, 5, 1457-1461.
[599] Tjandra, W., Ravi, P., Yao, J., Tam, K.C. Synthesis of hollow spherical calcium phosphate nanoparticles using polymeric nanotemplates. Nanotechnology 2006, 17, 5988-5994.
[600] Ye, F., Guo, H., Zhang, H., He, X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater. 2010, 6, 2212-2218.
[601] Jiang, S.D., Yao, Q.Z., Zhou, G.T., Fu, S.Q. Fabrication of hydroxyapatite hierarchical hollow microspheres and potential application in water treatment. J. Phys. Chem. C 2012, 116, 4484-4492.
[602] Sadasivan, S., Khushalani, D., Mann, S. Synthesis of calcium phosphate nanofilaments in reverse micelles. Chem. Mater. 2005, 17, 2765-2770.
[603] Morgan, T.T., Muddana, H.S., Altinoglu, E.I., Rouse, S.M., Tabakovic, A., Tabouillot, T., Russin, T.J., Butler, P.J., Eklund, P., Yun, J.K., Kester, M., Adair, J.H. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett. 2008, 8, 4108-4115.
[604] Lai, C., Wang, Y.J., Wei, K. Nucleation kinetics of calcium phosphate nanoparticles in reverse micelle solution. Colloids Surf. A Physicochem. Eng. Asp. 2008, 315, 268-274.
[605] Yang, X., Gao, X., Gan, Y., Gao, C., Zhang, X., Ting, K., Wu, B.M., Gou, Z. Facile synthesis of octacalcium phosphate nanobelts: growth mechanism and surface adsorption properties. J. Phys. Chem. C 2010, 114, 6265-6271.
[606] Socol, G., Torricelli, P., Bracci, B., Iliescu, M., Miroiu, F., Bigi, A., Werckmann, J., Mihailescu, I.N. Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition. Biomaterials 2004, 25, 2539-2545.
[607] Fathi, A.M., Abd El-Hamid, H.K., Radwan, M.M. Preparation and characterization of nano-tetracalcium phosphate coating on titanium substrate. Int. J. Electrochem. Sci. 2016, 11, 3164-3178.
[608] de Campos, M., Müller, F.A., Bressiani, A.H.A., Bressiani, J.C., Greil, P. Comparative study of sonochemical synthesized β-TCP- and BCP-nanoparticles. Key Eng. Mater. 2004, 254-256, 923-926.
[609] Lee, B.T., Youn, M.H., Paul, R.K., Lee, K.H., Song, H.Y. In situ synthesis of spherical BCP nanopowders by microwave assisted process. Mater. Chem. Phys. 2007, 104, 249-253.
[610] Cho, J.S., Ko, Y.N., Koo, H.Y., Kang, Y.C. Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis. J. Mater. Sci. Mater. Med. 2010, 21, 1143-1149.
[611] Farzadi, A., Solati-Hashjin, M., Tahmasebi-Birgani, Z., Aminian, A. Microwave-assisted synthesis and characterization of biphasic calcium phosphate nanopowders. Ceram. Transact. 2010, 218, 59-65.
[612] Farzadi, A., Solati-Hashjin, M., Bakhshi, F., Aminian, A. Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram. Int. 2011, 37, 65-71.
[613] Pan, L., Li, Y., Zou, C., Weng, W., Cheng, K., Song, C., Du, P., Zhao, G., Shen, G., Wang, J., Han, G. Surface modification of nanosized biphasic α-TCP/HA powders. Key Eng. Mater. 2007, 330-332, 223-226.
[614] Urch, H., Franzka, S., Dahlhaus, D., Hartmann, N., Hasselbrink, E., Epple, M. Preparation of two-dimensionally patterned layers of functionalised calcium phosphate nanoparticles by laser direct writing. J. Mater. Chem. 2006, 16, 1798-1802.
[615] Sokolova, V., Prymak, O., Meyer-Zaika, W., Cölfen, H., Rehage, H., Shukla, A., Epple, M. Synthesis and characterization of DNA functionalized calcium phosphate nanoparticles. Mater.-Wiss. u. Werkstofftech. 2006, 37, 441-445.
[616] Muddana, H.S., Morgan, T.T., Adair, J.H., Butler, P.J. Photophysics of Cy3-encapsulated calcium phosphate nanoparticles. Nano Lett. 2009, 9, 1559-1566.
[617] Altinoğlu, E.I., Russin, T.J., Kaiser, J.M., Barth, B.M., Eklund, P.C., Kester, M., Adair, J.H. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2008, 2, 2075-2084.
[618] Schwiertz, J., Wiehe, A., Gräfe, S., Gitter, B., Epple, M. Calcium phosphate nanoparticles as efficient carriers for photodynamic therapy against cells and bacteria. Biomaterials 2009, 30, 3324-3331.
[619] Chen, F., Zhu, Y.J., Zhang, K.H., Wu, J., Wang, K.W., Tang, Q.L., Mo, X.M. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res. Lett. 2011, 6, 1-9.
[620] Haynes, M.T., Huang, L. Lipid-coated calcium phosphate nanoparticles for nonviral gene therapy. Adv. Genet. 2014, 88, 205-229.
[621] Haedicke, K., Kozlova, D., Gräfe, S., Teichgräber, U., Epple, M., Hilger, I. Multifunctional calcium phosphate nanoparticles for combining near-infrared fluorescence imaging and photodynamic therapy. Acta Biomater. 2015, 14, 197-207.
[622] Schwiertz, J., Meyer-Zaika, W., Ruiz-Gonzalez, L., González-Calbet, J.M., Vallet-Regiì, M., Epple, M. Calcium phosphate nanoparticles as templates for nanocapsules prepared by the layer-by-layer technique. J. Mater. Chem. 2008, 18, 3831-3834.
[623] Cai, Y., Liu, P., Tang, R. Recent patents on nano calcium phosphates. Recent Pat. Mater. Sci. 2008, 1, 209-216.
[624] Hayakawa, S., Li, Y., Tsuru, K., Osaka, A., Fujii, E., Kawabata, K. Preparation of nanometer-scale rod array of hydroxyapatite crystal. Acta Biomater. 2009, 5, 2152-2160.
[625] Liao, S.S., Cui, F.Z., Zhang, W., Feng, Q.L. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69B, 158-165.
[626] Thomas, V., Dean, D.R., Jose, M.V., Mathew, B., Chowdhury, S., Vohra, Y.K. Nanostructured biocomposite scaffolds based on collagen co-electrospun with nanohydroxyapatite. Biomacromolecules 2007, 8, 631-637.
[627] de Yoreo, J.J., Vekilov, P.G. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 2003, 54, 57-93.
[628] Liao, S., Xu, G., Wang, W., Watari, F., Cui, F., Ramakrishna, S., Chan, C.K. Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes. Acta Biomater. 2007, 3, 669-675.
[629] Penn, R.L., Banfield, J.F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 1998, 281, 969-971.
[630] Tao, J., Pan, H., Zeng, Y., Xu, X., Tang, R. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J. Phys. Chem. B 2007, 111, 13410-13418.
[631] Hing, K.A. Bone repair in the twenty-first century: biology, chemistry or engineering? Phil. Trans. R. Soc. Lond. A 2004, 362, 2821-2850.
[632] Kokubo, T., Kim, H.M., Kawashita, M. Novel bioactive materials with different mechanical properties. Biomaterials 2003, 24, 2161-2175.
[633] Fu, J.M., Miao, B., Jia, L.H., Lü, K.L. Nano-hydroxyapatite for repair of rabbit jaw bone defect: bone mineral density analysis. J. Clin. Rehabil. Tiss. Eng. Res. 2009, 13, 2387-2390.
[634] Zhou, H., Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011, 7, 2769-2781.
[635] Wang, L., Li, J., Xie, Y., Yang, P., Liao, Y., Guo, G. Effect of nano biphasic calcium phosphate bioceramics on periodontal regeneration in the treatment of alveolar defects. Adv. Mater. Res. 2012, 486, 422-425.
[636] Ghanaati, S., Barbeck, M., Willershausen, I., Thimm, B., Stuebinger, S., Korzinskas, T., Obreja, K., Landes, C., Kirkpatrick, C.J., Sader, R.A. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation. Clin. Implant Dent. Rel. Res. 2013, 15, 883-892.
[637] Wang, L., Hou, H., Zhang, J., Sun, Z., Yang, P., Liao, Y. Assessing the effect of nano biphasic calcium phosphate on acute alveolar bone defects in beagle dogs using micro-computed tomography imaging. Adv. Mater. Res. 2012, 465, 132-135.
[638] Wu, X., Xu, W., Zeng, Z.L., Hu, X., Xi, B., Zhou, Y.F., Su, J.C. Application of nanometer calcium phosphate ceramic artificial bone in percutaneous kyphoplasty; a short-term clinical observation. Acad. J. Second Military Medical Univ. 2012, 33, 1151-1153.
[639] Tavakol, S., Nikpour, M.R., Amani, A., Soltani, M., Rabiee, S.M., Rezayat, S.M., Chen, P., Jahanshahi, M. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study. J. Nanopart. Res. 2013, 15, 1373.
[640] Robbins, S., Lauryssen, C., Songer, M.N. Use of nanocrystalline hydroxyapatite with autologous BMA and local bone in the lumbar spine: a retrospective CT analysis of posterolateral fusion results. Clin. Spine Surg. 2016, (early view).
[641] Pang, K.M., Lee, J.K., Seo, Y.K., Kim, S.M., Kim, M.J., Lee, J.H. Biologic properties of nano-hydroxyapatite: an in vivo study of calvarial defects, ectopic bone formation and bone implantation. Bio-Med. Mater. Eng. 2015, 25, 25-38.
[642] Barralet, J.E., Lilley, K.J., Grover, L.M., Farrar, D.F., Ansell, C., Gbureck, U. Cements from nanocrystalline hydroxyapatite. J. Mater. Sci. Mater. Med. 2004, 15, 407-411.
[643] Lilley, K.J., Gbureck, U., Wright, A.J., Farrar, D.F., Barralet, J.E. Cement from nanocrystalline hydroxyapatite: effect of calcium phosphate ratio. J. Mater. Sci. Mater. Med. 2005, 16, 1185-1190.
[644] Neira, I.S., Kolen’ko, Y.V., Lebedev, O.I., van Tendeloo, G., Gupta, H.S., Matsushita, N., Yoshimura, M., Guitián, F. Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite. Mater. Sci. Eng. C 2009, 29, 2124-2132.
[645] Dorozhkin, S.V. Self-setting calcium orthophosphate formulations. J. Funct. Biomater. 2013, 4, 209-311.
[646] Leitune, V.C.B., Collares, F.M., Trommer, R.M., Andrioli, D.G., Bergmann, C.P., Samuel, S.M.W. The addition of nanostructured hydroxyapatite to an experimental adhesive resin. J. Dent. 2013, 41, 321-327.
[647] Fricain, J.C., Schlaubitz, S., le Visage, C., Arnault, I., Derkaoui, S.M., Siadous, R., Catros, S., Lalande, C., Bareille, R., Renard, M., Fabre, T., Cornet, S., Durand, M., Léonard, A., Sahraoui, N., Letourneur, D., Amédée, J. A nano-hydroxyapatite – pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 2013, 34, 2947-2959.
[648] Venkatesan, J., Kim, S.K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering – a review. J. Biomed. Nanotechnol. 2014, 10, 3124-3140.
[649] Jayasree, R., Kumar, T.S.S. Acrylic cement formulations modified with calcium deficient apatite nanoparticles for orthopaedic applications. J. Compos. Mater. 2015, 49, 2921-2933.
[650] Munarin, F., Petrini, P., Gentilini, R., Pillai, R.S., Dirè, S., Tanzi, M.C.,
Sglavo, V.M. Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites. Int. J. Biol. Macromol. 2015, 72, 199-209.
[651] Kang, X., Zhang, W., Yang, C. Mechanical properties study of micro- and nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene composites. J. Appl. Polym. Sci. 2016, 133, 42869.
[652] Strnadova, M., Protivinsky, J., Strnad, J., Vejsicka, Z. Preparation of porous synthetic nanostructured HA scaffold. Key Eng. Mater. 2008, 361-363, 211-214.
[653] Kim, J.Y., Lee, J.W., Lee, S.J., Park, E.K., Kim, S.Y., Cho, D.W. Development of a bone scaffold using HA nanopowder and micro-stereolithography technology. Microelectron. Eng. 2007, 84, 1762-1765.
[654] Naga, S.M., El-Maghraby, H.F., Sayed, M., Saad, E.A. Highly porous scaffolds made of nanosized hydroxyapatite powder synthesized from eggshells. J. Ceram. Sci. Technol. 2015, 6, 237-243.
[655] Roh, H.S., Myung, S.W., Jung, S.C., Kim, B.H. Fabrication of 3D scaffolds with nano-hydroxyapatite for improving the preosteoblast cell-biological performance. J. Nanosci. Nanotechnol. 2015, 15, 5585-5588.
[656] Rodrigues, L.R., d’Ávila, M.A., Monteiro, F.J.M., de Zavaglia, C.A.C. Synthesis and characterization of nanocrystalline hydroxyapatite gel and its application as scaffold aggregation. Mater. Res. 2012, 15, 974-980.
[657] Krylova, I.V., Ivanov, L.N., Bozhevol’nov, V.E., Severin, A.V. Self-organization processes and phase transitions in nanocrystalline hydroxyapatite according to exoemission data. Russ. J. Phys. Chem. A 2007, 81, 241-245.
[658] Veljovic, D., Jokic, B., Jankovic-Castvan, I., Smiciklas, I., Petrovic, R., Janackovic, D. Sintering behaviour of nanosized HAP powder. Key Eng. Mater. 2007, 330-332, 259-262.
[659] Uehira, M., Okada, M., Takeda, S., Matsumoto, N. Preparation and characterization of low-crystallized hydroxyapatite nanoporous plates and granules. Appl. Surf. Sci. 2013, 287, 195-202.
[660] Zhang, F., Lin, K., Chang, J., Lu, J., Ning, C. Spark plasma sintering of macroporous calcium phosphate scaffolds from nanocrystalline powders. J. Eur. Ceram. Soc. 2008, 28, 539-545.
[661] Grossin, D., Banu, M., Sarda, S., Martinet-Rollin, S., Drouet, C., Estournès, C., Champion, E., Rossignol, F., Combes, C., Rey, C. Low temperature consolidation of nanocrystalline apatites toward a new generation of calcium phosphate ceramics. Ceram. Eng. Sci. Proc. 2010, 30, 113-126.
[662] Chaudhry, A.A., Yan, H., Gong, K., Inam, F., Viola, G., Reece, M.J., Goodall, J.B.M., ur Rehman, I., McNeil-Watson, F.K., Corbett, J.C.W., Knowles, J.C, Darr, J.A. High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater. 2011, 7, 791-799.
[663] Eriksson, M., Liu, Y., Hu, J., Gao, L., Nygren, M., Shen, Z. Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. J. Eur. Ceram. Soc. 2011, 31, 1533-1540.
[664] Kutty, M.G., Loertscher, J., Bhaduri, S., Bhaduri, S.B., Tinga, W.R. Microwave sintering of nanocrystalline hydroxyapatite. Ceram. Eng. Sci. Proc. 2001, 22, 3-10.
[665] Vijayan, S., Varma, H. Microwave sintering of nanosized hydroxyapatite powder compacts. Mater. Lett. 2002, 56, 827-831.
[666] Ramesh, S., Tan, C.Y., Bhaduri, S.B., Teng, W.D. Rapid densification of nanocrystalline hydroxyapatite for biomedical applications. Ceram. Int. 2007, 33, 1363-1367.
[667] Lin, K., Chen, L., Chang, J. Fabrication of dense hydroxyapatite nanobioceramics with enhanced mechanical properties via two-step sintering process Int. J. Appl. Ceram. Technol. 2012, 9, 479-485.
[668] Feng, P., Niu, M., Gao, C., Peng, S., Shuai, C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci. Rep. 2014, 4, 5599 (10 pages).
[669] Okada, M., Furuzono, T. Fabrication of high-dispersibility nanocrystals of calcined hydroxyapatite. J. Mater. Sci. 2006, 41, 6134-6137.
[670] Okada, M., Furuzono, T. Nanosized ceramic particles of hydroxyapatite calcined with an anti-sintering agent. J. Nanosci. Nanotechnol. 2007, 7, 848-851.
[671] Okada, M., Furuzono, T. Calcination of rod-like hydroxyapatite nanocrystals with an anti-sintering agent surrounding the crystals. J. Nanopart. Res. 2007, 9, 807-815.
[672] Müller-Mai, C.M., Stupp, S.I., Voigt, C., Gross, U. Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface. J. Biomed. Mater. Res. 1995, 29, 9-18.
[673] Du, C., Cui, F.Z., Feng, Q.L., Zhu, X.D., de Groot, K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J. Biomed. Mater. Res. 1998, 42, 540-548.
[674] Du, C., Cui, F.Z., Zhu, X.D., de Groot, K. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J. Biomed. Mater. Res. 1999, 44, 407-415.
[675] Paul, W., Sharma, C.P. Nanoceramic matrices: biomedical applications. Am. J. Biochem. Biotechnol. 2006, 2, 41-48.
[676] Huber, F.X., McArthur, N., Hillmeier, J., Kock, H.J., Baier, M., Diwo, M., Berger, I., Meeder, P.J. Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch. Orthop. Trauma Surg. 2006, 126, 533-540.
[677] Smeets, R., Jelitte, G., Heiland, M., Kasaj, A., Grosjean, M., Riediger, D., Yildirim, M., Spiekermann, H., Maciejewski, O. Hydroxylapatit-Knochenersatzmaterial (Ostim®) bei der Sinusbodenelevation. Schweiz Monatsschr. Zahnmed. 2008, 118, 203-208.
[678] Gerlach, K.L., Niehues, D. Die Behandlung der Kieferzysten mit einem neuartigen nanopartikulären Hydroxylapatit. Mund Kiefer GesichtsChir. 2007, 11, 131-137.
[679] Schwarz, F., Bieling, K., Latz, T., Nuesry, E., Becker, J. Healing of intrabony periimplantitis defects following application of a nanocristalline hydroxyapatite (Ostim™) or a bovine-derived xenograft (Bio-Oss™) in combination with a collagen membrane (Bio-Gide™). A case series. J. Clin. Periodontol. 2006, 33, 491-499.
[680] Strietzel, F.P., Reichart, P.A., Graf, H.L. Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material (Ostim®). Preliminary clinical and histological results. Clin. Oral Implants Res. 2007, 18, 743-751.
[681] Spies, C., Schnürer, S., Gotterbarm, T., Breusch, S. Tierexperimentelle Untersuchung des Knochenersatzstoffs OstimTM im knöchernen Lager des Göttinger Miniaturschweins. Z. Orthop. Unfall. 2008, 146, 64-69.
[682] Thorwarth, M., Schultze-Mosgau, S., Kessler, P., Wiltfang, J., Schlegel, K.A. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J. Oral Maxillofac. Surg. 2005, 63, 1626-1633.
[683] Brandt, J., Henning, S., Michler, G., Schulz, M., Bernstein, A. Nanocrystalline hydroxyapatite for bone repair. Key Eng. Mater. 2008, 361-363, 35-38.
[684] Huber, F.X., Hillmeier, J., Herzog, L., McArthur, N., Kock, H.J., Meeder, P.J. Open reduction and palmar plate-osteosynthesis in combination with a nanocrystalline hydroxyapatite spacer in the treatment of comminuted fractures of the distal radius. J. Hand Surg. (Brit.) 2006, 31B, 298-303.
[685] Huber, F.X., Hillmeier, J., McArthur, N., Kock, H.J., Meeder, P.J. The use of nanocrystalline hydroxyapatite for the reconstruction of calcaneal fractures: preliminary results. J. Foot Ankle Surg. 2006, 45, 322-328.
[686] Laschke, M.W., Witt, K., Pohlemann, T., Menger, M.D. Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 494-505.
[687] Spies, C.K.G., Schnürer, S., Gotterbarm, T., Breusch, S. The efficacy of Biobon™ and Ostim™ within metaphyseal defects using the Göttinger Minipig. Arch. Orthop. Trauma Surg. 2009, 129, 979-988.
[688] Chitsazi, M.T., Shirmohammadi, A., Faramarzie, M., Pourabbas, R., Rostamzadeh, A.N. A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Medicina Oral, Patologia Oral y Cirugia Bucal 2011, 16, 448-453.
[689] Canuto, R.A., Pol, R., Martinasso, G., Muzio, G., Gallesio, G., Mozzati, M. Hydroxyapatite paste Ostim®, without elevation of full-thickness flaps, improves alveolar healing stimulating BMP- and VEGF-mediated signal pathways: an experimental study in humans. Clin. Oral Implants Res. 2012, Suppl. A, 100, 42-48.
[690] Huber, F.X., Belyaev, O., Hillmeier, J., Kock, H.J., Huber, C., Meeder, P.J., Berger, I. First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM® in human cancellous bone. BMC Musculoskelett. Disord. 2006, 7, 50 (14 pages).
[691] Huber, F.X., Berger, I., McArthur, N., Huber, C., Kock, H.P., Hillmeier, J., Meeder, P.J. Evaluation of a novel nanocrystalline hydroxyapatite paste and a solid hydroxyapatite ceramic for the treatment of critical size bone defects (CSD) in rabbits. J. Mater. Sci. Mater. Med. 2008, 19, 33-38.
[692] Arts, J.J.C., Verdonschot, N., Schreurs, B.W., Buma, P. The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials 2006, 27, 1110-1118.
[693] Varma, N.P., Garai, S., Sinha, A. Synthesis of injectable and cohesive nano hydroxyapatite scaffolds. J. Mater. Sci. Mater. Med. 2012, 23, 913-919.
[694] Zhang, W., Liao, S.S., Cui, F.Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem. Mater. 2003, 15, 3221-3226.
[695] Li, X., Huang, J., Edirisinghe, M.J. Development of nano-hydroxyapatite coating by electrohydrodynamic atomization spraying. J. Mater. Sci. Mater. Med. 2008, 19, 1545-1551.
[696] Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Kim, K.H., Park, C., Kim, H.E. Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition. J. Am. Ceram. Soc. 2009, 92, 683-687.
[697] Narayanan, R., Kwon, T.Y., Kim, K.H. Direct nanocrystalline hydroxyapatite formation on titanium from ultrasonated electrochemical bath at physiological pH. Mater. Sci. Eng. C 2008, 28, 1265-1270.
[698] Yousefpour, M., Afshar, A., Yang, X., Li, X., Yang, B., Wu, Y., Chen, J., Zhang, X. Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium. J. Electroanal. Chem. 2006, 589, 96-105.
[699] Mendes, V.C., Moineddin, R., Davies, J.E. Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. J. Biomed. Mater. Res. A 2009, 90A, 577-585.
[700] Barkarmo, S., Wennerberg, A., Hoffman, M., Kjellin, P., Breding, K., Handa, P., Stenport, V. Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. J. Biomed. Mater. Res. A 2013, 101A, 465-471.
[701] Iskandar, M.E., Aslani, A., Tian, Q., Liu, H. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells. J. Mater. Sci. Mater. Med. 2015, 26, 189 (18 pages).
[702] Feng, G., Cheng, X., Xie, D., Wang, K., Zhang, B. Fabrication and characterization of nano prism-like hydroxyapatite coating on porous titanium substrate by combined biomimetic-hydrothermal method. Mater. Lett. 2016, 163, 134-137.
[703] Bral, A., Mommaerts, M.Y., In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: a systematic review. J. Craniomaxillofac. Surg. 2016, 44, 400-412.
[704] Dorozhkin, S.V. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Eng. C 2015, 55, 272-326.
[705] Nies, B., Rößler, S., Reinstorf, A. Formation of nano hydroxyapatite – a straightforward way to bioactivate bone implant surfaces. Int. J. Mater. Res. (formerly Z. Metallkd.) 2007, 98, 630-636.
[706] Jalota, S., Bhaduri, S.B., Tas, A.C. Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions. J. Mater. Sci. Mater. Med. 2006, 17, 697-707.
[707] Chen, F., Lam, W.M., Lin, C.J., Qiu, G.X., Wu, Z.H., Luk, K.D.K., Lu, W.W. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 183-191.
[708] Thian, E.S., Ahmad, Z., Huang, J., Edirisinghe, M.J., Jayasinghe, S.N., Ireland, D.C., Brooks, R.A., Rushton, N., Bonfield, W., Best, S.M. The role of electrosprayed nanoapatites in guiding osteoblast behaviour. Biomaterials 2008, 29, 1833-1843.
[709] Bigi, A., Nicoli-Aldini, N., Bracci, B., Zavan, B., Boanini, E., Sbaiz, F., Panzavolta, S., Zorzato, G., Giardino, R., Facchini, A., Abatangelo, G., Cortivo, R. In
vitro
culture of mesenchymal cells onto nanocrystalline hydroxyapatite coated Ti13Nb13Zr alloy. J. Biomed. Mater. Res. A 2007, 82A, 213-221.
[710] Bigi, A., Fini, M., Bracci, B., Boanini, E., Torricelli, P., Giavaresi, G., Aldini, N.N., Facchini, A., Sbaiz, F., Giardino, R. The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Biomaterials 2008, 29, 1730-1736.
[711] Thian, E.S., Huang, J., Ahmad, Z., Edirisinghe, M.J., Jayasinghe, S.N., Ireland, D.C., Brooks, R.A., Rushton, N., Best, S.M., Bonfield, W. Influence of nanohydroxyapatite patterns deposited by electrohydrodynamic spraying on osteoblast response. J. Biomed. Mater. Res. A 2008, 85A, 188-194.
[712] Furuzono, T., Masuda, M., Okada, M., Yasuda, S., Kadono, H., Tanaka, R., Miyatake, K. Increase in cell adhesiveness on a poly(ethylene terephthalate) fabric by sintered hydroxyapatite nanocrystal coating in the development of an artificial blood vessel. ASAIO J. 2006, 52, 315-320.
[713] Yanagida, H., Okada, M., Masuda, M., Ueki, M., Narama, I., Kitao, S., Koyama, Y., Furuzono, T., Takakuda, K. Cell adhesion and tissue response to hydroxyapatite nanocrystal-coated poly(L-lactic acid) fabric. J. Biosci. Bioeng. 2009, 108, 235-243.
[714] Moon, J.W., Sohn, D.S., Heo, J.U. Histomorphometric analysis of maxillary sinus augmentation with calcium phosphate nanocrystal-coated xenograft. Implant Dent. 2015, 24, 333-337.
[715] Hu, J., Yang, Z., Zhou, Y., Liu, Y., Li, K., Lu, H. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. J. Mater. Sci. Mater. Med. 2015, 26, 257 (12 pages).
[716] Li, X., Huang, J., Edirisinghe, M.J. Development of template-assisted electrohydrodynamic atomization spraying for nanoHA patterning. Key Eng. Mater. 2008, 361-363, 585-588.
[717] Abrahamsson, I., Linder, E., Larsson, L., Berglundh, T. Deposition of nanometer scaled calcium-phosphate crystals to implants with a dual acid-etched surface does not improve early tissue integration. Clin. Oral Implants Res. 2013, 24, 57-62.
[718] Alghamdi, H.S., van Oirschot, B.A.J.A., Bosco, R., van den Beucken, J.J., Aldosari, A.A.F., Anil, S., Jansen, J.A. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin. Oral Implants Res. 2013, 24, 475-483.
[719] Kasaj, A., Willershausen, B., Reichert, C., Rohrig, B., Smeets, R., Schmidt, M. Ability of nanocrystalline hydroxyapatite paste to promote human periodontal ligament cell proliferation. J. Oral Sci. 2008, 50, 279-285.
[720] Shi, Z.L., Huang, X., Cai, Y.R., Tang, R.K., Yang, D.S. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater. 2009, 5, 338-345.
[721] Liu, Y., Wang, G., Cai, Y., Ji, H., Zhou, G., Zhao, X., Tang, R., Zhang, M. In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J. Biomed. Mater. Res. A 2009, 15A, 1083-1091.
[722] Zhu, X., Eibl, O., Scheideler, L., Geis-Gerstorfer, J. Characterization of nano hydroxyapatite/collagen surfaces and cellular behaviors. J. Biomed. Mater. Res. A 2006, 79A, 114-127.
[723] Zhu, W., Zhang, X., Wang, D., Lu, W., Ou, Y., Han, Y., Zhou, K., Liu, H., Fen, W., Peng, L., He, C., Zeng, Y. Experimental study on the conduction function of nano-hydroxyapatite artificial bone. Micro Nano Lett. 2010, 5, 19-27.
[724] Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., Cheng, L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007, 28, 3338-3348.
[725] Zhang, Y.F., Cheng, X.R., Chen, Y., Shi, B., Chen, X.H., Xu, D.X., Ke, J. Three-dimensional nanohydroxyapatite / chitosan scaffolds as potential tissue engineered periodontal tissue. J. Biomater. Appl. 2007, 21, 333-349.
[726] Huang, Y.X., Ren, J., Chen, C., Ren, T.B., Zhou, X.Y. Preparation and properties of poly(lactide-co-glycolide) (PLGA) / nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit mscs culture on scaffolds. J. Biomater. Appl. 2008, 22, 409-432.

[727] Thian, E.S., Ahmad, Z., Huang, J., Edirisinghe, M.J., Jayasinghe, S.N., Ireland, D.C., Brooks, R.A., Rushton, N., Bonfield, W., Best, S.M. Bioactivity of nanoapatite produced by electrohydrodynamic atomization. J. Bionanosci. 2007, 1, 60-63.
[728] Pezzatini, S., Solito, R., Morbidelli, L., Lamponi, S., Boanini, E., Bigi, A., Ziche, M. The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. J. Biomed. Mater. Res. A 2006, 76A, 656-663.
[729] Pezzatini, S., Morbidelli, L., Solito, R., Paccagnini, E., Boanini, E., Bigi, A., Ziche, M. Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. Bone 2007, 41, 523-534.
[730] Macmillan, A.K., Lamberti, F.V., Moulton, J.N., Geilich, B.M., Webster, T.J. Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone. Int. J. Nanomed. 2014, 9, 5627-5637.
[731] Pilloni, A., Pompa, G., Saccucci, M., di Carlo, G., Rimondini, L., Brama, M., Zeza, B., Wannenes, F., Migliaccio, S. Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study. BMC Oral Health 2014, 14, 22 (7 pages).
[732] Ha, S.W., Jang, H.L., Nam, K.T., Beck, G.R. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 2015, 65, 32-42.
[733] Cai, Y., Liu, Y., Yan, W., Hu, Q., Tao, J., Zhang, M., Shi, Z., Tang, R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 2007, 17, 3780-3787.
[734] Hu, Q., Tan, Z., Liu, Y., Tao, J., Cai, Y., Zhang, M., Pan, H., Xu, X., Tang,
R. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J. Mater. Chem. 2007, 17, 4690-4698.
[735] Liu, X., Zhao, M., Lu, J., Ma, J., Wei, J., Wei, S. Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int. J. Nanomed. 2012, 7, 1239-1250.
[736] d’Elía, N.L., Mathieu, C., Hoemann, C.D., Laiuppa, J.A., Santillán, G.E.,
Messina, P.V. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures. Nanoscale 2015, 7, 18751-18762.
[737] Kim, K., Dean, D., Lu, A., Mikos, A.G., Fisher, J.P. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater. 2011, 7, 1249-1264.
[738] Svanborg, L.M., Hoffman, M., Andersson, M., Currie, F., Kjellin, P., Wennerberg, A. The effect of hydroxyapatite nanocrystals on early bone formation surrounding dental implants. Int. J. Oral Maxillofac. Surg. 2011, 40, 308-315.
[739] Suto, M., Nemoto, E., Kanaya, S., Suzuki, R., Tsuchiya, M., Shimauchi, H. Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Arch. Oral Biol. 2013, 58, 1021-1028.
[740] Detsch, R., Hagmeyer, D., Neumann, M., Schaefer, S., Vortkamp, A., Wuelling, M., Ziegler, G., Epple, M. The resorption of nanocrystalline calcium phosphates by osteoclast-like cells. Acta Biomater. 2010, 6, 3223-3233.
[741] Stevens, M.M., George, J.H. Exploring and engineering the cell surface interface. Science 2005, 310, 1135-1138.
[742] Martínez, E., Engel, E., Planell, J.A., Samitier, J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Annals Anat. 2009, 191, 126-135.
[743] Lee, D.H., Han, J.S., Yang, J.H., Lee, J.B. MC3T3-E1 cell response to pure titanium, zirconia and nano-hydroxyapatite. Int. J. Modern Phys. B 2009, 23, 1535-1540.
[744] Liu, M., Zhou, G., Song, W., Li, P., Liu, H., Niu, X., Fan, Y. Effect of nano-hydroxyapatite on the axonal guidance growth of rat cortical neurons. Nanoscale 2012, 4, 3201-3207.
[745] Onuma, K., Yamagishi, K., Oyane, A. Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J. Cryst. Growth 2005, 282, 199-207.
[746] Huang, S., Gao, S., Cheng, L., Yu, H. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res. 2011, 45, 460-468.
[747] Roveri, N., Battistella, E., Bianchi, C.L., Foltran, I., Foresti, E., Iafisco, M., Lelli, M., Naldoni, A., Palazzo, B., Rimondini, L. Surface enamel remineralization: biomimetic apatite nanocrystals and fluoride ions different effects. J. Nanomater. 2009, 746383 (9 pages).
[748] Dorozhkin, S.V. Calcium orthophosphates (CaPO4) and dentistry. Bioceram. Dev. Appl. 2016, 6, 96.
[749] Jeong, S.H., Jang, S.O., Kim, K.N., Kwon, H.K., Park, Y.D., Kim, B.I. Remineralization potential of new toothpaste containing nano-hydroxyapatite. Key Eng. Mater. 2006, 309-311, 537-540.
[750] Tschoppe, P., Zandim, D.L., Martus, P., Kielbassa, A.M. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 2011, 39, 430-437.
[751] Wang, C.J., Zhang, Y.F., Wei, J., Wei, S.C. Repair of artificial enamel lesions by nano fluorapatite paste containing fluorin. J. Clin. Rehabil. Tiss. Eng. Res. 2011, 15, 6346-6350.
[752] Kovtun, A., Kozlova, D., Ganesan, K., Biewald, C., Seipold, N., Gaengler, P., Arnold, W.H., Epple, M. Chlorhexidine-loaded calcium phosphate nanoparticles for dental maintenance treatment: combination of mineralising and antibacterial effects. RSC Advances 2012, 2, 870-875.
[753] Kim, B.I., Jeong, S.H., Jang, S.O., Kim, K.N., Kwon, H.K., Park, Y.D. Tooth whitening effect of toothpastes containing nano-hydroxyapatite. Key Eng. Mater. 2006, 309-311, 541-544.
[754] Collares, F.M., Leitune, V.C.B., Rostirolla, F.V., Trommer, R.M., Bergmann, C.P., Samuel, S.M.W. Nanostructured hydroxyapatite as filler for methacrylate-based root canal sealers. Int. Endodontic J. 2012, 45, 63-67.
[755] Kim, M.Y., Kwon, H.K., Choi, C.H., Kim, B.I. Combined effects of nano-hydroxyapatite and NaF on remineralization of early caries lesion. Key Eng. Mater. 2007, 330-332, 1347-1350.
[756] Lee, H.J., Min, J.H., Choi, C.H., Kwon, H.G., Kim, B.I. Remineralization potential of sports drink containing nano-sized hydroxyapatite. Key Eng. Mater. 2007, 330-332, 275-278.
[757] Min, J.H., Kwon, H.K., Kim, B.I. The addition of nano-sized hydroxyapatite to a sports drink to inhibit dental erosion – in vitro study using bovine enamel. J. Dent. 2011, 39, 629-635.
[758] Hong, Y.W., Kim, J.H., Lee, B.H., Lee, Y.K., Choi, B.J., Lee, J.H., Choi, H.J. The effect of nano-sized β-tricalcium phosphate on remineralization in glass ionomer dental luting cement. Key Eng. Mater. 2008, 361-363, 861-864.
[759] Weir, M.D., Chow, L.C., Xu, H.H.K. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J. Dent. Res. 2012, 91, 979-984.
[760] Melo, M.A.S., Cheng, L., Weir, M.D., Hsia, R.C., Rodrigues, L.K.A., Xu, H.H.K. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 620-629.
[761] Melo, M.A.S., Weir, M.D., Rodrigues, L.K.A., Xu, H.H.K. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent. Mater. 2013, 29, 231-240.
[762] Li, L., Pan, H.H., Tao, J.H., Xu, X.R., Mao, C.Y., Gu, X.H., Tang, R.K. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J. Mater. Chem. 2008, 18, 4079-4084.
[763] Meng, X., Lv, K., Zhang, J., Qu, D. Caries inhibitory activity of the nano-HA in vitro. Key Eng. Mater. 2007, 330-332, 251-254.
[764] Li, B.G., Wang, J.P., Zhao, Z.Y., Sui, Y.F., Zhang, Y.X. Mineralizing of nano-hydroxyapatite powders on artificial caries. Rare Metal. Mater. Eng. 2007, 36, 128-130.
[765] Choi, A.H., Ben-Nissan, B., Matinlinna, J.P., Conway, R.C. Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. J. Dent. Res. 2013, 92, 853-859.
[766] Ashokan, A., Menon, D., Nair, S., Koyakutty, M. A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials 2010, 31, 2606-2616.
[767] Bauer, I.W., Li, S.P., Han, Y.C., Yuan, L., Yin, M.Z. Internalization of hydroxyapatite nanoparticles in liver cancer cells. J. Mater. Sci. Mater. Med. 2008, 19, 1091-1095.
[768] Czupryna, J., Tsourkas, A. Suicide gene delivery by calcium phosphate nanoparticles. A novel method of targeted therapy for gastric cancer. Cancer Biol. Ther. 2006, 5, 1691-1692.
[769] Pareta, R.A. Calcium phosphate nanoparticles: toxicology and lymph node targeting for cancer metastasis prevention. In: Safety of nanoparticles. From manufacturing to medical applications. Webster, T.J. (Ed.). Springer: New York, USA, 2009; pp. 189-208.
[770] Zhang, G., Liu, T., Chen, Y.H., Chen, Y., Xu, M., Peng, J., Yu, S., Yuan, J., Zhang, X. Tissue specific cytotoxicity of colon cancer cells mediated by nanoparticle-delivered suicide gene in vitro and in vivo. Clin. Cancer Res. 2009, 15, 201-207.
[771] Luo, Y., Ling, Y., Guo, W., Pang, J., Liu, W., Fang, Y., Wen, X., Wei, K., Gao, X. Docetaxel loaded oleic acid-coated hydroxyapatite nanoparticles enhance the docetaxelinduced apoptosis through activation of caspase-2 in androgen independent prostate cancer cells. J. Control. Release 2010, 147, 278-288.
[772] Shi, Z., Huang, X., Liu, B., Tao, H., Cai, Y., Tang, R. Biological response of osteosarcoma cells to size-controlled nanostructured hydroxyapatite. J. Biomater. Appl. 2010, 25, 19-37.
[773] Iafisco, M., Palazzo, B., Martra, G., Margiotta, N., Piccinonna, S., Natile, G., Gandin, V., Marzano, C., Roveri, N. Nanocrystalline carbonate-apatites: role of Ca/P ratio on the upload and release of anticancer platinum bisphosphonates. Nanoscale 2012, 4, 206-217.
[774] Chu, S.H., Feng, D.F., Ma, Y.B., Li, Z.Q. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int. J. Nanomed. 2012, 7, 3659-3666.
[775] Iafisco, M., Delgado-Lopez, J.M., Varoni, E.M., Tampieri, A., Rimondini, L., Gomez-Morales, J., Prat, M. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small 2013, 9, 3834-3844.
[776] Han, Y., Li, S., Cao, X., Yuan, L., Wang, Y., Yin, Y., Qiu, T., Dai, H., Wang, X. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci. Rep. 2014, 4, 7134 (7 pages).
[777] Yin, M., Yin, Y., Chen, H., Han, Y., Dai, H., Li, S. Effect of hydroxyapatite nanoparticles on the growth potential of hepatoma cells in nude mice. J. Nanosci. Nanotechnol. 2015, 15, 3816-3822.
[778] Xiong, H., Du, S., Ni, J., Zhou, J., Yao, J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials 2016, 94, 70-83.
[779] Li, B., Guo, B., Fan, H., Zhang, X. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro. Appl. Surf. Sci. 2008, 255, 357-360.
[780] Dai, H., Pei, C., Han, Y., Xinyu, W., Li, S. Inhibitory effect of hydroxyapatite nanoparticles on K562 cells. Mater. Sci. Forum 2011, 685, 352-356.
[781] Borum, L., Wilson, O.C. Surface modification of hydroxyapatite. Part II. Silica. Biomaterials 2003, 24, 3681-3688.
[782] Lee, H.J., Kim, S.E., Choi, H.W., Kim, C.W., Kim, K.J., Lee, S.C. The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur. Polym. J. 2007, 43, 1602-1608.
[783] Wilson, O.C., Hull, J.R. Surface modification of nanophase hydroxyapatite with chitosan. Mater. Sci. Eng. C 2008, 28, 434-437.
[784] Liao, J.G., Wang, X.J., Zuo, Y., Zhang, L., Wen, J.Q., Li, Y.B. Surface modification of nano-hydroxyapatite with silane agent. J. Inorg. Mater. 2008, 23, 145-149.
[785] Wang, Y., Xiao, Y., Huang, X., Lang, M. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP. J. Coll. Interf. Sci. 2011, 15, 415-421.
[786] Deng, C., Xiao, X., Yao, N., Yang, X.B., Weng, J. Effect of surface modification of nano-hydroxyapatite particles on in vitro biocompatibility of poly (ε-caprolactone)-matrix composite biomaterials. Int. J. Polym. Mater. 2011, 60, 969-978.
[787] Jensen, T., Baas, J., Dolathshahi-Pirouz, A., Jacobsen, T., Singh, G., Nygaard, J.V., Foss, M., Bechtold, J., Bünger, C., Besenbacher, F., Søballe, K. Osteopontin functionalization of hydroxyapatite nanoparticles in a PDLLA matrix promotes bone formation. J. Biomed. Mater. Res. A 2011, 99A, 94-101.
[788] Chen, L., Mccrate, J.M., Lee, J.C.M., Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 2011, 22, 105708 (10 pages).
[789] Dai, Y., Xu, M., Wei, J., Zhang, H., Chen, Y. Surface modification of hydroxyapatite nanoparticles by poly(l-phenylalanine) via ROP of l-phenylalanine N-carboxyanhydride (Pha-NCA). Appl. Surf. Sci. 2012, 258, 2850-2855.
[790] Feng, G., Cheng, X., Xie, D., Wang, K., Zhang, B. Synthesis of nano-hydroxyapatite and its rapid mediated surface functionalization by silane coupling agent. Mater. Sci. Eng. C 2016, 58, 675-681.
[791] Ramachandran, R., Paul, W., Sharma, C.P. Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88B, 41-48.
[792] Uskoković, V., Uskoković, D.P. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 96B, 152-191.
[793] Loo, S.C., Moore, T., Banik, B., Alexis, F. Biomedical applications of hydroxyapatite nanoparticles. Curr. Pharm. Biotechnol. 2010, 11, 333-342.
[794] Dong, X., Shao, C. The dynamic behaviors and structure conservation of protein BMP-2 on hydroxyapatite nano surfaces. Adv. Mater. Res. 2013, 601, 115-119.
[795] Fu, H., Hu, Y., McNelis, T., Hollinger, J.O. A calcium phosphate-based gene delivery system. J. Biomed. Mater. Res. A 2005, 74A, 40-48.
[796] Liu, T.Y., Chen, S.Y., Liu, D.M., Liou, S.C. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J. Control. Release 2005, 107, 112-121.
[797] Cheng, X.G., Kuhn, L.T. Chemotherapy drug delivery from calcium phosphate nanoparticles. Int. J. Nanomed. 2007, 2, 667-674.
[798] Maitra, A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev. Mol. Diagn. 2005, 5, 893-905.
[799] Yang, X.C., Walboomers, X.F., van den Dolder, J., Yang, F., Bian, Z., Fan, M.W., Jansen, J.A. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tiss. Eng. A 2008, 14, 71-81.
[800] Ong, H.T., Loo, J.S.C., Boey, F.Y.C., Russell, S.J., Ma, J., Peng, K.W. Exploiting the high-affinity phosphonate – hydroxyapatite nanoparticle interaction for delivery of radiation and drugs. J. Nanopart. Res. 2008, 10, 141-150.
[801] Altinoğlu, E.I., Adair, J.H. Calcium phosphate nanocomposite particles: a safer and more effective alternative to conventional chemotherapy? Future Oncology 2009, 5, 279-281.
[802] Joyappa, D.H., Kumar, C.A., Banumathi, N., Reddy, G.R., Suryanarayana, V.V.S. Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Veter. Microbiol. 2009, 139, 58-66.
[803] Dreesen, I.A.J., Lüchinger, N.A., Stark, W.J., Fussenegger, M. Tricalcium phosphate nanoparticles enable rapid purification, increase transduction kinetics, and modify the tropism of mammalian viruses. Biotechnol. Bioeng. 2009, 102, 1197-1208.
[804] Tang, Q.L., Zhu, Y.J., Wu, J., Chen, F., Cao, S.W. Calcium phosphate drug nanocarriers with ultrahigh and adjustable drug-loading capacity: one-step synthesis, in situ drug loading and prolonged drug release. Nanomedicine 2011, 7, 428-434.
[805] Pittella, F., Zhang, M., Lee, Y., Kim, H.J., Tockary, T., Osada, K., Ishii, T., Miyata, K., Nishiyama, N., Kataoka, K. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials 2011, 32, 3106-3114.
[806] Behera, T., Swain, P. Antigen adsorbed calcium phosphate nanoparticles stimulate both innate and adaptive immune response in fish, Labeo rohita H. Cell. Immunol. 2011, 271, 350-359.
[807] Jiang, J.L., Li, Y.F., Fang, T.L., Zhou, J., Li, X.L., Wang, Y.C., Dong, J. Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflammation Res. 2012, 61, 207-215.
[808] Varoni, E.M., Iafisco, M., Rimondini, L., Prat, M. Development of a targeted drug delivery system: monoclonal antibodies adsorption onto bonelike hydroxyapatite nanocrystal surface. Adv. Mater. Res. 2012, 409, 175-180.
[809] Rout, S.R., Behera, B., Maiti, T.K., Mohapatra, S. Multifunctional magnetic calcium phosphate nanoparticles for targeted platin delivery. Dalton Trans. 2012, 41, 10777-10783.
[810] Knuschke, T., Sokolova, V., Rotan, O., Wadwa, M., Tenbusch, M., Hansen, W., Staeheli, P., Epple, M., Buer, J., Westendorf, A.M. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J. Immunol. 2013, 190, 6221-6229.
[811] Kozlova, D., Sokolova, V., Zhong, M., Zhang, E., Yang, J., Li, W., Yang, Y., Buer, J., Westendorf, A.M., Epple, M., Yan, H. Calcium phosphate nanoparticles show an effective activation of the innate immune response in vitro and in vivo after functionalization with flagellin. Virol. Sin. 2014, 29, 33-39.
[812] Barros, J., Grenho, L., Fernandes, M.H., Manuel, C.M., Melo, L.F., Nunes, O.C., Monteiro, F.J., Ferraz, M.P. Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite. Colloids Surf. B Biointerfaces 2015, 130, 305-314.
[813] Chu, T.C., He, Q., Potter, D.E. Biodegradable calcium phosphate nanoparticlesas a new vehicle for delivery of a potential ocular hypotensive agent. J. Ocular Pharmacol. Therapeutics 2002, 18, 507-514.
[814] Paul, W., Sharma, C.P. Porous hydroxyapatite nanoparticles for intestinal delivery of insulin. Trends Biomater. Artif. Organs 2001, 14, 37-38.
[815] Victor, S.P., Kumar, T.S.S. Tailoring calcium-deficient hydroxyapatite nanocarriers for enhanced release of antibiotics. J. Biomed. Nanotechnol. 2008, 4, 203-209.
[816] Kilian, O., Alt, V., Heiss, C., Jonuleit, T., Dingeldein, E., Flesch, I., Fidorra, U., Wenisch, S., Schnettler, R. New blood vessel formation and expression of VEGF receptors after implantation of platelet growth factor-enriched biodegradable nanocrystalline hydroxyapatite. Growth Factors 2005, 23, 125-133.
[817] Tabaković, A., Kester, M., Adair, J.H. Calcium phosphate-based composite nanoparticles in bioimaging and therapeutic delivery applications. WIREs Nanomed. Nanobiotechnol. 2012, 4, 96-112.
[818] Fox, K., Tran, P.A., Tran, N. Recent advances in research applications of nanophase hydroxyapatite. ChemPhysChem 2012, 13, 2495-2506.
[819] Madhumathi, K., Kumar, T.S.S. Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed. Mater. 2014, 9, 035002.
[820] Klesing, J., Wiehe, A., Gitter, B., Grafe, S., Epple, M. Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy. J. Mater. Sci. Mater. Med. 2010, 21, 887-892.
[821] Ling, J.Y., Loo, S.C., Phung, N.T., Boey, F., Ma, J. Controlled size and morphology of EDTMP-doped hydroxyapatite nanoparticles as model for 153Samarium-EDTMP doping. J. Mater. Sci. Mater. Med. 2008, 19, 2993-3003.
[822] Reischl, D., Zimmer, A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 2009, 5, 8-20.
[823] Jordan, M., Schallhorn, A., Wurm, F.M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 1996, 24, 596-601.
[824] Sokolova, V.V., Epple, M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem. Int. Ed. 2008, 47, 1382-1395.
[825] Chowdhury, E.H. pH-sensitive nano-crystals of carbonate apatite for smart and cell-specific transgene delivery. Expert Opin. Drug Deliv. 2007, 4, 193-196.
[826] Wu, G.J., Zhou, L.Z., Wang, K.W., Chen, F., Sun, Y., Duan, Y.R., Zhu, Y.J., Gu, H.C. Hydroxylapatite nanorods: an efficient and promising carrier for gene transfection. J. Colloid Interf. Sci. 2010, 345, 427-432.
[827] Zhou, C., Yu, B., Yang, X., Huo, T., Lee, L.J., Barth, R.F., Lee, R.J. Lipid-coated nano-calcium-phosphate (LNCP) for gene delivery. Int. J. Pharm. 2010, 392, 201-208.
[828] Giger, E.V., Puigmartí-Luis, J., Schlatter, R., Castagner, B., Dittrich, P.S., Leroux, J.C. Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. J. Control. Release 2011, 28, 87-93.
[829] Olton, D.Y., Close, J.M., Sfeir, C.S., Kumta, P.N. Intracellular trafficking pathways involved in the gene transfer of nano-structured calcium phosphate-DNA particles. Biomaterials 2011, 32, 7662-7670.
[830] Do​​, T.N.T., Lee​​, W.H., Loo​​, C.Y., Zavgorodniy​​, A.V., Rohanizadeh, R. Hydroxyapatite nanoparticles as vectors for gene delivery. Therapeutic Delivery 2012, 3, 623-632.
[831] Naqvi, S., Maitra, A.N., Abdin, M.Z., Akmal, M., Arora, I., Samim, M. Calcium phosphate nanoparticle mediated genetic transformation in plants. J. Mater. Chem. 2012, 22, 3500-3507.
[832] Lee, D., Upadhye, K., Kumta, P.N. Nano-sized calcium phosphate (CaP) carriers for non-viral gene delivery. Mater. Sci. Eng. B 2012, 177, 289-302.
[833] Wu, X., Ding, D., Jiang, H., Xing, X., Huang, S., Liu, H., Chen, Z., Sun, H. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla. J. Nanopart. Res. 2012, 14, 708, (13 pages).
[834] Chernousova, S., Klesing, J., Soklakova, N., Epple, M. A genetically active nano-calcium phosphate paste for bone substitution, encoding the formation of BMP-7 and VEGF-A. RSC Adv. 2013, 3, 11155-11161.
[835] He, P., Takeshima, S.N., Tada, S., Akaike, T., Ito, Y., Aida, Y. pH-sensitive carbonate apatite nanoparticles as DNA vaccine carriers enhance humoral and cellular immunity. Vaccine 2014, 32, 6199-6205.
[836] Lee, M.S., Lee, J.E., Byun, E., Kim, N.W., Lee, K., Lee, H., Sim, S.J., Lee, D.S., Jeong, J.H. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa-hyaluronic acid conjugate. J. Control. Rel. 2014, 192, 122-130.
[837] Alhaji, S.Y., Chowdhury, E.H., Rosli, R., Hassan, F., Abdullah, S. Gene delivery potential of biofunctional carbonate apatite nanoparticles in lungs. BioMed Res. Int. 2014, 2014, 646787.
[838] Zeng, B., Shi, H., Liu, Y. A versatile pH-responsive platform for intracellular protein delivery using calcium phosphate nanoparticles. J. Mater. Chem. B 2015, 3, 9115-9121.
[839] Jebali, A., Kalantar, S.M., Hekmatimoghaddam, S., Saffarzadeh, N., Sheikha, M.H., Ghasemi, N. Surface modification of tri-calcium phosphate nanoparticles by DOPE and/or anti-E6 antibody to enhance uptake of antisense of E6 mRNA. Colloids Surf. B Biointerfaces 2015, 126, 297-302.
[840] Jung, H., Kim, S.A., Yang, Y.G., Yoo, H., Lim, S.J., Mok, H. Long chain microRNA conjugates in calcium phosphate nanoparticles for efficient formulation and delivery. Arch. Pharm. Res. 2015, 38, 705-715.
[841] Zhang, J., Sun, X., Shao, R., Liang, W., Gao, J., Chen, J. Polycation liposomes combined with calcium phosphate nanoparticles as a non-viral carrier for siRNA delivery. J. Drug Deliv. Sci. Technol. 2015, 30, 1-6.
[842] Chowdhury, E.H., Sasagawa, T., Nagaoka, M., Kundu, A.K., Akaike, T. Transfecting mammalian cells by DNA/calcium phosphate precipitates: effect of temperature and pH on precipitation. Anal Biochem. 2003, 314, 316-318.
[843] Jordan, M., Wurm, F. Transfection of adherent and suspended cells by calcium phosphate. Methods 2004, 33, 136-143.
[844] Welzel, T., Radtke, I., Meyer-Zaika, W., Heumann, R., Epple, M. Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA. J. Mater. Chem. 2004, 14, 2213-2217.
[845] Sokolova, V.V., Radtke, I., Heumann, R., Epple, M. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials 2006, 27, 3147-3153.
[846] Sokolova, V.V., Kovtun, A., Heumann, R., Epple, M. Tracking the pathway of calcium phosphate/DNA nanoparticles during cell transfection by incorporation of red-fluorescing tetramethylrhodamine isothiocyanate-bovine serum albumin into these nanoparticles. J. Biol. Inorg. Chem. 2007, 12, 174-179.
[847] Sokolova, V.V., Kovtun, A., Prymak, O., Meyer-Zaika, W., Kubareva, E.A., Romanova, E.A., Oretskaya, T.S., Heumann, R., Epple, M. Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application for gene silencing. J. Mater. Chem. 2007, 17, 721-727.
[848] Neumann, S., Kovtun, A., Dietzel, I.D., Epple, M., Heumann, R. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials 2009, 30, 6794-6802.
[849] Graham, F.L., van der Eb, A.J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 1973, 52, 456-467.
[850] Kovtun, A., Heumann, R., Epple, M. Calcium phosphate nanoparticles for the transfection of cells. Bio-Med. Mater. Eng. 2009, 19, 241-247.
[851] Hu, J., Kovtun, A., Tomaszewski, A., Singer, B.B., Seitz, B., Epple, M., Steuhl, K.P., Ergün, S., Fuchsluger, T.A. A new tool for the transfection of corneal endothelial cells: calcium phosphate nanoparticles. Acta Biomater. 2012, 8, 1156-1163.
[852] Epple, M., Ganesan, K., Heumann, R., Klesing, J., Kovtun, A., Neumann, S., Sokolova, V. Application of calcium phosphate nanoparticles in biomedicine. J. Mater. Chem. 2010, 20, 18-23.
[853] Bose, S., Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012, 8, 1401-1421.
[854] Shan, Z., Li, X., Gao, Y., Wang, X., Li, C., Wu, Q. Application of magnetic hydroxyapatite nanoparticles for solid phase extraction of plasmid DNA. Anal. Biochem. 2012, 425, 125-127.
[855] Roy, I., Mitra, S., Maitra, A., Mozumdar, S. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J. Pharm. 2003, 250, 25-33.
[856] Li, J., Chen, Y.C., Tseng, Y.C., Mozumdar, S., Huang, L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Controlled Release 2010, 142, 416-421.
[857] Kakizawa, Y., Kataoka, K. Block copolymer self-assembly into monodispersive nanoparticles with hybrid core of antisense DNA and calcium phosphate. Langmuir 2002, 18, 4539-4543.
[858] Wang, K.W., Zhou, L.Z., Sun, Y., Wu, G.J., Gu, H.C., Duan, Y.R., Chen, F., Zhu, Y.J. Calcium phosphate/PLGA-mPEG hybrid porous nanospheres: a promising vector with ultrahigh gene loading and transfection efficiency. J. Mater. Chem. 2010, 20, 1161-1166.
[859] Epple, M., Kovtun, A. Functionalized calcium phosphate nanoparticles for biomedical application. Key Eng. Mater. 2010, 441, 299-305.
[860] Sokolova, V., Neumann, S., Kovtun, A., Chernousova, S., Heumann, R., Epple, M. An outer shell of positively charged poly(ethyleneimine) strongly increases the transfection efficiency of calcium phosphate/DNA nanoparticles. J. Mater. Sci. 2010, 45, 4952-4957.
[861] He, Q., Mitchell, A.R., Johnson, S.L., Wagner-Bartak, C., Morcol, T., Bell, S.J.D. Calcium phosphate nanoparticle adjuvant. Clin. Diagn. Lab. Immunol. 2000, 7, 899-903.
[862] He, Q., Mitchell, A.R., Morcol, T., Bell, S.J.D. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin. Diagn. Lab. Immunol. 2002, 9, 1021-1024.
[863] Yang, D., Sun, E. Fabrication of hydroxyapatite and observation of nanoparticles entering into cells. Adv. Mater. Res. 2012, 366, 451-455.
[864] Liu, Z.S., Tang, S.L., Ai, Z.L. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J. Gastroenterol. 2003, 9, 1968-1971.
[865] Xu, J., Xu, P., Li, Z., Huang, J., Yang, Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J. Biomed. Mater. Res. A 2012, 100A, 738-745.
[866] Sun, J., Ding, T. P53 reaction to apoptosis induced by hydroxyapatite nanoparticles in rat macrophages. J. Biomed. Mater. Res. A 2009, 88A, 673-679.
[867] Huang, Z., Ding, T., Sun, J. Study of effect on cell proliferation and hemolysis of HAP and TCP nanometer particles. Adv. Mater. Res. 2012, 378-379, 711-714.
[868] Xu, Z., Liu, C., Wei, J., Sun, J. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J. Appl. Toxicology 2012, 32, 429-435.
[869] Yuan, Y., Liu, C., Qian, J., Wang, J., Zhang, Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 2010, 31, 730-740.
[870] Allen, T.M., Cullis, P.R. Drug delivery systems: entering the mainstream. Science 2004, 303, 1818-1822.
[871] Schmidt, H.T., Kroczynski, M., Maddox, J., Chen, Y., Josephs, R., Ostafin, A.E.J. Antibody-conjugated soybean oil-filled calcium phosphate nanoshells for targeted delivery of hydrophobic molecules. Microencapsulation 2006, 23, 769-781.
[872] Ferraz, M.P., Mateus, A.Y., Sousa, J.C., Monteiro, F.J. Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J. Biomed. Mater. Res. A 2007, 81A, 994-1004.
[873] Yeo, C.H., Zein, S.H.S., Ahmad, A.L., McPhail, D.S. Investigation into the role of NaOH and calcium ions in the synthesis of calcium phosphate nanoshells. Brazilian J. Chem. Eng. 2012, 29, 147-158.
[874] Shao, F., Liu, L., Fan, K., Cai, Y., Yao, J. Ibuprofen loaded porous calcium phosphate nanospheres for skeletal drug delivery system. J. Mater. Sci. 2012, 47, 1054-1058.
[875] Ma, M.Y., Zhu, Y.J., Li, L., Cao, S.W. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate preparation and application in drug delivery. J. Mater. Chem. 2008, 18, 2722-2727.
[876] Cai, Y., Pan, H., Xu, X., Hu, Q., Li, L., Tang, R. Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: a smart and biocompatible drug release system. Chem. Mater. 2007, 19, 3081-3083.
[877] Zhou, W.Y., Wang, M., Cheung, W.L., Guo, B.C., Jia, D.M. Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J. Mater. Sci. Mater. Med. 2008, 19, 103-110.
[878] Kamitakahara, M., Kimura, K., Ioku, K. Synthesis of nanosized porous hydroxyapatite granules in hydrogel by electrophoresis. Colloids Surf. B Biointerfaces 2012, 97, 236-239.
[879] Wang, P., Zhao, L., Liu, J., Weir, M.D., Zhou, X., Xu, H.H.K. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014, 2, 14017 (13 pages).
[880] Loomba, L., Sekhon, B.S. Calcium phosphate nanoparticles and their biomedical potential. J. Nanomater. Mol. Nanotechnol. 2015, 4, 1 (12 pages).
[881] Uskoković, V., Wu, V.M. Calcium phosphate as a key material for socially responsible tissue engineering. Materials 2016, 9, 434 (27 pages).
[882] Wingert, P.A., Mizukami, H., Ostafin, A.E. Enhanced chemiluminescent resonance energy transfer in hollow calcium phosphate nanoreactors and the detection of hydrogen peroxide. Nanotechnology 2007, 18, 295707 (7 pages).
[883] Kottegoda, N., Munaweera, I., Madusanka, N., Karunaratne, V. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr. Sci. 2011, 101, 73-78.
[884] Chen, J.H., Wang, Y.J., Zhou, D.M., Cui, Y.X., Wang, S.Q., Chen, Y.C. Adsorption and desorption of Cu(II), Zn(II), Pb(II), and Cd(II) on the soils amended with nanoscale hydroxyapatite. Environ. Prog. Sustain. Energy 2010, 29, 233-241.
[885] Wang, D., Chu, L., Paradelo, M., Peijnenburg, W.J., Wang, Y., Zhou, D. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: effects of Cu, ionic strength, and ionic composition. J. Coll. Interf. Sci. 2011, 15, 398-407.
[886] Mobasherpour, I., Salahi, E., Pazouki, M. Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study. Arab. J. Chem. 2012, 5, 439-446.
[887] Handley-Sidhu, S., Renshaw, J.C., Yong, P., Kerley, R., Macaskie, L.E. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions. Biotechnol. Lett. 2011, 33, 79-87.
[888] Gandhi, R.M., Kousalya, G.N., Meenakshi, S. Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite. Int. J. Biol. Macromolecules 2011, 48, 119-124.
[889] Manocha, L.M., Disher, I.A., Manocha, S. Sorption of cadmium ions on (AB-type) carbonated hydroxyapatite nanoparticles. Adv. Sci. Lett. 2011, 4, 44-50.
[890] Gok, C. Neodymium and samarium recovery by magnetic nano-hydroxyapatite. J. Radioanal. Nucl. Chem. 2014, 301, 641-651.
[891] Fernando, M.S., de Silva, R.M., de Silva, K.M.N. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions. Appl. Surf. Sci. 2015, 351, 95-103.
[892] Ma’mani, L., Heydari, A., Shiroodi, R.K. Nanohydroxyapatite microspheres as a biocompatible and recoverable catalyst for synthesis of carbon-phosphorous bond formation. Curr. Org. Chem. 2009, 13, 758-762.
[893] Liu, Y., Zhong, H., Li, L., Zhang, C. Temperature dependence of magnetic property and photocatalytic activity of Fe3O4/hydroxyapatite nanoparticles. Mater. Res. Bull. 2010, 45, 2036-2039.
[894] Viswanadham, N., Debnath, S., Sreenivasulu, P., Nandan, D., Saxena, S.K., Al-Muhtaseb, A.H. Nano porous hydroxyapatite as a bi-functional catalyst for bio-fuel production. RSC Adv. 2015, 5, 67380-67383.
[895] Wang, H., Wang, C., Xiao, B., Zhao, L., Zhang, J., Zhu, Y., Guo, X. The hydroxyapatite nanotube as a promoter to optimize the HDS reaction of NiMo/TiO2 catalyst. Catal. Today 2016, 259, 340-346.
[896] Khairnar, R.S., Mene, R.U., Munde, S.G., Mahabole, M.P. Nano-hydroxyapatite thick film gas sensors. AIP Conf. Proc. 2011, 1415, 189-192.
[897] Viswanathan, K., Vadivoo, V.S., Raj, G.D. Rapid determination of hydrogen peroxide produced by Lactobacillus using enzyme coupled rhodamine isocyanide/
calcium phosphate nanoparticles. Biosens. Bioelectron. 2014, 61, 200-208.
[898] Xu, J., Shen, X., Jia, L., Zhang, M.,, Zhou, T., Wei, Y. Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection. Biosensors Bioelectronics 2017, 87, 991-997.
[899] Wang, D., Bradford, S.A., Paradelo, M., Peijnenburg, W.J.G.M., Zhou, D. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Sci. Soc. America J. 2012, 76, 375-388.
[900] Wei, W., Sun, R., Jin, Z., Cui, J., Wei, Z. Hydroxyapatite-gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution. Appl. Surf. Sci. 2014, 292, 1020-1029.
[901] Lu, Y., Jiang, H., Zhang, N.Q., Zhang, M., Liu, J.K. Assembly and copper ions detection of highly sensible and stable hydroxyapatite nanocomposite fluorescence probe. Micro Nano Lett. 2014, 9, 127-131.
[902] Sternitzke, V., Kaegi, R., Audinot, J.N., Lewin, E., Hering, J.G., Johnson, C.A. Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer. Environ. Sci. Technol. 2012, 46, 802-809.
[903] Yu, X., Tong, S., Ge, M., Zuo, J. Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites. Carbohydr. Polym. 2013, 92, 269-275.
[904] He, J., Zhang, K., Wu, S., Cai, X., Chen, K., Li, Y., Sun, B., Jia, Y., Meng, F., Jin, Z., Kong, L., Liu, J. Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water. J. Hazard. Mater. 2016, 303, 119-130.
[905] Yih, T.C., Al-Fandi, M. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 2006, 97, 1184-1190.
[906] Celotti, G., Tampieri, A., Sprio, S., Landi, E., Bertinetti, L., Martra, G., Ducati, C. Crystallinity in apatites: how can a truly disordered fraction be distinguished from nanosize crystalline domains? J. Mater. Sci. Mater. Med. 2006, 17, 1079-1087.
[907] Christenson, E.M., Anseth, K.S., van den Beucken, J.J.J.P., Chan, C.K., Ercan, B., Jansen, J.A., Laurencin, C.T., Li, W.J., Murugan, R., Nair, L.S., Ramakrishna, S., Tuan, R.S., Webster, T.J., Mikos, A.G. Nanobiomaterial applications in orthopedics. J. Orthop. Res. 2007, 25, 11-22.
[908] Schmidt, S.M., Moran, K.A., Kent, A.M.T., Slosar, J.L., Webber, M.J., McCready, M.J., Deering, C., Veranth, J.M., Ostafin, A. Uptake of calcium phosphate nanoshells by osteoblasts and their effect on growth and differentiation. J. Biomed. Mater. Res. A 2008, 87A, 418-428.

[909] Motskin, M., Müller, K.H., Genoud, C., Monteith, A.G., Skepper, J.N. The sequestration of hydroxyapatite nanoparticles by human monocyte-macrophages in a compartment that allows free diffusion with the extracellular environment. Biomaterials 2011, 32, 9470-9482.
[910] Mohsen-Nia, M., Bidgoli, M.M., Behrashi, M., Nia, A.M. Human serum protein adsorption onto synthesis nano-hydroxyapatite. Protein J. 2012, 31, 150-157.
[911] Powell, M.C., Kanarek, M.S. Nanomaterials health effects – Part 1: background and current knowledge. Wisconsin Med. J. 2006, 105, 16-20.
[912] Powell, M.C., Kanarek, M.S. Nanomaterials health effects – Part 2: uncertainties and recommendations for the future. Wisconsin Med. J. 2006, 105, 18-23.
[913] Motskin, M., Wright, D.M., Muller, K., Kyle, N., Gard, T.G., Porter, A.E., Skepper, J.N. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 2009, 30, 3307-3317.
[914] Wang, J., Wang, L., Fan, Y. Adverse biological effect of TiO2 and hydroxyapatite nanoparticles used in bone repair and replacement. Int. J. Mol. Sci. 2016, 17, 798 (14 pages).
[915] Zhao, X., Ng, S., Heng, B.C., Guo, J., Ma, L., Tan, T.T.Y., Ng, K.W., Loo, S.C.J. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch. Toxicol. 2013, 87, 1037-1052.
[916] Ding, T., Xue, Y., Lu, H., Huang, Z., Sun, J. Effect of particle size of hydroxyapatite nanoparticles on its biocompatibility. IEEE Trans. Nanobiosci. 2012, 11, 336-340.
[917] Liu, X., Qin, D., Cui, Y., Chen, L., Li, H., Chen, Z., Gao, L., Li, Y., Liu, J. The effect of calcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells. Reprod. Biol. Endocrinol. 2010, 8, 32 (8 pages).
[918] Fan, Q., Wang, Y.E., Zhao, X., Loo, J.S., Zuo, Y.Y. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano 2011, 5, 6410-6416.
[919] Jiang, H., Liu, J.K., Wang, J.D., Lu, Y., Zhang, M., Yang, X.H., Hong, D.J. The biotoxicity of hydroxyapatite nanoparticles to the plant growth. J. Hazard. Mater. 2014, 270, 71-81.
[920] Li, S., Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008, 5, 496-504.
[921] Zhou, W., Zheng, J. Direct observation of hydroxyapatite nanoparticles in vivo. Adv. Mater. Res. 2012, 503-504, 688-691.
[922] Moghimi, S.J., Hunter, A.C., Murray, J.C. Nanomedicine: current status and future prospects. FASEB J. 2005, 19, 311-330.

[923] Xu, H.H.K., Weir, M.D., Simon, C.G., Jr. Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent. Mater. 2008, 24, 1212-1222.
[924] Pujari-Palmer, S., Chen, S., Rubino, S., Weng, H., Xia, W., Engqvist, H., Tang, L., Ott, M.K. In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. Biomaterials 2016, 90, 1-11.
[925] Watari, F., Abe, S., Tamura, K., Uo, M., Yokoyama, A., Totsuka, Y. Internal diffusion of micro/nanoparticles inside body. Key Eng. Mater. 2008, 361-363, 95-98.
[926] Oberdorster, G., Oberdorster, E., Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823-839.
[927] Nel, A., Xia, T., Mädler, L., Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622-627.
[928] Jahnen-Dechent, W., Simon, U. Function follows form: shape complementarity and nanoparticle toxicity. Nanomedicine 2008, 3, 601-603.
[929] Singh, N., Manshian, B., Jenkins, G.J.S., Griffiths, S.M., Williams, P.M., Maffeis, T.G.G., Wright, C.J., Doak, S.H. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891-3914.
[930] Dhawan, A., Sharma, V., Parmar, D. Nanomaterials: a challenge for toxicologists. Nanotoxicology 2009, 3, 1-9.
[931] Dwivedi, P.D., Misra, A., Shanker, R., Das, M. Are nanomaterials a threat to the immune system? Nanotoxicology 2009, 3, 19-26.
[932] Liu, Z., Xiao, Y., Chen, W., Wang, Y., Wang, B., Wang, G., Xu, X., Tang, R. Calcium phosphate nanoparticles primarily induce cell necrosis through lysosomal rupture: the origination of material cytotoxicity. J. Mater. Chem. B 2014, 2, 3480-3489.
[933] Scientific Committee on Consumer Safety (SCCS) Opinion on Hydroxyapatite (nano). SCCS/1566/15, adopted 16 October 2015. http://ec.europa.eu/health/
scientific_committees/consumer_safety/docs/sccs_o_191.pdf.
[934] Lee, D., Leroy, C., Crevant, C., Bonhomme-Coury, L., Babonneau, F., Laurencin, D., Bonhomme, C., de Paëpe, G. Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy. Nat. Commun. 2017, 8, 14104 (7 pages).
[935] Turon, P., del Valle, L.J., Alemán, C., Puiggalí, J. Biodegradable and biocompatible systems based on hydroxyapatite nanoparticles. Appl. Sci. 2017, 7, 60 (27 pages).

Part II

[1]

Lowenstam, H.A., Weiner, S. On biomineralization. Oxford University Press, New York, USA, 1989, 324 pp.
[2] Ruys, A.J. (Ed.) Biomimetic biomaterials: structure and applications. Woodhead Publishing, Cambridge, UK, 2013, 344 pp.
[3] Dorozhkin, S.V. Calcium orthophosphate bioceramics. Ceram. Int. 2015, 41, 13913-13966.
[4] Dorozhkin, S.V. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Eng. C 2015, 55, 272-326.
[5] Dorozhkin, S.V. Calcium orthophosphates (CaPO4): occurrence and properties. Prog. Biomater. 2016, 5, 9-70.
[6] Anuta, D.A., Richardson, D. Biphasic hydroxyapatite/beta-tricalcium phosphate granules bound in polymerized methyl methacrylate: bone substitute studies. Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the Interna 1985, 8, 62.
[7] Moore, D.C., Chapman, M.W., Manske, D.J. Evaluation of a new biphasic calcium phosphate ceramic for use in grafting long bone diaphyseal defects. Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the Interna 1985, 8, 160.
[8] Dorozhkina, E.I., Dorozhkin, S.V. Mechanism of the solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures. Chem. Mater. 2002, 14, 4267-4272.
[9] Dorozhkin, S.V. Mechanism of solid-state conversion of non-stoichiometric hydroxyapatite to diphase calcium phosphate. Russ. Chem. Bull. (Int. Ed.) 2003, 52, 2369-2375.
[10] Daculsi, G., Jegoux, F., Layrolle, P. The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue engineering. In: Basu, B.,

Katti, D.S., Kumar, A. Eds. Advanced biomaterials: fundamentals processing and applications. Wiley-American Ceramic Society; Hoboken, NJ, USA. 2009, pp. 101-142.
[11] Daculsi, G., Baroth, S., LeGeros, R.Z. 20 years of biphasic calcium phosphate bioceramics development and applications. In: Narayan, R., Colombo, P., Singh, D., Salem, J. Eds. Advances in bioceramics and porous ceramics II. Wiley-American Ceramic Society; Hoboken, NJ, USA. 2010, pp. 45-58.
[12] Daculsi, G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 1998, 19, 1473-1478.
[13] Lobo, S.E., Arinzeh, T.L. Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 2010, 3, 815-826.
[14] Daculsi, G., LeGeros, R.Z., Nery, E., Lynch, K., Kerebel, B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J. Biomed. Mater. Res. 1989, 23, 883-894.
[15] Soueidan, A., Gan, O.I., Bouler, J.M., Gouin, F., Daculsi, G. Biodegradation of synthetic biphasic calcium phosphate and biological calcified substratum by cells of hemopoietic origin. Cells Mater. 1995, 5, 31-44.
[16] Benahmed, M., Bouler, J.M., Heymann, D., Gan, O., Daculsi, G. Biodegradation of synthetic biphasic calcium phosphate by human monocytes in vitro: a morphological study. Biomaterials 1996, 17, 2173-2178.
[17] http://en.wikipedia.org/wiki/Phase_(matter) – accessed in December 2016.
[18] Kivrak N., Taş, A.C. Synthesis of calcium hydroxyapatite–tricalcium phosphate (HA–TCP) composite bioceramic powders and their sintering behavior. J. Am. Ceram. Soc. 1998, 81, 2245-2252.
[19] Yasuda, H.Y., Mahara, S., Nishiyama, T., Umakoshi, Y. Preparation of hydroxyapatite/α-tricalcium phosphate composites by colloidal process. Sci. Tech. Adv. Mater. 2002, 3, 29-33.
[20] Kwon, S.H., Jun, Y.K., Hong, S.H., Kim, H.E. Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders. J. Eur. Ceram. Soc. 2003, 23, 1039-1045.
[21] Ramay, H.R.R., Zhang, M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 2004, 25, 5171-5180.
[22] Kannan, S., Ferreira, J.M.F. Synthesis and thermal stability HAP and β-TCP composites with co-substituted sodium, magnesium and fluorine. Chem. Mater. 2006, 18, 198-203.
[23] Ruseska, G., Fidancevska, E., Bossert, J. Mechanical and thermal-expansion characteristics of Ca10(PO4)6(OH)2-Ca3(PO4)2 composites. Sci. Sintering 2006, 38, 245-253.
[24] Li, Y., Li, D., Weng, W. In vitro dissolution behavior of biphasic tricalcium phosphate composite powders composed of α-tricalcium phosphate and β-tricalcium phosphate. Key Eng. Mater. 2008, 368-372, 1206-1208.
[25] Guha, A.K., Singh, S., Kumaresan, R., Nayar, S., Sinha, A. Mesenchymal cell response to nanosized biphasic calcium phosphate composites. Colloids Surf. B 2009, 73, 146-151.
[26] Huang, Y., Huang, W., Sun, L., Wang, Q., He, A., Han, C.C. Phase transition from α-TCP into β-TCP in TCP/HA composites. Int. J. Appl. Ceram. Technol. 2010, 7, 184-188.
[27] Mehdikhani, B., Mirhadi, B. Densification and hardness behaviour of nanocrystalline hydroxyapatite/β-tricalcium phosphate composite powders. J. Biomim. Biomater. Tissue Eng. 2012, 14, 81-91.
[28] Izawa, T., Kobayashi, S., Murakoshi, T. Pulse electric current sintering of hydroxyapatite/β-tricalcium phosphate composites. Adv. Compos. Mater. 2016, 25, 557-565.
[29] Viswanath, B., Ravishankar, N. Biphasic composite of tricalcium phosphate reinforced with hydroxyapatite whiskers. Mater. Res. Soc. Symp. Proc. 2005, 898, 80-85.
[30] Liu, T., Yang, D.A., Di, L. Preparation of β-TCP/HAP composite bioceramics. Key Eng. Mater. 2007, 336-338, 1642-1645.
[31] Cheng, K., Zhang, S., Weng, W.J. Sol-gel prepared β-TCP/FHA biphasic coatings. Thin Solid Films 2006, 515, 135-140.
[32] Cheng, K., Zhang, S., Weng, W., Khor, K.A., Miao, S., Wang, Y. The adhesion strength and residual stress of colloidal-sol gel derived β-tricalcium-phosphate/
fluoridated-hydroxyapatite biphasic coatings. Thin Solid Films 2008, 516, 3251-3255.
[33] Daculsi, G., Chappard, D., Aguado, E., Legeay, G., Layrolle, P., Weiss, P. Multiphasic biomaterials: a concept for bone substitutes developed in the “Pays de la Loire.” Key Eng. Mater. 2008, 361-363, -17-1.
[34] Daculsi, G., Uzel, A.P., Weiss, P., Goyenvalle, E., Aguado, E. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J. Mater. Sci. Mater. Med. 2010, 21, 855-861.
[35] Bernstein, J. Polymorphism in molecular crystals. Oxford University Press, New York, USA. 2002, 424 p.
[36] Bernstein, J. Polymorphism – a perspective. Cryst. Growth Des. 2011, 11, 632-650.
[37] Kamitakahara, M., Ohtsuki, C., Miyazaki, T. Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J. Biomater. Appl. 2008, 23, 197-212.
[38] Ma, G., Liu, X.Y. Hydroxyapatite: hexagonal or monoclinic? Cryst. Growth Des. 2009, 9, 2991-2994.
[39] Ellinger, R.F., Nery, E.B., Lynch, K.L. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int. J. Periodont. Restor. Dent. 1986, 3, 22-33.
[40] Nery, E.B., Lynch, K.L., Hirthe, W.M., Mueller, K.H. Bioceramic implants in surgically produced infrabony defects. J. Periodontol. 1975, 46, 328-347.
[41] LeGeros, R.Z. Calcium phosphate materials in restorative dentistry: a review. Adv. Dent. Res. 1988, 2, 164-183.
[42] Gibson, I.R., Rehman, I., Best, S.M., Bonfield, W. Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. J. Mater. Sci. Mater. Med. 2000, 11, 799-804.
[43] Singh, S.S., Roy, A., Lee, B.E., Banerjee, I., Kumta, P.N. MC3T3-E1 proliferation and differentiation on biphasic mixtures of Mg substituted β-tricalcium phosphate and amorphous calcium phosphate. Mater. Sci. Eng. C 2015, 45, 589-598.
[44] Yang, X., Lu, X., Zhang, Q., Zhang, X., Gu, Z., Chen, J. BCP coatings on pure titanium plates by CD method. Mater. Sci. Eng. C 2007, 27, 781-786.
[45] Molloy, E.S., Morgan, M.P., McDonnell, B., O’Byrne, J., McCarthy, G.M. BCP crystals increase prostacyclin production and upregulate the prostacyclin receptor in OA synovial fibroblasts: potential effects on mPGES1 and MMP-13. Osteoarthr. Cartilage 2007, 15, 414-420.
[46] Rosenthal, A.K., Ryan, L.M. Nonpharmacologic and pharmacologic management of CPP crystal arthritis and BCP arthropathy and periarticular syndromes. Rheum. Dis. Clin. N. Am. 2014, 40, 343-356.
[47] Lecomte, A., Gautier, H., Bouler, J.M., Gouyette, A., Pegon, Y., Daculsi, G., Merle, C. Biphasic calcium phosphate: a comparative study of interconnected porosity in two ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84B, 1-6.
[48] Tancret, F., Bouler, J.M., Chamousset, J., Minois, L.M. Modelling the
mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 2006, 26, 3647-3656.
[49] Bouler, J.M., Trecant, M., Delecrin, J., Royer, J., Passuti, N., Daculsi, G. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength. J. Biomed. Mater. Res. 1996, 32, 603-609.
[50] Daculsi, G., Weiss, P., Bouler, J.M., Gauthier, O., Millot, F., Aguado, E. Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone 1999, 25, Suppl. 2, 59S-61S.
[51] Gauthier, O., Goyenvalle, E., Bouler, J.M., Guicheux, J., Pilet, P., Weiss, P., Daculsi, G. Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J. Mater. Sci. Mater. Med. 2001, 12, 385-390.
[52] LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D., LeGeros, J.P. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci. Mater. Med. 2003, 14, 201-209.
[53] Daculsi, G., Laboux, O., Malard, O., Weiss, P. Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mater. Med. 2003, 14, 195-200.
[54] Alam, I., Asahina, I., Ohmamiuda, K., Enomoto, S. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes. J. Biomed. Mater. Res. 2001, 54, 129-138.
[55] Daculsi, G. Biphasic calcium phosphate granules concept for injectable and mouldable bone substitute. Adv. Sci. Technol. 2006, 49, 9-13.
[56] LeGeros, R.Z. Variability of HAP/β-TCP ratios in sintered apatites. J. Dent. Res. 1986, 65, 292.
[57] Langstaff, S.D., Sayer, M., Smith, T.J.N., Pugh, S.M., Hesp, S.A.M., Thompson, W.T. Resorbable bioceramics based on stabilized calcium phosphates. Part I: Rational design, sample preparation and material characterization. Biomaterials 1999, 20, 1727-1741.
[58] Langstaff, S.D., Sayer, M., Smith, T.J.N., Pugh, S.M. Resorbable bioceramics based on stabilized calcium phosphates. Part II: Evaluation of biological response. Biomaterials 2001, 22, 135-150.
[59] Reid, J.W., Pietak, A.M., Sayer, M., Dunfield, D., Smith, T.J.N. Phase
formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials 2005, 26, 2887-2897.
[60] Pan, L., Li, Y., Weng, W., Cheng, K., Song, C., Du, P., Zhao, G., Shen, G., Wang, J., Han, G. Preparation of submicron biphasic α-TCP/HA powders. Key Eng. Mater. 2006, 309-311, 219-222.
[61] Kui, C. Slip casting derived α-TCP/HA biphasic ceramics. Key Eng. Mater. 2007, 330-332, 51-54.
[62] Sanchez-Sálcedo, S., Arcos, D., Vallet-Regí, M. Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng. Mater. 2008, 377, 19-42.
[63] Li, Y., Kong, F., Weng, W. Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 89B, 508-517.
[64] Chu, K.T., Ou, S.F., Chen, S.Y., Chiou, S.Y., Chou, H.H., Ou, K.L. Research of phase transformation induced biodegradable properties on hydroxyapatite and tricalcium phosphate based bioceramic. Ceram. Int. 2013, 39, 1455-1462.
[65] Chan, Y.H., Chang, Y.S., Shen, Y.D., Yang, T.S., Ou, S.F., Hsu, Y.J., Huang, M.S., Ou, K.L. Comparative in vitro osteoinductivity study of HA and α-TCP/HA bicalcium phosphate. Int. J. Appl. Ceram. Technol. 2015, 12, 192-198.
[66] Oishi, M., Ohtsuki, C., Kitamura, M., Kamitakahara, M., Ogata, S., Miyazaki, T., Tanihara, M. Fabrication and chemical durability of porous bodies consisting of biphasic tricalcium phosphates. Phosphorus Res. Bull. 2004, 17, 95-100.
[67] Kamitakahara, M., Ohtsuki, C., Oishi, M., Ogata, S., Miyazaki, T., Tanihara, M. Preparation of porous biphasic tricalcium phosphate and its in vivo behavior. Key Eng. Mater. 2005, 284-286, 281-284.
[68] Wang, R., Weng, W., Deng, X., Cheng, K., Liu, X., Du, P., Shen, G., Han, G. Dissolution behavior of submicron biphasic tricalcium phosphate powders. Key Eng. Mater. 2006, 309-311, 223-226.
[69] Jian, P., Jiemo, T., Limin, D., Chen, W., Qingfeng, Z. Self-setting biphase porous calcium phosphate cement. Key Eng. Mater. 2007, 336-338, 1615-1617.
[70] Li, Y., Weng, W., Tam, K.C. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomater. 2007, 3, 251-254.
[71] Zou, C., Cheng K., Weng, W., Song, C., Du, P., Shen, G., Han, G. Characterization and dissolution–reprecipitation behavior of biphasic tricalcium phosphate powders. J. Alloy Compd. 2011, 509, 6852-6858.
[72] Sariibrahimoglu, K., Wolke, J.G.C., Leeuwenburgh, S.C.G., Yubao, L., Jansen, J.A. Injectable biphasic calcium phosphate cements as a potential bone substitute. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102B, 415-422.
[73] Albuquerque, J.S.V., Nogueira, R.E.F.Q., Pinheiro da Silva, T.D., Lima, D.O., Prado da Silva, M.H. Porous triphasic calcium phosphate bioceramics. Key Eng. Mater. 2004, 254-256, 1021-1024.
[74] Reid, J.W., Hendry, J.A. Rapid, accurate phase quantification of multiphase calcium phosphate materials using Rietveld refinement. J. Appl. Crystallogr. 2006, 39, 536-543.
[75] Mendonça, F., Louro, L.H.L., de Campos, J.B., da Silva, M.H.P. Porous biphasic and triphasic bioceramics scaffolds produced by gelcasting. Key Eng. Mater. 2008, 361-363, 27-30.
[76] Vani, R., Girija, E.K., Elayaraja, K., Prakash Parthiban, S., Kesavamoorthy, R., Kalkura, S.N. Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. J. Mater. Sci. Mater. Med. 2009, 20, S43-S48.
[77] Lee, B.T., Youn, M.H., Paul, R.K., Lee, K.H., Song, H.Y. In situ synthesis of spherical BCP nanopowders by microwave assisted process. Mater. Chem. Phys. 2007, 104, 249-253.
[78] Brown, O., McAfee, M., Clarke, S., Buchanan, F. Sintering of biphasic calcium phosphates. J. Mater. Sci. Mater. Med. 2010, 21, 2271-2279.

[79] Ahn, M.K., Moon, Y.W., Koh, Y.H., Kim, H.E. Production of highly porous triphasic calcium phosphate scaffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique. Ceram. Int. 2013, 39, 5879-5885.
[80] Dorozhkin, S.V. Self-setting calcium orthophosphate formulations. J. Funct. Biomater. 2013, 4, 209-311.
[81] Kohri, M., Miki, K., Waite, D.E., Nakajima, H., Okabe, T. In vitro stability of biphasic calcium phosphate ceramics. Biomaterials 1993, 14, 299-304.
[82] Ko, C.L., Chen, J.C., Hung, C.C., Wang, J.C., Tien, Y.C., Chen, W.C.
Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility. Mater. Sci. Eng. C 2014, 39, 40-46.
[83] Ko, C.L., Chen, J.C., Tien, Y.C., Hung, C.C., Wang, J.C., Chen, W.C. Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement. J. Biomed. Mater. Res. A 2015, 103A, 203-210.
[84] Guo, D., Xu, K., Liu, Y. Physicochemical properties and cytotoxicities of Sr-containing biphasic calcium phosphate bone scaffolds. J. Mater. Sci. Mater. Med. 2010, 21, 1927-1936.
[85] Guo, D., Xu, K., Han, Y. The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties. J. Biomed. Mater. Res. A 2009, 88A, 43-52.
[86] Stulajterova, R., Medvecky, L., Giretova, M., Sopcak, T. Structural and phase characterization of bioceramics prepared from tetracalcium phosphate–monetite cement and in vitro osteoblast response. J. Mater. Sci. Mater. Med. 2015, 26, article 183.
[87] Gross, K.A., Bhadang, K.A. Sintered hydroxyfluorapatites. Part III: Sintering and resultant mechanical properties of sintered blends of hydroxyapatite and fluorapatite. Biomaterials 2004, 25, 1395-1405.
[88] Bhadang, K.A., Gross, K.A. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials 2004, 25, 4935-4945.
[89] Barinov, S.M., Shvorneva, L.I., Ferro, D., Fadeeva, I.V., Tumanov, S.V. Solid solution formation at the sintering of hydroxyapatite-fluorapatite ceramics. Sci. Technol. Adv. Mater. 2004, 5, 537-541.
[90] Bhadang, K.A., Gross, K.A. Mechanical property development in isothermally sintered mechanical blends of hydroxyapatite and fluorapatite. J. Aust. Ceram. Soc. 2005, 41, 56-67.
[91] Tredwin, C.J., Young, A.M., Abou Neel, E.A., Georgiou, G., Knowles, J.C. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: Dissolution behaviour and biological properties after crystallization. J. Mater. Sci. Mater. Med. 2014, 25, 47-53.
[92] van Rees, H.B., Mengeot, M., Kostiner, E. Monoclinic-hexagonal transition in hydroxyapatite and deuterohydroxyapatite single crystals. Mater. Res. Bull 1973, 8, 1307-1309.
[93] Takahashi, H., Yashima, M., Kakihana, M., Yoshimura, M. A differential scanning calorimeter study of the monoclinic (P21/b) ↔ hexagonal (P63/m) reversible phase transition in hydroxyapatite. Thermochim. Acta 2001, 371, 53-56.
[94] Hochrein, O., Kniep, R., Zahn, D. Atomistic simulation study of the order/disorder (monoclinic to hexagonal) phase transition of hydroxyapatite. Chem. Mater. 2005, 17, 1978-1981.
[95] Slepko, A., Demkov, A.A. Hydroxyapatite: vibrational spectra and monoclinic to hexagonal phase transition. J. Appl. Phys. 2015, 117, 074701.
[96] Mulley, V.J., Cavendish, C.D. A thermogravimetric method for the analysis of mixtures of brushite and monetite. Analyst 1970, 95, 304-307.
[97] Dosen, A., Giese, R.F. Thermal decomposition of brushite, CaHPO4·2H2O to monetite CaHPO4 and the formation of an amorphous phase. Am. Mineral. 2011, 96, 368-373.
[98] Kaushal, A.M., Vangala, V.R., Suryanarayanan, R. Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate. J. Pharm. Sci. 2011, 100, 1456-1466.
[99] Tamimi, F., Nihouannen, D.L., Eimar, H., Sheikh, Z., Komarova, S., Barralet, J. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: brushite vs. monetite. Acta Biomater. 2012, 8, 3161-3169.
[100] Sánchez-Enríquez, J., Reyes-Gasga, J. Obtaining Ca(H2PO4)2·H2O, monocalcium phosphate monohydrate, via monetite from brushite by using sonication. Ultrason. Sonochem. 2013, 20, 948-954.
[101] Pyldme, M., Tynsuaadu, K., Paulik, F., Paulik, J., Arnold, M. Dehydrations of Ca(H2PO4)2·H2O and Mg(H2PO4)2·2H2O and their reactions with KCl, examined with simultaneous TG, DTG, DTA and EGA. J. Thermal Analysis 1979, 17, 479-488.
[102] Aldabergenov, M.K., Balakaeva, G.T. The mechanism of dehydration of Ca(H2PO4)2·H2O. Russ. J. Phys. Chem. 1998, 72, 1391-1393.
[103] Vaimakis, T.C., Pomonis, P.J., Sdoukos, A.T. A detailed study of the condensation of the Ca(H2PO4)2·H2O–CaHPO4·2H2O system under thermal treatment. Thermochim. Acta 1990, 168, 103-113.
[104] Vaimakis, T.C., Pomonis, P.J., Sdoukos, A.T. The kinetics of the thermal dehydration of the system Ca(H2PO4)2·H2O–CaHPO4·2H2O. Thermochim. Acta 1990, 173, 101-115.
[105] Kim, H., Camata, R.P., Vohra, Y.K., Lacefield, W.R. Control of phase composition in hydroxyapatite/tetracalcium phosphate biphasic thin coatings for biomedical applications. J. Mater. Sci. Mater. Med. 2005, 16, 961-966.
[106] Perez, L., Shyu, L.J., Nancollas, G.H. The phase transformation of calcium phosphate dihydrate into octacalcium phosphate in aqueous suspensions. Colloids Surf. 1989, 38, 295-304.
[107] Zhang, J., Ebrahimpour, A., Nancollas, G.H. Dual constant composition studies of phase transformation of dicalcium phosphate dihydrate into octacalcium phosphate. J. Coll. Interf. Sci. 1992, 152, 132-140.
[108] Mandel, S., Taş, A.C. Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5°C. Mater. Sci. Eng. C 2010, 30, 245-254.
[109] Temizel, N., Girisken, G., Taş, A.C. Accelerated transformation of brushite to octacalcium phosphate in new biomineralization media between 36.5°C and 80°C. Mater. Sci. Eng. C 2011, 31, 1136-1143.
[110] Morejón-Alonso, L., Carrodeguas, R.G., García-Menocal, J.A.D., Pérez, J.A.A., Manent, S.M. Effect of sterilization on the properties of CDHA-OCP-β-TCP biomaterial. Mater. Res. 2007, 10, 15-20.
[111] Morejón-Alonso, L., Carrodeguas, R.G., García-Menocal, J.A.D. Transformations in CDHA/OCP/β-TCP scaffold during ageing in simulated body fluid at 36.5°C. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84B, 386-393.
[112] Caroline Victoria, E., Gnanam, F.D. Synthesis and characterisation of biphasic calcium phosphate. Trends Biomater. Artif. Organs. 2002, 16, 12-14.
[113] Nawawi, N.A., Singh, R., Hamdi, M., Young, T.C., Purbolaksono, J., Sopyan, I., Toulouei, R. Synthesis and properties of biphasic calcium phosphate prepared by different methods. Adv. Mater. Res. 2014, 970, 20-25.
[114] Lin, S., LeGeros, R.Z., Rohanizadeh, R., Mijares, D., LeGeros, J.P. Biphasic calcium phosphate (BCP) bioceramics: preparation and properties. Key Eng. Mater. 2004, 240-242, 473-476.
[115] Petrov, O.E., Dyulgerova, E., Petrov, L., Popova, R. Characterization of calcium phosphate phases obtained during the preparation of sintered biphase Ca-P ceramics. Mater. Lett. 2001, 48, 162-167.
[116] Maciejewski, M., Brunner, T.J., Loher, S.F., Stark, W.J., Baiker, A. Phase transitions in amorphous calcium phosphates with different Ca/P ratios. Thermochim. Acta 2008, 468, 75-80.
[117] Zyman, Z.Z., Tkachenko, M.V., Polevodin, D.V. Preparation and characterization of biphasic calcium phosphate ceramics of desired composition. J. Mater. Sci. Mater. Med. 2008, 19, 2819-2825.
[118] Lukić, M., Stojanović, Z., Škapin, S.D., Maček-Kržmanc, M., Mitrić, M., Marković, S., Uskoković, D. Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. J. Eur. Ceram. Soc. 2011, 31, 19-27.
[119] Marković, S., Lukić, M.J., Škapin, S.D., Stojanović, B., Uskoković, D. Designing, fabrication and characterization of nanostructured functionally graded HAp/BCP ceramics. Ceram. Int. 2015, 41, 2654-2667.
[120] Zhou, C., Xie, P., Chen, Y., Fan, Y., Tan, Y., Zhang, X. Synthesis, sintering and characterization of porous nano-structured CaP bioceramics prepared by a two-step sintering method. Ceram. Int. 2015, 41, 4696-4705.
[121] Manjubala, I., Sivakimar, M. In situ synthesis of biphasic calcium phosphate ceramics using microwave irradiation. Mater. Chem. Phys. 2001, 71, 272-278.
[122] Ji, J., Ran, J., Gou, L., Wang, F., Sun, L. Microwave plasma sintering and in vitro study of porous HA/β-TCP biphasic bioceramics. Key Eng. Mater. 2005, 280-283, 1519-1524.
[123] Manjubala, I., Sastry, T.P., Kumar, R.V. Bone in-growth induced by biphasic calcium phosphate ceramic in femoral defect of dogs. J. Biomater. Appl. 2005, 19, 341-360.
[124] Jalota, S., Bhaduri, S.B., Taş, A.C. In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers. J. Biomed. Mater. Res. A 2006, 78A, 481-490.
[125] Victor, S.P., Kumar T.S.S. BCP ceramic microspheres as drug delivery carriers: synthesis, characterisation and doxycycline release. J. Mater. Sci. Mater. Med. 2008, 19, 283-290.
[126] Rameshbabu, N., Rao, K.P. Microwave synthesis, characterization and in-vitro evaluation of nanostructured biphasic calcium phosphates. Cur. Appl. Phys. 2009, 9, S29-S31.
[127] Farzadi, A., Solati-Hashjin, M., Tahmasebi-Birgani, Z., Aminian, A. Microwave-assisted synthesis and characterization of biphasic calcium phosphate nanopowders. Ceram. Trans. 2010, 218, 59-65.
[128] Veljović, D., Palcevskis, E., Dindune, A., Putić, S., Balać, I., Petrović, R., Janaćković, D. Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing. J. Mater. Sci. 2010, 45, 3175-3183.
[129] Veljović, D., Zalite, I., Palcevskis, E., Smiciklas, I., Petrović, R., Janaćković, D. Microwave sintering of fine grained HAP and HAP/TCP bioceramics. Ceram. Int. 2010, 36, 595-603.
[130] Wagner, D.E, Jones, A.D., Zhou, H., Bhaduri, S.B. Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Mater. Sci. Eng. C 2013, 33, 1710-1719.
[131] Miramond, T., Rouillon, T., Daculsi, G. Biphasic calcium phosphate: preferential ionic substitutions and crystallographic relationships at grain boundaries. Key Eng. Mater. 2015, 631, 73-77.
[132] Marchi, J., Greil, P., Bressiani, J.C., Bressiani, A., Müller, F. Influence of synthesis conditions on the characteristics of biphasic calcium phosphate powders. Int. J. Appl. Ceram. Technol. 2009, 6, 60-71.
[133] Descamps, M., Boilet, L., Moreau, G., Tricoteaux, A., Lu, J., Leriche, A.,
Lardot, V., Cambier, F. Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 2013, 33, 1263-1270.
[134] Yang, X., Wang, Z. Synthesis of biphasic ceramics of hydroxyapatite and β-tricalcium phosphate with controlled phase content and porosity. J. Mater. Chem. 1998, 8, 2233-2237.
[135] Tadjiev, T.R., Sungsu, C., Sukyoung, K. Mechano-chemical synthesis of biphasic calcium phosphates with the various ratio of HA and β-TCP. Key Eng. Mater. 2007, 330-332, 7-10.
[136] Rao, R.R., Roopa, H.N., Kannan, T.S. Solid state synthesis and thermal stability of HAP and HAP – β-TCP composite ceramic powders. J. Mater. Sci. Mater. Med. 1997, 8, 511-518.
[137] Hsu, C.K. A study on thermal behavior of uncalcined Ca(H2PO4)2·H2O and CaCO3 mixtures. Thermochim. Acta, 2002, 392-393, 157-161.
[138] Hsu, C.K. The preparation of biphasic porous calcium phosphate by the mixture of Ca(H2PO4)2·H2O and CaCO3. Mater. Chem. Phys. 2003, 80, 409-420.
[139] Jaw, K.S. Preparation of a biphasic calcium phosphate from Ca(H2PO4)2·H2O and CaCO3. J. Therm. Anal. Calorim. 2006, 83, 145-149.
[140] Webler, G.D., Zapata, M.J.M., Agra, L.C., Barreto, E., Silva, A.O.S., Hickmann, J.M., Fonseca, E.J.S. Characterization and evaluation of cytotoxicity of biphasic calcium phosphate synthesized by a solid state reaction route. Curr. Appl. Phys. 2014, 14, 876-880.
[141] Kim, D.H., Chun, H.H., Lee, J.D., Yoon, S.Y. Evaluation of phase transformation behavior in biphasic calcium phosphate with controlled spherical micro-granule architecture. Ceram. Int. 2014, 40, 5145-5155.
[142] Kim, D.H., Kim, K.L., Chun, H.H., Kim, T.W., Park, H.C., Yoon, S.Y. In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceram. Int. 2014, 40, 8293-8300.
[143] Lertcumfu, N., Jaita, P., Manotham, S., Jarupoom, P., Eitssayeam, S., Pengpat, K., Rujijanagul, G. Properties of calcium phosphates ceramic composites derived from natural materials. Ceram. Int. 2016, 42, 10638-10644.
[144] Alqap, A.S.F., Sopyan, I., Zubir, S.A. Concentration effect of aqueous synthesis on biphasic hydroxyapatite – β-tricalcium phosphate composition. Adv. Mater. Res. 2010, 93-94, 405-408.
[145] Unabia, R., Piagola, J.C., Guerrero, J.R., Vequizo, R., Gambe, J., Odarve, M.K., Sambo, B.R. Synthesis and characterization of nanocrystalline hydroxyapatite and biphasic calcium phosphate using Ca(OH)2 and (NH4)H2PO4. Physica Status Solidi C 2015, 12, 572-575.
[146] Castilho, M., Moseke, C., Ewald, A., Gbureck, U., Groll, J., Pires, I., Teßmar, J., Vorndran, E. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 2014, 6, 015006, (12 pages).
[147] Fujiwara, K., Okada, M., Takeda, S., Matsumoto, N. A novel strategy for preparing nanoporous biphasic calcium phosphate of controlled composition via a modified nanoparticle-assembly method. Mater. Sci. Eng. C 2014, 35, 259-266.
[148] Cho, J.S., Ko, Y.N., Koo, H.Y., Kang, Y.C. Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis. J. Mater. Sci. Mater. Med. 2010, 21, 1143-1149.
[149] Peña, J., Vallet-Regí, M. Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J. Eur. Ceram. Soc. 2003, 23, 1687-1696.
[150] Chen, J., Wang, Y., Chen, X., Li, R., Chen, L., Wen, H., Zhang, Q. A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Mater. Lett. 2011, 65, 1923-1926.
[151] Sopyan, I., Natasha, A.N. Preparation of nanostructured manganese-doped biphasic calcium phosphate powders via sol-gel method. Ionics 2009, 15, 735-741.
[152] Nazemi, Z., Nazarpak, M.H., Mehdikhani-Nahrkhalaji, M., Staji, H., Kalani, M.M. Synthesis, characterisation and antibacterial effects of sol-gel derived biphasic calcium phosphate nanopowders. Micro Nano Lett. 2014, 9, 403-406.
[153] Schopper, C., Ziya-Ghazvini, F., Goriwoda, W., Moser, D., Wanschitz, F., Spassova, E., Lagogiannis, G., Auterith, A., Ewers, R. HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation – a long-term histological study. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 74B, 458-467.
[154] Castillo, M., Ayers, R.A., Zhang, X., Schowengerdt, F., Moore, J.J. Combustion synthesis of porous glasses and ceramics for bone repair. Biomed. Sci. Instrum. 2001, 37, 469-474.
[155] Ayers, R., Nielsen-Preiss, S., Ferguson, V., Guglielmo, G., Moore, J.J., Kleebe, H.J. Osteoblast-like cell mineralization induced by multiphasic calcium phosphate ceramic. Mater. Sci. Eng. C 2006, 26, 1333-1337.
[156] Ayers, R., Hannigan, N., Vollmer, N., Unuvar, C. Combustion synthesis of heterogeneous calcium phosphate bioceramics from calcium oxide and phosphate precursors. Int. J. Self-Propag. High-Temp. Synth. 2011, 20, 6-14.
[157] Zhao, J., Zhao, J., Chen, J.H., Wang, X.H., Han, Z., Li, Y. Rietveld refinement of hydroxyapatite, tricalcium phosphate and biphasic materials prepared by solution combustion method. Ceram. Int. 2014, 40, 3379-3388.
[158] Ghosh, S.K., Nandi, S.K., Kundu, B., Datta, S., De, D.K., Roy, S.K., Basu, D. In vivo response of porous hydroxyapatite and β-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 86B, 217-227.
[159] Aghayan, M.A., Rodríguez, M.A. Influence of fuels and combustion aids on solution combustion synthesis of bi-phasic calcium phosphates (BCP). Mater. Sci. Eng. C 2012, 32, 2464-2468.
[160] Lin, F.H., Liao, C.J., Chen, K.S., Sun, J.S. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O7·10H2O addition. Biomaterials 1999, 20, 475-484.
[161] Lin, F.H., Liao, C.J., Chen, K.S., Sun, J.S., Lin, C.Y. Preparation of β-TCP/HAP biphasic ceramics with natural bone structure by heating bovine cancellous bone with the addition of (NH4)2HPO4. J. Biomed. Mater. Res. 2000, 51, 157-163.
[162] Tavangarian, F., Emadi, R., Esfahani, S.I.R. A novel method to synthesis of β-TCP/HA biphasic nanocrystalline powder by using bovine bone. Int. J. Modern Phys. B 2010, 24, 3365-3372.
[163] Emadi, R., Esfahani, S.I.R., Tavangarian, F. A novel, low temperature method for the preparation of β-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone. Mater. Lett. 2010, 64, 993-996.
[164] Jin, H.B., Guo, C.B., Mao, K.Y., Dorozhkin, S., Agathopoulos, S. Preparation of porous biphasic β-TCP/HA bioceramics with a natural trabecular structure from calcined cancellous bovine bone. J. Ceram. Soc. Jpn. 2010, 118, 52-56.
[165] Lee, N.H., Hwang, K.H., Lee, J.K. Fabrication of biphasic calcium phosphate bioceramics from the recycling of bone ash. Adv. Mater. Res. 2013, 610-613, 2328-2331.
[166] Sarin, P., Lee, S.J., Apostolov, Z.D., Kriven, W.M. Porous biphasic calcium phosphate scaffolds from cuttlefish bone. J. Am. Ceram. Soc. 2011, 94, 2362-2370.
[167] Babu, N.R., Rao, K.P., Kumar, T.S.S. Effect of coralline derived biphasic calcium phosphate shot blasting on titanium surfaces. T. Indian I. Metals 2004, 57, 85-89.
[168] Dadhich, P., Das, B., Pal, P., Srivas, P.K., Dutta, J., Ray, S., Dhara, S. A simple approach for an eggshell-based 3D-printed osteoinductive multiphasic calcium phosphate scaffold. ACS Appl. Mater. Interf. 2016, 8, 11910-11924.
[169] Spassova, E., Gintenreiter, S., Halwax, E., Moser, D., Schopper, C., Ewers, R. Chemistry, ultrastructure and porosity of monophasic and biphasic bone forming materials derived from marine algae. Materialwiss. Werkst. 2007, 38, 1027-1034.
[170] Ebrahimi, M., Botelho, M.G. Biphasic calcium phosphates (BCP) of hydroxyapatite (HA) and tricalcium phosphate (TCP) as bone substitutes: importance of physicochemical characterizations in biomaterials studies. Data in Brief 2017, 10, 93-97.
[171] Nakano, T., Kaibara, K., Umakoshi, Y., Imazato, S., Ogata, K., Ehara, A., Ebisu, S., Okazaki, M. Change in microstructure and solubility improvement of HAp ceramics by heat-treatment in a vacuum. Mater. Transact. 2002, 43, 3105-3111.
[172] Kiba, W., Imazato, S., Takahashi, Y., Yoshioka, S., Ebisu, S., Nakano, T. Efficacy of polyphasic calcium phosphates as a direct pulp capping material. J. Dent. 2010, 38, 828-837.
[173] Weng, J., Liu, X., Zhang, X., Ma, Z., Ji, X., Zyman, Z.Z. Further studies
on the plasma-sprayed amorphous phase in hydroxyapatite coatings and its deamorphization. Biomaterials 1993, 14, 578-582.
[174] Gross, K.A., Berndt, C.C., Herman, H. Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. J. Biomed. Mater. Res. 1998, 39, 407-414.
[175] Kreidler, E.R., Hummel, F.A. Phase relationships in the system SrO–P2O5 and the influence of water vapor on the formation of Sr4P2O9. Inorg. Chem. 1967, 6, 884-891.
[176] Carayon, M.T., Lacout, J.L. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J. Solid State Chem. 2003, 172, 339-350.
[177] Yang, D.J., Tadjiev, T.R., Kim, J.W., You, C.K., Choi, S.K., Park, K.B., Ryoo, K.H., Kim, S. Comparative study of the degradation behavior of mechanically mixed and chemically precipitated biphasic calcium phosphates. Key Eng. Mater. 2006, 309-311, 227-230.
[178] Zhang, Y., Yokogawa, Y., Kameyama, T. Bimodal porous bi-phasic calcium phosphate ceramics and its dissolution in SBF solution. Key Eng. Mater. 2007, 330-332, 91-94.
[179] Zhang, Y., Yokogawa, Y., Kameyama, T. Preparation of biphasic calcium phosphate porous ceramics prepared from fine powders with different particle size and its dissolution behavior in simulated body fluid. Key Eng. Mater. 2007, 336-338, 1688-1691.
[180] Nilen, R.W.N., Richter, P.W. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. J. Mater. Sci. Mater. Med. 2008, 19, 1693-1702.
[181] Kong, Y.M., Kim, H.E., Kim, H.W. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite–tricalcium phosphate biphasic ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84B, 334-339.
[182] Tanimoto, Y., Shibata, Y., Murakami, A., Miyazaki, T., Nishiyama, N. Effect of varying HAP/TCP ratios in tape-cast biphasic calcium phosphate ceramics on response in vitro. J. Hard Tissue Biol. 2009, 18, 71-76.
[183] Wongwitwichot, P., Kaewsrichan, J., Chua, K.H., Ruszymah, B.H.I. Comparison of TCP and TCP/HA hybrid scaffolds for osteoconductive activity. Open Biomed. Eng. J. 2010, 4, 279-285.
[184] Hung, C.L., Yang, J.C., Chang, W.J., Hu, C.Y., Lin, Y.H., Huang, C.H., Chen, C.C., Lee, S.Y., Teng, N.C. In vivo graft performance of an improved bone substitute composed of poor crystalline hydroxyapatite based biphasic calcium phosphate. Dent. Mater. J. 2011, 30, 21-28.
[185] Bizari, D., Moztarzadeh, F., Rabiee, M., Tahriri, M., Banafatizadeh, F., Ansari,
A., Khoshroo, K. Development of biphasic hydroxyapatite/dicalcium phosphate dihydrate (DCPD) bone graft using polyurethane foam template: in vitro and in vivo study. Adv. Appl. Ceram. 2011, 110, 417-425.
[186] Ebrahimi, M., Pripatnanont, P., Monmaturapoj, N., Suttapreyasri, S. Fabrication and characterization of novel nano hydroxyapatite/β-tricalcium phosphate scaffolds in three different composition ratios. J. Biomed. Mater. Res. A 2012, 100A, 2260-2268.
[187] Yang, D.H., Park, H.N., Bae, M.S., Lee, J.B., Heo, D.N., Lee, W.J., Park, Y.M., Cho, Y.H., Kim, D.S., Kwon, I.K. Evaluation of GENESIS-BCP™ scaffold composed of hydroxyapatite and β-tricalcium phosphate on bone formation. Macromol. Res. 2012, 20, 627-633.
[188] Gao, C., Yang, B., Hu, H., Liu, J., Shuai, C., Peng, S. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Mater. Sci. Eng. C 2013, 33, 3802-3810.
[189] Zhang, Y., Ai, J., Wang, D., Hong, Z., Li, W., Yokogawa, Y. Dissolution properties of different compositions of biphasic calcium phosphate bimodal porous ceramics following immersion in simulated body fluid solution. Ceram. Int. 2013, 39, 6751-6762.
[190] Kreethawate, L., Tong-On, S., Siriarchavatana, P., Larpkiattaworn, S. Microstructure and properties of TCP/HA composite materials. Key Eng. Mater. 2014, 608, 259-263.
[191] Gasik, M., Keski-Honkola, A., Bilotsky, Y., Friman, M. Development and optimization of hydroxyapatite–β-TCP functionally gradated biomaterial. J. Mech. Behav. Biomed. Mater. 2014, 30, 266-273.
[192] Yetmez, M. Sintering behavior and mechanical properties of biphasic calcium phosphate ceramics. Adv. Mater. Sci. Eng. 2014, 2014, 871749.
[193] Gallinetti, S., Canal, C., Ginebra, M.P. Development and characterization of biphasic hydroxyapatite/β-TCP cements. J. Am. Ceram. Soc. 2014, 97, 1065-1073.
[194] Xie, L., Yu, H., Deng, Y., Yang, W., Liao, L., Long, Q. Preparation and in vitro degradation study of the porous dual alpha/beta-tricalcium phosphate bioceramics. Mater. Res. Inn. 2016, 20, 530-537.
[195] Xie, L., Yu, H., Deng, Y., Yang, W., Liao, L., Long, Q. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics. Mater. Sci. Eng. C 2016, 59, 1007-1015.
[196] Jun, Y.K., Hong, S.H., Kong, Y.M. Effect of co-precipitation on the low-temperature sintering of biphasic calcium phosphate. J. Am. Ceram. Soc. 2006, 89, 2295-2297.
[197] Tas, A.C. Formation of calcium phosphate whiskers in hydrogen peroxide (H2O2) solutions at 90°C. J. Am. Ceram. Soc. 2007, 90, 2358-2362.
[198] Miller, M.A., Kendall, M.R., Jain, M.K., Larson, P.R., Madden, A.S., Tas, A.C. Testing of brushite (CaHPO4·2H2O) in synthetic biomineralization solutions and in situ crystallization of brushite micro-granules. J. Am. Ceram. Soc. 2012, 95, 2178-2188.
[199] Miller, M.A., Kendall, M.R., Jain, M.K., Larson, P.R., Madden, A.S., Tas, A.C. Maturation of brushite (CaHPO4·2H2O) and in situ crystallization of brushite micro-granules. Ceram. Eng. Sci. Proc. 2014, 34, 77-91.
[200] Mitsionis, A.I., Vaimakis, T.C., Trapalis, C.C. The effect of citric acid on the sintering of calcium phosphate bioceramics. Ceram. Int. 2010, 36, 623-634.
[201] Mitsionis, A.I., Vaimakis, T.C. A calorimetric study of the temperature effect on calcium phosphate precipitation. J. Therm. Anal. Calorim. 2010, 99, 785-789.
[202] Nouri-Felekori, M., Mesgar, A.S.M., Mohammadi, Z. Development of composite scaffolds in the system of gelatin – calcium phosphate whiskers/fibrous spherulites for bone tissue engineering. Ceram. Int. 2015, 41, 6013-6019.
[203] Aslanidou, M., Vaimakis, T., Mitsionis, A., Trapalis, C. A novel approach on the preparation of biphasic calcium phosphate bioceramics under physiological conditions. The effect of the starting material. Ceram. Int. 2013, 39, 539-546.
[204] Rau, J.V., Fosca, M., Komlev, V.S., Fadeeva, I.V., Albertini, V.R., Barinov, S.M. In situ time-resolved studies of octacalcium phosphate and dicalcium phosphate dihydrate in simulated body fluid: cooperative interactions and nanoapatite crystal growth. Cryst. Growth Des. 2010, 10, 3824-3834.
[205] Higuita, L.P., Vargas, A.F., Gil, M.J., Giraldo, L.F. Synthesis and characterization of nanocomposite based on hydroxyapatite and monetite. Mater. Lett. 2016, 175, 169-172.
[206] Mohammadi, Z., Sheikh-Mehdi Mesgar, A., Rasouli-Disfani, F. Preparation and characterization of single phase, biphasic and triphasic calcium phosphate whisker-like fibers by homogenous precipitation using urea. Ceram. Int. 2016, 42, 6955-6961.
[207] Sogo, Y., Sakurai, T., Onuma, K., Ito, A. The most appropriate (Ca+Zn)/P molar ratio to minimize the zinc content of ZnTCP/HAP ceramic used in the promotion of bone formation. J. Biomed. Mater. Res. 2002, 62, 457-463.
[208] Costa, A.M., Soares, G.A., Calixto, R., Rossi, A.M. Preparation and properties of zinc containing biphasic calcium phosphate bioceramics. Key Eng. Mater. 2004, 254-256, 119-122.
[209] Gunawan, Sopyan, I., Mel, M., Suryanto, Investigations of the effects of initial Zn concentration and sintering conditions on the phase behavior and mechanical properties of Zn-doped bcp. Adv. Environ, Biol. 2014, 8, Spec. Iss., 680-685.
[210] Manjubala, I., Kumar, T.S.S. Preparation of biphasic calcium phosphate doped with magnesium fluoride for osteoporotic applications. J. Mater. Sci. Lett. 2001, 20, 1225-1227.
[211] Ryu, H.S., Hong, K.S., Lee, J.K., Kim, D.J., Lee, J.H., Chang, B.S., Lee, D.H., Lee, C.K., Chung, S.S. Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials 2004, 25, 393-401.
[212] Kannan, S., Lemos, I.A.F., Rocha, J.H.G., Ferreira, J.M.F. Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/β-tricalcium phosphate ratios. J. Solid State Chem. 2005, 178, 3190-3196.
[213] Ryu, H.S., Hong, K.S., Lee, J.K., Kim, D.J. Variations of structure and composition in magnesium incorporated hydroxyapatite/β-calcium phosphate. J. Mater. Res. 2006, 21, 428-436.
[214] Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., Rebelo, A.H.S., Valério, P., Ferreira, J.M.F. Rietveld structure and in vitro analysis on the influence of magnesium in biphasic (hydroxyapatite and β-tricalcium phosphate) mixtures. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 404-411.
[215] Gomes, S., Renaudin, G., Jallot, E., Nedelec, J.M. Structural characterization and biological fluid interaction of sol-gel-derived Mg-substituted biphasic calcium phosphate ceramics. ACS Appl. Mater. Interf. 2009, 1, 505-513.
[216] Kim, T.W., Lee, H.S., Kim, D.H., Jin, H.H., Hwang, K.H., Lee, J.K., Park, H.C., Yoon, S.Y. In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation. Mater. Res. Bull. 2012, 47, 2506-2512.
[217] Kumar, P.N., Mishra, S.K., Kannan, S. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites. J. Solid State Chem. 2015, 231, 13-19.
[218] Webler, G.D., Correia, A.C.C., Barreto, E., Fonseca, E.J.S. Mg-doped biphasic calcium phosphate by a solid state reaction route: characterization and evaluation of cytotoxicity. Mater. Chem. Phys. 2015, 162, 177-181.
[219] Tamai, M., Isama, K., Nakaoka, R., Tsuchiya, T. Synthesis of a novel β-tricalcium phosphate/hydroxyapatite biphasic calcium phosphate containing niobium ions and evaluation of its osteogenic properties. J. Artif. Organs 2007, 10, 22-28.
[220] Kannan, S., Ventura, J.M.G., Ferreira, J.M.F. In situ formation and characterization of fluorine-substituted biphasic calcium phosphate ceramics of varied F-HAP/β-TCP ratios. Chem. Mater. 2005, 17, 3065-3068.
[221] Kannan, S., Rocha, J.H.G., Ferreira, J.M.F. Synthesis of hydroxy-chloroapatites solid solutions. Mater. Lett. 2006, 60, 864-868.
[222] Kannan, S., Ventura, J.M.G., Lemos, A.F., Barba, A., Ferreira, J.M.F. Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceram. Int. 2008, 34, 7-13.
[223] Kannan, S., Ventura, J.M.G., Ferreira, J.M.F. Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalciumphosphate mixtures. Ceram. Int. 2007, 33, 1489-1494.
[224] Kannan, S., Rebelo, A., Lemos, A.F., Barba, A., Ferreira, J.M.F. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J. Eur. Ceram. Soc. 2007, 27, 2287-2294.
[225] Mayer, I., Cuisinier, F.J.G., Popov, I., Schleich, Y., Gdalya, S., Burghaus, O., Reinen, D. Phase relation between β-tricalcium phosphate and hydroxyapatite with manganese (II): structural and spectroscopic properties. Eur. J. Inorg. Chem. 2006, 7, 1460-1465.
[226] Sopyan, I., Nawawi, N.A., Shah, Q.H. Dense manganese doped biphasic calcium phosphate for load bearing bone implants. Adv. Mater. Res. 2010, 93-94, 393-396.
[227] Sopyan, I., Ramesh, S., Nawawi, N.A., Tampieri, A., Sprio, S. Effects of manganese doping on properties of sol-gel derived biphasic calcium phosphate ceramics. Ceram. Int. 2011, 37, 3703-3715.
[228] Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., Ferreira, J.M.F. Ionic substitution in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement. J. Am. Ceram. Soc. 2008, 91, 1-12.
[229] Li, B., Chen, X., Guo, B., Wang, X., Fan, H., Zhang, X. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater. 2009, 5, 134-143.
[230] Wang, H., Yu, J., Li, J., Cheng, X., Huang, Z. The room temperature photoluminescence properties of Eu3+-doped bi-phase calcium phosphate under visible light. J. Mater. Sci. 2010, 45, 1237-1241.
[231] Gomes, S., Renaudin, G., Mesbah, A., Jallot, E., Bonhomme, C., Babonneau, F., Nedelec, J.M. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Acta Biomater. 2010, 6, 3264-3274.
[232] Kanchana, P., Sekar, C. Influence of strontium on the synthesis and surface properties of biphasic calcium phosphate (BCP) bioceramics. J. Appl. Biomater. Biomech. 2010, 8, 153-158.
[233] Kannan, S., Vieira, S.I., Olhero, S.M., Torres, P.M.C., Pina, S., da Cruz e Silva, O.A.B., Ferreira, J.M.F. Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomater. 2011, 7, 1835-1843.
[234] Kim, H.W., Koh, Y.H., Kong, Y.M., Kang, J.G., Kim, H.E. Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. J. Mater. Sci. Mater. Med. 2004, 15, 1129-1134.
[235] Kumar, P.N., Mishra, S.K., Kiran, R.U., Kannan, S. Preferential occupancy of strontium in the hydroxyapatite lattice in biphasic mixtures formed from non-stoichiometric calcium apatites. Dalton Transact. 2015, 44, 8284-8292.
[236] Radovanović, Ž., Jokić, B., Veljović, D., Dimitrijević, S., Kojić, V., Petrović, R., Janaćković, D. Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite. Appl. Surf. Sci. 2014, 307, 513-519.
[237] Baradaran, S., Moghaddam, E., Nasiri-Tabrizi, B., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Alias, Y. Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application. Mater. Sci. Eng. C 2015, 49, 656-668.
[238] Takahashi, K., van den Beucken, J.J.J.P., Wolke, J.G.C., Hayakawa, T., Nishiyama, N., Jansen, J.A. Characterization and in vitro evaluation of biphasic calcium pyrophosphate-tricalciumphosphate radio frequency magnetron sputter coatings. J. Biomed. Mater. Res. A 2008, 84A, 682-690.
[239] Chen, G., Li, W., Zhao, B., Sun, K. A novel biphasic bone scaffold: β-calcium phosphate and amorphous calcium polyphosphate. J. Am. Ceram. Soc. 2009, 92, 945-948.
[240] Yang, Y.W., Mao, T.Q., Gao, Z., Hou, R., Su, X.D., Hu, X.G., Cheng, X.B. Biocompatibility of ostrich multiphasic calcium phosphate ceramic scaffold. Chinese J. Clin. Rehabil. 2004, 8, 2626-2627.
[241] Kim, D.H., Hwang, K.H., Lee, J.D., Park, H.C., Yoon, S.Y. Long and short range order structural analysis of in-situ formed biphasic calcium phosphates. Biomater. Res. 2015, 19, 149-153.
[242] Yamada, S., Heymann, D., Bouler, J.M., Daculsi, G. Osteoclastic resorption of biphasic calcium phosphate ceramic in vitro. J. Biomed. Mater. Res. 1997, 37, 346-352.
[243] Yamada, S., Heymann, D., Bouler, J.M., Daculsi, G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials 1997, 18, 1037-1041.
[244] Newe, C., Cunningham, E., Buchanan, F., Walker, G., Prendergast, P., Lennon, A., Dunne, N.J. Static and dynamic degradation of sintered calcium phosphate ceramics. Key Eng. Mater. 2012, 493-494, 861-865.
[245] Strobel, L., Rath, S., Maier, A., Beier, J., Arkudas, A., Greil, P., Horch, R., Kneser, U. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. Journal of Tissue Eng. Regen. Med. 2014, 8, 176-185.
[246] Marques, C.F., Perera, F.H., Marote, A., Ferreira, S., Vieira, S.I., Olhero, S., Miranda, P., Ferreira, J.M.F. Biphasic calcium phosphate scaffolds fabricated by direct write assembly: mechanical, anti-microbial and osteoblastic properties. J. Eur. Ceram. Soc. 2017, 37, 359-368.
[247] Schumacher, M., Deisinger, U., Ziegler, G., Detsch, R. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. J. Mater. Sci. Mater. Med. 2010, 21, 3119-3127.
[248] Schumacher, M., Uhl, F., Detsch, R., Deisinger, U., Ziegler, G. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J. Mater. Sci. Mater. Med. 2010, 21, 3039-3048.
[249] Jo, I.H., Ahn, M.K., Moon, Y.W., Koh, Y.H., Kim, H.E. Novel rapid direct deposition of ceramic paste for porous biphasic calcium phosphate (BCP) scaffolds with tightly controlled 3-D macrochannels. Ceram. Int. 2014, 40, 11079-11084.
[250] Ahn, M.K., Shin, K.H., Moon, Y.W., Koh, Y.H., Choi, W.Y., Kim, H.E. Highly porous biphasic calcium phosphate (BCP) ceramics with large interconnected pores by freezing vigorously foamed BCP suspensions under reduced pressure. J. Amer. Ceram. Soc. 2011, 94, 4154-4156.
[251] Baradararan, S., Hamdi, M., Metselaar, I.H. Biphasic calcium phosphate (BCP) macroporous scaffold with different ratios of HA/β-TCP by combination of gel casting and polymer sponge methods. Adv. Appl. Ceram. 2012, 111, 367-373.
[252] Ahn, M.K., Moon, Y.W., Koh, Y.H., Kim, H.E. Use of glycerol as a cryoprotectant in vacuum-assisted foaming of ceramic suspension technique for improving compressive strength of porous biphasic calcium phosphate ceramics. J. Am. Ceram. Soc. 2012, 95, 3360-3362.
[253] Nie, L., Chen, D., Yang, Q., Zou, P., Feng, S., Hu, H., Suo, J. Hydroxyapatite/poly-L-lactide nanocomposites coating improves the adherence and proliferation of human bone mesenchymal stem cells on porous biphasic calcium phosphate scaffolds. Mater. Lett. 2013, 92, 25-28.
[254] Qader, S.T.A., Rahman, I.A., Ismail, H., Kannan, T.P., Mahmood, Z. A simple pathway in preparation of controlled porosity of biphasic calcium phosphate scaffold for dentin regeneration. Ceram. Int. 2013, 39, 2375-2381.
[255] Kim, W.S., Nath, S.D., Bae, J.S., Padalhin, A., Kim, B., Song, M.J., Min, Y.K. In vitro and in vivo evaluation of composite scaffold of BCP, bioglass and gelatin for bone tissue engineering. Korean J. Mater. Res. 2014, 24, 310-318.
[256] Lee, M.H., You, C., Kim, K.H. Combined effect of a microporous layer and type I collagen coating on a biphasic calcium phosphate scaffold for bone tissue engineering. Materials 2015, 8, 1150-1161.
[257] Tang, X., Mao, L., Liu, J., Yang, Z., Zhang, W., Shu, M., Hu, N., Jiang, L., Fang, B. Fabrication, characterization and cellular biocompatibility of porous biphasic calcium phosphate bioceramic scaffolds with different pore sizes. Ceram. Int. 2016, 42, 15311-15318.
[258] Tuyen, D.V., Lee, B.T. Formation and characterization of porous spherical biphasic calcium phosphate (BCP) granules using PCL. Ceram. Int. 2011, 37, 2043-2049.
[259] Sarkar, S.K., Tuyen, D.V., Lee, B.T. Evaluation of formation process of spherical porous biphasic calcium phosphate (BCP) granules by slurry dripping method. Met. Mater. Int. 2012, 18, 717-721.
[260] Ilieva, R., Dyulgerova, E., Petrov, O., Aleksandrova, R., Titorenkova, R. Effects of high energy dry milling on biphase calcium phosphates. Adv. Appl. Ceram. 2013, 112, 219-226.
[261] Wolf-Brandstetter, C., Hempel, U., Clyens, S., Gandhi, A.A., Korostynska, O., Oswald, S., Tofail, S.A., Theilgaard, N., Wiesmann, H.P., Scharnweber, D. The impact of heat treatment on interactions of contact-poled biphasic calcium phosphates with proteins and cells. Acta Biomater. 2012, 8, 3468-3477.
[262] Tarafder, S., Banerjee, S., Bandyopadhyay, A., Bose, S. Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 2010, 26, 16625-16629.
[263] Tarafder, S., Bodhak, S., Bandyopadhyay, A., Bose, S. Effect of electrical polarization and composition of biphasic calcium phosphates on early stage osteoblast interactions. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97B, 306-314.
[264] Bouler, J.M., Daculsi, G. In vitro carbonated apatite precipitation on biphasic calcium phosphate pellets presenting various HA/β-TCP ratios. Key Eng. Mater. 2001, 192-195, 119-122.
[265] Leng, Y., Chen, J., Qu, S. TEM study of calcium phosphate precipitation on HA/TCP ceramics. Biomaterials 2003, 24, 2125-2131.
[266] Duan, Y.R., Zhang, Z.R., Wang, C.Y., Chen, J.Y., Zhang, X.D. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. J. Mater. Sci. Mater. Med. 2004, 15, 1205-1211.
[267] Deng, C., Wang, Y., Wu, Y., Wang, X., Chen, X., Zheng, H., Chen, J., Zhang, X. Apatite formation on porous HA/TCP in animals’ serums in vitro. Key Eng. Mater. 2007, 330-332, 955-958.
[268] Deng, C., Wang, Y., Chen, J., Zheng, H., Chen, H., Zhang, D., Zhang, X. Growth of apatite in bovine serums on porous HA/TCP ceramics. Key Eng. Mater. 2008, 368-372, 1184-1186.
[269] Huang, L., Zhou, B., Wu, H., Zheng, L., Zhao, J. Effect of apatite formation of biphasic calcium phosphate ceramic (BCP) on osteoblastogenesis using simulated body fluid (SBF) with or without bovine serum albumin (BSA). Mater. Sci. Eng. C 2017, 70, 955-961.
[270] Toquet, J., Rohanizadeh, R., Guicheux, J., Couillaud, S., Passuti, N., Daculsi, G., Heymann, D. Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic. J. Biomed. Mater. Res. 1999, 44, 98-108.
[271] Silva, S.N., Pereira, M.M., Goes, A.M., Leite, M.F. Effect of biphasic calcium phosphate on human macrophage functions in vitro. J Biomed Mater Res A 2003, 65A, 475-481.
[272] Rochet, N., Loubat, A., Laugier, J.P., Hofman, P., Bouler, J.M., Daculsi, G., Carle, G.F., Rossi, B. Modification of gene expression induced in human osteogenic and osteosarcoma cells by culture on a biphasic calcium phosphate bone substitute. Bone 2003, 32, 602-610.
[273] de Kok, I.J., Peter, S.J., Archambault, M., van den Bos, C., Kadiyala, S., Aukhil, I., Cooper, L.F. Investigation of allogeneic mesenchymal stem cell-based alveolar bone formation: preliminary findings. Clin. Oral Implant Res. 2003, 14, 481-489.
[274] Holtorf, H.L., Sheffield, T.L., Ambrose, C.G., Jansen, J.A., Mikos, A.G. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. Annals Biomed. Eng. 2005, 33, 1238-1248.
[275] Eslaminejad, M.B., Jafarian, M., Khojasteh, A., Abbas, F.M., Dehghan, M.M., Hassanizadeh, R. In vivo bone formation by canine mesenchymal stem cells loaded onto HA/TCP scaffolds: qualitative and quantitative analysis. Yakhteh Med. J. 2008, 10, 205-212.
[276] Lobo, S.E., Glickman, R., da Silva, W.N., Arinzeh, T.L., Kerkis, I. Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tiss. Res. 2015, 361, 477-495.
[277] Oda, S., Kinoshita, A., Higuchi, T., Shizuya, T., Ishikawa, I. Ectopic bone formation by biphasic calcium phosphate (BCP) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2). J. Med. Dent. Sci. 1997, 44,
53-62.
[278] Zhu, X., Fan, H., Li, D., Xiao, Y., Zhang, X. Protein adsorption and zeta potentials of a biphasic calcium phosphate ceramic under various conditions. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 65-73.
[279] Kim, J.I., Yun, J.H., Chae, G.J., Jung, S.W., Kim, C.S., Cho, K.S. rhBMP-2 using biphasic calcium phosphate block as a carrier induces new bone formation in a rat subcutaneous tissue. J. Korean Acad. Periodontol. 2008, 38, 355-362.
[280] Zhu, X.D., Fan, H.S., Xiao, Y.M., Li, D.X., Zhang, H.J., Luxbacher, T., Zhang, X.D. Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo. Acta Biomater. 2009, 5, 1311-1318.
[281] Banerjee, S.S., Bandyopadhyay, A., Bose, S. Biphasic resorbable calcium phosphate ceramic for bone implants and local alendronate delivery. Adv. Eng. Mater. 2010, 12, B148-B155.
[282] Miramond, T., Aguado, E., Goyenvalle, E., Moreau, F., Borget, P., Daculsi, G. Osteopromotion of biphasic calcium phosphate granules in critical size defects after osteonecrosis induced by focal heating insults. IRBM 2013, 34, 337-341.
[283] Daculsi, G., Layrolle, P. Osteoinductive properties of micro macroporous biphasic calcium phosphate bioceramics. Key Eng. Mater. 2004, 254-256, 1005-1008.
[284] Shin, H.I., Kim, K.H., Kang, I.K., Oh, K.S. Successful osteoinduction by cell-macroporous biphasic HA-TCP ceramic matrix. Key Eng. Mater. 2005, 288-289, 245-248.
[285] le Nihouannen, D., Daculsi, G., Saffarzadeh, A., Gauthier, O., Delplace, S., Pilet, P., Layrolle, P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 2005, 36, 1086-1093.
[286] Ye, F., Lu, X., Wang, J. A long-term evaluation of osteoinductive HA/β-TCP ceramics in vivo: 4.5 years study in pigs. J. Mater. Sci. Mater. Med. 2007, 18, 2173-2178.
[287] Fellah, B.H., Gauthier, O., Weiss, P., Chappard, D., Layrolle, P. Comparison of osteoinduction by autologous bone and biphasic calcium phosphate ceramic in goats. Key Eng. Mater. 2007, 330-332, 1063-1066.
[288] Schwarz, F., Herten, M., Ferrari, D., Wieland, M., Schmitz, L., Engelhardt, E., Becker, J. Guided bone regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic®) or a collagen-coated natural bone mineral (BioOss Collagen®): an immunohisto-chemical study in dogs. Int. J. Oral Maxillofac. Surg. 2007, 36, 1198-1206.
[289] Ripamonti, U., Richter, P.W., Nilen, R.W.N., Renton, L. The induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus. J. Cell. Molecular Med. 2008, 12, 2609-2621.

[290] Sun, L., Wu, L., Bao, C., Fu, C., Wang, X., Yao, J., Zhang, X., van Blitterswijk, C.A. Gene expressions of Collagen type I, ALP and BMP-4 in osteo-inductive BCP implants show similar pattern to that of natural healing bones. Mater. Sci. Eng. C 2009, 29, 1829-1834.
[291] Roldán, J.C., Detsch, R., Schaefer, S., Chang, E., Kelantan, M., Waiss, W., Reichert, T.E., Gurtner, G.C., Deisinger, U. Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model. J. Craniomaxillofac. Surg. 2010, 38, 423-430.
[292] Barbieri, D., Yuan, H., de Groot, F., Walsh, W.R., de Bruijn, J.D. Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic. Acta Biomater. 2011, 7, 2007-2014.
[293] Li, B., Liao, X., Zheng, L., Zhu, X., Wang, Z., Fan, H., Zhang, X. Effect of nanostructure on osteoinduction of porous biphasic calcium phosphate ceramics. Acta Biomater. 2012, 8, 3794-3804.
[294] Miramond, T., Corre, P., Borget, P., Moreau, F., Guicheux, J., Daculsi, G., Weiss, P. Osteoinduction of biphasic calcium phosphate scaffolds in a nude mouse model. J. Biomater. Appl. 2014, 29, 595-604.
[295] Hashimoto-Uoshima, M., Ishikawa, I., Kinoshita, A., Weng, H.T., Oda, S. Clinical and histologic observation of replacement of biphasic calcium phosphate by bone tissue in monkeys. Int. J. Periodont. Rest. Dent. 1995, 15, 205-213.
[296] Diggs, A.B., Halloran, J.W., Hollister, S.J. Cathodoluminescence as a method of microstructure characterization of biphasic ceramics composed of hydroxyapatite and β-tricalcium phosphate. Key Eng. Mater. 2005, 284-286, 333-336.
[297] LeGeros, R.Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 2008, 108, 4742-4753.
[298] Grundel, R.E., Chapman, M.W., Yee, T., Moore, D.C. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna. Clin. Orthop. Rel. Res. 1991, 266, 244-258.
[299] Passuti, N., Delécrin, J., Daculsi, G. Experimental data regarding macroporous biphasic calcium phosphate ceramics. Eur. J. Orthop. Surg. Traumatol. 1997, 7, 79-84.
[300] Gauthier, O., Bouler, J.M., Aguado, E., Pilet, P., Daculsi, G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 1998, 19, 133-139.
[301] Gauthier, O., Bouler, J.M., Aguado, E., LeGeros, R.Z., Pilet, P., Daculsi, G. Elaboration conditions influence, physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics. J. Mater. Sci. Mater. Med. 1999, 10, 199-204.
[302] Li, S., de Wijn, J.R., Li, J., Layrolle, P., de Groot, K. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 2003, 9, 535-548.
[303] Teixeira, C.C., Nemelivsky, Y., Karkia, C., LeGeros, R.Z. Biphasic calcium phosphate: a scaffold for growth plate chondrocyte maturation. Tissue Eng. 2006, 12, 2283-2289.
[304] Chung, R.J., Hsieh, M.F., Huang, K.C., Chou, F.I., Perng, L.H. Preparation of porous HA/beta-TCP biphasic bioceramic using a molten salt process. Key Eng. Mater. 2006, 309-311, 1075-1078.
[305] Rabiee, S.M., Mortazavi, S.M.J., Moztarzadeh, F., Sharifi, D., Sharifi, Sh., Solati-Hashjin, M., Salimi-Kenari, H., Bizari, D. Mechanical behavior of a new biphasic calcium phosphate bone graft. Biotechnol. Bioprocess Eng. 2008, 13, 204-209.
[306] Macchetta, A., Turner, I.G., Bowen, C.R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 2009, 5, 1319-1327.
[307] Sánchez-Salcedo, S., Balas, F., Izquierdo-Barba, I., Vallet-Regí, M. In vitro structural changes in porous HA/β-TCP scaffolds in simulated body fluid. Acta Biomater. 2009, 5, 2738-2751.
[308] lan Levengood, S.K., Polak, S.J., Poellmann, M.J., Hoelzle, D.J., Maki, A.J., Clark, S.G., Wheeler, M.B., Wagoner Johnson, A.J. The effect of BMP-2 on micro- and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity. Acta Biomater. 2010, 6, 3283-3291.
[309] le Ray, A.M., Gautier, H., Bouler, J.M., Weiss, P., Merle, C. A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure. Ceram. Int. 2010, 36, 93-101.
[310] Pecqueux, F., Tancret, F., Payraudeau, N., Bouler, J.M. Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: modelling and experiment. J. Eur. Ceram. Soc. 2010, 30, 819-829.
[311] Peroglio, M., Gremillard, L., Gauthier, C., Chazeau, L., Verrier, S., Alini, M., Chevalier, J. Mechanical properties and cytocompatibility of poly(ε-caprolactone)-infiltrated biphasic calcium phosphate scaffolds with bimodal pore distribution. Acta Biomater. 2010, 6, 4369-4379.
[312] Roohani-Esfahani, S.I., Nouri-Khorasani, S., Lu, Z., Appleyard, R., Zreiqat, H. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials 2010, 31, 5498-5509.
[313] Calvo-Guirado, J.L., Delgado-Ruíz, R.A., Ramírez-Fernández, M.P., Maté-Sánchez, J.E., Ortiz-Ruiz, A., Marcus, A. Histomorphometric and mineral degradation study of Ossceram®: a novel biphasic B-tricalcium phosphate, in critical size defects in rabbits. Clin. Oral Implant Res. 2012, 23, 667-675.
[314] Baroth, S., Bourges, X., Goyenvalle, E., Aguado, E., Daculsi, G. Injectable biphasic calcium phosphate bioceramic: the HYDROS® concept. Bio-Med. Mater. Eng. 2009, 19, 71-76.
[315] le Guehennec, L., Goyenvalle, E., Aguado, E., Pilet, P., Bagot D’Arc, M., Bilban, M., Spaethe, R., Daculsi, G. MBCP® biphasic calcium phosphate granules and tissucol® fibrin sealant in rabbit femoral defects: the effect of fibrin on bone ingrowth. J. Mater. Sci. Mater. Med. 2005, 16, 29-35.
[316] Jegoux, F., Goyenvalle, E., Bagot D’Arc, M., Aguado, E., Daculsi, G. In vivo biological performance of composites combining micro-macroporous biphasic calcium phosphate granules and fibrin sealant. Arch. Orthop. Trauma Surg. 2005, 125, 153-159.
[317] Bluteau, G., Pilet, P., Bourges, X., Bilban, M., Spaethe, R., Daculsi, G., Guicheux, J. The modulation of gene expression in osteoblasts by thrombin coated on biphasic calcium phosphate ceramic. Biomaterials 2006, 27, 2934-2943.
[318] le Nihouannen, D., Saffarzadeh, A., Gauthier, O., Moreau, F., Pilet, P., Spaethe, R., Layrolle, P., Daculsi, G. Bone tissue formation in sheep muscles induced by a biphasic calcium phosphate ceramic and fibrin glue composite. J. Mater. Sci. Mater. Med. 2008, 19, 667-675.
[319] Goyenvalle, E., Aguado, E., Pilet, P., Daculsi, G. Biofunctionality of MBCP ceramic granules (TricOs™) plus fibrin sealant (Tisseel®) versus MBCP ceramic granules as a filler of large periprosthetic bone defects: an investigative ovine study. J. Mater. Sci. Mater. Med. 2010, 21, 1949-1958.
[320] Reppenhagen, S., Reichert, J.C., Rackwitz, L., Rudert, M., Raab, P., Daculsi, G., Nöth, U. Biphasic bone substitute and fibrin sealant for treatment of benign bone tumours and tumour-like lesions. Int. Orthop. 2012, 36, 139-148.
[321] Franco-Vidal, V., Daculsi, G., Bagot D’Arc, M., Sterkers, O., Smail, M., Robier, A., Bordure, P., Claros, P., Paiva, A., Darrouzet, V., Anthoine, E., Bebear, J.P. Tolerance and osteointegration of TricOs™/MBCP® in association with fibrin sealant in mastoid obliteration after canal wall-down technique for cholesteatoma. Acta Oto-Laryngol. 2014, 134, 358-365.
[322] Daculsi, G., Khairoun, I., LeGeros, R.Z., Moreau, F., Pilet, P., Bourges, X., Weiss, P., Gauthier, O. Bone ingrowth at the expense of a novel macroporous calcium phosphate cement. Key Eng. Mater. 2007, 330-332, 811-814.
[323] Dupraz, A., Nguyen, T.P., Richard, M., Daculsi, G., Passuti, N. Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material. Biomaterials 1999, 20, 663-673.
[324] Iooss, P., le Ray, A.M., Grimandi, G., Daculsi, G., Merle, C. A new injectable bone substitute combining poly(ε-caprolactone) microparticles with biphasic calcium phosphate granules. Biomaterials 2001, 22, 2785-2794.
[325] Trojani, C., Boukhechba, F., Scimeca, J.C., Vandenbos, F., Michiels, J.F., Daculsi, G., Boileau, P., Weiss, P., Carle, G.F., Rochet, N. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 2006, 27, 3256-3264.
[326] Zhou, A.J., Peel, S.A., Clokie, C.M. An evaluation of hydroxyapatite and biphasic calcium phosphate in combination with Pluronic F127 and BMP on bone repair. J. Craniofac. Surg. 2007, 18, 1264-1275; correction: 2008, 19, 871.
[327] Bao, T.Q., Franco, R.A., Lee, B.T. Preparation and characterization of novel poly(ε-caprolactone)/biphasic calcium phosphate hybrid composite microspheres. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 98B, 272-279.
[328] Struillou, X., Rakic, M., Badran, Z., Macquigneau, L., Colombeix, C., Pilet, P., Verner, C.b, Gauthier, O., Weiss, P., Soueidan, A. The association of hydrogel
and biphasic calcium phosphate in the treatment of dehiscence-type peri-implant defects: an experimental study in dogs. J. Mater. Sci. Mater. Med. 2013, 24, 2749-2760.
[329] Seyedlar, R.M., Nodehi, A., Atai, M., Imani, M. Gelation behavior of in situ forming gels based on HPMC and biphasic calcium phosphate nanoparticles. Carbohyd. Polym. 2014, 99, 257-263.
[330] Bleach, N.C., Nazhat, S.N., Tanner, K.E., Kellomäki, M., Törmälä, P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials 2002, 23, 1579-1585.
[331] Sun, J.S., Lin, F.H., Wang, Y.J., Huang, Y.C., Chueh, S.C., Hsu, F.Y. Collagen-hydroxyapatite/tricalcium phosphate microspheres as a delivery system for recombinant human transforming growth factor-β1. Artif. Organs 2003, 27, 605-612.
[332] Yang, C.R., Wang, Y.J., Chen, X.F., Zhao, N.R. Biomimetic fabrication of BCP/COL/HCA scaffolds for bone tissue engineering. Mater. Lett. 2005, 59, 3635-3640.
[333] Radić, M., Ignjatović, N., Nedić, Z., Mitrić, M., Miličević, D., Uskoković, D. Synthesis and characterization of biphasic calcium phosphate/poly-(DL-lactide-co-glycolide) biocomposite. Mater. Sci. Forum 2005, 494, 537-542.
[334] Ignjatović, N., Ninkov, P., Ajduković, Z., Konstantinović, V., Uskoković, D. Biphasic calcium phosphate/poly-(DL-lactide-co-glycolide) biocomposite as filler and blocks for reparation of bone tissue. Mater. Sci. Forum 2005, 494, 519-524.

[335] Li, J., Habibovic, P., Yuan, H., van den Doel, M., Wilson, C.E., de Wijn, J.R., van Blitterswijk, C.A., de Groot, K. Biological performance in goats of a porous titanium alloy–biphasic calcium phosphate composite. Biomaterials 2007, 28, 4209-4218.
[336] Ignjatovic, N., Ninkov, P., Ajdukovic, Z., Vasiljevic-Radovic, D., Uskokovic, D. Biphasic calcium phosphate coated with poly-D,L-lactide-co-glycolide biomaterial as a bone substitute. J. Eur. Ceram. Soc. 2007, 27, 1589-1594.
[337] Oudadesse, H., Derrien, A.C., Mami, M., Martin, S., Cathelineau, G., Yahia, L. Aluminosilicates and biphasic HA-TCP composites: studies of properties for bony filling. Biomed. Mater. 2007, 2, S59-S64.
[338] Urkmez, A.S., Jamison, R.D. The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro. J. Biomed. Mater. Res. A 2007, 81A, 624-633.
[339] Urkmez, A.S., Clark, S.G., Wheeler, M.B., Goldwasser, M.S., Jamison, R.D. Evaluation of chitosan/biphasic calcium phosphate scaffolds for maxillofacial bone tissue engineering. Macromol. Symp. 2008, 269, 100-105.
[340] Lee, B.T., Quang, D.V., Youn, M.H., Song, H.Y. Fabrication of biphasic calcium phosphates/polycaprolactone composites by melt infiltration process. J. Mater. Sci. Mater. Med. 2008, 19, 2223-2229.
[341] Wu, T.X., Yang, W.Z., Li, Y.D., Zhang, H.J., Chen, L.H., Zhou, D.L., Yin, G.F. Biocompatibility of biphasic calcium phosphate/poly L-lactic acid composite material. J. Clin. Rehabil. Tissue Eng. Res. 2009, 13, 4025-4028.
[342] Shen, J., Li, Y., Zuo, Y., Zou, Q., Cheng, L., Zhang, L., Gong, M., Gao, S. Characterization and cytocompatibility of biphasic calcium phosphate/polyamide 6 scaffolds for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 95B, 330-338.
[343] Bakhtiari, L., Rezaie, H.R., Hosseinalipour, S.M., Shokrgozar, M.A. Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram. Int. 2010, 36, 2421-2426.
[344] Bakhtiari, L., Rezaie, H.R., Hosseinalipour, S.M., Shokrgozar, M.A. Preparation of porous biphasic calcium phosphate-gelatin nanocomposite for bone tissue engineering. J. Nano Res. 2010, 11, 67-72.
[345] Yang, W., Yin, G., Zhou, D., Gu, J., Li, Y. In vitro characteristics of surface-modified biphasic calcium phosphate/poly(L-lactide) biocomposite. Adv. Eng. Mater. 2010, 12, B128-B132.
[346] Zhang, M.Y., Ye, C., Erasquin, U.J., Huynh, T., Cai, C., Cheng, G.J.
Laser engineered multilayer coating of biphasic calcium phosphate/titanium nanocomposite on metal substrates. ACS Appl. Mater. Interfaces 2011, 3, 339-350.
[347] Puértolas, J.A., Vadillo, J.L., Sánchez-Salcedo, S., Nieto, A., Gómez-Barrena, E., Vallet-Regí, M. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate–agarose scaffolds for bone regeneration. Acta Biomater. 2011, 7, 841-847.
[348] Lee, J.H., Lee, Y.B., Rim, N.G., Jo, S.Y., Lim, Y.M., Shin, H. Development and characterization of nanofibrous poly(lactic-co-glycolic acid)/biphasic calcium phosphate composite scaffolds for enhanced osteogenic differentiation. Macromol. Res. 2011, 19, 172-179.
[349] Kim, M., Franco, R.A., Lee, B.T. Synthesis of functional gradient BCP/ZrO2 bone substitutes using ZrO2 and BCP nanopowders. J. Eur. Ceram. Soc. 2011, 31, 1541-1548.
[350] He, H., Yu, J., Cao, J., E, L., Wang, D., Zhang, H., Liu, H. Biocompatibility and osteogenic capacity of periodontal ligament stem cells on nHAC/PLA and HA/TCP scaffolds. J. Biomater. Sci. Polym. Ed. 2011, 22, 179-194.
[351] Nie, L., Chen, D., Suo, J., Zou, P., Feng, S., Yang, Q., Yang, S., Ye, S. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Colloids Surf. B 2012, 100, 169-176.
[352] Gunawan, Sopyan, I., Nurfaezah, S., Ammar, M. Development of triphasic calcium phosphate-carbon nanotubes (HA/TCP-CNT) composite: a preliminary study. Key Eng. Mater. 2013, 531-532, 258-261.
[353] Silva, E.S., da Freitas, D.G., da Silva, S.N. Processing and characterization of a composite of hyaluronic acid (HA) and microspheres biphasic calcium phosphate (BCP) for dermal repair. Key Eng. Mater. 2013, 529-530, 421-425.
[354] Chen, J.P., Tsai, M.J., Liao, H.T. Incorporation of biphasic calcium phosphate microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and differentiation. Colloids Surf. B 2013, 110, 120-129.
[355] Zhao, Y., Sun, K.N., Wang, W.L., Wang, Y.X., Sun, X.L., Liang, Y.J., Sun, X.N., Chui, P.F. Microstructure and anisotropic mechanical properties of graphene nanoplatelet toughened biphasic calcium phosphate composite. Ceram. Int. 2013, 39, 7627-7634.
[356] Bölükbaşı, N., Yeniyol, S., Tekkesin, M.S., Altunatmaz, K. The use of platelet-rich fibrin in combination with biphasic calcium phosphate in the treatment of bone defects: a histologic and histomorphometric study. Curr. Ther. Res. Clin. Exp. 2013, 75, 15-21.
[357] Monmaturapoj, N., Thepsuwan, W., Hobang, N., Mai-Ngam, K. Influences of reinforcing agents on properties of biphasic calcium phosphate ceramics. Adv. Appl. Ceram. 2013, 112, 389-396.
[358] van Leeuwen, A.C., Yuan, H., Passanisi, G., van der Meer, J.W., de Bruijn, J.D., van Kooten, T.G., Grijpma, D.W., Bos, R.R. Poly(trimethylene carbonate) and biphasic calcium phosphate composites for orbital floor reconstruction: a feasibility study in sheep. Eur. Cell. Mater. 2014, 27, 81-96; discussion 96-97.
[359] Kwak, K.A., Jyoti, A.M., Song, H.Y. In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly ε-caprolactone: effect of bio-functionalization for bone tissue engineering. Appl. Surf. Sci. 2014, 301, 307-314.
[360] Badr-Mohammadi, M.R., Hesaraki, S., Zamanian, A. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes. J. Mater. Sci. Mater. Med. 2014, 25, 185-197.
[361] Kim, B.R., Nguyen, T.B.L., Min, Y.K., Lee, B.T. In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds. Tissue Eng. A 2014, 20, 3279-3289.
[362] Shin, Y.M., Jo, S.Y., Park, J.S., Gwon, H.J., Jeong, S.I., Lim, Y.M. Synergistic effect of dual-functionalized fibrous scaffold with BCP and RGD containing peptide for improved osteogenic differentiation. Macromol. Biosci. 2014, 14, 1190-1198.
[363] Amirian, J., Linh, N.T.B., Min, Y.K., Lee, B.T. The effect of BMP-2 and VEGF loading of gelatin-pectin-BCP scaffolds to enhance osteoblast proliferation. J. Appl. Polym. Sci. 2015, 132, 41241.
[364] Kumar, B.S., Muthukumar, T., Deepachitra, R., Charumathy, R.K., Hemalatha, T., Sastry, T.P. In-vitro evaluation of biphasic calcium phosphate/casein incorporated with Myristica fragrans for bone tissue engineering. Ceram. Int. 2015, 41, 1725-1734.
[365] Amirian, J., Linh, N.T.B., Min, Y.K., Lee, B.T. Bone formation of a porous gelatin-pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF. Int. J. Biol. Macromol. 2015, 76, 10-24.
[366] Upho, N., Tangtrakulwanich, B., Pripatnanont, P., Thitiwongsawet, P., Ingviya, N. Development of novel PHBV/PCL and BCP composite for musculoskeletal infection: an in vitro vancomycin release and anti-MRSA effect. J. Pharm. Innov. 2015, 10, 211-221.
[367] Jeong, J.O., Jeong, S.I., Shin, Y.M., Park, J.S., Gwon, H.J., An, S.J., Huh, J.B., Shin, H., Lim, Y.M. Development of acrylic acid grafted polycaprolactone (PCL)/biphasic calcium phosphate (BCP) nanofibers for bone tissue engineering using gamma-irradiation. Polymer (Korea) 2015, 39, 418-425.
[368] Lee, E.U., Kim, D.J., Lim, H.C., Lee, J.S., Jung, U.W., Choi, S.H. Comparative evaluation of biphasic calcium phosphate and biphasic calcium phosphate collagen composite on osteoconductive potency in rabbit calvarial defect. Biomater. Res. 2015, 19, 1 (7 pages).
[369] Mohammadi, Z., Mesgar, A.S.M., Rasouli-Disfani, F. Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers. J. Mech. Behav. Biomed. Mater. 2016, 61, 590-599.
[370] Seyfoori, A., Mirdamadi, S., Seyedraoufi, Z.S., Khavandi, A., Aliofkhazraei, M. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy. Mater. Chem. Phys. 2013, 142, 87-94.
[371] Lee, T.M., Wang, B.C., Yang, Y.C., Chang, E., Yang, C.Y. Comparison of
plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings: in vivo study. J. Biomed. Mater. Res. 2001, 5, 360-367.
[372] Stewart, M., Welter, J.F., Goldberg, V.M. Effect of hydroxyapatite/tricalcium-phosphate coating on osseointegration of plasma-sprayed titanium alloy implants. J. Biomed. Mater. Res. A 2004, 69A, 1-10.
[373] Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Lee, B.K., Kim, H.E. Effect of the HA/β-TCP ratio on the biological performance of calcium phosphate ceramic coatings fabricated by a room-temperature powder spray in vacuum. J. Am. Ceram. Soc. 2009, 92, 793-799.
[374] Benhayoune, H., Drevet, R., Fauré, J., Potiron, S., Gloriant, T., Oudadesse, H., Laurent-Maquin, D. Elaboration of monophasic and biphasic calcium phosphate coatings on Ti6Al4V substrate by pulsed electrodeposition current. Adv. Eng. Mater. 2010, 12, B192-B199.
[375] Abudalazez, A.M.A., Kasim, S.R., Ariffin, A.B., Ahmad, Z.A. Effect of temperature on BCP ceramics coating on 316L stainless steel using electrophoretic technique. Adv. Mater. Res. 2012, 501, 66-70.
[376] Abudalazez, A.M.A., Kasim, S.R., Ariffin, A.B., Ahmad, Z.A. Electrophoretic deposition of biphasic calcium phosphate (BCP) coatings on 316L stainless steel at room temperature. Adv. Mater. Res. 2012, 501, 169-175.
[377] Elayaraja, K., Chandra, V.S., Joshy, M.I.A., Suganthi, R.V., Asokan, K., Kalkura, S.N. Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique. Appl. Surf. Sci. 2013, 274, 203-209.
[378] Kämmerer, T.A., Palarie, V., Schiegnitz, E., Topalo, V., Schröter, A., Al-Nawas, B., Kämmerer, P.W. A biphasic calcium phosphate coating for potential drug delivery affects early osseointegration of titanium implants. J. Oral Pathol. Med. 2017, 46, 61-66.
[379] Daculsi, G., LeGeros, R., Durand, M., Borget, P., Baroth, S., Goyenvalle, E., Aguado, E., Jegoux, F. Injectable apatitic calcium phosphate cements and microporous biphasic calcium phosphate granules complex for bone repair. J. Australian Ceram. Soc. 2010, 46, 1-5.
[380] Khairoun, I., LeGeros, R.Z., Daculsi, G., Bouler, J.M., Guicheux, J., Gauthier, O. Macroporous resorbable and injectable calcium phosphate - based cements (MCPC) for bone repair augmentation regeneration and osteoporosis treatment. Eur. Patent 1 761 472 B1 2011.
[381] Srakaew, N.L.O., Rattanachan, S.T. The pH-dependent properties of the biphasic calcium phosphate for bone cements. J. Biomim. Biomater. Biomed. Eng. 2014, 21, 3-16.
[382] Sariibrahimoglu, K., Wolke, J.G.C., Leeuwenburgh, S.C.G., Jansen, J.A. Characterization of α/β-TCP based injectable calcium phosphate cement as a potential bone substitute. Key Eng. Mater. 2013, 529-530, 157-160.
[383] Yang, W.Z., Zhou, D.L., Yin, G.F., Li, G.D. Surface modification of biphasic calcium phosphate bioceramic powders. Appl. Surf. Sci. 2008, 255, 477-479.
[384] Zhu, Z.L., Yu, H.Y., Zeng, Q., He, H.W. Characterization and biocompatibility of fluoridated biphasic calcium phosphate ceramics. Appl. Surf. Sci. 2008, 255, 552-554.
[385] Katić, M.H.M., Babić, M.M. Sol-gel derived biphasic calcium phosphate ceramics on nitinol for medical applications. Int. J. Electrochem. Sci. 2013, 8, 1394-1408.
[386] Abudalazez, A.M.A., Shah, R.K., Ariffin, A.B., Zainal, A.A. Preparation and characterization of biphasic calcium phosphate coatings on 316l stainless steel fabricated by electrophoretic deposition. Adv. Mater. Res. 2013, 620, 373-377.
[387] Kwak, K.A., Kim, Y.H., Kim, M., Lee, B.T., Song, H.Y. Bio-functionalization of polycaprolactone infiltrated BCP scaffold with silicon and fibronectin enhances osteoblast activity in vitro. Appl. Surf. Sci. 2013, 279, 13-22.
[388] Hu, J., Zhou, Y., Huang, L., Liu, J., Lu, H. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. BMC Musculoskelet. Disord. 2014, 15, article 114.
[389] Nie, L., Chen, D., Fu, J., Yang, S., Hou, R., Suo, J. Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration. Biochem. Eng. J. 2015, 98, 29-37.
[390] Hu, J., Yang, Z., Zhou, Y., Liu, Y., Li, K., Lu, H. Porous biphasic
calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. J. Mater. Sci. Mater. Med. 2015, 26, article 257.
[391] Choi, Y.R., Kwon, J.S., Song, D.H., Choi, E.H., Lee, Y.K., Kim, K.N., Kim, K.M. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation. Thin Solid Films 2013, 547, 235-240.
[392] Piattelli, A., Scarano, A., Mangano, C. Clinical and histologic aspects of biphasic calcium phosphate ceramic (BCP) used in connection with implant placement. Biomaterials 1996, 17, 1767-1770.
[393] Arinzeh, T.L., Tran, T., Mcalary, J., Daculsi, G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 2005, 26, 3631-3638.
[394] Yuan, H., van Blitterswijk, C.A., de Groot, K., de Bruijn, J.D. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. J. Biomed. Mater. Res. A 2006, 78A, 139-147.
[395] Yuan, H., van Blitterswijk, C.A., de Groot, K., de Bruijn, J.D. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng. 2006, 12, 1607-1615.
[396] Balçik, C., Tokdemir, T., Senköylü, A., Koç, N., Timuçin, M., Akin, S., Korkusuz, P., Korkusuz, F. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit. Acta Biomater. 2007, 3, 985-996.
[397] de Val, J.E.M.S., Calvo-Guirado, J.L., Gómez-Moreno, G., Gehrke, S., Mazón, P., de Aza, P.N. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part B: A comparative study with biphasic synthetic biomaterials. Clin. Oral Implant. Res. 2017, (early view).
[398] Kurashina, K., Kurita, H., Wu, Q., Ohtsuka, A., Kobayashi, H. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials 2002, 23, 407-412.
[399] Zhang, L., Hanagata, N., Maeda, M., Minowa, T., Ikoma, T., Fan, H., Zhang, X. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells. Sci. Technol. Adv. Mater. 2009, 10, 025003 (9 pages).
[400] Jafarian, M., Eslaminejad, M.B., Khojasteh, A., Abbas, F.M., Dehghan, M.M., Hassanizadeh, R., Houshmand, B. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 105, e14-e24.
[401] Jensen, S.S., Bornstein, M.M., Dard, M., Bosshardt, D.D., Buser, D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 171-181.
[402] Fellah, B.H., Gauthier, O., Weiss, P., Chappard, D., Layrolle, P. Osteogenicity
of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 2008, 29, 1177-1188.
[403] de Lange, G.L., Overman, J.R., Farré-Guasch, E., Korstjens, C.M., Hartman, B., Langenbach, G.E.J., van Duin, M.A., Klein-Nulend, J. A histomorphometric and micro-computed tomography study of bone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split-mouth model. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 117, 8-22.
[404] Grandi, G., Heitz, C., dos Santos, L.A., Silva, M.L., Filho, M.S., Pagnocelli, R.M., Silva, D.N. Comparative histomorphometric analysis between α-Tcp cement and β-Tcp/Ha granules in the bone repair of rat calvaria. Mater. Res. 2011, 14, 11-16.
[405] Froum, S.J., Wallace, S.S., Cho, S.C., Elian, N., Tarnow, D.P. Histomorphometric comparison of a biphasic bone ceramic to anorganic bovine bone for sinus augmentation: 6- to 8-month postsurgical assessment of vital bone formation. A pilot study. Int. J. Periodontics Restorative Dent. 2008, 28, 273-281.
[406] Pandit, N., Gupta, R., Gupta, S. A comparative evaluation of biphasic calcium phosphate material and bioglass in the treatment of periodontal osseous defects: a clinical and radiological study. J. Contemp. Dent. Pract. 2010, 11, 025-032.
[407] Kunert-Keil, C., Scholz, F., Gedrange, T., Gredes, T. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects – a molecular-biological and histological study. Ann. Anat. 2015, 199, 79-84.
[408] Chakar, C., Soffer, E., Cohen, N., Petite, H., Naaman, N., Anagnostou, F. Vertical bone regeneration with deproteinised bovine bone mineral or biphasic calcium phosphate in the rabbit calvarium: effect of autologous platelet lysate. J. Mater. Sci. Mater. Med. 2015, 26, article 23.
[409] Broggini, N., Bosshardt, D.D., Jensen, S.S., Bornstein, M.M., Wang, C.C., Buser, D. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103B, 1478-1487.
[410] Miron, R.J., Sculean, A., Shuang, Y., Bosshardt, D.D., Gruber, R., Buser, D., Chandad, F., Zhang, Y. Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA. Clin. Oral Implant Res. 2016, 27, 668-675.
[411] Martinkevich, P., Rahbek, O., Stilling, M., Pedersen, L.K., Gottliebsen, M., Søballe, K., Møller-Madsen, B. Is structural hydroxyapatite tricalcium-phosphate graft or tricortical iliac crest autograft better for calcaneal lengthening osteotomy in childhood? Bone Joint J. 2016, 98-B, 1554-1562.
[412] Jensen, S.S., Yeo, A., Dard, M., Hunziker, E., Schenk, R., Buser, D. Evaluation of a novel biphasic calcium phosphate in standardized bone defects: a histologic and histomorphometric study in the mandibles of minipigs. Clin. Oral Implant Res. 2007, 18, 752-760.
[413] Garai, S., Sinha, A. Three dimensional biphasic calcium phosphate nanocomposites for load bearing bioactive bone grafts. Mater. Sci. Eng. C 2016, 59, 375-383.
[414] Nery, E.B., LeGeros, R.Z., Lynch, K.L., Lee, K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/β-TCP in periodontal osseous defects. J. Periodontol. 1992, 63, 729-735.

[415] Lim, H.C., Zhang, M.L., Lee, J.S., Jung, U.W., Choi, S.H. Effect of different hydroxyapatite:β-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model. Int. J. Oral Maxillofac. Implant. 2015, 30, 65-72.
[416] Shiwaku, Y., Neff, L., Nagano, K., Takeyama, K.I., de Bruijn, J., Dard, M., Gori, F., Baron, R. The crosstalk between osteoclasts and osteoblasts is dependent upon the composition and structure of biphasic calcium phosphates. PLoS ONE 2015, 10, article e0132903.
[417] Cho, J.S., Chung, C.P., Rhee, S.H. Bioactivity and osteoconductivity of biphasic calcium phosphates. Bioceram. Dev. Appl. 2011, 1, Article ID D101129, 3 pages.
[418] Suzuki, T., Hukkanen, M., Ohashi, R., Yokogawa, Y., Nishizawa, K., Nagata, F., Buttery, L., Polak, J. Growth and adhesion of osteoblast-like cells derived from neonatal rat calvaria on calcium phosphate ceramics. J. Biosci. Bioeng. 2000, 89, 18-26.
[419] Ebrahimi, M., Pripatnanont, P., Suttapreyasri, S., Monmaturapoj, N. In vitro biocompatibility analysis of novel nano-biphasic calcium phosphate scaffolds in different composition ratios. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102B, 52-61.
[420] Chen, Y., Wang, J., Zhu, X.D., Tang, Z.R., Yang, X., Tan, Y.F., Fan, Y.J., Zhang, X.D. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Acta Biomater. 2015, 11, 435-448.
[421] Pripatnanont, P., Praserttham, P., Suttapreyasri, S., Leepong, N., Monmaturapoj, N. Bone regeneration potential of biphasic nanocalcium phosphate with high hydroxyapatite/tricalcium phosphate ratios in rabbit calvarial defects. Int. J. Oral Maxillofac. Implants 2016, 31, 294-303.
[422] Wang, L., Barbieri, D., Zhou, H., de Bruijn, J.D., Bao, C., Yuan, H. Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. J. Biomed. Mater. Res. A 2015, 103A, 1919-1929.
[423] Malard, O., Bouler, J.M., Guicheux, J., Heymann, D., Pilet, P., Coquard, C., Daculsi, G. Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J. Biomed. Mater. Res. 1999, 46, 103-111.
[424] Curran, J.M., Gallagher, J.A., Hunt, J.A. The inflammatory potential of biphasic calcium phosphate granules in osteoblast/macrophage co-culture. Biomaterials 2005, 26, 5313-5320.
[425] Fellah, B.H., Josselin, N., Chappard, D., Weiss, P., Layrolle, P. Inflammatory reaction in rats muscle after implantation of biphasic calcium phosphate micro particles. J. Mater. Sci. Mater. Med. 2007, 18, 287-294.
[426] Fellah, B.H., Delorme, B., Sohier, J., Magne, D., Hardouin, P., Layrolle, P. Macrophage and osteoblast responses to biphasic calcium phosphate microparticles. J. Biomed. Mater. Res. A 2010, 93A, 1588-1595.
[427] Daculsi, G., Passuti, N., Martin, S., Deudon, C., LeGeros, R.Z., Raher, S. Macroporous biphasic calcium phosphate ceramic for long bone surgery in human and dogs: clinical and histological study. J. Biomed. Mater. Res. 1990, 24, 379-396.
[428] Schwartz, C., Liss, P., Jacquemaire, B., Lecestre, P., Frayssinet, P. Biphasic synthetic bone substitute use in orthopaedic and trauma surgery: clinical, radiological and histological results. J. Mater. Sci. Mater. Med. 1999, 10, 821-825.
[429] Bodde, E.W.H., Wolke, J.G.C., Kowalski, R.S.Z., Jansen, J.A. Bone regeneration of porous β-tricalcium phosphate (Conduit™ TCP) and of biphasic calcium phosphate ceramic (Biosel®) in trabecular defects in sheep. J. Biomed. Mater. Res. A 2007, 82A, 711-722.
[430] Ozalay, M., Sahin, O., Akpinar, S., Ozkoc, G., Cinar, M., Cesur, N. Remodeling potentials of biphasic calcium phosphate granules in open wedge high tibial osteotomy. Arch. Orthop. Trauma Surg. 2009, 129, 747-752.
[431] Lobo, S.E., Wykrota, F.H., Oliveira, A.C., Kerkis, I., Mahecha, G.B., Alves, H.J. Quantification of bone mass gain in response to the application of biphasic bioceramics and platelet concentrate in critical-size bone defects. J. Mater. Sci. Mater. Med. 2009, 20, 1137-1147.
[432] Garrido, C.A., Lobo, S.E., Turíbio, F.M., LeGeros, R.Z. Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes. Int. J. Biomater. 2011, 2011, 129727 (9 pages).
[433] Petronis, S., Petronis, J., Zalite, V., Locs, J., Skagers, A., Pilmane, M. New biphasic calcium phosphate in orthopedic surgery: first clinical results. IFMBE Proc. 2013, 38 IFMBE, 174-177.
[434] Suneelkumar, C., Datta, K., Srinivasan, M.R., Kumar, S.T. Biphasic calcium phosphate in periapical surgery. J. Conserv. Dent. 2008, 11, 92-96.
[435] Moore, D.C., Chapman, M.W., Manske, D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. J. Orthop. Res. 1987, 5, 356-365.
[436] Soares, L.G.P., Marques, A.M.C., Guarda, M.G., Aciole, J.M.S., dos Santos, J.N. Pinheiro, A.L.B. Influence of the λ780 nm laser light on the repair of surgical bone defects grafted or not with biphasic synthetic micro-granular hydroxylapatite + beta-calcium triphosphate. J. Photoch. Photobio. B 2014, 131, 16-23.
[437] Park, J.W., Kim, E.S., Jang, J.H., Suh, J.Y., Park, K.B., Hanawa, T. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Clin. Oral Implant Res. 2010, 21, 268-276.
[438] de C. Silva, L.G.R., Kim, S.H., Luczyszyn, S.M., Papalexiou, V., Giovanini, A., Almeida, L.E., Tramontina, V.A. Histological and immunohistochemical evaluation of biphasic calcium phosphate and a mineral trioxide aggregate for bone healing in rat calvaria. Int. J. Oral Maxillofac. Surg. 2015, 44, 535-542.
[439] de Gabory, L., Bareille, R., Stoll, D., Bordenave, L., Fricain, J.C. Biphasic calcium phosphate to repair nasal septum: the first in vitro and in vivo study. Acta Biomater. 2010, 6, 909-919.
[440] de Gabory, L., Delmond, S., Deminiere, C., Stoll, D., Bordenave, L., Fricain, J.C. Assessment of biphasic calcium phosphate to repair nasal septum defects in sheep. Plast. Reconstr. Surg. 2011, 127, 107-116.
[441] Wang, J., Chen, W., Li, Y., Fan, S., Weng, J., Zhang, X. Biological evaluation of biphasic calcium phosphate ceramic vertebral laminae. Biomaterials 1998, 19, 1387-1392.
[442] Bolder, S.B., Verdonschot, N., Schreurs, B.W., Buma, P. Acetabular defect reconstruction with impacted morsellized bone grafts or TCP/HA particles. A study on the mechanical stability of cemented cups in an artificial acetabulum model. Biomaterials 2002, 23, 659-666.
[443] Nich, C., Bizot, P., Nizard, R., Sedel, L. Femoral reconstruction with macroporous biphasic calcium phosphate ceramic in revision hip replacement. Key Eng. Mater. 2003, 240-242, 853-856.
[444] Zwetyenga, N., Catros, S., Emparanza, A., Deminiere, C., Siberchicot, F., Fricain, J.C. Mandibular reconstruction using induced membranes with autologous cancellous bone graft and HA-βTCP: animal model study and preliminary results in patients. Int. J. Oral Maxillofac. Surg. 2009, 38, 1289-1297.
[445] Huang, M.S., Wu, H.D., Teng, N.C., Peng, B.Y., Wu, J.Y., Chang, W.J., Yang, J.C., Chen, C.C., Lee, S.Y. In vivo evaluation of poorly crystalline hydroxyapatite-based biphasic calcium phosphate bone substitutes for treating dental bony defects. J. Dent. Sci. 2010, 5, 100-108.
[446] Sunil, P., Goel, S.C., Rastogi, A., Aryya, N.C. Incorporation and biodegradation of hydroxyapatite–tricalcium phosphate implanted in large metaphyseal defects – an animal study. Indian J. Exp. Biol. 2008, 46, 836-841.
[447] Kim, S.E., Yun, Y.P., Song, H.R., Choi, K.H., Kim, B.H., Lee, E.K., Song, J.J. Bone formation of middle ear cavity using biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 using animal model. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 1430-1433.
[448] Rouvillain, J.L., Lavallé, F., Pascal-Mousselard, H., Catonné, Y., Daculsi, G. Clinical, radiological and histological evaluation of biphasic calcium phosphate bioceramic wedges filling medial high tibial valgisation osteotomies. Knee 2009, 16, 392-397.
[449] Cho, D.Y., Lee, W.Y., Sheu, P.C., Chen, C.C. Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg. Neurol. 2005, 63, 497-503; discussion 503-504.
[450] Grybauskas, S., Locs, J., Salma, I., Salms, G., Berzina-Cimdina, L. Volumetric analysis of implanted biphasic calcium phosphate/collagen composite by three-dimensional cone beam computed tomography head model superimposition. J. Craniomaxillofac. Surg. 2015, 43, 167-174.
[451] Artzi, Z., Weinreb, M., Carmeli, G., Lev-Dor, R., Dard, M., Nemcovsky, C.E. Histomorphometric assessment of bone formation in sinus augmentation utilizing a combination of autogenous and hydroxyapatite/biphasic tricalcium phosphate graft materials: at 6 and 9 months in humans. Clin. Oral Implant Res. 2008, 19, 686-692.
[452] Lee, J.H., Jung, U.W., Kim, C.S., Choi, S.H., Cho, K.S. Histologic and clinical evaluation for maxillary sinus augmentation using macroporous biphasic calcium phosphate in human. Clin. Oral Implant Res. 2008, 19, 767-771.
[453] Friedmann, A., Dard, M., Kleber, B.M., Bernimoulin, J.P., Bosshardt, D.D. Ridge augmentation and maxillary sinus grafting with a biphasic calcium phosphate: histologic and histomorphometric observations. Clin. Oral Implant Res. 2009, 20, 708-714.
[454] Lindgren, C., Hallman, M., Sennerby, L., Sammons, R. Back-scattered electron imaging and elemental analysis of retrieved bone tissue following sinus augmentation with deproteinized bovine bone or biphasic calcium phosphate. Clin. Oral Implant Res. 2010, 21, 924-930.
[455] Seong, K.C., Cho, K.S., Daculsi, C., Seris, E., Daculsi, G. Eight-year clinical follow-up of sinus grafts with micro-macroporous biphasic calcium phosphate granules. Key Eng. Mater. 2014, 587, 321-324.
[456] Ohe, J.Y., Kim, G.T., Lee, J.W., Al Nawas, B., Jung, J., Kwon, Y.D. Volume stability of hydroxyapatite and β-tricalcium phosphate biphasic bone graft material in maxillary sinus floor elevation: a radiographic study using 3D cone beam computed tomography. Clin. Oral Implant. Res. 2016, 27, 348-353.
[457] Nery, E.B., Lee, K.K., Czajkowski, S., Dooner, J.J., Duggan, M., Ellinger, R.F., Henkin, J.M., Hines, R., Miller, M., Olson, J.W. A Veterans Administration Cooperative Study of biphasic calcium phosphate ceramic in periodontal osseous defects. J. Periodontol. 1990, 61, 737-744.
[458] Daculsi, G., Corlieu, P., Bagot D’Arc, M., Gersdorff, M. Macroporous biphasic calcium phosphate efficiency in mastoid cavity obliteration: experimental and clinical findings. Annals of Otology, Rhinology and Laryngology 1992, 101, 669-674.
[459] Toth, J.M., An, H.S., Lim, T.H., Ran, Y., Weiss, N.G., Lundberg, W.R., Xu, R.M., Lynch, K.L. Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion in a caprine model. Spine 1995, 20, 2203-2210.
[460] Shi, H., Ma, J., Zhao, N., Chen, Y., Liao, Y. Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs. J. Mater. Sci. Mater. Med. 2008, 19, 3515-3524.
[461] Wang, Y., Ni, M., Tang, P.F., Li, G. Novel application of HA-TCP biomaterials in distraction osteogenesis shortened the lengthening time and promoted bone consolidation. J. Orthop. Res. 2009, 27, 477-482.
[462] Wang, L., Shi, H., Chen, Y., Xue, J., Chen, Y., Liao, Y. Healing of acute alveolar bone dehiscence following treatment with porous biphasic calcium phosphate in beagle dogs. Clin. Oral Invest. 2011, 15, 983-991.
[463] Chen, L., Liu, H.L., Gu, Y., Feng, Y., Yang, H.L. Lumbar interbody fusion with porous biphasic calcium phosphate enhanced by recombinant bone morphogenetic protein-2/silk fibroin sustained-released microsphere: an experimental study on sheep model. J. Mater. Sci. Mater. Med. 2015, 26, article 126.
[464] de Carvalho, F.B., Aciole, G.T.S., Aciolea, J.M.S., Silveira, Jr., L., dos Santos, J.N., Pinheiro, A.L.B. Assessment of bone healing on tibial fractures treated with wire osteosynthesis associated or not with infrared laser light and biphasic ceramic bone graft (HATCP) and guided bone regeneration (GBR): Raman spectroscopy study. Proc. SPIE 2011, 7887, 78870T.
[465] Su, B., Su, J., Ran, J., Su, B. Biological performance of dental biphasic calcium phosphate ceramics modified by cold plasma. Key Eng. Mater. 2008, 368-372, 1264-1267.
[466] Grimes, J.S., Bocklage, T.J., Pitcher, J.D. Collagen and biphasic calcium phosphate bone graft in large osseous defects. Orthopedics 2006, 29, 145-148.
[467] Zorica, A., Nenad, I., Dragan, P., Dragan, U. Substitution of osteoporotic alveolar bone by biphasic calcium phosphate/poly-DL-lactide-co-glycolide biomaterials. J. Biomater. Applic. 2007, 21, 317-328.
[468] Im, G.I., Ahn, J.H., Kim, S.Y., Choi, B.S., Lee, S.W. A hyaluronate-atelocollagen/β-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng. A 2010, 16, 1189-1200.
[469] Struillou, X., Boutigny, H., Badran, Z., Fellah, B.H., Gauthier, O., Sourice, S., Pilet, P., Rouillon, T., Layrolle, P., Weiss, P., Soueidan, A. Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J. Mater. Sci. Mater. Med. 2011, 22, 1707-1717.
[470] Gautier, H., Merle, C., Auget, J.L., Daculsi, G. Isostatic compression, a new process for incorporating vancomycin into biphasic calcium phosphate: comparison with a classical method. Biomaterials 2000, 21, 243-249.
[471] Sunder, M., Babu, N.R., Victor, S.P., Kumar, K.R., Kumar, T.S.S. Biphasic calcium phosphates for antibiotic release. Trends Biomaterials Artif. Organs 2005, 18, 213-218.
[472] Laurent, F., Bignon, A., Goldnadel, J., Chevalier, J., Fantozzi, G., Viguier, E., Roger, T., Boivin, G., Hartmann, D. A new concept of gentamicin loaded HAP/
TCP bone substitute for prophylactic action: in vitro release validation. J. Mater. Sci. Mater. Med. 2008, 19, 947-951.
[473] Viguier, E., Bignon, A., Laurent, F., Goehrig, D., Boivin, G., Chevalier, J. A new concept of gentamicin loaded HAP/TCP bone substitute for prophylactic action: in vivo pharmacokinetic study. J. Mater. Sci. Mater. Med. 2011, 22, 879-886.
[474] Kim, S.E., Yun, Y.P., Lee, D.W., Kang, E.Y., Jeong, W.J., Lee, B. , Jeong, M.S., Kim, H.J., Park, K., Song, H.R. Alendronate-eluting biphasic calcium phosphate (BCP) scaffolds stimulate osteogenic differentiation. BioMed. Res. Int. 2015, 2015, 320713 (10 pages).
[475] Schopper, C., Moser, D., Spassova, E., Goriwoda, W., Lagogiannis, G., Hoering, B., Ewers, R., Redl, H. Bone regeneration using a naturally grown HA/TCP carrier loaded with rhBMP-2 is independent of barrier-membrane effects. J. Biomed. Mater. Res. A 2008, 85A, 954-963.
[476] Kim, J.W., Choi, K.H., Yun, J.H., Ui-Won, J., Kim, C.S., Choi, S.H., Cho, K.S. Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 298-306.
[477] Jang, J.W., Yun, J.H., Lee, K.I., Jang, J.W., Jung, U.W., Kim, C.S., Choi, S.H., Cho, K.S. Osteoinductive activity of biphasic calcium phosphate with different rhBMP-2 doses in rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 480-487.
[478] Park, J.C., So, S.S., Jung, I.H., Yun, J.H., Choi, S.H., Cho, K.S., Kim, C.S. Induction of bone formation by Escherichia coli-expressed recombinant human bone morphogenetic protein-2 using block-type macroporous biphasic calcium phosphate in orthotopic and ectopic rat models. J. Periodontal. Res. 2011, 46, 682-690.
[479] Schwarz, F., Sager, M., Ferrari, D., Mihatovic, I., Becker, J. Influence
of recombinant human platelet-derived growth factor on lateral ridge
augmentation using biphasic calcium phosphate and guided bone regeneration: a histomorphometric study in dogs. J. Periodontol. 2009, 80, 1315-1323.
[480] Gaebler, A., Schaefer, T., Fischer, K., Scharnweber, D., Mauth, C., Schwenzer, B. Peptide linkers for the immobilization of bioactive molecules on biphasic calcium phosphate via a modular immobilization system. Acta Biomater. 2013, 9, 4899-4905.
[481] Polak, S.J., Lee, J.S., Murphy, W.L., Tadier, S., Grémillard, L., Lightcap, I.V., Wagoner Johnson, A.J. Microstructural control of modular peptide release from microporous biphasic calcium phosphate. Mater. Sci. Eng. C 2017, 72, 268-277.
[482] Balaguer, T., Boukhechba, F., Clavé, A., Bouvet-Gerbettaz, S., Trojani, C., Michiels, J.F., Laugier, J.P., Bouler, J.M., Carle, G.F., Scimeca, J.C., Rochet, N. Biphasic calcium phosphate microparticles for bone formation: benefits of combination with blood clot. Tissue Eng. A 2010, 16, 3495-3505.
[483] Mouline, C.C., Quincey, D., Laugier, J.P., Carle, G.F., Bouler, J.M., Rochet, N., Scimeca, J.C. Osteoclastic differentiation of mouse and human monocytes in a plasma clot/biphasic calcium phosphate microparticles composite. Eur. Cell Mater. 2010, 20, 379-391; discussion 391-392.
[484] Paul, A.J., Momier, D., Boukhechba, F., Michiels, J.F., Lagadec, P., Rochet, N. Effect of G-CSF on the osteoinductive property of a BCP/blood clot composite. J. Biomed. Mater. Res. A 2015, 103A, 2830-2838.
[485] Castellani, C., Zanoni, G., Tangl, S., van Griensven, M., Redl, H. Biphasic calcium phosphate ceramics in small bone defects: potential influence of carrier substances and bone marrow on bone regeneration. Clin. Oral Implant Res. 2009, 20, 1367-1374.
[486] Ignjatovic, N., Ajdukovic, Z., Uskokovic, D. New biocomposite [biphasic
calcium phosphate/poly-DL-lactide-co-glycolide/biostimulative agent] filler for reconstruction of bone tissue changed by osteoporosis. J. Mater. Sci. Mater. Med. 2005, 16, 621-626.
[487] Sculean, A., Windisch, P., Szendröi-Kiss, D., Horváth, A., Rosta, P., Becker, J., Gera, I., Schwarz, F. Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J. Periodontology 2008, 79, 1991-1999.
[488] Son, S.R., Sarkar, S.K., Linh, N.T.B., Padalhin, A.R., Kim, B.R., Jung, H.I., Lee, B.T. Platelet-rich plasma encapsulation in hyaluronic acid/gelatin-BCP hydrogel for growth factor delivery in BCP sponge scaffold for bone regeneration. J. Biomater. Appl. 2015, 29, 988-1002.
[489] Livingston, T.L., Gordon, S., Archambault, M., Kadiyala, S., Mcintosh, K., Smith, A., Peter, S.J. Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J. Mater. Sci. Mater. Med. 2003, 14, 211-218.
[490] Wang, J., Qiu, Y., Xia, C.L., Tang, X.B., Hu, Y. Enriched bone marrow mesenchymal stem cells combined with HA/TCP for spine fusion. J. Clin. Rehabil. Tissue Eng. Res. 2007, 11, 5536-5539.
[491] Ng, A.M.H., Tan, K.K., Phang, M.Y., Aziyati, O., Tan, G.H., Isa, M.R., Aminuddin, B.S., Naseem, M., Fauziah, O., Ruszymah, B.H.I. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J. Biomed. Mater. Res. A 2008, 85A, 301-312.
[492] Zhang, W., Walboomers, X.F., van Osch, G.J.V.M., van den Dolder, J., Jansen, J.A. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng. A 2008, 14, 285-294.
[493] Wang, T., Tian, W.D., Li, S.W., Liao, Y.M. Biphasic calcium phosphate nanocomposite loaded with bone marrow stromal cells for repair of critical cranial defect in rats. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 2606-2610.
[494] Gamblin, A.L., Brennan, M.A., Renaud, A., Yagita, H., Lézot, F., Heymann, D., Trichet, V., Layrolle, P. Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: the local implication of osteoclasts and macrophages. Biomaterials 2014, 35, 9660-9667.
[495] Brennan, M.A., Renaud, A., Amiaud, J., Rojewski, M.T., Schrezenmeier, H., Heymann, D., Trichet, V., Layrolle, P. Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate. Stem Cell Res. Therapy 2014, 5, article 428.
[496] Jan, A., Sándor, G.K., Brkovic, B.B., Peel, S., Kim, Y.D., Xiao, W.Z., Evans, A.W., Clokie, C.M. Effect of hyperbaric oxygen on demineralized bone matrix and biphasic calcium phosphate bone substitutes. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 59-66.
[497] Ebrahimi, M., Botelho, M.G., Dorozhkin, S.V. Biphasic calcium phosphates bioceramics (HA/TCP): concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater. Sci. Eng. C 2017, 71, 1293-1312.
[498] Rohanizadeh, R., Padrines, M., Bouler, J.M., Couchourel, D., Fortun, Y., Daculsi, G. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: influence of seed species and proteins. J. Biomed. Mater. Res. 1998, 42, 530-539.
[499] Kim, K.L., Ok, K.M., Kim, D.H., Park, H.C., Yoon, S.Y. Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. J. Korean Ceram. Soc. 2013, 50, 263-268.

Part III

[1] Lowenstam, H.A., Weiner, S. On biomineralization. Oxford University Press, New York, USA. 1989, 324 pp.
[2] Gower, L.B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551-4627.
[3] Lowenstam, H.A., Weiner, S. Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons. Science 1985, 227, 51-53.
[4] Stricker, S.A., Weiner, S. Amorphous calcium phosphate in the stylets produced by a marine worm (Nemertea). Experientia 1985, 41, 1557-1559.
[5] Mitchell, P.C.H., Parker, S.F., Simkiss, K., Simmons, J., Taylor, M.G. Hydrated sites in biogenic amorphous calcium phosphates: an infrared, Raman, and inelastic neutron scattering study. J. Inorg. Biochem. 1996, 62, 183-197.
[6] Becker, A., Ziegler, A., Epple, M. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate. Dalton Transactions 2005, 10, 1814-1820.
[7] Bentov, S., Zaslansky, P., Al-Sawalmih, A., Masic, A., Fratzl, P., Sagi, A., Berman, A., Aichmayer, B. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat. Comm. 2012, 3, 839 (7 pages).
[8] Vittori, M., Srot, V., Žagar, K., Bussmann, B., van Aken, P.A., Čeh, M., Štrus, J. Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea). J. Struct. Biol. 2016, 195, 227-237.
[9] McGann, T.C.A., Buchheim, W., Kearney, R.D., Richardson, T. Composition and ultrastructure of calcium phosphate-citrate complexes in bovine milk systems. Biochim. Biophys. Acta 1983, 760, 415-420.
[10] McGann, T.C.A., Kearney, R.D., Buckheim, W. Amorphous calcium phosphate in casein micelles of bovine milk. Calcif. Tiss. Int. 1983, 35, 821-823.
[11] Lenton, S., Nylander, T., Teixeira, S.C.M., Holt, C. A review of the biology of calcium phosphate sequestration with special reference to milk. Dairy Sci. Technol. 2015, 95, 3-14.
[12] Brès, E.F., Moebus, G., Kleebe, H.J., Pourroy, G., Werkmann, J., Ehret, G. High resolution electron microscopy study of amorphous calcium phosphate. J. Cryst. Growth 1993, 129, 149-162.
[13] Raeymaekers, L., Agostini, B., Hasselbach, W. The formation of intravesicular calcium phosphate deposits in microsomes of smooth muscle: a comparison with sarcoplasmic reticulum of skeletal muscle. Histochemistry 1981, 70, 139-150.
[14] Termine, J.D., Posner, A.S. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science 1966, 153, 1523-1525.
[15] Termine, J.D., Wuthier, R.E., Posner, A.S. Amorphous-crystalline mineral changes during endochondral and periosteal bone formation. Proceedings of the Society for Experimental Biology and Medicine 1967, 125, 4-9.
[16] Eanes, E.D., Termine, J.D., Posner, A.S. Amorphous calcium phosphate in skeletal tissues. Clin. Orthop. Relat. Res. 1967, 53, 223-235.
[17] Tannenbaum, P.J., Schraer, H., Posner, A.S. Crystalline changes in avian bone related to the reproductive cycle. II. Percent crystallinity changes. Calcif. Tiss. Int. 1974, 14, 83-86.
[18] Glimcher, M.J., Bonar, L.C., Grynpas, M.D., Landis, W.J., Roufosse, A.H. Recent studies of bone mineral: is the amorphous calcium phosphate theory valid? J. Cryst. Growth 1981, 53, 100-119.
[19] Grynpas, M.D., Bonar, L.C., Glimcher, M.J. On the question of amorphous tricalcium phosphate in bone mineral. Dev. Biochem. 1981, 22, 279-283.
[20] Grynpas, M.D., Bonar, L.C., Glimcher, M.J. Failure to detect an amorphous calcium-phosphate solid phase in bone mineral: a radial distribution function study. Calcif. Tiss. Int. 1984, 36, 291-301.
[21] Aoba, T., Moreno. E. Changes in the nature and composition of enamel mineral during porcine amelogenesis. Calcif. Tiss. Int. 1990, 47, 356-364.
[22] Boskey, A.L. Amorphous calcium phosphate: the contention of bone. J. Dent. Res. 1997, 76, 1433-1436.
[23] Eanes, E.D. Amorphous calcium phosphate. In: Chow, L.C., Eanes, E.D. (Eds): Octacalcium phosphate. Monographs Oral Sci. Vol. 18. Karger, Basel, Switzerland. 2001, pp. 130-147.
[24] Olszta, M.J., Odom, D.J., Douglas, E.P., Gower, L.B. A new paradigm for biomineral formation: mineralization via an amorphous liquid phase precursor. Connect. Tiss. Res. 2003, 44, 326-334.
[25] Weiner, S., Sagi. I., Addadi, L. Choosing the crystallization path less travelled. Science 2005, 309, 1027-1028.
[26] Weiner, S. Transient precursor strategy in mineral formation of bone. Bone 2006, 39, 431-433.
[27] Suvorova, E.I., Petrenko, P.P., Buffat, P.A. Scanning and transmission electron microscopy for evaluation of order/disorder in bone structure. Scanning 2007, 29, 162-170.
[28] Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.Y., Kaufman, M.J., Douglas, E.P., Gower, L.B. Bone structure and formation: a new perspective. Mater. Sci. Eng. R 2007, 58, 77-116.
[29] Rey, C., Combes. C., Drouet, C., Glimcher. M.J. Bone mineral: an update on chemical composition and structure. Osteoporos. Int. 2009, 20, 1013-1321.
[30] Nudelman, F., Pieterse, K., George, A., Bomans, P.H.H., Friedrich, H., Brylka, L.J., Hilbers, P.A.J., de With, G., Sommerdijk, N.A.J.M. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 2010, 9, 1004-1009.
[31] Mahamid, J., Sharir. A., Addadi, L., Weiner, S. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc. Natl. Acad. Sci. USA 2008, 105, 12748-12753.
[32] Tsuji, T., Onuma, K., Yamamoto, A., Iijima, M., Shiba, K. Direct transformation from amorphous to crystalline calcium phosphate facilitated by motif-programmed artificial proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 16866-16870.
[33] Beniash, A., Metzler, R.A., Lam, R.S.K., Gilbert, P.U.P.A. Transient amorphous calcium phosphate in forming enamel. J. Struct. Biol. 2009, 166, 133-143.
[34] Mahamid, J., Aichmayer, B., Shimoni, E., Ziblat, R., Li, C., Siegel, S., Paris, O., Fratzl, P., Weiner, S., Addadi, L. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Natl. Acad. Sci. USA 2010, 107, 6316-6321.
[35] Mahamid, J., Sharir, A., Gur, D., Zelzer, E., Addadi, L., Weiner, S. Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J. Struct. Biol. 2011, 174, 527-535.
[36] Akiva, A., Malkinson, G., Masic, A, Kerschnitzki, M, Bennet, M., Fratzl, P, Addadi, L, Weiner, S., Yaniv, K. On the pathway of mineral deposition in larval zebrafish caudal fin bone. Bone 2015, 75, 192-200.
[37] Tertuliano, O.A., Greer, J.R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 2016, 15, 1195-1202.
[38] Tao, J., Pan, H., Zeng, Y., Xu, R., Tang, R. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J. Phys. Chem. B 2007, 111, 13410-13418.
[39] Dorozhkin, S.V. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford: Singapore, 2012; 854 pp.
[40] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016; 405 pp.
[41] Holt, C., van Kemenade, M.J.J.M., Harries, J.E., Nelson, L.S. Jr., Bailey, R.T., Hukins, D.W.L., Hasnain, S.S., de Bruyn, P.L. Preparation of amorphous calcium-magnesium phosphates at pH 7 and characterization by X-ray absorption and Fourier transform infrared spectroscopy. J. Cryst. Growth 1988, 92, 239-252.
[42] Bachra, B.N. Precipitation of calcium carbonates and phosphates from metastable solutions. Ann. NY Acad. Sci. 1963, 109, 251-255.
[43] Bachra, B.N., Trautz, O.R., Simon, S.L. Precipitation of calcium carbonates and phosphates under physiological conditions. Arch. Biochem. Biophys. 1963, 103, 124-138.
[44] Bachra, B.N., Trautz, O.R., Simon, S.L. Precipitation of calcium carbonates and phosphates. III. The effect of magnesium and fluoride ions on the spontaneous precipitation of calcium carbonates and phosphates. Arch. Oral Biol. 1965, 10, 731-738.
[45] Greenfield, D.J., Eanes, E.D. Formation chemistry of amorphous calcium phosphates prepared from carbonate containing solutions. Calcif. Tiss. Res. 1972, 9, 152-162.
[46] Olesen, P.T., Steenberg, T., Christensen. E., Bjerrum, N.J. Electrolytic deposition of amorphous and crystalline zinc-calcium phosphates. J. Mater. Sci. 1998, 33, 3059-3063.
[47] Tadic, D., Peters. F., Epple, M. Continuous synthesis of amorphous carbonated apatite. Biomaterials 2002, 23, 2553-2559.
[48] LeGeros. R.Z., Mijares, D., Park, J., Chang, X.F., Khairoun, I., Kijkowska, R., Dias, R., LeGeros, J.P. Amorphous calcium phosphates (ACP): formation and stability. Key Eng. Mater. 2005, 284-286, 7-10.
[49] Aimanova, O.J., LeGeros, R.Z., Sinyayev, V.A. Antimicrobiologic property hydrated amorphous calcium phosphates containing silver. Key Eng. Mater. 2005, 284-286, 439-442.
[50] Skrtic, D., Antonucci, J.M., Eanes, E.D., Brunworth, R.T. Silica- and
zirconia-hybridized amorphous calcium phosphate: effect on transformation to hydroxyapatite. J. Biomed. Mater. Res. 2002, 59, 597-604.
[51] Julien, M., Khairoun, I., LeGeros, R.Z., Delplace, S., Pilet, P., Weiss, P., Daculsi, G., Bouler, J.M., Guicheux, J. Physico-chemical–mechanical and in vitro
biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials 2007, 28, 956-965.
[52] Sinyaev, V.A., LeGeros, R.Z., Levchenko, L.V., Shustikova, E.S., Karzhaubaeva, R.A. State of water in amorphous calcium and calcium-magnesium phosphates. Russ. J. Gen. Chem. 2008, 78, 864-867.
[53] Sinyaev, V.A., Shustikova, E.S., Levchenko, L.V., Karzhaubaeva, R.A., Tokseitova, G.A. Amorphous calcium barium monophosphate and its dehydration in air at room temperature. Russ. J. Appl. Chem. 2008, 81, 1899-1903.
[54] Lee, D., Kumta, P.N. Chemical synthesis and characterization of magnesium substituted amorphous calcium phosphate (MG-ACP). Mater. Sci. Eng. C 2010, 30, 1313-1317.
[55] Scott, P.R., Crow, J.A., LeGeros, R.Z., Kruger, M.B. A pressure-induced amorphous phase transition in magnesium-substituted β-tricalcium phosphate. Solid State Comm. 2011, 151, 1609-1611.
[56] Singh, S.S., Roy, A., Lee, B., Banerjee, I., Kumta, P.N. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics. Mater. Sci. Eng. C 2016, 67, 636-645.
[57] Dong, G., Zheng, Y., He, L., Wu, G., Deng, C. The effect of silicon doping on the transformation of amorphous calcium phosphate to silicon-substituted α-tricalcium phosphate by heat treatment. Ceram. Int. 2016, 42, 883-890.
[58] Taylor, M.G., Simkiss, K., Simmons, J., Wu, L.N.Y., Wuthier, R.E. Structural studies of a phosphatidyl serine-amorphous calcium phosphate complex. Cell. Mol. Life Sci. 1998, 54, 196-202.
[59] Brečević, L., Hlady, V., Füredi-Milhofer, H. Influence of gelatin on the precipitation of amorphous calcium phosphate. Colloids Surf. 1987, 28, 301-313.
[60] Ambrosio, A.M.A., Sahota, J.S., Khan, Y., Laurencin C.T. A novel
amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J. Biomed. Mater. Res. 2001, 58, 295-301.
[61] Skrtic, D., Antonucci, J.M., Eanes, E.D., Eichmiller, F.C., Schumacher, G.E. Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. J. Biomed. Mater. Res. (Appl. Biomater.) 2000, 53, 381-391.
[62] Skrtic, D., Antonucci, J.M., Eanes, E.D. Effect of the monomer and filler system on the remineralizing potential of bioactive dental composites based on amorphous calcium phosphate. Polym. Adv. Technol. 2001, 12, 369-379.
[63] Skrtic, D., Antonucci, J.M., Eanes, E.D. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J. Res. Natl. Inst. Stands. Technol. 2003, 108, 167-182.
[64] Skrtic, D., Antonucci, J.M., Eanes, E.D., Eidelman, N. Dental composites based on hybrid and surface-modified amorphous calcium phosphates. Biomaterials 2004, 25, 1141-1150.
[65] Skrtic, D., Antonucci, J.M. Matrix resin effects on selected physicochemical properties of amorphous calcium phosphate composites. J. Bioact. Compat. Polym. 2005, 20, 29-49.
[66] Skrtic, D., Antonucci, J.M., Eanes, E.D. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent. Mater. 1996, 12, 295-301.
[67] Skrtic, D., Antonucci, J.M. Dental composites based on amorphous calcium phosphate – resin composition/physicochemical properties study. J. Biomater. Appl. 2007, 21, 375-393.
[68] Skrtic, D., Antonucci, J.M., Liu, D.W. Ethoxylated bisphenol dimethacrylate-based amorphous calcium phosphate composites. Acta Biomater. 2006, 2, 85-94.
[69] Skrtic, D., Hailer A.W., Takagi, S., Antonucci, J.M., Eanes, E.D. Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J. Dent. Res. 1996, 75, 1679-1686.
[70] Park, M.S., Eanes, E.D., Antonucci, J.M., Skrtic, D. Mechanical properties of bioactive amorphous calcium phosphate/methacrylate composites. Dent. Mater. 1998, 14, 137-141.
[71] Lee, S.Y., Regnault, W.F., Antonucci, J.M., Skrtic, D. Effect of particle size of an amorphous calcium phosphate filler on the mechanical strength and ion release of polymeric composites. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 80B, 11-17.
[72] Antonucci, J.M., Liu, D.W., Skrtic, D. Amorphous calcium phosphate based composites: effect of surfactants and poly(ethylene oxide) on filler and composite properties. J. Dispersion Sci. Technol. 2007, 28, 819-824.
[73] Skrtic, D., Lee, S.Y., Antonucci, J.M., Liu, D.W. Amorphous calcium phosphate based polymeric composites: effects of polymer composition and filler’s particle size on composite properties. Key Eng. Mater. 2005, 284-286, 737-740.
[74] O’Donnell, J.N.R., Schumacher, G.E., Antonucci, J.M., Skrtic, D. Adhesion of amorphous calcium phosphate composites bonded to dentin: a study in failure modality. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 238-249.
[75] Antonucci, J.M., O’Donnell, J.N.R., Schumacher, G.E., Skrtic, D. Amorphous calcium phosphate composites and their effect on composite–adhesive–dentin bonding. J. Adhes. Sci. Technol. 2009, 23, 1133-1147.
[76] Reynolds, E.C., Cai, F., Cochrane, N.J., Shen, P., Walker, G.D., Morgan, M.V., Reynolds, C. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J. Dent. Res. 2008, 87, 344-348.
[77] Amjad, Z. Influence of polyelectrolytes on the precipitation of amorphous calcium phosphate. Colloid Surf. 1990, 48, 95-106.
[78] Bar-Yosef, O.P., Govrin-Lippman, R., Garti, N., Füredi-Milhofer, H. The influence of polyelectrolytes on the formation and phase transformation of amorphous calcium phosphate. Cryst. Growth Des. 2004, 4, 177-183.
[79] Cross, K.J., Huq, N.L., Palamara, J.E., Perich, J.W., Reynolds, E.C. Physicochemical characterisation of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J. Biol. Chem. 2005, 280, 15362-15369.
[80] Gutiérrez, M.C., Jobbágy, M., Ferrer, M.L., del Monte, F. Enzymatic synthesis of amorphous calcium phosphate-chitosan nanocomposites and their processing into hierarchical structures. Chem. Mater. 2008, 20, 11-13.
[81] Cushnie, E.K., Khan, Y.M., Laurencin, C.T. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies. J. Biomed. Mater. Res. A 2008, 84A, 54-62.
[82] Ikawa, N., Kimura, T., Oumi, Y., Sano, T. Amino acid containing amorphous calcium phosphates and the rapid transformation into apatite. J. Mater. Chem. 2009, 19, 4906-4913.
[83] Lin, Q., Li, Y., Lan, X., Lu, C., Xu, Z. Preparation of amorphous calcium phosphate/tricalcium silicate composite powders. Adv. Mater. Res. 2009, 79-82, 1643-1646.
[84] Walker, G.D., Cai, F., Shen, P., Adams, G.G., Reynolds, C., Reynolds, E.C. Casein phosphopeptide-amorphous calcium phosphate incorporated into sugar confections inhibits the progression of enamel subsurface lesions in situ. Caries Res. 2010, 44, 33-40.
[85] Antonucci, J.M., Regnault, W.F., Skrtic, D. Polymerization shrinkage and stress development in amorphous calcium phosphate/urethane dimethacrylate polymeric composites. J. Compos. Mater. 2010, 44, 355-367.
[86] Par, M., Marovic, D., Skenderovic, H., Gamulin, O., Klaric, E., Tarle, Z. Light transmittance and polymerization kinetics of amorphous calcium phosphate composites. Clin. Oral Invest. 2016, (early view).
[87] Sinyaev, V.A., Shustikova, E.S., Levchenko, L.V., Sedunov, A.A. Synthesis and dehydration of amorphous calcium phosphate. Inorg. Mater. 2001, 37, 619-622.
[88] Dion, A., Berno, B., Hall, G., Filiaggi, M.J. The effect of processing on the structural characteristics of vancomycin-loaded amorphous calcium phosphate matrices. Biomaterials 2005, 26, 4486-4494.
[89] Dion, A., Langman, M., Hall, G., Filiaggi, M.J. Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment. Biomaterials 2005, 26, 7276-7285.
[90] Lee, B., Kim, M., Choi, S., Lee, Y.K. Amorphous calcium polyphosphate bone regenerative materials based on calcium phosphate glass. Key Eng. Mater. 2009, 396-398, 209-212.
[91] Chen, G., Li, W., Zhao, B., Sun, K. A novel biphasic bone scaffold: β-calcium phosphate and amorphous calcium polyphosphate. J. Am. Ceram. Soc. 2009, 92, 945-948.
[92] Song, W., Seta, J., Kast, R.E., Auner, G.W., Chen, L., Markel, D.C., Ren, W. Influence of particle size and soaking conditions on rheology and microstructure of amorphous calcium polyphosphate hydrogel. J. Am. Ceram. Soc. 2015, 98, 3758-3769.
[93] Wang, X., Ackermann, M., Wang, S., Tolba, E., Neufurth, M., Feng, Q., Schröder, H.C., Müller, W.E.G. Amorphous polyphosphate/amorphous calcium carbonate implant material with enhanced bone healing efficacy in a critical-size defect in rats. Biomed. Mater. (Bristol) 2016, 11, 035005.
[94] Safronova, T.V., Mukhin, E.A., Putlyaev, V.I., Knotko, A.V., Evdokimov, P.V., Shatalova, T.B., Filippov, Y.Y., Sidorov, A.V., Karpushkin, E.A. Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application. Ceram. Int. 2017, 43, 1310-1317.
[95] Chun, S., Jeong, J.H., Kim, K.M., Kim, S. Biodegradation study of amorphous and crystalline calcium metaphosphate in the SBF and tris-buffer solution. Key Eng. Mater. 2001, 192-195, 131-134.
[96] Cheng, Y.T., Johnson, W.L. Disordered materials: a survey of amorphous solids. Science 1987, 235, 997-1002.
[97] https://en.wikipedia.org/wiki/Amorphous_solid (accessed in December 2016).
[98] Jones, H.B. Contributions to the chemistry of the urine. On the variations in the alkaline and earthy phosphates in the healthy state, and on the alkalescence of the urine from fixed alkalies. Phil. Trans. R. Soc. Lond. 1845, 135, 335-349.
[99] Brande, W.T., Taylor, A.S. Chemistry. Blanchard and Lea: Philadelphia, USA, 1863, 696 pp.
[100] Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006, 439, 419-425.
[101] Stachurski, Z.H. On structure and properties of amorphous materials. Materials 2011, 4, 1564-1598.
[102] Lee, C.Y., Stachurski, Z.H., Welberry, T.R. The geometry, topology and structure of amorphous solids. Acta Mater. 2010, 58, 615-625.
[103] Hufnagel, T.C. Amorphous materials: finding order in disorder. Nat. Mater. 2004, 3, 666-667.
[104] Elliott, S.R. Physics of amorphous materials. 2nd Ed. Longman, London, UK. 1990, 481 pp.
[105] Elliott, S.R. Medium-range structural order in covalent amorphous solids. Nature 1991, 354, 445-452.
[106] Salmon, P.S. Amorphous materials: order in disorder. Nat. Mater. 2002, 1, 87-88.
[107] Krivanek, O.L., Gaskell, P.H., Howie, A. Seeking order in ‘amorphous’ materials. Nature 1976, 362, 454-457.
[108] Mountjoy, G. Order in two-dimensional projections of thin amorphous three-dimensional structures. J. Phys. Cond. Matter 1999, 11, 2319-2336.
[109] Simon, V., Lazǎr, D., Turcu, R.V.F., Mocuta, H., Magyari. K., Prinz, M.,
Neumann, M., Simon, S. Atomic environment in sol-gel derived nanocrystalline hydroxyapatite. Mater. Sci. Eng. B 2009, 165, 247-251.
[110] Weeber, A.W., Bakker, H. Amorphization by ball milling. A review. Physica B 1988, 153, 93-135.
[111] Maier, G., Zipper, P., Stubičar, M., Schurz, J. Amorphization of different cellulose samples by ball milling. Cellulose Chem. Technol. 2005, 39, 167-177.
[112] Motta, A.T. Amorphization of intermetallic compounds under irradiation – a review. J. Nucl. Mater. 1997, 244, 227-250.
[113] Edmondson, P.D., Riley, D.J., Birtcher, R.C., Donnelly, S.E. Amorphization of crystalline Si due to heavy and light ion irradiation. J. Appl. Phys. 2009, 106, 043505 (8 pages).
[114] Struik, L.C.E. Physical aging in amorphous polymers and other materials. Elsevier, 1980, 244 pp.
[115] Robinson, R.A., Watson, M.L. Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann. NY Acad. Sci. 1955, 60, 596-660.
[116] Watson, M.L., Robinson, R.A. Collagen-crystal relationships in bone. II. Electron microscope study of basic calcium phosphate crystals. Am. J. Anat. 1953, 93, 25-59.
[117] Chow, L.C., Takagi, S., Vogel, G.L. Letter to the Editor.

J. Dent. Res. 1998, 77, 6.
[118] Eanes, E.D. Letter to the Editor.

J. Dent. Res. 1998, 77, 6.
[119] Dorozhkin, S.V. Calcium orthophosphates and human beings. A historical perspective from the 1770s until 1940. Biomatter 2012, 2, 53-70.
[120] Dorozhkin, S.V. A detailed history of calcium orthophosphates from 1770s till 1950. Mater. Sci. Eng. C 2013, 33, 3085-3110.
[121] Harper, R,A., Posner, A.S. Measurement of non-crystalline calcium phosphate in bone mineral. Proc. Soc. Exp. Biol. Med. 1966, 122, 137-142.
[122] Termine, J.D., Posner, A.S. Amorphous/crystalline interrelationships in bone mineral. Calcif. Tiss. Res. 1967, 1, 8-23.
[123] Posner, A.S. Crystal chemistry of bone mineral. Physiol. Rev. 1969, 40, 760-792.
[124] Posner, A.S., Betts, F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc. Chem. Res. 1975, 8, 273-281.
[125] Betts, F., Blumenthal, N.C., Posner, A.S., Becker, G.L., Lehninger, A.L. Atomic structure of intracellular amorphous calcium phosphate deposits. Proc. Natl. Acad. Sci. USA 1975, 72, 2088-2090.
[126] Posner, A.S., Betts, F., Blumenthal, N.C. Formation and structure of synthetic and bone hydroxyapatite. Progr. Cryst. Growth Char. 1980, 3, 49-64.
[127] Bonar, L.C., Roufousse, A.H., Sabine, W.K., Grynpass, M.D., Glimcher, M.J. X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif. Tiss. Int. 1983, 35, 202-209.
[128] Molnar, Z. Development of the parietal bone of young mice I. Crystals of bone mineral in frozen-dried preparations. J. Ultrastruct. Res. 1959, 3, 39-45.
[129] Molnar, Z. Additional observations on bone crystal dimensions. Clin. Orthop. 1960, 17, 38-42.
[130] Thyberg, J. Electron microscopic studies on the initial phases of calcification in guinea pig epiphyseal cartilage. J. Ultrastruct. Res. 1974, 46, 206-218.
[131] Gay, C.V. The ultrastructure of the extracellular phase of bone as observed in frozen thin sections. Calcif. Tiss. Res. 1977, 23, 215-223.
[132] Schraer, H., Gay, C.V. Matrix vesicles in newly synthesizing bone observed after ultracryotomy and ultramicroincineration. Calcif. Tiss. Res. 1977, 23, 185-188.
[133] Nancollas, G.H., Mohan, M.S. The growth of hydroxyapatite crystals. Arch. Oral Biol. 1970, 15, 731-745.
[134] Blumenthal, N.C., Betts, F., Posner, A.S. Formation and structure of Ca-deficient hydroxyapatite. Calcif. Tiss. Int. 1981, 33, 111-117.
[135] Meyer, J.L. Phase transformations in the spontaneous precipitation of calcium phosphate. Croatica Chim. Acta 1983, 56, 753-767.
[136] Harries, J.E., Hukins, D.W.L., Holt, C., Hasnain. S.S. Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J. Cryst. Growth 1987, 84, 563-570.
[137] Lopez-Valero, I., Gomez-Lorente, C., Boistelle, R. Effects of sodium and ammonium ions on occurrence., evolution and crystallinity of calcium phosphates. J. Cryst. Growth 1992, 121, 297-304.
[138] Lazić, S. Microcrystalline hydroxyapatite formation from alkaline solutions. J. Cryst. Growth 1995, 147, 147-154.
[139] Gadaleta, S.J., Paschalis, E.P., Betts, F., Mendelson, R., Boskey, A.L. Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif. Tiss. Int. 1996, 58, 9-16.
[140] Tarasevich, B.J., Chusuei, C.C., Allara, D.L. Nucleation and growth of calcium phosphate from physiological solutions onto self-assembled templates by a solution-formed nucleus mechanism. J. Phys. Chem. B 2003, 107, 10367-10377.
[141] Kim, S., Ryu, H.S., Jung, H.S., Hong, K.S. Influence of Ca/P ratios of starting solutions on the crystallization of amorphous calcium phosphate to hydroxyapatite. Metal. Mater. Int. 2004, 10, 171-175.
[142] Kim, S., Ryu, H.S., Shin, H., Jung, H.S., Hong, K.S. Direct observation of hydroxyapatite nucleation from amorphous phase in a stoichiometric calcium/
phosphate aqueous solution. Chem. Lett. 2004, 33, 1292-1293.
[143] Wang, L., Nancollas, G.H. Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 2008, 108, 4628-4669.
[144] Medvecky, L., Sopcak, T., Girman, V., Briancin, J. Amorphous calcium phosphates synthesized by precipitation from calcium D-gluconate solutions. Colloid Surface A 2013, 417, 191-200.
[145] Habraken, W.J.E.M., Tao, J., Brylka, L.J., Friedrich, H., Bertinetti, L., Schenk, A.S., Verch, A., Dmitrovic, V., Bomans, P.H.H., Frederik, P.M., Laven, J., van der Schoot, P., Aichmayer, B., de With, G., DeYoreo, J.J., Sommerdijk, N.A.J.M. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 2013, 4, 1507.
[146] Gross, K.A., Andersons, J., Misevicius, M., Svirksts, J. Traversing phase fields towards nanosized beta tricalcium phosphate. Key Eng. Mater. 2014, 587, 97-100.
[147] Xie, B., Halter, T.J., Borah, B.M., Nancollas, G.H. Tracking amorphous precursor formation and transformation during induction stages of nucleation. Cryst. Growth Des. 2014, 14, 1659-1665.
[148] Szilágyi, B., Muntean, N., Barabás, R., Ponta, O., Lakatos, B.G. Reaction precipitation of amorphous calcium phosphate: population balance modelling and kinetics. Chem. Eng. Res. Des. 2015, 93, 278-286.
[149] Uysal, A., Stripe, B., Lin, B., Meron, M., Dutta, P. Assembly of amorphous clusters under floating monolayers: a comparison of in situ and ex situ techniques. Langmuir. 2013, 29, 14361-14368.
[150] Brečević, L.J., Füredi-Milhofer, H. Precipitation of calcium phosphates from electrolyte solutions – II. The formation and transformation of the precipitates. Calcif. Tiss. Res. 1972, 10, 82-90.
[151] Liu, C., Huang, Y., Shen, W., Cui, J. Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials 2001, 22, 301-306.
[152] Tas, A.C. Submicron spheres of amorphous calcium phosphate forming in a stirred SBF solution at 55°C. J. Non-Cryst. Solids 2014, 400, 27-32.
[153] Zhou, H, Bhaduri, S. Novel microwave synthesis of amorphous calcium phosphate nanospheres. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1142-1150.
[154] Tas, A.C. Calcium metal to synthesize amorphous or cryptocrystalline calcium phosphates. Mater. Sci. Eng. C 2012, 32, 1097-1106.
[155] Tas, A.C. X-ray-amorphous calcium phosphate (ACP) synthesis in a simple biomineralization medium. J. Mater. Chem. B 2013, 1, 4511-4520.
[156] Boskey, A.L., Posner, A.S. Formation of hydroxyapatite at low supersaturation. J. Phys. Chem. 1976, 80, 40-45.
[157] Feenstra, T.P., de Bruyn, P.L. The Ostwald rule of stages in precipitation from highly supersaturated solutions: a model and its application to the formation of the nonstoichiometric amorphous calcium phosphate precursor phase. J. Colloid Interf. Sci. 1981, 84, 66-72.
[158] Eanes, E.D. Amorphous calcium phosphate: thermodynamic and kinetic considerations. In: Amjad, Z. (Ed): Calcium phosphates in biological and industrial systems. Kluwer. MA, USA, 1998, pp. 21-39.
[159] Blumenthal, N.C., Posner, A.S., Holmes, J.M. Effect of preparation conditions on the properties and transformation of amorphous calcium phosphate. Mater. Res. Bull. 1972, 7, 1181-1189.
[160] Boskey, A.L., Posner, A.S. Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. J. Phys. Chem. 1973, 77, 2313-2317.
[161] Li, Y., Weng, W. In vitro synthesis and characterization of amorphous calcium phosphates with various Ca/P atomic ratios. J. Mater. Sci. Mater. Med. 2007, 18, 2303-2308.
[162] Zyman, Z.Z., Rokhmistrov, D.V., Glushko, V.I. Structural and compositional features of amorphous calcium phosphate at the early stage of precipitation. J. Mater. Sci. Mater. Med. 2010, 21, 123-130.
[163] Zyman, Z., Rokhmistrov, D., Glushko, V. Structural changes in precipitates and cell model for the conversion of amorphous calcium phosphate to hydroxyapatite during the initial stage of precipitation. J. Cryst. Growth 2012, 353, 5-11.
[164] Zyman, Z., Epple, M., Goncharenko, A., Rokhmistrov, D., Prymak, O., Loza, K. Thermally induced crystallization and phase evolution in powders derived from amorphous calcium phosphate precipitates with a Ca/P ratio of 1:1. J. Cryst. Growth 2016, 450, 190-196.
[165] Holt, C., van Kemenade, M.J.J.M., Nelson, L.S. Jr., Hukins, D.W.L., Bailey, R.T., Harries, J.E., Hasnain, S.S., de Bruyn, P.L. Amorphous calcium phosphates prepared at pH 6.5 and 6.0. Mater. Res. Bull. 1989, 23, 55-62.
[166] Eanes, E.D., Gillessen, I.H., Posner, A.S. Intermediate states in the precipitation of hydroxyapatite. Nature 1965, 208, 365-367.
[167] Termine, J.D., Eanes, E.D. Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif. Tiss. Res. 1972, 10, 171-197.
[168] Urch, H., Vallet-Regi, M., Ruiz, L., Gonzalez-Calbet, J.M., Epple M. Calcium phosphate nanoparticles with adjustable dispersability and crystallinity. J. Mater. Chem. 2009, 19, 2166-2171.
[169] Lam, E., Gu, Q., Swedlund, P.J., Marchesseau, S., Hemar, Y. X-ray diffraction investigation of amorphous calcium phosphate and hydroxyapatite under ultra-high hydrostatic pressure. Int. J. Miner. Metall. Mater. 2015, 22, 1225-1231.
[170] Brangule, A., Gross, K.A. Effect on drying conditions on amorphous calcium phosphate. Key Eng. Mater. 2015, 631, 99-103.
[171] Lai, R.H., Dong, P.J., Wang, Y.L., Luo, J.B. Redispersible and stable amorphous calcium phosphate nanoparticles functionalized by an organic bisphosphate. Chin. Chem. Lett. 2014, 25, 295-298.
[172] Kim, S., Ryu, H.S., Shin, H., Jung, H.S., Hong, K.S. In situ observation of hydroxyapatite nanocrystal formation from amorphous calcium phosphate in calcium-rich solutions. Mater. Chem. Phys. 2005, 91, 500-506.
[173] Xu, H.H.K., Moreau, J.L., Sun, L., Chow, L.C. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent. Mater. 2011, 27, 762-769.
[174] Zhang, L., Weir, M.D., Chow, L.C., Reynolds, M.A., Xu, H.H.K. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release. Sci. Rep. 2016, 6, 36476 (11 pages).
[175] Qi, C., Zhu, Y.J., Zhao, X.Y., Lu, B.Q., Tang, Q.-L., Zhao, J., Chen, F. Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chem. Eur. J. 2013, 19, 981-987.
[176] Ding, G.J., Zhu, Y.J., Qi, C., Sun, T.W., Wu, J., Chen, F. Amorphous calcium phosphate nanowires prepared using beta-glycerophosphate disodium salt as an organic phosphate source by a microwave-assisted hydrothermal method and adsorption of heavy metals in water treatment. RSC Adv. 2015, 5, 40154-40162.
[177] Qi, C., Zhu, Y.J., Sun, T.W., Wu, J., Chen, F. Microwave-assisted hydrothermal rapid synthesis of amorphous calcium phosphate mesoporous microspheres using adenosine 5′-diphosphate and application in pH-responsive drug delivery. Chem. Asian J. 2015, 10, 2503-2511.
[178] Ding, G.J., Zhu, Y.J., Qi, C., Lu, B.Q., Wu, J., Chen, F. Porous microspheres of amorphous calcium phosphate: block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery. J. Colloid Interf. Sci. 2015, 443, 72-79.
[179] Ding, G.J., Zhu, Y.J., Qi, C., Lu, B.Q., Chen, F., Wu, J. Porous
hollow microspheres of amorphous calcium phosphate: soybean lecithin templated microwave-assisted hydrothermal synthesis and application in drug delivery. J. Mater. Chem. B 2015, 3, 1823-1830.
[180] Zahidi, E., Lebugle, A., Bonel, G. Sur une nouvelle classe de materiaux pour protheses osseuses ou dentaires. [A new class of materials for bone or dental prostheses]. Bull. Sot. Chim. Fr. 1985, 4, 523-527.
[181] Lebugle, A., Zahidi, E., Bonel, G. Effect of structure and composition on the thermal decomposition of calcium phosphates (Ca/P = 1.33). React. Solids 1986, 2, 151-161.
[182] Layrolle, P., Lebugle, A. Characterization and reactivity of nanosized calcium phosphates prepared in anhydrous ethanol. Chem. Mater. 1994, 6, 1996-2004.
[183] Layrolle, P., Ito, A., Tateishi, T. Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J. Am. Ceram. Soc. 1998, 81, 1421-1428.
[184] Rodrigues, A., Lebugle, A. Behavior in wet atmosphere of an amorphous calcium phosphate with an atomic Ca/P ratio of 1.33. J. Solid State Chem. 1999, 148, 308-315.
[185] Ohta, M., Honma, T., Umesaki, M., Nakahira, A. Synthesis and evaluation of amorphous calcium phosphate (ACP) by various synthesis methods. Key Eng. Mater. 2006, 309-311, 175-178.
[186] Li, Y.B., Weng, W.J., Cheng, K., Du. P.Y., Shen, G., Han, G.R. Complexes of Ca(II) with polymers as precursors for preparation of amorphous calcium phosphate. Mater. Sci. Technol. 2004, 20, 1075-1078.
[187] Bow, J.S., Liou, S.C., Chen, S.Y. Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 2004, 25, 3155-3161.
[188] Li, Y.B., Weng, W.J., Cheng, K., Du, P.Y., Shen, G., Wang J., Han G.R. Preparation of amorphous calcium phosphate in the presence of poly(ethylene glycol). J. Mater. Sci. Lett. 2003, 22, 1015-1016.
[189] Wang, R., Weng, W., Deng, X., Cheng, K., Liu, X., Du, P., Shen, G., Han, G. Dissolution behavior of submicron biphasic tricalcium phosphate powders. Key Eng. Mater. 2006, 309-311, 223-226.
[190] Li, Y., Wiliana, T., Tam, K.C. Synthesis of amorphous calcium phosphate using various types of cyclodextrins. Mater. Res. Bull. 2007, 42, 820-827.
[191] Tao, J., Pan, H., Zhai, H., Wang, J., Li, L., Wu, J., Jiang, W., Xu, X., Tang, R. Controls of tricalcium phosphate single-crystal formation from its amorphous precursor by interfacial energy. Cryst. Growth Des. 2009, 9, 3154-3160.
[192] Liu, S., Weng, W., Li, Z., Pan, L., Cheng, K., Song, C., Du, P., Shen, G., Han, G. Effect of PEG amount in amorphous calcium phosphate on its crystallized products. J. Mater. Sci. Mater. Med. 2009, 20, 359-363.
[193] Li, Y., Weng, W., Tam, K.C. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomater. 2007, 3, 251-254.
[194] Li, Y., Li, D., Weng, W. In vitro dissolution behavior of biphasic tricalcium phosphate composite powders composed of α-tricalcium phosphate and β-tricalcium phosphate. Key Eng. Mater. 2008, 368-372, 1206-1208.
[195] He, K., Xiao, G.Y., Xu, W.H., Zhu, R.F., Lu, Y.P. Ultrasonic enhancing amorphization during synthesis of calcium phosphate. Ultrason. Sonochem. 2014, 21, 499-504.
[196] Qi, C., Zhu, Y.J., Zhang, Y.G., Jiang, Y.Y., Wu, J., Chen, F. Vesicle-like nanospheres of amorphous calcium phosphate: sonochemical synthesis using the adenosine 5’-triphosphate disodium salt and their application in pH-responsive drug delivery. J. Mater. Chem. B 2015, 3, 7347-7354.
[197] Karimi, M., Hesaraki, S., Alizadeh, M., Kazemzadeh, A. A facile and sustainable method based on deep eutectic solvents toward synthesis of amorphous calcium phosphate nanoparticles: the effect of using various solvents and precursors on physical characteristics. J. Non-Cryst. Solids 2016, 443, 59-64.
[198] Rodrigues, A., Lebugle, A. Influence of ethanol in the precipitation medium on the composition., structure and reactivity of tricalcium phosphate. Colloids Surf. A 1998, 145, 191-204.
[199] Heughebaert, J.C., Montel, G. Conversion of amorphous tricalcium phosphate into apatitic tricalcium phosphate. Calcif. Tiss. Int. 1982, 34, S103-S108.
[200] Yu, T., Ye, J., Wang, Y. Synthesis and property of a novel calcium phosphate cement. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 745-751.
[201] Nasiri-Tabrizin, B., Fahami, A. Crystallization behavior of nanostructured amorphous tricalcium phosphate under thermal treatment. Mater. Lett. 2013, 106, 396-400.
[202] Nasiri-Tabrizin, B., Fahami, A. Mechanochemical synthesis and structural characterization of nano-sized amorphous tricalcium phosphate. Ceram. Int. 2013, 39, 8657-8666.
[203] Tofighi, A., Palazzolo, R. Calcium phosphate bone cement preparation using mechano-chemical process. Key Eng. Mater. 2005, 284-286, 101-104.
[204] Gbureck, U., Grolms, O., Barralet, J.E., Grover, L.M., Thull, R. Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials 2003, 24, 4123-4131.
[205] Gbureck, U., Barralet, J.E., Radu, L., Klinger, H., Thull, R. Amorphous α-tricalcium phosphate: preparation and aqueous setting reaction. J. Am. Ceram. Soc. 2004, 87, 1126-1132.
[206] Döbelin, N., Galea, L., Eggenberger, U., Ferreira, J.M.F., Bohner, M. Recrystallization of amorphized α-TCP. Key Eng. Mater. 2012, 493-494, 219-224.
[207] Hurle, K., Neubauer, J., Bohner, M., Doebelin, N., Goetz-Neunhoeffer, F. Calorimetry investigations of milled α-tricalcium phosphate (α-TCP) powders to determine the formation enthalpies of α-TCP and X-ray amorphous tricalcium phosphate. Acta Biomater. 2015, 23, 338-346.
[208] Gbureck, U., Hofmann, M.P., Barralet, J.E. Thermal performance of mechanically activated tetracalcium phosphate. J. Am. Ceram. Soc. 2005, 88, 1327-1330.
[209] Combes, C., Rey, C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010, 6, 3362-3378.
[210] Vaidya, S.N., Karunakaran, C., Pande, B.M., Gupta, N.M., Iyer, R.K., Karweer, S.B. Pressure-induced crystalline to amorphous transition in hydroxylapatite. J. Mater. Sci. 1997, 32, 3213-3217.
[211] Vaidya, S.N., Sugandhi, V. Pressure induced amorphization in calcium phosphates. J. Mater. Sci. 1999, 34, 3769-3778.
[212] Lemons, J.E. Hydroxyapatite coatings. Clin. Orthop. 1988, 235, 220-223.
[213] Zyman, Z.Z., Weng, J., Liu, X., Zhang, X., Ma, Z. Amorphous phase and morphological structure of hydroxyapatite plasma coatings. Biomaterials 1993, 14, 225-228.
[214] Weng, J., Liu, X., Zhang, X., Ma, Z., Ji, X., Zyman, Z.Z. Further studies on
the plasma-sprayed amorphous phase in hydroxyapatite coatings and its deamorphization. Biomaterials 1993, 14, 578-582.
[215] Tong, W., Chen, J., Zhang, X. Amorphorization and recrystallization during plasma spraying of hydroxyapatite. Biomaterials 1995, 16, 829-832.
[216] Weng, J., Liu, X.G., Li, X.D., Zhang, X.D. Intrinsic factors of apatite influencing its amorphization during plasma-spray coating. Biomaterials 1995, 16, 39-44.
[217] Gross, K.A., Berndt, C.C., Herman, H. Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. J. Biomed. Mater. Res. 1998, 39, 407-414.
[218] Feng, C.F., Khor, K.A., Kweh, S.W.K., Cheang, P. Thermally induced crystallization of amorphous calcium phosphate in plasma-spheroidized hydroxyapatite powders. Mater. Lett. 2000, 46, 229-233.
[219] Tong, W., Li, P. In vitro dissolution of amorphous calcium phosphate (Acp) increased the wear particle generation of plasma-sprayed HA coatings. Key Eng. Mater. 2007, 330-332, 561-564.
[220] Gross, K.A., Phillips, M.R. Identification and mapping of the amorphous phase in plasma-sprayed hydroxyapatite coatings using scanning cathodoluminescence microscopy. J. Mater. Sci. Mater. Med. 1998, 9, 797-802.
[221] Carayon, M.T., Lacout, J.L. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J. Solid State Chem. 2003, 172, 339-350.
[222] Kumar, R., Cheang, P., Khor, K.A. Phase composition and heat of crystallization of amorphous calcium phosphate in ultra-fine radio frequency suspension plasma sprayed hydroxyapatite powders. Acta Mater. 2004, 52, 1171-1181.
[223] Keller, L., Dollase, W.A. X-ray determination of crystalline hydroxyapatite to amorphous calcium-phosphate ratio in plasma sprayed coatings. J. Biomed. Mater. Res. 2000, 49, 244-249.
[224] Gross, K.A., Gross, V., Berndt, C.C. Thermal analysis of amorphous phases in hydroxyapatite coatings. J. Am. Ceram. Soc. 1998, 81, 106-112.
[225] Gross, K.A., Young, C.J., Beck, M.A., Keebaugh, E.W., Bronts, T.J., Saber-Samandari, S., Riley, D.P. Characterization and dissolution of functionalized amorphous calcium phosphate biolayers using single-splat technology. Acta Biomater. 2011, 7, 2270-2275.
[226] Döbelin, N., Brunner, T.J., Stark, W.J., Eggimann, M., Fisch, M., Bohner, M. Phase evolution of thermally treated amorphous tricalcium phosphate nanoparticles. Key Eng. Mater. 2009, 396-398, 595-598.
[227] Maciejewski, M., Brunner, T.J., Loher, S.F., Stark, W.J., Baiker, A. Phase transitions in amorphous calcium phosphates with different Ca/P ratios. Thermochim. Acta 2008, 468, 75-80.
[228] Döbelin, N., Brunner, T.J., Stark, W.J., Fisch, M., Conforto, E., Bohner,
M. Thermal treatment of flame-synthesized amorphous tricalcium phosphate nanoparticles. J. Am. Ceram. Soc. 2010, 93, 3455-3463.
[229] Mohn, D., Doebelin, N., Tadier, S., Bernabei, R.E., Luechinger, N.A., Stark, W.J., Bohner, M. Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. J. Mater. Chem. 2011, 21, 13963-13972.
[230] Tisserand, R., Rebetez, M., Grivet, M., Bouffard, S., Benyagoub, A., Levesque, F., Carpena, J. Comparative amorphization quantification of two apatitic materials irradiated with heavy ions using XRD and RBS results. Nucl. Instrum. Methods Phys. Res. B 2004, 215, 129-136.
[231] Weikusat, C., Glasmacher, U.A., Schuster, B., Trautmann, C., Miletich, R., Neumann, R. Raman study of apatite amorphised with swift heavy ions under various irradiation conditions. Phys. Chem. Minerals 2011, 38, 293-303.
[232] Faghihi-Sani, M.A., Arbabi, A., Mehdinezhad-Roshan, A. Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique. Ceram. Int. 2013, 39, 1793-1798.
[233] Rössler, S., Sewing, A., Stolzel, M., Born, R., Scharnweber, D., Dard, M., Worch, H. Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature. J. Biomed. Mater. Res. A 2003, 64A, 655-663.
[234] Rydén, L., Omar, O., Johansson, A., Jimbo, R., Palmquist, A., Thomsen, P. Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces. J. Mater. Sci. Mater. Med. 2017, 28, 9.
[235] Dorozhkin, S.V. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Eng. C 2015, 55, 272-326.
[236] Nagano, M., Nakamura, T., Kokubo, T., Tanahashi, M., Ogawa, M. Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating. Biomaterials 1996, 17, 1771-1777.
[237] Leeuwenburgh, S.C,G., Layrolle, P., Barrère, F., de Bruijn, J., Schoonman, J., van Blitterswijk, C.A., de Groot, K. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. J. Biomed. Mater. Res. 2001, 56, 208-215.
[238] Habibovic, P., Barrère, F., van Blitterswijk, C.A., de Groot, K., Layrolle, P. Biomimetic hydroxyapatite coating on metal implants. J. Am. Ceram. Soc. 2002, 85, 517-522.
[239] Hwang, E.T., Tatavarty, R., Chung, J., Gu, M.B. New functional amorphous calcium phosphate nanocomposites by enzyme-assisted biomineralization. ACS Appl. Mater. Interfaces 2013, 5, 532-537.
[240] Sun, L., Chow, L.C., Frukhtbeyn, S.A., Bonevich, J.E. Preparation and properties of nanoparticles of calcium phosphates with various Ca/P ratios. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 243-255.
[241] Mostafa, A.A., Zaazou, M.H., Chow, L.C., Mahmoud, A.A., Zaki, D.Y., Basha,
M., Hamid, M.A.A., Khallaf, M.E., Sharaf, N.F., Hamdy, T.M. Injectable nanoamorphous calcium phosphate based in situ gel systems for the treatment of periapical lesions. Biomed. Mater. 2015, 10, 065006.
[242] Kato, N., Yamamoto, E., Isai, A., Nishikawa, H., Kusunoki, M., Yoshikawa, K., Hontsu, S. Ultrathin amorphous calcium phosphate freestanding sheet for dentin tubule sealing. Bioceram. Dev. Appl. 2013, S1, 007.
[243] Kato, N., Isai, A., Yamamoto, E., Nishikawa, H., Kusunoki, M., Yoshikawa, K., Yasuo, K., Yamamoto, K., Hontsu, S. Evaluation of dentin tubule sealing rate improved by attaching ultrathin amorphous calcium phosphate sheet. Key Eng. Mater. 2015, 631, 258-261.
[244] Eanes, E.D., Posner, A.S. Intermediate phases in the basic solution preparation of alkaline earth phosphates. Calcif. Tiss. Res. 1968, 2, 38-48.
[245] Nylen, M.U., Eanes, E.D., Termine, J.D. Molecular and ultrastructural studies of noncrystalline calcium phosphates. Calcif. Tiss. Res. 1972, 9, 95-108.
[246] Eanes, E.D., Termine, J.D., Nylen, M.U. An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calcif. Tiss. Res. 1973, 12, 143-158.
[247] Eanes, E.D. Amorphous intermediates in the formation of biological apatites. Physico-chimie et cristallographie des apatites d’intérêt biologique. Coll. Int. CNRS 1975, 230, 295-301.
[248] Barton, S.S., Harrison, B.H. Surface and bulk properties of amorphous calcium phosphate. In: Kerker, M. (Ed.): Colloid and Interface Science. Vol. 3. 50th Proceeding Int’l Conf. Academic Press, New York, USA. 1976. p. 71.
[249] Lundager-Madsen, H.E., Lopez-Valero, I., Lopez-Acevedo, V. The formation product of amorphous tricalcium phosphate at 37°C. J. Cryst. Growth 1986, 75, 429-434.
[250] Roberts, J.E., Heughebaert, M., Heughebaert. J.C., Bonar, L.C., Glimcher, M.J., Griffin, R.G. Solid state 31NMR studies of the conversion of amorphous tricalcium phosphate to apatitic tricalcium phosphate. Calcif. Tiss. Int. 1991, 49, 378-382.
[251] Gbureck, U., Barralet, J.E., Thull, R. Thermodynamic study of formation of amorphous β-tricalcium phosphate for calcium phosphate cements. Key Eng. Mater. 2004, 254-256, 249-252.
[252] Brunner, T.J., Bohner, M., Dora, C., Gerber, C., Stark, W.J. Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83B, 400-407.
[253] Brunner, T.J., Grass, R.N., Bohner, M., Stark, W.J. Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J. Mater. Chem. 2007, 17, 4072-4078.
[254] Somrani, S., Rey, C., Jemal, M. Thermal evolution of amorphous tricalcium phosphate. J. Mater. Chem. 2003, 13, 888-892.
[255] Somrani, S., Banu, M., Jemal, M., Rey, C. Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite. J. Solid State Chem. 2005, 178, 1337-1348.
[256] Mohn, D., Ege, D., Feldman, K., Schneider, O.D., Imfeld, T., Boccaccini, A.R., Stark, W.J. Spherical calcium phosphate nanoparticle fillers allow polymer processing of bone fixation devices with high bioactivity. Polym. Eng. Sci. 2010, 50, 952-960.
[257] Babaie, E., Ren, Y., Bhaduri, S.B. Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: structural, and mechanical characterization. J. Mater. Res. 2016, 31, 995-1003.
[258] Dekker, R.J., de Bruijn, J.D., Stigter, M., Barrere, F., Layrolle, P., van Blitterswijk, C.A. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials 2005, 26, 5231-5239.
[259] Amin, M.S., Randeniya, L.K., Bendavid, A., Martin, P.J., Preston, E.W. Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide. Diam. Relat. Mater. 2009, 18, 1139-1144.
[260] Holt, C., Wahlgren, N.M., Drakenberg, T. Ability of a β-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters. Biochem. J. 1996, 314, 1035-1039.
[261] Imai, H., Kusunoki, M., Hashimoto, Y., Nishikawa, H., Hontsu, S. Evaluation of biological molecular adsorption on hydroxyapatite and amorphous Ca10(PO4)6(OH)2 thin films using QCM method. IEEJ Trans. EIS 2007, 127, 1839-1842.
[262] Mousa, H.M., Hussein, K.H., Raslan, A.A., Lee, J., Woo, H.M., Park, C.H., Kim, C.S. Amorphous apatite thin film formation on a biodegradable Mg alloy for bone regeneration: strategy, characterization, biodegradation, and in vitro cell study. RSC Adv. 2016, 6, 22563-22574.
[263] Dosen, A., Giese, R.F. Thermal decomposition of brushite, CaHPO4·2H2O to monetite CaHPO4 and the formation of an amorphous phase. Am. Mineralogist 2011, 96, 368-373.
[264] Eanes, E.D., Posner, A.S. Kinetics and mechanism of conversion of noncrystalline calcium phosphate to crystalline hydroxyapatite. Trans. NY Acad. Sci. 1965, 28, 233-241.
[265] Eanes, E.D. Thermochemical studies on amorphous calcium phosphate. Calcif. Tiss. Res. 1970, 5, 133-145.
[266] Oniki, T., Oyamada, M. Surface structure of amorphous calcium phosphate by ESR of VO2+ adsorbed on it. Calcif. Tiss. Int. 1983, 35, 477-480.
[267] Boulet, M., Marier, J.R. Precipitation of calcium phosphates from solutions at near physiological concentrations. Arch. Biochem. 1961, 98, 157-165.
[268] Newesely, H. Changes in crystal types of low solubility calcium phosphates in the presence of accompanying ions. Arch. Oral Biol. 1961, Spec. Suppl. 6, 174-180.
[269] VuiIleumier, C., Lerch, P. Étude de la structure, par la diffraction des rayons X et la microscopic é1ectronique, de l’hydroxylapatite calcique et des orthophosphates dits tri- et octacalcique. Helv. Chim. Acta 1966, 49, 663-670.
[270] Christoffersen, J., Christoffersen, M.R., Kibalczyc, W., Andersen, F.A. A contribution to the understanding of the formation of calcium phosphates. J. Cryst. Growth 1989, 94, 767-777.
[271] Christoffersen, J., Christoffersen, M.R., Kibalczyc, W. Apparent solubilities of two amorphous calcium phosphates and of octacalcium phosphate in the temperature range 30-42°C. J. Cryst. Growth 1990, 106, 349-354.
[272] Kibalczyc, W., Christoffersen, J., Christoffersen, M.R., Zielenkiewicz, A., Zielenkiewicz, W. The effect of magnesium ions on the precipitation of calcium phosphates. J. Cryst. Growth 1990, 106, 355-366.
[273] Francis, M.D., Webb, N.C. Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif. Tiss. Res. 1971, 6, 335-342.
[274] Zahn, D. Mechanisms of calcium and phosphate ion association in aqueous solution. Z. Anorg. Allg. Chem. 2004, 630, 1507-1511.
[275] Wang, C.G., Liao, J.W., Gou, B.D., Huang, J., Tang, R.K., Tao, J.H., Zhang, T.L., Wang, K. Crystallization at multiple sites inside particles of amorphous calcium phosphate. Cryst. Growth Des. 2009, 9, 2620-2626.
[276] Mancardi, G., Terranova, U., de Leeuw, N.H. Calcium phosphate prenucleation complexes in water by means of ab initio molecular dynamics simulations. Cryst. Growth Des. 2016, 16, 3353-3358.
[277] Zhang, Q., Liu, Y., Gou, B.D., Zheng, L., Gao, Y.X., Zhang, T.L. Quantitative chemical relations at pseudo-equilibrium in amorphous calcium phosphate formation. RSC Adv. 2016, 6, 102710-102723.
[278] Walton, A.G., Bodin, W.J., Furedi, H., Sehwartz, A. Nucleation of calcium phosphate from solution. Can. J. Chem. 1967, 45, 2695-2701.
[279] Meyer, J.L., Eanes, E.D. A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation. Calcif. Tiss. Res. 1978, 25, 59-68.
[280] Meyer, J.L. Hydroxyl content of solution-precipitated calcium phosphates. Calcif. Tiss. Int. 1979, 27, 153-160.
[281] Jaeger, C., Maltsev, S., Karrasch, A. Progress of structural elucidation of amorphous calcium phosphate (ACP) and hydroxyapatite (HAp): disorder and surfaces as seen by solid state NMR. Key Eng. Mater. 2006, 309-311, 69-72.
[282] Nelson, L.S. Jr., Holt, C., Harries, J.E., Hukins, D.W.L. Amorphous calcium phosphates of different composition give very similar EXAFS spectra. Physica B 1989, 158, 105-106.
[283] Wuthier, R.E., Rice, G.S., Wallace, J.E.B. Jr., Weaver, R.L., LeGeros, R.Z., Eanes, E.D. In vitro precipitation of calcium phosphate under intracellular conditions: formation of brushite from an amorphous precursor in the absence of ATP. Calcif. Tiss. Int. 1985, 37, 401-410.
[284] Holmes, J.M., Beebe, R.A. Surface areas by gas adsorption on amorphous calcium phosphate and crystalline hydroxyapatite. Calcif. Tiss. Res. 1971, 7, 163-174.
[285] Sedlak, J.M., Beebe, R.A. Temperature programmed dehydration of amorphous calcium phosphate. J. Colloid Interf. Sci. 1974, 47, 483-489.
[286] LeGeros, R.Z., Shirra, W.P., Miravite, M.A., LeGeros, J.P. Amorphous calcium phosphates: synthetic and biological. Physico-chimie et cristallographie des apatites d’intérêt biologique. Coll. Int. CNRS 1975, 230, 105-115.
[287] LeGeros, R.Z. Calcium phosphates in oral biology and medicine. Monographs Oral Sci. Vol. 15. Karger, Basel, Switzerland. 1991, 201 pp.
[288] Boskey, A.L., Posner, A.S. Magnesium stabilization ob amorphous calcium phosphate: a kinetic study. Mater. Res. Bull. 1974, 9, 907-916.
[289] Blumenthal, N.C., Betts, F., Posner, A.S. Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif. Tiss. Res. 1977, 23, 245-250.
[290] Abbona, F., Baronnet, A. A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium. J. Cryst. Growth 1996, 165, 98-105.
[291] Fleisch, H., Russell, R.G.G., Bisaz, S., Termine, J.D., Posner, A.S. Influence of pyrophosphate on the transformation of amorphous to crystalline calcium phosphate. Calcif. Tiss. Res. 1968, 2, 49-59.
[292] Termine, J.D., Peckauskas, R.A., Posner, A.S. Calcium phosphate formation in vitro. II. Effects of environment on amorphous-crystalline transformation. Arch. Biochem. Biophys. 1970, 140, 318-325.
[293] Bienenstock, A., Posner, A.S. Calculation of the X-ray intensities from arrays of small crystallites of hydroxyapatite. Arch. Biochem. Biophys. 1968, 124, 604-607.
[294] Tropp, J., Blumenthal, N.C., Waugh, J.S. Phosphorus NMR study of solid amorphous calcium phosphate. J. Am. Chem. Soc. 1983, 105, 22-26.
[295] Fawcett, R.W. A radial distribution function analysis of an amorphous calcium phosphate with calcium to phosphorus molar ratio of 1.42. Calcif. Tiss. Res. 1973, 13, 319-325.
[296] Betts, F., Posner, A.S. An X-ray radial distribution study of amorphous calcium phosphate. Mater. Res. Bull. 1974, 9, 353-360.
[297] Betts, F., Posner, A.S. A structural model for amorphous calcium phosphate. Trans. Am. Crystal Assoc. 1974, 10, 73-84.
[298] Eanes, E.D., Powers, L., Costa, J.L. Extended X-ray absorption fine structure (EXAFS) studies on calcium in crystalline and amorphous solids of biological interest. Cell Calcium 1981, 2, 251-262.
[299] Holt, C., Hukins, D.W.L. Structural analysis of the environment of calcium ions in crystalline and amorphous calcium phosphates by X-ray absorption spectroscopy and a hypothesis concerning the biological function of the casein micelle. Int. Dairy J. 1991, 1, 151-165.
[300] Termine, J.D., Lundy, D.R. Vibrational spectra of some phosphate salts amorphous to X-ray diffraction. Calcif. Tiss. Res. 1974, 15, 55-70.
[301] Onuma, K. Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanism. Prog. Cryst. Growth Charact. Mater. 2006, 52, 223-245.
[302] Treboux, G., Layrolle, P., Kanzaki, N., Onuma, K., Ito, A. Symmetry of Posner’s cluster. J. Am. Chem. Soc. 2000, 122, 8323-8324.
[303] Wang, L., Li, S., Ruiz-Agudo, E., Putnis, C.V., Putnis, A. Posner’s cluster revisited: direct imaging of nucleation and growth of nanoscale calcium phosphate clusters at the calcite-water interface. CrystEngComm. 2012, 14, 6252-6256.
[304] Zhang, Q., Jiang, Y., Gou, B.D., Huang, J., Gao, Y.X., Zhao, J.T., Zheng, L., Zhao, Y.D., Zhang, T.L., Wang, K. In situ detection of calcium phosphate clusters in solution and wet amorphous phase by synchrotron X-ray absorption near-edge spectroscopy at calcium K-edge. Cryst. Growth Des. 2015, 15, 2204-2210.
[305] Du, L.W., Bian, S., Gou, B.D., Jiang, Y., Huang, J., Gao, Y.X., Zhao, Y.D., Wen, W., Zhang, T.L., Wang, K. Structure of clusters and formation of amorphous calcium phosphate and hydroxyapatite: from the perspective of coordination chemistry. Cryst. Growth Des. 2013, 13, 3103-3109.
[306] Georgalis, Y., Kierzek, A.M., Saenger, W. Cluster formation in aqueous electrolyte solutions observed by dynamic light scattering. J. Phys. Chem. B 2000, 104, 3405-3406.
[307] Treboux, G., Layrolle, P., Kanzaki, N., Onuma, K., Ito, A. Existence of Posner’s cluster in vacuum. J. Phys. Chem. A 2000, 104, 5111-5114.
[308] Kanzaki, N., Treboux, G., Onuma, K., Tsutsumi, S., Ito, A. Calcium phosphate clusters. Biomaterials 2001, 22, 2921-2929.
[309] Boldeskul, I.E., Sukhodub, L.F., Kalinkevich, A.N., Khavryutchenko, V.D. Ab initio modelling of calcium phosphate clusters and their vibrational spectra. Cond. Matter Phys. 2006, 9, 669-679.
[310] Kojima, Y., Sakama, K., Toyama, T., Yasue, T., Arai, Y. Dehydration of water molecules in amorphous calcium phosphate. Phosphorus Res. Bull. 1994, 4, 47-52.
[311] Ihli, J., Wong, W.C., Noel, E.H., Kim, Y.Y., Kulak, A.N., Christenson, H.K., Duer, M.J., Meldrum, F.C. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Comm. 2014, 5, 3169 (10 pages).
[312] Kanazawa, T., Umegaki, T., Uchiyama, N. Thermal crystallisation of amorphous calcium phosphate to α-tricalcium phosphate. J. Chem. Technol. Biotechnol. 1982, 32, 399-406.
[313] Vecbiskena, L., Gross, K.A., Riekstina, U., Yang, T.C. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response. Biomed. Mater. 2015, 10, 025009.
[314] Wikholm, N.W., Beebe, R.A., Kittelberger, J.S. Kinetics of the conversion of monetite to calcium pyrophosphate. J. Phys. Chem. 1975, 79, 853-856.
[315] Gross, K.A., Saber-Samandari, S., Heemann, K.S. Evaluation of commercial implants with nanoindentation defines future development needs for hydroxyapatite coatings. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93B, 1-8.
[316] Saber-Samandari, S., Gross, K.A. The use of thermal printing to control the properties of calcium phosphate deposits. Biomaterials 2010, 31, 6386-6393.
[317] Saber-Samandari, S., Gross, K.A. Amorphous calcium phosphate offers improved crack resistance: a design feature from nature? Acta Biomater. 2011, 7, 4235-4241.
[318] Dorozhkin, S.V. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J. Funct. Biomater. 2015, 6, 708-832.
[319] Marovic, D., Tarle, Z., Hiller, K.A., Müller, R., Rosentritt, M., Skrtic, D., Schmalz, G. Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers. Dent. Mater. 2014, 30, 1052-1060.
[320] Zhang, F., Allen, A.J., Levine, L.E., Espinal, L., Antonucci, J.M., Skrtic, D., O’Donnell, J.N., Ilavsky, J. Ultra-small-angle X-ray scattering-X-ray photon correlation spectroscopy studies of incipient structural changes in amorphous calcium phosphate-based dental composites. J. Biomed. Mater. Res. A 2012, 100A, 1293-1306.
[321] Eanes, E.D., Meyer, J.L. The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif. Tiss. Res. 1977, 23, 259-269.
[322] Meyer, J.L., Weatherall, C.C. Amorphous to crystalline calcium phosphate phase transformation at elevated pH. J. Colloid Interf. Sci. 1982, 89, 257-267.
[323] Ajibola, V.O., Thomas, S.A. Transformation of amorphous calcium phosphate hydroxyapatite in the presence of some ions. Bull. Chem. Soc. Ethiopia 1997, 11, 19-24.
[324] Root, M.J. Inhibition of the amorphous calcium phosphate phase transition reaction by polyphosphates and metal ions. Calcif. Tiss. Int. 1990, 47, 112-116.
[325] Chen, Y., Gu, W., Pan, H., Jiang, S., Tang, R. Stabilizing amorphous calcium phosphate phase by citrate adsorption. CrystEngComm 2014, 16, 1864-1867.
[326] Chatzipanagis, K., Iafisco, M., Roncal-Herrero, T., Bilton, M., Tampieri, A., Kröger, R., Delgado-López, J.M. Crystallization of citrate-stabilized amorphous calcium phosphate to nanocrystalline apatite: a surface-mediated transformation. CrystEngComm 2016, 18, 3170-3173.
[327] Jiang, S., Pan, H., Chen, Y., Xu, X., Tang, R. Amorphous calcium phosphate phase mediated crystal nucleation kinetics and pathway. Faraday Discuss. 2015, 179, 451-461.
[328] Wuthier, R.E., Eanes, E.D. Effect of phospholipids on the transformation of amorphous calcium phosphate to hydroxyapatite in vitro. Calcif. Tiss. Int. 1975, 19, 197-210.
[329] Termine, J.D., Eanes, E.D., Conn, K.M. Phosphoprotein modulation of apatite crystallization. Calcif. Tiss. Int. 1980, 31, 247-251.
[330] Qiu, S.M., Wen, G., Hirakawa, N., Soloway, R.D., Hong, N.K., Crowther, R.S. Glycochenodeoxycholic acid inhibits calcium phosphate precipitation in vitro by preventing the transformation of amorphous calcium phosphate to calcium hydroxyapatite. J. Clin. Invest. 1991, 88, 1265-1271.
[331] Cross, K.J., Huq, N.L., Reynolds, E.C. Casein phosphopeptide−amorphous calcium phosphate nanocomplexes: a structural model. Biochemistry 2016, 55, 4316-4325.
[332] Biumenthal, N.C., Betts, F., Posner, A.S. Nucleotide stabilization of amorphous calcium phosphate. Mater. Res. Bull. 1975, 10, 1055-1060.
[333] Termine, J.D., Conn, K.M. Inhibition of apatite formation by phosphorylated metabolites and macromolecules. Calcif. Tiss. Res. 1976, 22, 149-157.
[334] Haddad, M., Vali, H., Paquette, J., Guiot, S.R. The role of Carboxydothermus hydrogenoformans in the conversion of calcium phosphate from amorphous to crystalline state. PLoS One 2014, 9, e89480 (14 pages).
[335] Niu, X., Wang, L., Tian, F., Wang, L., Li, P., Feng, Q., Fan, Y. Shear-mediated crystallization from amorphous calcium phosphate to bone apatite. J. Mech. Behav. Biomed. Mater. 2016, 54, 131-140.
[336] Niu, X., Chen, S., Tian, F., Wang, L., Feng, Q., Fan, Y. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release. Mater. Sci. Eng. C 2017, 70, 1120-1124.
[337] Heughebaert, J.C., Montel, G. Étude de l’évolution de l’orthophosphate tricalcique non cristallin en phosphate apatitique à la faveur d’une réaction chimique, à température ordinaire. Rev. Phys. Appl. (Paris) 1977, 12, 691-694.
[338] Tung, M.S., Brown, W.E. An intermediate state in hydrolysis of amorphous calcium phosphate. Calcif. Tiss. Int. 1983, 35, 783-790.
[339] Kazanci, M., Fratzl, P., Klaushofer, K., Paschalis, E.P. Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle X-ray scattering. Calcif. Tiss. Int. 2006, 79, 354-359.
[340] Pekounov, Y., Petrov, O.E. Bone resembling apatite by amorphous-to-crystalline transition driven self-organisation. J. Mater. Sci. Mater. Med. 2008, 19, 753-759.
[341] Tao, J., Pan, H., Wang, J., Wu, J., Wang, B., Xu, X., Tang, R. Evolution of amorphous calcium phosphate to hydroxyapatite probed by gold nanoparticles. J. Phys. Chem. C 2008, 112, 14929-14933.
[342] Rabadjieva, D., Gergulova, R., Titorenkova, R., Tepavitcharova, S., Dyulgerova, E., Balarew, C., Petrov, O. Biomimetic transformations of amorphous calcium phosphate: kinetic and thermodynamic studies. J. Mater. Sci. Mater. Med. 2010, 21, 2501-2509.
[343] Pan, H., Liu, X.Y., Tang, R., Xu, H.Y. Mystery of the transformation from amorphous calcium phosphate to hydroxyapatite. Chem. Comm. 2010, 46, 7415-7417.
[344] Delgado-López, J.M., Frison, R., Cervellino, A., Gómez-Morales, J., Guagliardi, A., Masciocchi, N. Crystal size, morphology, and growth mechanism in bio-inspired apatite nanocrystals. Adv. Funct. Mater. 2014, 24, 1090-1099.
[345] Zhang, F., Allen, A.J., Levine, L.E., Vaudin, M.D., Skrtic, D., Antonucci, J.M., Hoffman, K.M., Giuseppetti, A.A, Ilavsky, J. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites. Dent. Mater. 2014, 30, 1113-1125.
[346] Sugiura, Y., Onuma, K., Kimura, Y., Miura, H., Tsukamoto, K. Morphological evolution of precipitates during transformation of amorphous calcium phosphate into octacalcium phosphate in relation to role of intermediate phase. J. Cryst. Growth 2011, 332, 58-67.
[347] Onuma, K., Ito, A. Cluster growth model for hydroxyapatite. Chem. Mater. 1998, 10, 3346-3351.
[348] Oyane, A., Onuma, K., Kokubo, T., Ito, A. Clustering of calcium phosphate in the system CaCl2–H3PO4–KCl–H2O. J. Phys. Chem. B 1999, 103, 8230-8235.
[349] Ibsen, C.J., Chernyshov, D., Birkedal, H. Apatite formation from amorphous calcium phosphate and mixed amorphous calcium phosphate/amorphous calcium carbonate. Chem. Eur. J. 2016, 22, 12347-12357.
[350] Yin, X., Stott, M.J. Biological calcium phosphates and Posner’s cluster. J. Chem. Phys. 2003, 118, 3717-3723.
[351] Eanes, E.D. The interaction of supersaturated calcium phosphate solutions with apatitic substrates. Calcif. Tiss. Res. 1976, 20, 75-89.
[352] Eanes, E.D. Crystal growth of mineral phases in skeletal tissues. Progr. Cryst. Growth Character. 1980, 3, 3-15.
[353] Termine, J.D., Eanes, E.D. Calcium phosphate deposition from balanced salt solutions. Calcif. Tiss. Res. 1974, 15, 81-84.
[354] Soares, A.M.V., Arana-Chavez, V.E., Reid, A.R., Katchburian, E. Lanthanum tracer and freeze-fracture studies suggest that compartmentalization of early bone matrix may be related to initial mineralization. J. Anat. 1992, 181, 345-356.
[355] Bonucci, E. Fine structure of early cartilage calcification. J. Ultrastruct. Res. 1967, 20, 33-50.
[356] Anderson, H.C. Vesicles associated with calcification in the matrix of epiphyscal cartilage. J. Cell Biol. 1969, 41, 59-72.
[357] Bernard, G.W., Pease, D.C. An electron microscopic study of initial intramembranous osteogenesis. Am. J. Anat. 1969, 125, 271-290.
[358] Wuthier, R.E. Electrolytes of isolated epiphyseal chondrocytes, matrix vesicles, and extracellular fluid. Calcif. Tiss. Res. 1977, 23, 125-133.
[359] Wuthier, R.E., Gore, S.T. Partition of inorganic ions und phospholipids in isolated cell, membrane and matrix vesicle fractions: evidence for Ca-Pi-acidic phospholipid complexes. Calcif. Tiss. Res. 1977, 24, 163-171.
[360] Eanes, E.D., Hailer, AW., Costa, J.L. Calcium phosphate formation in aqueous suspensions of multilamellar liposomes. Calcif. Tiss. Int. 1984, 36, 421-430.
[361] Sauer, G.R., Zunie, W.B., Durig, J.R., Wuthier, R.E. Fourier-transform Raman-spectroscopy of synthetic and biological calcium phosphates. Calcif. Tiss. Int. 1994, 54, 414-420.
[362] Sauer, G.R., Wuthier, R.E. Fourier-transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro. J. Biol. Chem. 1988, 263, 13718-13724.
[363] Dorozhkin, S.V. Calcium orthophosphates bioceramics. Ceram. Int. 2015, 41, 13913-13966.
[364] Dorozhkin, S.V. Calcium orthophosphate cements and concretes. Materials 2009, 2, 221-291.
[365] Dorozhkin, S.V. Self-setting calcium orthophosphate formulations. J. Funct. Biomater. 2013, 4, 209-311.
[366] Maxian, S.H., Zawadsky, J.P., Dunn, M.G. In vitro evaluation of amorphous calcium phosphate and poorly crysiallized hydroxyapatite coatings on titanium implants. J. Biomed. Mater. Res. 1993, 27, 111-117.
[367] Maxian, S.H., Zawadsky, J.P., Dunn, M.G. Mechanical and histological evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. J. Biomed. Mater. Res. 1993, 27, 717-728.
[368] Garcia, F., Arias, J.L., Mayor, B., Pou, J., Rehman, I., Knowles, J., Best, S.M., León, B., Pérez-Amor, M., Bonfield, W. Effect of heat treatment on pulsed laser deposited amorphous calcium phosphate coatings. J. Biomed. Mater. Res. (Appl. Biomater.) 1998, 43, 69-76.
[369] Heimann, R.B., Wirth, R. Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance. Biomaterials 2006, 27, 823-831.
[370] Liu, D.M., Chou, H.M., Wu, J.D., Tung, M.S. Hydroxyl apatite coating via amorphous calcium phosphate. Mater. Chem. Phys. 1994, 37, 39-44.
[371] dos Santos, E.A., Moldovan, S., Mateescu, M., Faerber, J., Acosta, M., Pelletier, H., Anselme, K., Werckmann, J. Physical-chemical and biological behavior of an amorphous calcium phosphate thin film produced by RF-magnetron sputtering. Mater. Sci. Eng. C 2012, 32, 2086-2095.
[372] Shiraishi, N., Tu, R., Uzuka, R., Anada, T., Narushima, T., Goto, T., Niinomi, M., Sasaki, K., Suzuki, O. Biomechanical evaluation of amorphous calcium phosphate coated TNTZ implants prepared using a radiofrequency magnetron sputtering system. Mater. Trans. 2012, 53, 1343-1348.
[373] Yokota, S., Nishiwaki, N., Ueda, K., Narushima, T., Kawamura, H., Takahashi, T. Evaluation of thin amorphous calcium phosphate coatings on titanium dental implants deposited using magnetron sputtering. Implant Dent. 2014, 23, 343-350.
[374] Lee, D.D., Tofighi, A., Aiolova, M., Chakravarthy, P., Catalano, A., Majahad, A., Knaack, D. α-BSM®: a biomimetic bone substitute and drug delivery vehicle. Clin. Orthop. Relat. Res. 1999, 367, Suppl., S396-S405.
[375] Tofighi, A., Mounic, S., Chakravarthy, P., Rey, C., Lee, D. Setting reactions involved in injectable cements based on amorphous calcium phosphate. Key Eng. Mater. 2000, 192, 769-772.
[376] Wang, X., Ye, J., Wang, Y., Wu, X., Bai, B. Control of crystallinity of hydrated products in a calcium phosphate bone cement. J. Biomed. Mater. Res. A 2007, 81A, 781-790.
[377] van den Vreken, N.M.F., Pieters, I.Y., Declercq, H.A., Cornelissen, M.J., Verbeeck R.M.H. Characterization of calcium phosphate cements modified by addition of amorphous calcium phosphate. Acta Biomater. 2010, 6, 617-625.
[378] Drouet, C., Largeot, C., Raimbeaux, G., Estournès, C., Dechambre, G., Combes, C., Rey, C. Bioceramics: spark plasma sintering (SPS) of calcium phosphates. Adv. Sci. Technol. 2006, 49, 45-50.
[379] Mazzaoui, S.A., Burrow, M.F., Tyas, M.J., Dashper, S.G., Eakins, D., Reynolds, E.C. Incorporation of casein phosphopeptide – amorphous calcium phosphate into a glass-ionomer cement. J. Dent. Res. 2003, 82, 914-918.
[380] Uysal, T., Amasyali, M., Koyuturk, A.E., Sagdic, D. Efficiency of amorphous calcium phosphate-containing orthodontic composite and resin modified glass ionomer on demineralization evaluated by a new laser fluorescence device. Eur. J. Dent. 2009, 3, 127-134.
[381] Reynolds, E.C. Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: a review. Spec. Care Dent. 1998, 18, 8-16.
[382] Tung, M.S., Eichmiller, F.C. Dental applications of amorphous calcium phosphates. J. Clin. Dent. 1999, 10, 1-6.
[383] Uysal, T., Ustdal, A., Nur, M., Catalbas, B. Bond strength of ceramic brackets bonded to enamel with amorphous calcium phosphate-containing orthodontic composite. Eur. J. Orthod. 2010, 32, 281-284.
[384] Wei, D., Zhou, Y. Characteristic and biocompatibility of the TiO2-based coatings containing amorphous calcium phosphate before and after heat treatment. Appl. Surf. Sci. 2009, 255, 6232-6239.
[385] Dunn, W.J. Shear bond strength of an amorphous calcium-phosphate-containing orthodontic resin cement. Am. J. Orthod. Dentofac. Orthoped. 2007, 131, 243-247.
[386] Keçik, D., Çehreli, S.B., Şar, Ç., Ünver, B. Effect of acidulated phosphate fluoride and casein phosphopeptide-amorphous calcium phosphate application on shear bond strength of orthodontic brackets. Angle Orthod. 2008, 78, 129-133.
[387] Foster, J.A., Berzins, D.W., Bradley, T.G. Bond strength of an amorphous calcium phosphate-containing orthodontic adhesive. Angle Orthod. 2008, 78, 339-344.
[388] Uysal, T., Ulker, M., Akdogan, G., Ramoglu, S.I., Yilmaz, E. Bond strength of amorphous calcium phosphate-containing orthodontic composite used as a lingual retainer adhesive. Angle Orthod. 2009, 79, 117-121.
[389] Uysal, T., Amasyali, M., Koyuturk, A.E., Ozcan, S., Sagdic, D.
Amorphous calcium phosphate-containing orthodontic composites. Do they prevent demineralisation around orthodontic brackets? Austral. Orthod. J. 2010, 26, 10-15.
[390] Bröchner, A., Christensen, C., Kristensen, B., Tranæus, S., Karlsson, L., Sonnesen, L., Twetman, S. Treatment of post-orthodontic white spot lesions with casein phosphopeptide-stabilised amorphous calcium phosphate. Clin. Oral Invest. 2011, 15, 369-373.
[391] Reynolds, E.C. Calcium phosphate-based remineralization systems: scientific evidence? Austral. Dent. J. 2008, 53, 268-273.
[392] Al Zraikat, H., Palamara, J.E., Messer, H.H., Burrow, M.F., Reynolds, E.C. The incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass ionomer cement. Dent. Mater. 2011, 27, 235-243.
[393] Beerens, M.W., van der Veen, M.H., van Beek, H., Ten Cate, J.M. Effects of casein phosphopeptide amorphous calcium fluoride phosphate paste on white spot lesions and dental plaque after orthodontic treatment: a 3-month follow-up. Eur. J. Oral Sci. 2010, 118, 610-617.
[394] Zhao, J., Liu, Y., Sun, W.B., Zhang, H. Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J. 2011, 8, 40 (7 pages).
[395] Gupta, R., Prakash, V. CPP-ACP complex as a new adjunctive agent for remineralisation: a review. Oral Health Prev. Dent. 2011, 9, 151-165.
[396] Zhang, Q., Zou, J., Yang, R., Zhou, X. Remineralization effects of casein phosphopeptide-amorphous calcium phosphate crème on artificial early enamel lesions of primary teeth. Int. J. Paediatric Dent. 2011, 21, 374-381.
[397] Moreau, J.L., Sun, L., Chow, L.C., Xu, H.H.K. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 98B, 80-88.
[398] Fletcher, J., Walsh, D., Fowler, C.E., Mann, S. Electrospun mats of PVP/ACP nanofibres for remineralization of enamel tooth surfaces. CrystEngComm 2011, 13, 3692-3697.
[399] Uysal, T., Baysal, A., Uysal, B., Aydinbelge, M., Al-Qunaian, T. Do fluoride and casein phosphopeptide-amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthodontist 2011, 81, 490-495.
[400] Tabrizi, A., Cakirer, B. A comparative evaluation of casein phosphopeptide-amorphous calcium phosphate and fluoride on the shear bond strength of orthodontic brackets. Eur. J. Orthodont. 2011, 33, 282-287.
[401] Hamba, H., Nikaido, T., Inoue, G., Sadr, A., Tagami, J. Effects of CPP-ACP with sodium fluoride on inhibition of bovine enamel demineralization: a quantitative assessment using micro-computed tomography. J. Dent. 2011, 39, 405-413.
[402] Ma, Z., Chen, F., Zhu, Y.J., Cui, T., Liu, X.Y. Amorphous calcium phosphate/poly(D,L-lactic acid) composite nanofibers: electrospinning preparation and biomineralization. J. Colloid Interf. Sci. 2011, 15, 371-379.
[403] Wu, H.D., Lee, S.Y., Poma, M., Wu, J.Y., Wang, D.C., Yang, J.C. A novel resorbable α-calcium sulfate hemihydrate/amorphous calcium phosphate bone substitute for dental implantation surgery. Mater. Sci. Eng. C 2012, 32, 440-446.
[404] Buschmann, J., Härter, L., Gao, S., Hemmi, S., Welti, M., Hild, N., Schneider, O.D., Stark, W.J., Lindenblatt, N., Werner, C.M.L., Wanner, G.A., Calcagni, M. Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/
amorphous calcium phosphate scaffold and human adipose-derived stem cells. Injury 2012, 43, 1689-1697.
[405] Pithon, M.M., dos Santos, M.J., Andrade, C.S.S., Filho, J.C.B.L., Braz, A.K.S., de Araujo, R.E., Tanaka, O.M., Fidalgo, T.K.S., dos Santos, A.M., Maia, L.C. Effectiveness of varnish with CPP-ACP in prevention of caries lesions around orthodontic brackets: an OCT evaluation. Eur. J. Orthodont. 2014, 37, 177-182.
[406] Memarpour, M., Fakhraei, E., Dadaein, S., Vossoughi, M. Efficacy of
fluoride varnish and casein phosphopeptide-amorphous calcium phosphate for remineralization of primary teeth: a randomized clinical trial. Med. Princ. Pract. 2015, 24, 231-237.
[407] Par, M., Šantić, A., Gamulin, O., Marovic, D., Moguš-Milanković, A., Tarle, Z. Impedance changes during setting of amorphous calcium phosphate composites. Dent. Mater. 2016, 32, 1312-1321.
[408] Lan, Z., Lyu, Y., Xiao, J., Zheng, X., He, S., Feng, G., Zhang, Y., Wang, S., Kislauskis, E., Chen, J., McCarthy, S., Laham, R., Jiang, X., Wu, T. Novel biodegradable drug-eluting stent composed of poly-L-lactic acid and amorphous

calcium phosphate nanoparticles demonstrates improved structural and functional performance for coronary artery disease. J. Biomed. Nanotechnol. 2014, 10, 1194-1204.
[409] Kong, L., Liu, W., Yan, G., Li, Q., Yang, H., Yu, F., Song, H. Poly-L-lactic acid/amorphous calcium phosphate bioabsorbable stent causes less inflammation than poly-l-lactic acid stent in coronary arteries. Int. J. Clin. Exp. Med. 2014, 7, 5317-5323.
[410] Xiao, J., Feng, G., Kang, G., Lan, Z., Liao, T., Kislauskis, E., Chen, J., Xia, J., Wang, Z., Huo, Z., Wang, Q., Xi, T., McCarthy, S., Jiang, X., Wu, T., Laham, R. 6-Month follow-up of a novel biodegradable drug-eluting stent composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles in porcine coronary artery. J. Biomed. Nanotechnol. 2015, 11, 1819-1825.
[411] Feng, G., Xiao, J., Bi, Y., Lan, Z., Zheng, X., Lu, Z., Li, J., Wu, K., Kislauskis, E., McCarthy, S., Hu, Q., Jiang, X., Wu, T., Laham, R. 12-month coronary angiography, intravascular ultrasound and histology evaluation of a novel fully bioabsorbable poly-L-lactic acid/amorphous calcium phosphate scaffolds in porcine coronary arteries. J. Biomed. Nanotechnol. 2016, 12, 743-752.
[412] Gu, D., Feng, G., Kang, G., Zheng, X., Bi, Y., Wang, S., Fan, J., Xia, J., Wang, Z., Huo, Z., Wang, Q., Wu, T., Jiang, X., Gu, W., Xiao, J. Improved biocompatibility of novel biodegradable scaffold composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles in porcine coronary artery. J. Nanomater. 2016, 2016, Art. number 2710858.
[413] Kim, I., Kim, H.J., Kim, H.M. Array of amorphous calcium phosphate particles improves cellular activity on a hydrophobic surface. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93B, 113-121.
[414] Sun, W., Zhang, F., Guo, J., Wu, J., Wu, W. Effects of amorphous calcium phosphate on periodontal ligament cell adhesion and proliferation in vitro. J. Med. Biol. Eng. 2008, 28, 107-112.
[415] Llena, C., Forner, L., Baca, P. Anticariogenicity of casein phosphopeptide-amorphous calcium phosphate: a review of the literature. J. Contemp. Dent. Pract. 2009, 10, 1-9.
[416] Cai, F., Shen, P., Morgan, M.V., Reynolds, E.C. Remineralization of enamel subsurface lesions in situ by sugar-free lozenges containing casein phosphopeptide-amorphous calcium phosphate. Austral. Dent. J. 2003, 48, 240-243.
[417] Langhorst, S.E., O’Donnell, J.N.R., Skrtic, D. In vitro remineralization of
enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent. Mater. 2009, 25, 884-891.
[418] Shen, P., Cai, F., Nowicki, A., Vincent, J., Reynolds, EC. Remineralization of enamel subsurface lesions by sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. J. Dent. Res. 2001, 80, 2066-2070.
[419] Iijima, Y., Cai, F., Shen, P., Walker, G., Reynolds, C., Reynolds, E.C. Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. Caries Res. 2004, 38, 551-556.
[420] Cai, F., Manton, D.J., Shen, P., Walker, G.D., Cross, K.J., Yuan, Y., Reynolds. C., Reynolds, E.C. Effect of addition of citric acid and casein phosphopeptide-amorphous calcium phosphate to a sugar-free chewing gum on enamel remineralization in situ. Caries Res. 2007, 41, 377-383.
[421] Kumar, V.L.N., Itthagarun, A., King, N.M. The effect of casein phosphopeptide-amorphous calcium phosphate on remineralization of artificial caries-like lesions: an in vitro study. Austral. Dent. J. 2008, 53, 34-40.
[422] Ranjitkar, S., Rodriguez, J.M., Kaidonis, J.A., Richards, L.C., Townsend, G.C., Bartlett, D.W. The effect of casein phosphopeptide-amorphous calcium phosphate on erosive enamel and dentine wear by toothbrush abrasion. J. Dent. 2009, 37, 250-254.
[423] Ranjitkar, S., Narayana, T., Kaidonis, J.A., Hughes, T.E., Richards, L.C., Townsend, G.C. The effect of casein phosphopeptide-amorphous calcium phosphate on erosive dentine wear. Austral. Dent. J. 2009, 54, 101-107.
[424] Wegehaupt, F.J., Attin, T. The role of fluoride and casein phosphopeptide/
amorphous calcium phosphate in the prevention of erosive/abrasive wear in an in vitro model using hydrochloric acid. Caries Res. 2010, 44, 358-363.
[425] Al-Mullahi, A.M., Toumba, K.J. Effect of slow-release fluoride devices and
casein phosphopeptide/amorphous calcium phosphate nanocomplexes on enamel remineralization in vitro. Caries Res. 2010, 44, 364-371.
[426] Giniger, M., MacDonald, J., Spaid, M., Felix, H. A 180-day clinical investigation of the tooth whitening efficacy of a bleaching gel with added amorphous calcium phosphate. J. Clin. Dent. 2005, 16, 11-16.
[427] Giniger, M., MacDonald, J., Ziemba, S., Felix, H. The clinical performance of professionally dispensed bleaching gel with added amorphous calcium phosphate. J. Am. Dent. Assoc. 2005, 136, 383-392.
[428] Ramalingam, L., Messer, L.B., Reynolds, E.C. Adding casein phosphopeptide-amorphous calcium phosphate to sports drinks to eliminate in vitro erosion. Pediatric Dent. 2005, 27, 61-67.
[429] Panich, M., Poolthong, S. The effect of casein phosphopeptide-amorphous calcium phosphate and a cola soft drink on in vitro enamel hardness. J. Am. Dent. Assoc. 2009, 140, 455-460.
[430] Silva, K.G., Pedrini, D., Delbem, A.C.B., Ferreira, L., Cannon, M. In situ evaluation of the remineralizing capacity of pit and fissure sealants containing amorphous calcium phosphate and/or fluoride Acta Odontol. Scand. 2010, 68, 11-18.
[431] Bayrak, S., Tunc, E.S., Sonmez, I.S., Egilmez, T., Ozmen, B. Effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) application on enamel microhardness after bleaching. Am. J. Dent. 2009, 22, 393-396.
[432] Yengopal, V., Mickenautsch, S. Caries preventive effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): a meta-analysis. Acta Odontol. Scand. 2009, 67, 321-332.
[433] Walker, G.D., Cai, F., Shen, P., Reynolds, C., Ward, B., Fone, C., Honda, S., Koganei, M., Oda, M., Reynolds, E.C. Increased remineralization of tooth enamel by milk containing added casein phosphopeptide-amorphous calcium phosphate. J. Dairy Res. 2006, 73, 74-78.
[434] Walker, G.D., Cai, F., Shen, P., Bailey, D.L., Yuan, Y., Cochrane, N.J., Reynolds, C., Reynolds, E.C. Consumption of milk with added casein phosphopeptide-amorphous calcium phosphate remineralizes enamel subsurface lesions in situ. Austral. Dent. J. 2009, 54, 245-249.
[435] Willershausen, B., Schulz-Dobrick, B., Gleissner, C. In vitro evaluation of enamel remineralisation by a casein phosphopeptide-amorphous calcium phosphate paste. Oral Health Prev. Dent. 2009, 7, 13-21.
[436] Mei, H.L., Chen, L.Y., Zhang, D., Zhang, P.L., Liu, B., Zhao, W., Qi, H.Y. Effects of casein phosphopeptide-stabilized amorphous calcium phosphate solution on enamel remineralization. J. Clin. Rehabil. Tiss. Eng. Res. 2009, 13, 4825-4828.
[437] Zhang, X., Li, Y., Sun, X., Kishen, A., Deng, X., Yang, X., Wang, H., Cong, C., Wang, Y., Wu, M. Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. J. Mater. Sci. Mater. Med. 2014, 25, 2619-2628.
[438] Zhou, C., Zhang, D., Bai, Y., Li, S. Casein phosphopeptide-amorphous calcium phosphate remineralization of primary teeth early enamel lesions. J. Dent. 2014, 42, 21-29.
[439] Li, J., Xie, X., Wang, Y., Yin, W., Antoun, J.S., Farella, M., Mei, L. Long-term remineralizing effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on early caries lesions in vivo: a systematic review. J. Dent. 2014, 42, 769-777.
[440] Aykut-Yetkiner, A., Kara, N., Ateş, M., Ersin, N., Ertuğrul, F. Does casein phosphopeptid amorphous calcium phosphate provide remineralization on white spot lesions and inhibition of Streptococcus mutans? J. Clin. Pediatr. Dent. 2014, 38, 302-306.
[441] Zhao, J., Liu, Y., Sun, W.B., Yang, X. First detection, characterization, and application of amorphous calcium phosphate in dentistry. J. Dent. Sci. 2012, 7, 316-323.
[442] Santhosh, B.P., Jethmalani, P., Shashibhushan, K.K., Reddy, V.V.S. Effect of casein phosphopeptide-amorphous calcium phosphate containing chewing gum on salivary concentration of calcium and phosphorus: an in-vivo study. J. Ind. Soc. Pedodont. Prevent. Dent. 2012, 30, 146-150.
[443] Sitthisettapong, T., Phantumvanit, P., Huebner, C., Derouen, T. Effect of CPP-ACP paste on dental caries in primary teeth: a randomized trial. J. Dent. Res. 2012, 91, 847-852.
[444] Prestes, L., Souza, B.M., Comar, L.P., Salomão, P.A., Rios, D., Magalhães, A.C. In situ effect of chewing gum containing CPP-ACP on the mineral precipitation of eroded bovine enamel – a surface hardness analysis. J. Dent. 2013, 41, 747-751.
[445] Cao, Y., Mei, M.L., Xu, J., Lo, E.C.M., Li, Q., Chu, C.H. Biomimetic mineralisation of phosphorylated dentine by CPP-ACP. J. Dent. 2013, 41, 818-825.
[446] Poggio, C., Lombardini, M., Vigorelli, P., Ceci, M. Analysis of dentin/enamel remineralization by a CPP-ACP paste: AFM and SEM study. Scanning 2013, 35, 366-374.
[447] Baroni, C., Marchionni, S., Bazzocchi, M.G., Cadenaro, M., Nucci, C., Manton, D.J. A SEM and non-contact surface white light profilometry in vivo study of the effect of a crème containing CPP-ACP and fluoride on young etched enamel. Scanning 2014, 36, 270-277.
[448] de Alencar, C.R.B., Magalhães, A.C., de Machado, M.A.A.M., de Oliveira, T.M., Honório, H.M., Rios, D. In situ effect of a commercial CPP-ACP chewing gum on the human enamel initial erosion. J. Dent. 2014, 42, 1502-1507.
[449] Wang, C.P., Huang, S.B., Liu, Y., Li, J.Y., Yu, H.Y. The CPP-ACP relieved enamel erosion from a carbonated soft beverage: an in vitro AFM and XRD study. Arch. Oral Biol. 2014, 59, 277-282.
[450] Meyer-Lueckel, H., Wierichs, R.J., Schellwien, T., Paris, S. Remineralizing efficacy of a CPP-ACP cream on enamel caries lesions in situ. Caries Res. 2015, 49, 56-62.
[451] Sitthisettapong, T., Doi, T., Nishida, Y., Kambara, M., Phantumvanit, P. Effect of CPP-ACP paste on enamel carious lesion of primary upper anterior teeth assessed by quantitative light-induced fluorescence: a one-year clinical trial. Caries Res. 2015, 49, 434-441.
[452] Chen, Z., Cao, S., Wang, H., Kishen, A., Deng, X., Yang, X., Wang, Y., Cong, C., Wang, H., Zhang, X. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS ONE 2015, 10, e0116553.
[453] Emamieh, S., Khaterizadeh, Y., Goudarzi, H., Ghasemi, A., Baghban,
A.A., Torabzadeh, H. The effect of two types chewing gum containing casein phosphopeptide-amorphous calcium phosphate and xylitol on salivary Streptococcus mutans. J. Conserv. Dent. 2015, 18, 192-195.
[454] Ceci, M., Mirando, M., Beltrami, R., Chiesa, M., Poggio, C. Protective effect of casein phosphopeptide-amorphous calcium phosphate on enamel erosion: atomic force microscopy studies. Scanning 2015, 37, 327-334.
[455] Özdas, D.Ö, Tuna, E.B., Yilmaz, E.Y., Aytepe, Z. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) may be an alternative preventive therapy in children with cerebral palsy. Oral Health Prev. Dent. 2015, 13, 441-448.
[456] Peric, T., Markovic, D., Petrovic, B., Radojevic, V., Todorovic, T., Radicevic, B.A., Heinemann, R.J., Susic, G., Popadic, A.P., Spiric, V.T. Efficacy of pastes containing CPP-ACP and CPP-ACFP in patients with Sjögren’s syndrome. Clin. Oral Invest. 2015, 19, 2153-2165.
[457] Jordão, M.C., Alencar, C.R.B., Mesquita, I.M., Buzalaf, M.A.R., Magalhães, A.C., Machado, M.A.A.M., Honório, H.M., Rios, D. In situ effect of chewing gum with and without CPP-ACP on enamel surface hardness subsequent to ex vivo acid challenge. Caries Res. 2016, 50, 325-330.
[458] de Oliveira, A.F.B., de Oliveira Diniz, L.V., Forte, F.D.S., Sampaio, F.C., Ccahuana-Vásquez, R.A., Amaechi, B.T. In situ effect of a CPP-ACP chewing gum on enamel erosion associated or not with abrasion. Clin. Oral Invest. 2017, 21, 339-346.
[459] Oliveira, P.R.A., Fonseca, A.B.M., Silva, E.M., Coutinho, T.C.L., Tostes, M.A. Remineralizing potential of CPP-ACP creams with and without fluoride in artificial enamel lesions. Aust. Dent. J. 2016, 61, 45-52.
[460] Raphael, S., Blinkhorn, A., Hani, T.B., O’Connell, A.C., Duane, B. Casein phosphopeptide-amorphous calcium phosphate products in caries prevention. Evidence-Based Dentistry 2016, 17, 46-47.
[461] Shinohara, M., Uchida, K., Shimada, S., Tomioka, K., Suzuki, N., Minegishi, T., Kawahashi, S., Yoshikawa, Y., Ohashi, N. Novel concentration method for the detection of norovirus and sapovirus from water using minute particles of amorphous calcium phosphate. J. Med. Microbiol. 2011, 60, 780-786.
[462] Nardecchia, S., Gutiérrez, M.C., Serrano, M.C., Dentini, M., Barbetta, A., Ferrer, M.L., del Monte, F. In situ precipitation of amorphous calcium phosphate and ciprofloxacin crystals during the formation of chitosan hydrogels and its application for drug delivery purposes. Langmuir 2012, 28, 15937-15946.
[463] Chen, F., Yang, B., Qi, C., Sun, T.W., Jiang, Y.Y., Wu, J., Chen, X., Zhu, Y.J. An amorphous calcium phosphate nanocomposite for storing and sustained release of IgY protein with antibacterial activity. RSC Adv. 2015, 5, 100682-100688.
[464] Oyane, A., Araki, H., Nakamura, M., Shimizu, Y., Shubhra, Q.T.H., Ito, A., Tsurushima, H. Controlled superficial assembly of DNA-amorphous calcium phosphate nanocomposite spheres for surface-mediated gene delivery. Colloid Surf. B 2016, 141, 519-527.
[465] Cheng, L., Weir, M.D., Xu, H.H.K., Antonucci, J.M., Kraigsley, A.M., Lin,
N.J., Lin-Gibson, S., Zhou, X. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent. Mater. 2012, 28, 561-572.
[466] Cheng, L., Weir, M.D., Xu, H.H.K., Antonucci, J.M., Lin, N.J., Lin-Gibson, S., Xu, S.M., Zhou, X. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1378-1386.
[467] Melo, M.A.S., Cheng, L., Zhang, K., Weir, M.D., Rodrigues, L.K.A., Xu, H.H.K. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent. Mater. 2013, 29, 199-210.
[468] Gross, K.A., Kalnina, D., Stankeviciute, Z., Nikolajeva, V. Charge state of
silver halide colloids determines the antibacterial activity in amorphous calcium phosphate. Key Eng. Mater. 2014, 587, 74-79.
[469] Pourbaghi-Masouleh, M., Hosseini, V. Amorphous calcium phosphate nanoparticles could function as a novel cancer therapeutic agent by employing a suitable targeted drug delivery platform. Nanoscale Res. Lett. 2013, 8, 449 (6 pages).
[470] Yang, Y., Wang, G., Zhu, G., Xu, X., Pan, H., Tang, R. The effect of
amorphous calcium phosphate on protein protection against thermal denaturation. Chem. Comm. 2015, 51, 8705-8707.
[471] Nguyen, D.V., Jiang, S., He, C., Lin, Z., Lin, N., Nguyen, A.T., Kang, L., Han, M.Y., Liu, X.Y. Elevating biomedical performance of ZnO/SiO2@amorphous calcium phosphate - bioinspiration making possible the impossible. Adv. Funct. Mater. 2016, 26, 6921-6929.
[472] Song, D. Kinetic model development for dehydration of 2,3-butanediol to 1,3-butadiene and methyl ethyl ketone over an amorphous calcium phosphate catalyst. Ind. Eng. Chem. Res. 2016, 55, 11664-11671.
[473] Wei, W., Huang, H., Cui, J., Wei, Z. Evaluation of amorphous calcium phosphate as an advantageous solid-phase extraction adsorbent for analysis of oxalic acid in plant xylem saps by RP-HPLC. J. Liq. Chromatogr. Rel. Technol. 2014, 37, 2667-2680.
[474] Shinohara, M., Uchida, K., Shimada, S.I., Tomioka, K., Suzuki, N., Minegishi, T., Kawahashi, S., Yoshikawa, Y., Ohashi, N. Application of a simple method using minute particles of amorphous calcium phosphate for recovery of norovirus from cabbage, lettuce, and ham. J. Virol. Methods 2013, 187, 153-158.
[475] Dorozhkin, S.V. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010, 6, 715-734.
[476] Dorozhkin, S.V. Nanodimensional and nanocrystalline calcium orthophosphates. Int. J. Chem. Mater. Sci. 2013, 1, 105-174.
[477] Suvorova, E.I., Buffat, P.A. Size effect in X-ray and electron diffraction patterns from hydroxyapatite particles. Crystallogr. Rep. 2001, 46, 722-729.
[478] Suvorova, E.I., Buffat, P.A. Electron diffraction and high resolution transmission electron microscopy in the characterization of calcium phosphate precipitation from aqueous solutions under biomineralization conditions. Eur. Cell Mater. 2001, 1,
27-42.
[479] Celotti, G., Tampieri, A., Sprio, S., Landi, E., Bertinetti, L., Martra, G., Ducati. C. Crystallinity in apatites: how can a truly disordered fraction be distinguished from nanosize crystalline domains? J. Mater. Sci. Mater. Med. 2006, 17, 1079-1087.
[480] Tadic, D., Beckmann, F., Schwarz, K., Epple, M. A novel method to
produce hydroxyapatite objects with interconnecting porosity that avoids sintering. Biomaterials 2004, 25, 3335-3340.
[481] Chandanshive, B., Dyondi, D., Ajgaonkar, V.R., Banerjee, R., Khushalani, D. Biocompatible calcium phosphate based tubes. J. Mater. Chem. 2010, 20, 6923-6928.
[482] Zyman, Z., Epple, M., Goncharenko, A., Rokhmistrov, D., Prymak, O., Loza, K. Peculiarities in thermal evolution of precipitated amorphous calcium phosphates with an initial Ca/P ratio of 1:1. J. Mater. Sci. Mater. Med. 2017, 28, 52.

You have not viewed any product yet.