Hydroxyapatite and Other Calcium Orthophosphates: General Information and History

Sergey V. Dorozhkin
Moscow, Russia

Series: Biomaterials – Properties, Production and Devices
BISAC: TEC021000

Clear

$195.00

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

As the inorganic constituents of skeletons, dentine and the enamel of teeth in all vertebrates, as well as antlers of male deer, calcium orthophosphates (CaPO4) appear to be the key materials to sustain all life on Earth. Therefore, biologically relevant CaPO4 possess all the necessary features of the biomaterials, such as biocompatibility, bioactivity, bioresorbability, osteoconductivity, osteoinductivity, and appear to be non-toxic, non-inflammatory and non-immunogenic. In this book, the author presents current state-of-the-art applications on the occurrence, major properties and biomimetic crystallization of CaPO4, as well as information on their history. Topics discussed include the geological and biological occurrences, a brief description of all known members of the CaPO4 family, their presence and major functions in the hard tissues of living organisms as both desired (normal) and undesired (pathological) calcifications, as well as the available information on biomimetic crystallization. The detailed description of the historical development of our knowledge on CaPO4 is given in the second section of this book. (Imprint: Nova)

Preface

PART I. Calcium Orthophosphates (CaPO4): Occurrence, Properties and Biomimetic Crystallization

Chapter 1. Introduction

Chapter 2. Geological and Biological Occurrences

Chapter 3. The Members of CaPO4 Family

Chapter 4. CaPO4 in Hard Tissues of Living Organisms

Chapter 5. Pathological Calcification of CaPO4

Chapter 6. Biomimetic Crystallization of CaPO4

Chapter 7. Conclusions and Outlook

References

PART II. A History of Calcium Orthophosphates (CaPO4) from 1770-s till 1950

Chapter 8. Introduction

Chapter 9. General Definitions, Major Problems and Limitations

Chapter 10. Investigations and Knowledge at the “pre-CaPO4” Time

Chapter 11. Investigations and Knowledge on CaPO4

Chapter 12. Early Publications on CaPO4 of the Geological Origin

Chapter 13. Studies on CaPO4 in Living Organisms

Chapter 14. Early Attempts to Treat Various Diseases by CaPO4

Chapter 15. CaPO4 as Bone Grafts

Chapter 16. Conclusions

References

Author Contact Information

Index

Part I

[1] Dorozhkin, S.V. Calcium orthophosphates and human beings. A historical perspective from the 1770s until 1940. Biomatter 2012, 2, 53-70.
[2] Dorozhkin, S.V. A detailed history of calcium orthophosphates from 1770s till 1950. Mater. Sci. Eng. C 2013, 33, 3085-3110.
[3] Lide, D.R. The CRC handbook of chemistry and physics. 86th Ed., CRC Press, Boca Raton, Florida, 2005, 2544 pp.
[4] LeGeros, R.Z. Calcium phosphates in oral biology and medicine. Monographs in Oral Science. Vol. 15. Karger, Basel, 1991, 201 pp.
[5] Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry, Vol. 18; Elsevier: Amsterdam, Netherlands, 1994; 389 pp.
[6] Amjad, Z., Ed. Calcium phosphates in biological and industrial systems. Kluwer Academic Publishers: Boston, MA, USA, 1997, 529 pp.
[7] Dorozhkin, S.V. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford: Singapore, 2012; 854 pp.
[8] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016; 405 pp.
[9] Cantelar, E., Lifante, G., Calderoìn, T., Meleìndrez, R., Millaìn, A., Alvarez, M.A., Barboza-Flores, M. Optical characterisation of rare earths in natural fluorapatite. J. Alloy Compd. 2001, 323-324, 851-854.
[10] Ribeiro, H.B., Guedes, K.J., Pinheiro, M.V.B., Greulich-Weber, S., Krambrock, K. About the blue and green colours in natural fluorapatite. Physica Status Solidi C 2005, 2, 720-723.
[11] Lowenstam, H.A., Weiner, S. On biomineralization. Oxford University Press, 1989, 324 pp.
[12] McConnell, D. Apatite: its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. Applied Mineralogy, Vol. 5. Springer-Verlag: Vienna and New York, USA, 1973; 111 pp.
[13] Becker, P. Phosphates and phosphoric acid: raw materials technology and economics of the wet process. 2nd Ed. Fertilizer science and technology series. Marcel Dekker: New York, USA, 1989; 760 pp.
[14] Rakovan, J.F., Pasteris, J.D. A technological gem:materials, medical, andenvironmental mineralogyof apatite. Elements 2015, 11, 195-200.
[15] Cook, P.J., Shergold, J.H., Davidson, D.F. (Eds.) Phosphate deposits of the world: phosphate rock resources. Cambridge University Press: Cambridge, MA, USA, 2005; Vol. 2, 600 pp.
[16] Dumoulin, J.A., Slack, J.F., Whalen, M.T., Harris, A.G. Depositional setting and geochemistry of phosphorites and metalliferous black shales in the carboniferous-permian lisburne group, northern Alaska. US Geological Survey Professional Paper 2011, 1776 C, 1-30.
[17] Mitchell, L., Faust, G.T., Hendricks, S.B., Reynolds, D.S. The mineralogy and genesis of hydroxylapatite. Am. Miner. 1943, 28, 356-371.
[18] Zhang, J.Z., Guo, L., Fischer, C.J. Abundance and chemical speciation of phosphorus in sediments of the Mackenzie river delta, the Chukchi sea and the Bering sea: importance of detrital apatite. Aquatic Geochem. 2010, 16, 353-371.
[19] Omelon, S.J., Grynpas, M.D. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem. Rev. 2008, 108, 4694-4715.
[20] Jarvis, I. Phosphorite geochemistry: state-of-the-art and environmental concerns. Eclogae Geologicae Helvetiae 1994, 87, 643-700.
[21] Glenn, C.R. Phosphorus and phosphorites: sedimentology and environments of formation. Eclogae Geologicae Helvetiae 1994, 87, 747-788.
[22] McClellan, G.H. Mineralogy of carbonate fluorapatites (Francolites). J. Geol. Soc. 1980, 137, 675-681.
[23] Mcarthur, J.M. Francolite geochemistry-compositional controls during formation, diagenesis, metamorphism and weathering. Geochim. Cosmochim. Acta 1985, 49, 23-35.
[24] Zanin, Y.N. The classification of calcium phosphates of phosphorites. Lithol. Miner. Resour. 2004, 39, 281-282.
[25] Lapin, A.V., Lyagushkin, A.P. The Kovdor apatite-francolite deposit as a prospective source of phosphate ore. Geol. Ore Deposit. 2014, 56, 61-80.
[26] Henry, T.H. On francolite, a supposed new mineral. Phil. Mag. 1850, 36, 134-135.
[27] Rogers, A.F. Collophane, a much neglected mineral. Am. J. Sci. 1922, 3, 269-276.
[28] Cao, Q., Wen, S., Li, C., Bai, S., Liu, D. Investigation on beneficiation strategy for collophane. Adv. Mater. Res. 2013, 634-638, 3404-3411.
[29] http://www.mindat.org/min-10072.html(accessed in February 2017).
[30] Elorza, J., Astibia, H., Murelaga, X., Pereda-Suberbiola, X. Francolite as a diagenetic mineral in dinosaur and other upper cretaceous reptile bones (Lano, Iberian peninsula): microstructural, petrological and geochemical features. Cretaceous Res. 1999, 20, 169-187.
[31] Hubert, B., Álvaro, J.J., Chen, J.Y. Microbially mediated phosphatization in the Neoproterozoic Doushantuo Lagerstätte, South China. Bull. Soc. Géol. Fr. 2005, 176, 355-361.
[32] Xiao, S., Zhang, Y., Knoll, A.H. Three-dimensional preservation of algae and animal embryos in a neoproterozoic phosphorite. Nature 1998, 391, 553-558.
[33] Xiao, S., Yuan, X., Knoll, A.H. Eumetazoan fossils in terminal Proterozoic phosphorites? Proc. Natl. Acad. Sci. USA 2000, 97, 13684-13689.
[34] Keenan, S.W. From bone to fossil: a review of the diagenesis of bioapatite. Am. Mineral. 2016, 101,1943-1951.
[35] Chakhmouradian, A.R., Medici, L. Clinohydroxylapatite: a new apatite-group mineral from northwestern Ontario (Canada), and new data on the extent of Na-S substitution in natural apatites. Eur. J. Mineral. 2006, 18, 105-112.
[36] Mason, H.E., Mccubbin, F.M., Smirnov, A.E., Phillips, B.L. Solid-state NMR and IR spectroscopic investigation of the role of structural water and F in carbonate-rich fuorapatite. Am. Miner. 2009, 94, 507-516.
[37] https://www.mindat.org/min-9293.html(accessed in February 2017).
[38] Klein, C. Brushite from the island of Mona (between Haiti and Puerto Rico). Sitzber. K. Preuss. Aka. 1901, 720-725.
[39] Kaflak-Hachulska, A., Slosarczyk, A., Kolodziejski, W. Kinetics of NMR cross-polarization from protons to phosphorus-31 in natural brushite. Solid State Nucl. Mag. 2000, 15, 237-238.
[40] Merrill, G.P. On the calcium phosphate in meteoric stones. Am. J. Sci. 1917, 43, 322-324.
[41] McCubbin, F.M., Nekvasil, H. Maskelynite-hosted apatite in the Chassigny meteorite: insights into late-stage magmatic volatile evolution in martian magmas. Am. Miner. 2008, 93, 676-684.
[42] McCubbin, F.M., Shearer, C.K., Burger, P.V., Hauri, E.H., Wang, J., Elardo, S.M., Papike, J.J. Volatile abundances of coexisting merrillite and apatite in the martian meteorite shergotty: implications for merrillite in hydrous magmas. Am. Miner. 2014, 99, 1347-1354.
[43] Webster, J.D., Piccoli, P.M.Magmatic apatite: a powerful, yet deceptive, mineral. Elements 2015, 11, 177-182.
[44] Tyrrell, G.W. Apatite, nepheline, and rare-earth mining in the Kola Peninsula. Nature 1938, 141, 354-355.
[45] Kogarko, L.N. Problems of the genesis of giant apatite and rare metal deposits of the Kola Peninsula, Russia. Geol. Ore Deposit. 1999, 41, 351-366.
[46] Baturin, G.N. Phosphorites of the Sea of Japan. Oceanology 2012, 52, 666-676.
[47] Schulz, H.N., Schulz, H.D. Large sulfur bacteria and the formation of phosphorite. Science 2005, 307, 416-418.
[48] Crosby, C.H., Bailey, J.V. The role of microbes in the formation of modern and ancient phosphatic mineral deposits. Front. Microbiol. 2012, 3, 241 (6 pages).
[49] Ford, A.K. A remarkable crystal of apatite from Mt. Apatite, Auburn, Maine. Am. J. Sci. 1917, 44, 245-246.
[50] Hogarth, D.D. The discovery of apatite on the Lievre River, Quebec. Mineral. Rec. 1974, 5, 178-182.
[51] van Velthuizen, J. Giant fluorapatite crystals: a question of locality. Mineral. Rec. 1992, 23, 459-463.
[52] Pasero, M., Kampf,A.R., Ferraris, C., Pekov, I.V., Rakovan, J., White,T.J. Nomenclature of the apatite supergroup minerals. Eur. J. Mineral.2010, 22, 163-179.
[53] Hughes, J.M., Rakovan, J.F.Structurally robust, chemicallydiverse: apatite and apatitesupergroup minerals. Elements 2015, 11, 165-170.
[54] Sánchez-Salcedo, S., Vila, M., Izquierdo-Barba, I., Cicuéndez, M., Vallet-Regí, M. Biopolymer-coated hydroxyapatite foams: a new antidote for heavy metal intoxication. J. Mater. Chem. 2010, 20, 6956-6961.
[55] Gilinskaya, L.G. Organic radicals in natural apatites according to EPR data: potential genetic and paleoclimatic indicators. J. Struct. Chem. 2010, 51, 471-481.
[56] Gilinskaya, L.G., Zanin, Y.N. Geochemistry of organic matter in natural apatites of phosphorites according to EPR spectra of free radicals. Geochem. Int. 2012, 50, 1007-1025.
[57] Chew, D., Spikings, R.A. Geochronology and thermochronology usingapatite: time and temperature, lower crust to surface. Elements 2015, 11,189-194.
[58] Hughes, J.M. The many facets of apatite. Am. Mineral. 2015, 100, 1033-1039.
[59] McCubbin, F.M., Jones, R.H. Extraterrestrial apatite:planetary geochemistryto astrobiology. Elements 2015, 11, 183-188.
[60] Jacob, K.D., Reynolds, D.S. Reduction of tricalcium phosphate by carbon. Ind. Eng. Chem. 1928, 20, 1204-1210.
[61] Emsley, J. The shocking history of phosphorus: a biography of the devil’s element. Pan Books, Macmillan, UK. 2001, 336 pp.
[62] Dorozhkin, S.V. Fundamentals of the wet-process phosphoric acid production. 1. Kinetics and mechanism of the phosphate rock dissolution. Ind. Eng. Chem. Res. 1996, 35, 4328-4335.
[63] Dorozhkin, S.V. Fundamentals of the wet-process phosphoric acid production. 2. kinetics and mechanism of CaSO4·0.5H2O surface crystallization and coating formation. Ind. Eng. Chem. Res. 1997, 36, 467-473.
[64] Dorozhkin, S.V. Ecological principles of wet-process phosphoric acid technology. J. Chem. Technol. Biotechnol. 1998, 71, 227-233.
[65] Gilmour, R. Phosphoric acid: purification, uses, technology, and economics. CRC Press: Boca Raton, FL, USA, 2014; 354 pp.
[66] Copson, R.L., Newton, R.H., Lindsay, J.D. Superphosphate manufacture – mixing phosphate rook with concentrated phosphoric acid. Ind. Eng. Chem. 1936, 28, 923-927.
[67] Newton, R.H., Copson, R.L. Superphosphate manufacture – composition of superphosphate made from phosphate rock and concentrated phosphoric acid. Ind. Eng. Chem. 1936, 28, 1182-1186.
[68] Rossete, A.L.R.M., Carneiro, J.M.T., Bendassolli, J.A., Tavares, C.R.O., Sant’Ana Filho, C.R. Production of single superphosphate labeled with 34S. Scientia Agricola 2008, 65, 91-94.
[69] Magda, A., Pode, V., Niculescu, M., Muntean, C., Bandur, G., Iovi, A. Studies on process of obtaining the fertilizers based on ammonium phosphates with addition of boric acid. Rev. Chim. Bucharest 2008, 59, 1340-1344.
[70] Kijkowska, R., Kowalski, Z., Pawlowska-Kozinska, D., Wzorek, Z., Gorazda, K. Effect of purification from sulfates on phase composition of sodium tripolyphosphate obtained from wet-process phosphoric acid derived from Kola apatite. Phosphorus Sulfur 2007, 182, 2667-2683.
[71] Abouzeid, A.Z.M. Upgrading of phosphate ores – a review. Powder Handling and Processing 2007, 19, 92-109.
[72] Abouzeid, A.Z.M. Physical and thermal treatment of phosphate ores – an overview. Int. J. Mineral Process. 2008, 85, 59-84.
[73] Rigali, M.J., Brady, P.V., Moore, R.C. Radionuclide removal by apatite. Am. Mineral. 2016, 101,2611-2619.
[74] Rey, C., Combes, C., Drouet, C., Sfihi, H. Chemical diversity of apatites. Adv. Sci. Technol. 2006, 49, 27-36.
[75] O’Neill, W.C. The fallacy of the calcium – phosphorus product. Kidney Int. 2007, 72, 792-796.
[76] LeGeros, R.Z. Formation and transformation of calcium phosphates: relevance to vascular calcification. Z. Kardiol. 2001, 90, Suppl. 3, III116-III125.
[77] Wopenka, B., Pasteris, J.D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 2005, 25, 131-143.
[78] Pasteris, J.D., Wopenka, B., Valsami-Jones, E. Bone and tooth mineralization: why apatite? Elements 2008, 4, 97-104.
[79] Sun, Y., Hanley, E.N., Jr. Calcium-containing crystals and osteoarthritis. Curr. Opin. Orthoped. 2007, 18, 472-478.
[80] Currey, J.D. Mechanical properties and adaptations of some less familiar bony tissues. J. Mech. Behav. Biomed. Mater. 2010, 3, 357-572.
[81] Bocchi, G., Valdre, G. Physical, chemical, and mineralogical characterization of carbonate-hydroxyapatite concretions of the human pineal gland. J. Inorg. Biochem. 1993, 49, 209-220.
[82] Young, R.A. Biological apatite vs hydroxyapatite at the atomic level. Clin. Orthop. Rel. Res. 1975, 113, 249-262.
[83] Danilchenko, S.N. The approach for determination of concentration and location of major impurities (Mg, Na, K) in biological apatite of mineralized tissues. J. Nano- Electron. Phys. 2013, 5, 03043, (5 pages).
[84] Nakano, T., Kaibara, K., Tabata, Y., Nagata, N., Enomoto, S., Marukawa, E., Umakoshi, Y. Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam x-ray diffractometer system. Bone 2002, 31, 479-487.
[85] Grynpas, M.D., Omelon, S. Transient precursor strategy or very small biological apatite crystals? Bone 2007, 41, 162-164.
[86] Bazin, D., Dessombz, A., Nguyen, C., Ea, H.K., Lioté, F., Rehr, J., Chappard, C., Rouzière, S., Thiaudière, D., Reguer, S., Daudon, M. The status of strontium in biological apatites: an XANES/EXAFS investigation. J. Synchrotron Radiat. 2014, 21, 136-142.
[87] Lee, J.W., Sasaki, K., Ferrara, J.D., Akiyama, K., Sasaki, T., Nakano, T. Evaluation of preferential alignment of biological apatite (BAp) crystallites in bone using transmission X-ray diffraction optics. J. Jpn. Ins. Metal. 2009, 73, 786-793.
[88] Basaruddin, K.S., Takano, N. Estimation of apparent elastic moduli of trabecular bone considering biological apatite (BAp) crystallite orientation in tissue modulus. Adv. Mater. Res. 2014, 894, 167-171.
[89] Eagle, R.A., Schauble, E.A., Tripati, A.K., Tütken, T., Hulbert, R.C., Eiler, J.M. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite. Proc. Natl. Acad. Sci. USA 2010, 107, 10377-10382.
[90] Cherkinsky, A., Dantas, M.A.T., Cozzuol, M.A. Bioapatite 14C age of giant mammals from Brazil. Radiocarbon 2013, 55, 464-471.
[91] Šupová, M. Isolation and preparation of nanoscale bioapatites from natural sources: a review. J. Nanosci. Nanotechnol. 2014, 14, 546-563.
[92] Lowenstam, H.A., Weiner, S. Transformation of amorphous calcium phosphate to crystalline dahllite in the radular teeth of chitons. Science 1985, 227, 51-53.
[93] Fernandez, E., Planell, J.A., Best, S.M., Bonfield, W. Synthesis of dahllite through a cement setting reaction. J. Mater. Sci. Mater. Med. 1998, 9, 789-792.
[94] Brögger, W.C., Bäckström, H. Über den Dahllit, ein neues Mineral von Ödegärden, Bamle, Norwegen. Neues Jb. Miner. Geol. Paläont. 1890, 223-224.
[95] Ensikat, H.J., Geisler, T., Weigend, M. A first report of hydroxylated apatite as structural biomineral inLoasaceae – plants’ teeth against herbivores. Sci. Rep.2016, 6, 26073.
[96] Skinner, H.C.W. Biominerals. Mineral. Mag. 2005, 69, 621-641.
[97] Daculsi, G., Bouler, J.M., LeGeros, R.Z. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int. Rev. Cytology 1997, 172, 129-191.
[98] Pasteris, J.D. Structurally incorporated water in bone apatite: a cautionary tale. In: Calcium phosphates: structure, synthesis, properties, and applications. Heimann, R.B. (Ed.) Nova Science Publishers: New York, NY, USA, 2012; pp. 63-94.
[99] Driessens, F.C.M., Verbeeck, R.M.H. Biominerals. CRC Press: Boca Raton, FL, USA, 1990; 440 pp.
[100] Floege, J., Kim, J., Ireland, E., Chazot, C., Drueke, T., de Francisco, A., Kronenberg, F., Marcelli, D., Passlick-Deetjen, J., Schernthaner, G., Fouqueray, B., Wheeler, D.C. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol. Dial. Transpl. 2011, 26, 1948-1955.
[101] Suller, M.T.E., Anthony, V.J., Mathur, S., Feneley, R.C.L., Greenman, J., Stickler, D.J. Factors modulating the pH at which calcium and magnesium phosphates precipitate from human urine. Urol. Res. 2005, 33, 254-260.
[102] Prompt, C.A., Quinton, P.M., Kleeman, C.R. High concentrations of sweat calcium, magnesium and phosphate in chronic renal failure. Nephron 1978, 20, 4-9.
[103] Holt, C. Inorganic constituents of milk. III. The colloidal calcium phosphate of cow’s milk. J. Dairy Res. 1982, 49, 29-38.
[104] Lenton, S., Nylander, T., Teixeira, S.C.M., Holt, C. A review of the biology of calcium phosphatesequestration with special reference to milk. Dairy Sci. Technol. 2015, 95, 3-14.
[105] Gaucheron, F. Calcium phosphates in dairy products. In: Calcium phosphates: structure, synthesis, properties, and applications. Heimann, R.B. (Ed.) Nova Science Publishers: New York, NY, USA, 2012; pp. 381-397.
[106] Clark, N.A. The system P2O5 – CaO – H2O and the recrystallization of monocalcium phosphate. J. Phys. Chem. 1931, 35, 1232-1238.
[107] Brown, P.W. Phase relationships in the ternary system CaO – P2O5 – H2O at 25°C. J. Am. Ceram. Soc. 1992, 75, 17-22.
[108] Martin, R.I., Brown, P.W. Phase equilibria among acid calcium phosphates. J. Am. Ceram. Soc. 1997, 80, 1263-1266.
[109] Kreidler, E.R., Hummel, F.A. Phase relationships in the system SrO–P2O5 and the influence of water vapor on the formation of Sr4P2O9. Inorg. Chem. 1967, 6, 884-891.
[110] Carayon, M.T., Lacout, J.L. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J. Solid State Chem. 2003, 172, 339-350.
[111] White, T.J., Dong, Z.L. Structural derivation and crystal chemistry of apatites. Acta Crystallogr. B 2003, B59, 1-16.
[112] Mathew, M., Takagi, S. Structures of biological minerals in dental research. J. Res. Natl. Inst. Stand. Technol. 2001, 106, 1035-1044.
[113] Wu, V.M., Uskoković, V. Is there a relationship between solubility and resorbability of differentcalcium phosphate phases in vitro?Biochim. Biophys. Acta2016, 1860, 2157-2168.
[114] Wang, L., Nancollas, G.H. Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 2008, 108, 4628-4669.
[115] Kleine-Boymann, M., Rohnke, M., Henss, A., Peppler,K., Sann, J., Janek, J. Discrimination between biologically relevant calcium phosphatephases by surface-analytical techniques. Appl. Surf. Sci. 2014, 309, 27-32.
[116] Lynn, A.K., Bonfield, W. A novel method for the simultaneous, titrant-free control of pH and calcium phosphate mass yield. Acc. Chem. Res. 2005, 38, 202-207.
[117] León, B., Jansen, J.J., Eds. Thin calcium phosphate coatings for medical implants. Springer: New York, USA, 2009; 326 pp.
[118] McDowell, H., Gregory, T.M., Brown, W.E. Solubility of Ca5(PO4)3OH in the system Ca(OH)2 – H3PO4 – H2O at 5, 15, 25, and 37 degree C. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1977, 81A, 273-281.
[119] Chow, L.C. Next generation calcium phosphate-based biomaterials. Dent. Mater. J. 2009, 28, 1-10.
[120] Ishikawa, K. Bone substitute fabrication based on dissolution-precipitation reactions. Materials 2010, 3, 1138-1155.
[121] Pan, H.B., Darvell, B.W. Calcium phosphate solubility: the need for re-evaluation. Cryst. Growth Des. 2009, 9, 639-645.
[122] Fourcroy, A.F. A general system of chemical knowledge; and its application to the phenomena of nature and art. In eleven volumes. Translated from the original French by William Nicholson. Vol. III. Printed for Cadell and Davies, Strand; Longman and Rees, G. and J. Robinson, and J. Walker, Paternoster-row; Vernor and Hood, Poultry; Clarke and sons, Portugal-street; Cuthell and Martin, and Ogilvy and son, Holborn; and S. Bagster, Strand. London, 1804, 472 pp.
[123] A dictionary of chemistry and mineralogy, with an account of the processes employed in many of the most important chemical manufactures. To which are added a description of chemical apparatus, and various useful tables of weights and measures, chemical instruments, &c. &c. Illustrated with fifteen engravings. By A. & C. R. Aikin. Vol. II. London: Printed for John and Arthur Arch, Couninll; and William Phillips, George Yard, Lombard Street. 1807, 176 pp.
[124] Boonchom, B. Parallelogram-like microparticles of calcium dihydrogen phosphate monohydrate (Ca(H2PO4)2·H2O) obtained by a rapid precipitation route in aqueous and acetone media. J. Alloy Compd. 2009, 482, 199-202.

[125] Kongteweelert, S., Ruttanapun, C., Thongkam, M., Chaiyasith, P., Woramongkonchai, S., Boonchom, A.B. Facile, alternative synthesis of spherical-like Ca(H2PO4)2·H2O nanoparticle by aqueous-methanol media. Adv. Mater. Res. 2013, 717, 49-53.
[126] Tynsuaadu, K. Influence of silicic acid and glauconite on thermal dehydration of Ca(H2PO4)2·H2O. J. Therm. Anal. 1990, 36, 1785-1793.
[127] Xu, J., Gilson, D.F.R., Butler, I.S. FT-Raman and high-pressure FT-infrared spectroscopic investigation of monocalcium phosphate monohydrate, Ca(H2PO4)2·H2O. Spectrochim. Acta A 1998, 54, 1869-1878.
[128] Köster, K., Heide, H., König, R. Resorbierbare Calciumphosphatkeramik im Tierexperiment unter Belastung. Langenbecks Arch. Chir. 1977, 343, 173-181.
[129] Huan, Z., Chang, J. Novel bioactive composite bone cements based on the β-tricalcium phosphate – monocalcium phosphate monohydrate composite cement system. Acta Biomater. 2009, 5, 1253-1264.
[130] Dorozhkin, S.V. Self-setting calcium orthophosphate formulations. J. Funct. Biomater. 2013, 4209-311.
[131] Budavari, S., O’Neil, M.J., Smith, A., Heckelman, P.E., Kinneary, J.F. Eds., The Merck Index: an encyclopedia of chemicals, drugs, and biologicals. 12th Ed. Chapman & Hall: USA, 1996; 1741 pp.
[132] Stein, H.H., Kadzere, C.T., Kim, S.W., Miller, P.S. Influence of dietary phosphorus concentration on the digestibility of phosphorus in monocalcium phosphate by growing pigs. J. Animal Sci. 2008, 86, 1861-1867.
[133] Dorozhkin, S.V. Calcium orthophosphates (CaPO4) and dentistry. Bioceram. Dev. Appl. 2016, 6, 096 (28 pages).
[134] Nasri, K., El Feki, H., Sharrock, P., Fiallo, M., Nzihou, A. Spray-dried monocalcium phosphate monohydrate for soluble phosphate fertilizer. Ind. Eng. Chem. Res. 2015, 54, 8043-8047.
[135] Roscoe, H.E., Schorlemmer, C. A treatise on chemistry. Volume II: Metals. Part 1. Macmillan and Co., London, UK, 1879, 504 pp.
[136] Moore, G.E. On brushite, a new mineral occurring in phosphatic guano. Am. J. Sci. 1865, 39, 43-44.
[137] Hamai, R., Toshima, T., Tafu, M., Masutani, T., Chohji, T. Effect of anions on morphology control of brushite particles. Key Eng. Mater. 2013, 529-530, 55-60.
[138] Ferreira, A., Oliveira, C., Rocha, F. The different phases in the precipitation of dicalcium phosphate dihydrate. J. Cryst. Growth 2003, 252, 599-611.
[139] Oliveira, C., Ferreira, A., Rocha, F. Dicalcium phosphate dihydrate precipitation: characterization and crystal growth. Chem. Eng. Res. Design 2007, 85, 1655-1661.
[140] Sivkumar, G.R., Girija, E.K., Kalkura, S.N., Subramanian, C. Crystallization and characterization of calcium phosphates: brushite and monetite. Crystal Res. Technol. 1997, 33, 197-205.
[141] Madhurambal, G., Subha, R., Mojumdar, S.C. Crystallization and thermal characterization of calcium hydrogen phosphate dihydrate crystals. J. Therm. Anal. Calorim. 2009, 96, 73-76.
[142] MacDowell, H., Brown W.E., Sutter, J.R. Solubility study of calcium hydrogenphosphate. Ion pair formation. Inorg. Chem. 1971, 10, 1638-1643.
[143] Landin, M., Rowe, R.C., York, P. Structural changes during the dehydration of dicalcium phosphate dihydrate. Eur. J. Pharmac. Sci. 1994, 2, 245-252.
[144] Curry, N.A., Jones, D.W. Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron-diffraction investigation. J. Chem. Soc. A Inorg. Phys. Theoret. Chem. 1971, 3725-3729.
[145] Arsic, J., Kaminski, D., Poodt, P., Vlieg, E. Liquid ordering at the brushite – {010} – water interface. Phys. Rev. B 2004, 69, 245406 (4 pages).
[146] Pan, H.B., Darvell, B.W. Solubility of dicalcium phosphate dihydrate by solid titration. Caries Res. 2009, 43, 254-260.
[147] Lundager-Madsen, H.E. Optical properties of synthetic crystals of brushite (CaHPO4·2H2O). J. Cryst. Growth 2008, 310, 617-623.
[148] Qiu, S.R., Orme, C.A. Dynamics of biomineral formation at the near-molecular level. Chem. Rev. 2008, 108, 4784-4822.
[149] Mostashari, S.M., Haddadi, H., Hashempoor, Z. Effect of deposited calcium hydrogen phosphate dihydrate on the flame retardancy imparted to cotton fabric. Asian J. Chem. 2006, 18, 2388-2390.
[150] Benzekri, Z., El Mejdoubi, K., Boukhris, S., Sallek, B., Lakhrissi, B., Souizi, A. Dicalcium phosphate dehydrate DCPD as a highly efficient and reusable catalyst for Knoevenagel condensation. Synthetic Commun. 2016, 46, 442-451.
[151] Shepard, C.U. On two new minerals, monetite and monite, with a notice of pyroclasite. Am. J. Sci. 1882, 23, 400-405.
[152] Tas, A.C. Monetite (CaHPO4) synthesis in ethanol at room temperature. J. Am. Ceram. Soc. 2009, 92, 2907-2912.
[153] Chen, G.G., Luo, G.S., Yang, L.M., Xu, J.H., Sun, Y., Wang, J.D. Synthesis and size control of CaHPO4 particles in a two-liquid phase micro-mixing process. J. Cryst. Growth 2005, 279, 501-507.
[154] Ouerfelli, N., Zid, M.F. New polymorph of CaHPO4 (monetite):synthesis and crystal structure. J. Struct. Chem. 2016, 57, 628-631.
[155] Miyazaki, T., Sivaprakasam, K., Tantry, J., Suryanarayanan, R. Physical characterization of dibasic calcium phosphate dihydrate and anhydrate. J. Pharmac. Sci. 2009, 98, 905-916.
[156] Eshtiagh-Hosseini, H., Houssaindokht, M.R., Chahkandhi, M., Youssefi, A. Preparation of anhydrous dicalcium phosphate, DCPA, through sol-gel process, identification and phase transformation evaluation. J. Non-Cryst. Solids 2008, 354, 3854-3857.
[157] Tamimi, F., Torres, J., Bassett, D., Barralet, J., Cabarcos, E.L. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials 2010, 31, 2762-2769.
[158] Takami, K., Machimura, H., Takado, K., Inagaki, M., Kawashima, Y. Novel preparation of free flowing spherically granulated dibasic calcium phosphate anhydrous for direct tabletting. Chem. Pharm. Bull. 1996, 44, 868-870.
[159] Habashi, F. The future of dicalcium phosphate. SME Annual Meeting and Exhibit and CMA 113th National Western Mining Conference 20112011, 327-330.
[160] Percy, J. Notice of a new hydrated phosphate of lime. Mem. Proc. Chem. Soc. 1843, 2, 222-223.
[161] Bjerrum, N. Calciumorthophosphate. I. Die Festen Calciumorthophosphate. II. Komplexbildung in Lösung von Calcium-und Phosphate-Ionen. Math. Fys. Medd. Dan. Vid. Selsk. 1958, 31, 1-79.
[162] LeGeros, R.Z. Preparation of octacalcium phosphate (OCP): a direct fast method. Calcif. Tiss. Int. 1985, 37, 194-197.
[163] Nakahira, A., Aoki, S., Sakamoto, K., Yamaguchi, S. Synthesis and evaluation of various layered octacalcium phosphates by wet-chemical processing. J. Mater. Sci. Mater. Med. 2001, 12, 793-800.
[164] Arellano-Jimeìnez, M.J., Garciìa-Garciìa, R., Reyes-Gasga, J. Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-ray diffraction. J. Phys. Chem. Solids 2009, 70, 390-395.
[165] Suzuki, O. Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater. 2010, 6, 3379-3387.
[166] Mathew, M., Brown, W.E., Schroeder, L.W., Dickens, B. Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, Ca8(HPO4)2 (PO4)4·5H2O. J. Crystallogr. Spectrosc. Res. 1988, 18, 235-250.
[167] Miyatake, N., Kishimoto, K.N., Anada, T., Imaizumi, H., Itoi, E., Suzuki, O. Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics. Biomaterials 2009, 30, 1005-1014.
[168] Matsunaga, K. First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. J. Chem. Phys. 2008, 128, 245101.
[169] Boanini, E., Gazzano, M., Rubini, K., Bigi, A. Collapsed octacalcium phosphate stabilized by ionic substitutions. Cryst. Growth Des. 2010, 10, 3612-3617.
[170] Sugiura, Y., Onuma, K., Yamazaki, A. Enhancement of HPO4–OH layered structure in octacalciumphosphate and its morphological evolution by acetic acid. J. Ceram. Soc. Jpn. 2016, 124, 1178-1184.
[171] Brown, W.E. Octacalcium phosphate and hydroxyapatite: crystal structure of octacalcium phosphate. Nature 1962, 196, 1048-1050.
[172] Brown, W.E., Smith, J.P., Lehr, J.R., Frazier, A.W. Octacalcium phosphate and hydroxyapatite: crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 1962, 196, 1050-1055.
[173] Davies, E., Duer, M.J., Ashbrook, S.E., Griffin, J.M. Applications of NMR crystallography to problems in biomineralization: refinement of the crystal structure and 31P solid-state NMR spectral assignment of octacalcium phosphate. J. Am. Chem. Soc. 2012, 134, 12508-12515.
[174] Pan, H.B., Darvell, B.W. Solid titration of octacalcium phosphate. Caries Res. 2009, 43, 322-330.
[175] Chow, L.C., Eanes, E.D. (Eds.). Octacalcium phosphate. Monographs in Oral Science. Vol. 18. Karger: Basel, Switzerland, 2001, 167 pp.
[176] Kakei, M., Sakae, T., Yoshikawa, M. Electron microscopy of octacalcium phosphate in the dental calculus. J. Electron Microsc. 2009, 58, 393-398.
[177] Brown, W.E. Crystal growth of bone mineral. Clin. Orthop. Relat. Res. 1966, 44, 205-220.
[178] Suzuki, O. Biological role of synthetic octacalcium phosphate in bone formation and mineralization. J. Oral Biosci. 2010, 52, 6-14.
[179] Iijima, M., Nelson, D.G.A., Pan, Y., Kreinbrink, A.T., Adachi, M., Goto, T., Moriwaki, Y. Fluoride analysis of apatite crystals with a central planar OCP inclusion: concerning the role of F- ions on apatite/OCP/apatite structure formation. Calcif. Tiss. Int. 1996, 59, 377-384.
[180] Bodier-Houllé, P., Steuer, P., Voegel, J.C., Cuisinier, F.J.G. First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite. Acta Crystallogr. D: Biol. Crystallogr. 1998, 54, 1377-1381.
[181] Rodríguez-Hernández, A.G., Fernández, M.E., Carbajal-de-la-Torre, G., García-García, R., Reyes-Gasga, J. Electron microscopy analysis of the central dark line defect of the human tooth enamel. Mater. Res. Soc. Symp. Proc. 2005, 839, 157-162.
[182] Tomazic, B.B., Brown, W.E., Shoen, F.J. Physicochemical properties of calcific deposits isolated from porcine bioprosthetic heart valves removed from patients following 2 – 13 years function. J. Biomed. Mater. Res. 1994, 28, 35-47.
[183] Nancollas, G.H., Wu, W. Biomineralization mechanisms: a kinetics and interfacial energy approach. J. Cryst. Growth 2000, 211, 137-142.
[184] Suzuki, O., Kamakura, S., Katagiri, T., Nakamura, M., Zhao, B., Honda, Y., Kamijo, R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 2006, 27, 2671-2681.
[185] Kikawa, T., Kashimoto, O., Imaizumi, H., Kokubun, S., Suzuki, O. Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater. 2009, 5, 1756-1766.
[186] Murakami, Y., Honda, Y., Anada, T., Shimauchi, H., Suzuki, O. Comparative study on bone regeneration by synthetic octacalcium phosphate with various granule sizes. Acta Biomater. 2010, 6, 1542-1548.
[187] Suzuki, O. Octacalcium phosphate (OCP)-based bone substitute materials. Jpn. Dent. Sci. Rev. 2013, 49, 58-71.
[188] Bredig, M.A., Franck, H.H., Fülnder, H. Beiträge zur Kenntnis der Kalk-Phosphorsäure-Verbindungen. II. Z. Elktrochem. Angew. P. 1932, 38, 158-164.
[189] Trömel, G. Beiträge zur Kenntnis des Systems Kalziumoxyd-Phosphorpentoxyd. Mitt. Kaiser-Wilhelm-Inst. Eisenforsch. Düsseldorf 1932, 14, 25-34.
[190] Tao, J., Jiang, W., Zhai, H., Pan, H., Xu X., Tang, R. Structural components and anisotropic dissolution behaviors in one hexagonal single crystal of β-tricalcium phosphate. Cryst. Growth Des. 2008, 8, 2227-2234.
[191] Tao, J., Pan, H., Zhai, H., Wang, J., Li, L., Wu, J., Jiang, W., Xu, X., Tang, R., Controls of tricalcium phosphate single-crystal formation from its amorphous precursor by interfacial energy. Cryst. Growth Des. 2009, 9, 3154-3160.
[192] Stähli, C., Thüring, J., Galea, L., Tadier, S., Bohner, M., Döbelin, N. Hydrogen-substituted β-tricalcium phosphatesynthesized in organic media. Acta Crystallogr.B 2016, 72, 875-884.
[193] Bow, J.S., Liou, S.C., Chen, S.Y. Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 2004, 25, 3155-3161.
[194] Hou, X.J., Mao, K.Y., Chen, D.F. Bone formation performance of beta-tricalcium phosphate sintered bone. J. Clin. Rehabil. Tiss. Eng. Res. 2008, 12, 9627-9630.
[195] Santos, C.F.L., Silva, A.P., Lopes, L., Pires, I., Correia, I.J. Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Mater. Sci. Eng. C 2012, 32, 1293-1298.
[196] Lee, N.H., Hwang, K.H., Lee, J.K. Fabrication of biphasic calcium phosphate bioceramics from the recycling of bone ash. Adv. Mater. Res. 2013, 610-613, 2328-2331.
[197] Ito, A., LeGeros, R.Z. Magnesium- and zinc-substituted beta-tricalcium phosphates as potential bone substitute biomaterials. Key Eng. Mater. 2008, 377, 85-98.
[198] Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., Ferreira, J.M.F. Synthesis and structure refinement of zinc-doped β-tricalcium phosphate powders. J. Am. Ceram. Soc. 2009, 92, 1592-1595.
[199] Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., Pina, S., Torres, P.M.C., Ferreira, J.M.F. Synthesis and structural characterization of strontium- and magnesium-co-substituted β-tricalcium phosphate. Acta Biomater. 2010, 6, 571-576.
[200] Quillard, S., Mellier, C., Gildenhaar, R., Hervelin, J., Deniard, P., Berger, G., Bouler, J.M. Raman and infrared studies of substituted β-TCP. Key Eng. Mater. 2012, 493-494, 225-230.
[201] Karlinsey, R.L., Mackey, A.C. Solid-state preparation and dental application of an organically modified calcium phosphate. J. Mater. Sci. 2009, 44, 346-349.
[202] Karlinsey, R.L., Mackey, A.C., Walker, E.R., Frederick, K.E. Preparation, characterization and in vitro efficacy of an acid-modified β-TCP material for dental hard-tissue remineralization. Acta Biomater. 2010, 6, 969-978.
[203] Karlinsey, R.L., Mackey, A.C., Walker, E.R., Frederick, K.E. Surfactant-modified β-TCP: structure, properties, and in vitro remineralization of subsurface enamel lesions. J. Mater. Sci. Mater. Med. 2010, 21, 2009-2020.
[204] Yashima, M., Sakai, A., Kamiyama, T., Hoshikawa, A. Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem. 2003, 175, 272-277.
[205] Yin, X., Stott, M.J., Rubio, A. α- and β-tricalcium phosphate: a density functional study. Phys. Rev. B 2003, 68, 205205 (7 pages).
[206] Liang, L., Rulis, P., Ching, W.Y. Mechanical properties, electronic structure and bonding of α- and β-tricalcium phosphates with surface characterization. Acta Biomater. 2010, 6, 3763-3771.
[207] Zhai, S., Wu, X. X-ray diffraction study of β-Ca3(PO4)2 at high pressure. Solid State Commun. 2010, 150, 443-445.
[208] Zhai, S., Wu, X., Xue, W. Pressure-dependent Raman spectra of β-Ca3(PO4)2whitlockite. Phys. Chem. Miner. 2015, 42, 303-308.
[209] Pan, H.B., Darvell, B.W. Solubility of TTCP and β-TCP by solid titration. Arch. Oral Biol. 2009, 54, 671-677.
[210] Wang, W., Itoh, S., Yamamoto, N., Okawa, A., Nagai, A., Yamashita, K. Electrical polarization of β-tricalcium phosphate ceramics. J. Am. Ceram. Soc. 2010, 93, 2175-2177.
[211] Frondel, C. Whitlockite: a new calcium phosphate, Ca3(PO4)2. Am. Miner. 1941, 26, 145-152.
[212] Lagier, R., Baud, C.A. Magnesium whitlockite, a calcium phosphate crystal of special interest in pathology. Pathol. Res. Pract. 2003, 199, 329-335.
[213] Li, X., Ito, A., Sogo, Y., Wang, X., LeGeros, R.Z. Solubility of Mg-containing β-tricalcium phosphate at 25ºC. Acta Biomater. 2009, 5, 508-517.
[214] Kodaka, T., Debari, K., Higashi, S. Magnesium-containing crystals in human dental calculus. J. Electron Microsc. (Tokyo) 1988, 37, 73-80.
[215] Reid, J.D., Andersen, M.E. Medial calcification (whitlockite) in the aorta. Atherosclerosis 1993, 101, 213-224.
[216] Scotchford, C.A., Ali, S.Y. Magnesium whitlockite deposition in articular cartilage: a study of 80 specimens from 70 patients. Ann. Rheum. Dis. 1995, 54, 339-344.
[217] P’ng, C.H., Boadle, R., Horton, M., Bilous, M., Bonar, F. Magnesium whitlockite of the aorta. Pathology 2008, 40, 539-540.
[218] Horch, H.H., Sader, R., Pautke, C., Neff, A., Deppe, H., Kolk, A. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws. Int. J. Oral Maxillofac. Surg. 2006, 35, 708-713.
[219] Ogose, A., Kondo, N., Umezu, H., Hotta, T., Kawashima, H., Tokunaga, K., Ito, T., Kudo, N., Hoshino, M., Gu, W., Endo, N. Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion®) in human bones. Biomaterials 2006, 27, 1542-1549.
[220] Kamitakahara, M., Ohtsuki, C., Miyazaki, T. Review paper: Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J. Biomater. Appl. 2008, 23, 197-212.
[221] Liu, Y., Pei, G.X., Shan, J., Ren, G.H. New porous beta-tricalcium phosphate as a scaffold for bone tissue engineering. J. Clin. Rehabil. Tiss. Eng. Res. 2008, 12, 4563-4567.
[222] Epstein, N.E. Beta tricalcium phosphate: observation of use in 100 posterolateral lumbar instrumented fusions. Spine J. 2009, 9, 630-638.
[223] Liu, B., Lun, D.X. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop. Surg. 2012, 4, 139-144.
[224] Güngörmüş, C., Kiliç, A., Akay, M.T., Kolankaya, D. The effects of maternal exposure to food additive E341 (tricalcium phosphate) on foetal development of rats. Environ. Toxicol. Pharmacol. 2010, 29, 111-116.
[225] Murayama, J.K., Nakai, S., Kato, M., Kumazawa, M. A dense polymorph of Ca3(PO4)2: a high pressure phase of apatite decomposition and its geochemical significance. Phys. Earth Planet. Inter. 1986, 44, 293-303.
[226] Xie, X., Minitti, M.E., Chen, M., Mao, H.K., Wang, D., Shu, J., Fei, Y. Tuite, γ-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. Eur. J. Miner. 2003, 15, 1001-1005.
[227] Zhai, S., Liu, X., Shieh, S., Zhang, L., Ito, E. Equation of state of γ-tricalcium phosphate, γ-Ca3(PO4)2, to lower mantle pressures. Am. Miner. 2009, 94, 1388-1391.
[228] Zhai, S., Akaogi, M., Kojitani, H., Xue, W., Ito, E. Thermodynamic investigation on β- and γ-Ca3(PO4)2 and the phase equilibria. Phys. Earth Planet. Inter. 2014, 228, 144-149.
[229] Welch, J.H., Gutt, W. High-temperature studies of the system calcium oxide–phosphorus pentoxide. J. Chem. Soc. 1961, 4442-4444.
[230] Jokic, B., Jankovic-Castvan, I., Veljovic, D.J., Bucevac, D., Obradovic-Djuricic, K., Petrovic, R., Janackovic, D.J. Synthesis and settings behavior of α-TCP from calcium deficient hydroxyapatite obtained by hydrothermal method. J. Optoelectron. Adv. Mater. 2007, 9, 1904-1910.
[231] Nurse, R.W., Welch, J.B., Gun, W. High-temperature phase equilibria in the system dicalcium silicate – tricalcium phosphate. J. Chem. Soc. 1959, 1077-1083.
[232] Sayer, M., Stratilatov, A.D., Reid, J.W., Calderin, L., Stott, M.J., Yin, X., MacKenzie, M., Smith, T.J.N., Hendry, J.A., Langstaff, S.D. Structure and composition of silicon-stabilized tricalcium phosphate. Biomaterials 2003, 24, 369-382.
[233] Reid, J.W., Pietak, A.M., Sayer, M., Dunfield, D., Smith, T.J.N. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials 2005, 26, 2887-2897.
[234] Reid, J.W., Tuck, L., Sayer, M., Fargo, K., Hendry, J.A. Synthesis and characterization of single-phase silicon substituted α-tricalcium phosphate. Biomaterials 2006, 27, 2916-2925.
[235] Kanazawa, T., Umegaki, T., Uchiyama, N. Thermal crystallisation of amorphous calcium phosphate to α-tricalcium phosphate. J. Chem. Tech. Biotechnol. 1982, 32, 399-406.
[236] TenHuisen, K.S., Brown, P.W. Formation of calcium-deficient hydroxyapatite from α-tricalcium phosphate. Biomaterials 1998, 19, 2209-2217.
[237] Durucan, C., Brown, P.W. α-tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci. Mater. Med. 2000, 11, 365-371.
[238] Durucan, C., Brown, P.W. Kinetic model for α-tricalcium phosphate hydrolysis. J. Am. Ceram. Soc. 2002, 85, 2013-2018.
[239] Camireì, C.L., Gbureck, U., Hirsiger, W., Bohner, M. Correlating crystallinity and reactivity in an α-tricalcium phosphate. Biomaterials 2005, 26, 2787-2794.
[240] Yin, X., Stott, M.J. Theoretical insights into bone grafting Si-stabilized α-tricalcium phosphate. J. Chem. Phys. 2005, 122, 024709 (9 pages).
[241] Yin, X., Stott, M.J. Surface and adsorption properties of α-tricalcium phosphate. J. Chem. Phys. 2006, 124, 124701 (9 pages).
[242] Carrodeguas, R.G., de Aza, S. α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2011, 7, 3536-3546.
[243] Jones, H.B. Contributions to the chemistry of the urine. On the variations in the alkaline and earthy phosphates in the healthy state, and on the alkalescence of the urine from fixed alkalies. Phil. Trans. R. Soc. Lond. 1845, 135, 335-349.
[244] Dorozhkin S.V. Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int. J. Mater. Chem. 2012, 2, 19-46.
[245] Blumenthal, N.C., Posner, A.S., Holmes, J.M. Effect of preparation conditions on the properties and transformation of amorphous calcium phosphate. Mater. Res. Bull. 1972, 7, 1181-1190.
[246] Posner, A.S., Betts, F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc. Chem. Res.1975, 8, 273-281.
[247] Wang, Y.W., Christenson, H.K., Meldrum, F.C. Confinement increases the lifetimes of hydroxyapatite precursors. Chem. Mater. 2014, 26, 5830-5838.
[248] Termine, J.D., Peckauskas, R.A., Posner, A.S. Calcium phosphate formation in vitro. II. Effects of environment on amorphous-crystalline transformation. Arch. Biochem. Biophys. 1970, 140, 318-325.
[249] Elliott, J.C. Recent studies of apatites and other calcium orthophosphates. In: Les matériaux en phosphate de calcium. Aspects fondamentaux./Calcium phosphate materials. Fundamentals. Brès, E., Hardouin, P. (Eds.) Sauramps Medical: Montpellier, France, 1998; pp. 25-66.
[250] Li, Y., Weng, W. In vitro synthesis and characterization of amorphous calcium phosphates with various Ca/P atomic ratios. J. Mater. Sci. Mater. Med. 2007, 18, 2303-2308.
[251] Tadic, D., Peters, F., Epple, M. Continuous synthesis of amorphous carbonated apatites. Biomaterials 2002, 23, 2553-2559.
[252] Keller, L., Dollase, W.A. X-ray determination of crystalline hydroxyapatite to amorphous calcium-phosphate ratio in plasma sprayed coatings. J. Biomed. Mater. Res. 2000, 49, 244-249.
[253] Kumar, R., Cheang, P., Khor, K.A. Phase composition and heat of crystallization of amorphous calcium phosphate in ultra-fine radio frequency suspension plasma sprayed hydroxyapatite powders. Acta Mater. 2004, 52, 1171-1181.
[254] Harries, J.E., Hukins, D.W.L., Hasnain, S.S. Analysis of the EXAFS spectrum of hydroxyapatite. J. Phys. C: Solid State Phys. 1986, 19, 6859-6872.
[255] Harries, J.E., Hukins, D.W.L., Holt, C., Hasnain, S.S. Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J. Cryst. Growth 1987, 84, 563-570.
[256] Taylor, M.G., Simkiss, K., Simmons, J., Wu, L.N.Y., Wuthier, R.E. Structural studies of a phosphatidyl serine-amorphous calcium phosphate complex. Cell. Mol. Life Sci. 1998, 54, 192-202.
[257] Peters, F., Schwarz, K., Epple, M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim. Acta 2000, 361, 131-138.
[258] Posner, A.S., Betts, F., Blumenthal, N.C. Formation and structure of synthetic and bone hydroxyapatite. Progr. Cryst. Growth Char. 1980, 3, 49-64.
[259] Boskey, A.L. Amorphous calcium phosphate: the contention of bone. J. Dent. Res. 1997, 76, 1433-1436.
[260] Onuma, K., Ito, A. Cluster growth model for hydroxyapatite. Chem. Mater. 1998, 10, 3346-3351.
[261] Tadic, D., Epple, M. Amorphous calcium phosphates as bone substitution materials. Eur. J. Trauma 2002, 28, 136-137.
[262] Combes, C, Rey, C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010, 6, 3362-3378.
[263] Bache, F. A system of chemistry for the use of students of medicine. Printed and published for the author. William Fry, Printer. Philadelphia; 1819, 624 pp.
[264] Wilson, R.M., Elliott, J.C., Dowker, S.E.P., Rodriguez-Lorenzo, L.M. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials 2005, 26, 1317-1327.
[265] Zahn, D., Hochrein, O. On the composition and atomic arrangement of calcium-deficient hydroxyapatite: an ab-initio analysis. J. Solid State Chem. 2008, 181, 1712-1716.
[266] Ivanova, T. I., Frank-Kamenetskaya, O.V., Kol’tsov, A.B., Ugolkov, V.L. Crystal structure of calcium-deficient carbonated hydroxyapatite thermal decomposition. J. Solid State Chem. 2001, 160, 340-349.
[267] Sinha, A., Nayar, S., Agrawal, A., Bhattacharyya, D., Ramachandrarao, P. Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic polymers and biopolymers. J. Am. Ceram. Soc. 2003, 86, 357-359.
[268] Mayer, I., Jacobsohn, O., Niazov, T., Werckmann, J., Iliescu, M., Richard-Plouet, M., Burghaus, O., Reinen, D. Manganese in precipitated hydroxyapatites. Eur. J. Inorg. Chem. 2003, 1445-1451.
[269] Vallet-Regiì, M., Rodriìguez-Lorenzo, L.M., Salinas, A.J. Synthesis and characterisation of calcium deficient apatite. Solid State Ionics 1997, 101-103, 1279-1285.
[270] Siddharthan, A., Seshadri, S.K., Kumar, T.S.S. Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. J. Mater. Sci. Mater. Med. 2004, 15, 1279-1284.
[271] Hutchens, S.A., Benson, R.S., Evans, B.R., O’Neill, H.M., Rawn, C.J. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 2006, 27, 4661-4670.
[272] Mochales, C., Wilson, R.M., Dowker, S.E.P., Ginebra, M.P. Dry mechanosynthesis of nanocrystalline calcium deficient hydroxyapatite: structural characterization. J. Alloy Compd. 2011, 509, 7389-7394.
[273] BreÌs, E.F., Duhoo, T., Leroy, N., Lemaitre, J. Evidence of a transient phase during the hydrolysis of calcium-deficient hydroxyapatite. Z. Metallkd./Mater. Res. Adv. Tech. 2005, 96, 503-506
[274] Dorozhkin, S.V. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram. Int. 2016, 42, 6529-6554.
[275] Dorozhkina, E.I., Dorozhkin, S.V. Mechanism of the solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures. Chem. Mater. 2002, 14, 4267-4272.
[276] Dorozhkin, S.V. Mechanism of solid-state conversion of non-stoichiometric hydroxyapatite to diphase calcium phosphate. Russ. Chem. Bull. (Int. Ed.) 2003, 52, 2369-2375.
[277] Rodríguez-Lorenzo, L. Studies on calcium deficient apatites structure by means of MAS-NMR spectroscopy. J. Mater. Sci. Mater. Med. 2005, 16, 393-398.
[278] Liou, S.C., Chen, S.Y., Lee, H.Y., Bow, J.S. Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials 2004, 25, 189-196.
[279] Brown, P.W., Martin, R.I. An analysis of hydroxyapatite surface layer formation. J. Phys. Chem. B 1999, 103, 1671-1675.
[280] Honghui, Z., Hui, L., Linghong, G. Molecular and crystal structure characterization of calcium-deficient apatite. Key Eng. Mater. 2007, 330-332, 119-122.
[281] Viswanath, B., Shastry, V.V., Ramamurty, U., Ravishankar, N. Effect of calcium deficiency on the mechanical properties of hydroxyapatite crystals. Acta Mater. 2010, 58, 4841-4848.
[282] Sun, J.P., Song, Y., Wen, G.W., Wang, Y., Yang, R. Softening of hydroxyapatite by vacancies: a first principles investigation. Mater. Sci. Eng. C 2013, 33, 1109-1115.
[283] Bhat, S.S., Waghmare, U.V., Ramamurty, U. First-principles study of structure, vibrational, and elastic properties of stoichiometric and calcium-deficient hydroxyapatite. Cryst. Growth Des. 2014, 14, 3131-3141.
[284] Matsunaga, K. Theoretical investigation of the defect formation mechanism relevant to nonstoichiometry in hydroxyapatite. Phys. Rev. B 2008, 77, 104106 (14 pages).
[285] Bourgeois, B., Laboux, O., Obadia, L., Gauthier, O., Betti, E., Aguado, E., Daculsi, G., Bouler, J.M. Calcium-deficient apatite: a first in vivo study concerning bone ingrowth. J. Biomed. Mater. Res. A 2003, 65A, 402-408.
[286] Liu, T.Y., Chen, S.Y., Liu, D.M., Liou, S.C. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J. Control. Release 2005, 107, 112-121.
[287] Tsuchida, T., Yoshioka, T., Sakuma, S., Takeguchi, T., Ueda, W. Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Ind. Eng. Chem. Res. 2008, 47, 1443-1452.
[288] Elliott, J.C., Mackie, P.E., Young, R.A. Monoclinic hydroxyapatite. Science 1973, 180, 1055-1057.
[289] Rangavittal, N., Landa-Cánovas, A.R., González-Calbet, J.M., Vallet-Regiì, M. Structural study and stability of hydroxyapatite and β-tricalcium phosphate: two important bioceramics. J. Biomed. Mater. Res. 2000, 51, 660-668.
[290] Kim, J.Y., Fenton, R.R., Hunter, B.A., Kennedy, B.J. Powder diffraction studies of synthetic calcium and lead apatites. Austr. J. Chem. 2000, 53, 679-686.
[291] Kay, M.I., Young, R.A., Posner, A.S. Crystal structure of hydroxyapatite. Nature 1964, 204, 1050-1052.
[292] Calderin, L., Stott, M.J., Rubio, A. Electronic and crystallographic structure of apatites. Phys. Rev. B 2003, 67, 134106 (6 pages).
[293] Rulis, P., Ouyang, L., Ching, W.Y. Electronic structure and bonding in calcium apatite crystals:hydroxyapatite, fluorapatite, chlorapatite and bromapatite. Phys. Rev. B 2004, 70, 155104 (8 pages).
[294] Snyders, R., Music, D., Sigumonrong, D., Schelnberger, B., Jensen, J., Schneider, J.M. Experimental and ab initio study of the mechanical properties of hydroxyapatite. Appl. Phys. Lett. 2007, 90, 193902 (3 pages).
[295] Ching, W.Y., Rulis, P., Misra, A. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater. 2009, 5, 3067-3075.
[296] Treboux, G., Layrolle, P., Kanzaki, N., Onuma, K., Ito, A. Symmetry of Posner’s cluster. J. Am. Chem. Soc. 2000, 122, 8323-8324.
[297] Yin, X., Stott, M.J. Biological calcium phosphates and Posner’s cluster. J. Chem. Phys. 2003, 118, 3717-3723.
[298] Kanzaki, N., Treboux, G., Onuma, K., Tsutsumi, S., Ito, A. Calcium phosphate clusters. Biomaterials 2001, 22, 2921-2929.
[299] Calderin, L., Dunfield, D., Stott, M.J. Shell-model study of the lattice dynamics of hydroxyapatite. Phys. Rev. B 2005, 72, 224304 (12 pages).
[300] Tanaka, Y., Iwasaki, T., Nakamura, M., Nagai, A., Katayama, K., Yamashita, K. Polarization and microstructural effects of ceramic hydroxyapatite electrets. J. Appl. Phys. 2010, 107, 014107 (10 pages).
[301] Tanaka, Y., Iwasaki, T., Katayama, K., Hojo, J., Yamashita, K. Effect of ionic polarization on crystal structure of hydroxyapatite ceramic with hydroxide nonstoichiometry. J. Jpn. Soc. Powder Powder Metall. 2010, 57, 520-528.
[302] Tofail, S.A.M., Baldisserri, C., Haverty, D., McMonagle, J.B., Erhart, J. Pyroelectric surface charge in hydroxyapatite ceramics. J. Appl. Phys. 2009, 106, 106104 (3 pages).
[303] Tofail, S.A.M., Gandhi, A.A., Gregor, M., Bauer, J. Electrical properties of hydroxyapatite. Pure Appl. Chem. 2015, 87, 221-229.
[304] Bystrov, V.S. Piezoelectricity in the ordered monoclinic hydroxyapatite. Ferroelectrics 2015, 475, 148-153.
[305] Yashima, M., Kubo, N., Omoto, K., Fujimori, H., Fujii, K., Ohoyama, K. Diffusion path and conduction mechanism of protons in hydroxyapatite. J. Phys. Chem. C 2014, 118, 5180-5187.
[306] Drouet, C. A comprehensive guide to experimental and predicted thermodynamic properties of phosphate apatite minerals in view of applicative purposes. J. Chem. Thermodyn. 2015, 81, 143-159.
[307] Kawabata, K., Yamamoto, T. First-principles calculations of the elastic properties of hydroxyapatite doped with divalent ions. J. Ceram. Soc. Jpn. 2010, 118, 548-549.
[308] Matsunaga, K., Kuwabara, A. First-principles study of vacancy formation in hydroxyapatite. Phys. Rev. B 2007, 75, 014102 (9 pages).
[309] de Leeuw, N.H. Computer simulations of structures and properties of the biomaterial hydroxyapatite. J. Mater. Chem. 2010, 20, 5376-5389.
[310] Corno, M., Rimola, A., Bolis, V., Ugliengo, P. Hydroxyapatite as a key biomaterial: quantum-mechanical simulation of its surfaces in interaction with biomolecules. Phys. Chem. Chem. Phys. 2010, 12, 6309-6329.
[311] Slepko, A., Demkov, A.A. First-principles study of the biomineral hydroxyapatite. Phys. Rev. B 2011, 84, 134108.
[312] Aquilano, D., Bruno, M., Rubbo, M., Massaro, F.R., Pastero, L. Low symmetry polymorph of hydroxyapatite. Theoretical equilibrium morphology of the monoclinic Ca5(OH)(PO4)3. Cryst. Growth Des. 2014, 14, 2846-2852.
[313] Aquilano, D., Bruno, M., Rubbo, M., Pastero, L., Massaro, F.R. Twin laws and energy in monoclinic hydroxyapatite, Ca5(OH)(PO4)3. Cryst. Growth Des. 2015, 15, 411-418.
[314] Bystrov, V.S. Computational studies of the hydroxyapatite nanostructures, peculiarities and properties. Math. Biol. Bioinformatics 2017,12,14-54.
[315] Uskoković, V. The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite. RSC Adv. 2015, 5, 36614-36633.
[316] Briak-Ben, E., Abdeslam, H., Ginebra, M.P., Vert, M., Boudeville, P. Wet or dry mechanochemical synthesis of calcium phosphates? Influence of the water content on DCPD – CaO reaction kinetics. Acta Biomater. 2008, 4, 378-386.
[317] Markovic, M., Fowler, B.O., Tung, M.S. Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 553-568.
[318] Bonel, G., Heughebaert, J.C., Heughebaert, M., Lacout, J.L., Lebugle, A. Apatitic calcium orthophosphates and related compounds for biomaterials preparation. Ann. NY Acad. Sci. 1988, 523, 115-130.
[319] Narasaraju, T.S.B., Phebe, D.E. Some physico-chemical aspects of hydroxylapatite. J. Mater. Sci. 1996, 31, 1-21.
[320] Riman, R.E., Suchanek, W.L., Byrappa, K., Chen, C.W., Shuk, P., Oakes, C.S. Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics 2002, 151, 393-402.
[321] Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600-612.
[322] Norton, J., Malik, K.R., Darr, J.A., Rehman, I.U. Recent developments in processing and surface modification of hydroxyapatite. Adv. Appl. Ceram. 2006, 105, 113-139.
[323] Sadat-Shojai, M., Khorasani, M.T., Dinpanah-Khoshdargi, E., Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013, 9, 7591-7621.
[324] Rakovan, J. Growth and surface properties of apatite. In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Vol. 48. Hughes, J.M., Kohn, M., Rakovan, J. (Eds.)Mineralogical Society of America: Washington, D.C., USA, 2002; pp. 51-86.
[325] Dorozhkin, S.V. Dissolution mechanism of calcium apatites in acids: a review of literature. World J. Methodol. 2012, 2, 1-17.
[326] Suchanek, W., Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94-117.
[327] Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A. Review: material fundamentals and clinical performance of plasma sprayed hydroxyapatite coatings. J. Biomed. Mater. Res. (Appl. Biomater.) 2001, 58, 570-592.
[328] Ong, J.L., Chan, D.C.N. Hydroxyapatites and their use as coatings in dental implants: a review. Crit. Rev. Biomed. Eng. 1999, 28, 667-707.
[329] Dey, A., Mukhopadhyay, A.K., Gangadharan, S., Sinha, M.K., Basu, D. Characterization of microplasma sprayed hydroxyapatite coating. J. Therm. Spray Technol. 2009, 18, 578-592.
[330] Dorozhkin, S.V. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Eng. C 2015, 55, 272-326.
[331] Yuan, Y., Huang, P., Peng, Q., Zhang, C., Weng, J. Osteogenesis of porous bioceramics scaffolds consisted of hydroxyapatite spherules after implanted in different non-osseous sites. Mater. Sci. Forum 2009, 610-613, 1335-1338.
[332] Engin, N.O., Tas, A.C. Manufacture of macroporous calcium hydroxyapatite bioceramics. J. Eur. Ceram. Soc. 1999, 19, 2569-2572.
[333] Mangano, C., Piattelli, A., Perrotti, V., Iezzi, G. Dense hydroxyapatite inserted into postextraction sockets: a histologic and histomorphometric 20-year case report. J. Periodontol. 2008, 79, 929-933.
[334] Bernardi, G. Chromatography of nucleic acids on hydroxyapatite. Nature 1965, 206, 779-783.

[335] Brand, M., Rampalli, S., Chaturvedi, C.P., Dilworth, F.J. Analysis of epigenetic modifications of chromatin at specific gene loci by native chromatin immunoprecipitation of nucleosomes isolated using hydroxyapatite chromatography. Nat. Protoc. 2008, 3, 398-409.
[336] Hou, Y., Morrison, C.J., Cramer, S.M. Classification of protein binding in hydroxyapatite chromatography: synergistic interactions on the molecular scale. Anal. Chem. 2011, 83, 3709-3716.
[337] Hilbrig, F., Freitag, R. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography. Biotechnol. J. 2012, 7, 90-102.
[338] Niimi, M., Masuda, T., Kaihatsu, K., Kato, N., Nakamura, S., Nakaya, T., Arai, F. Virus purification and enrichment by hydroxyapatite chromatography on a chip. Sens. Actuators B 2014, 201, 185-190.
[339] Pinto, G., Caira, S., Mamone, G., Ferranti, P., Addeo, F., Picariello, G. Fractionation of complex lipid mixtures by hydroxyapatite chromatography for lipidomic purposes. J. Chromatogr. A 2014, 1360, 82-92.
[340] Uskoković, V., Uskoković, D.P. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. B (Appl. Biomater.) 2011, 96B, 152-191.
[341] Chen, F., Huang, P., Zhu, Y.J., Wu, J., Zhang, C.L., Cui, D.X. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials 2011, 32, 9031-9039.
[342] Li, D., Liang, Z., Chen, J., Yu, J., Xu, R. AIE luminogen bridged hollow hydroxyapatite nanocapsules for drug delivery. Dalton Transact. 2013, 42, 9877-9883.
[343] Long, T., Guo, Y.P., Liu, Y.Z., Zhu, Z.A. Hierarchically nanostructured mesoporous carbonated hydroxyapatite microspheres for drug delivery systems with high drug-loading capacity. RSC Adv. 2013, 3, 24169-24176.
[344] Feng, D., Shi, J., Wang, X., Zhang, L., Cao, S. Hollow hybrid hydroxyapatite microparticles with sustained and pH-responsive drug delivery properties. RSC Adv. 2013, 3, 24975-24982.
[345] Hama, C., Umeda, T., Musha, Y., Koda, S., Itatani, K. Preparation of novel hemostatic material containingspherical porous hydroxyapatite/alginate granules. J. Ceram. Soc. Jpn. 2010, 118, 446-450.
[346] Song, L., Sun, L., Jiang, N., Gan, Z. Structural control and hemostatic properties of porous microspheresfabricated by hydroxyapatite-graft-poly(D,L-lactide) nanocomposites. Compos. Sci. Technol. 2016, 134, 234-241.
[347] Niwa, M., Sato, T., Li, W., Aoki, H., Aoki, H., Daisaku, T. Polishing and whitening properties of toothpaste containing hydroxyapatite. J. Mater. Sci. Mater. Med. 2001, 12, 277-281.
[348] Kim, B.I., Jeong, S.H., Jang, S.O., Kim, K.N., Kwon, H.K., Park, Y.D. Tooth whitening effect of toothpastes containing nano-hydroxyapatite. Key Eng. Mater. 2006, 309-311, 541-544.
[349] Pietrasik, J., Szustakiewicz, K., Zaborski, M., Haberko, K. Hydroxyapatite: an environmentally friendly filler for elastomers. Mol. Cryst. Liq. Cryst. 2008, 483, 172-178.
[350] Bailliez, S., Nzihou, A., Bèche, E., Flamant, G. Removal of lead (Pb) by hydroxyapatite sorbent. Process Saf. Environ. 2004, 82, 175-180.
[351] Corami, A., Mignardi, S., Ferrini, V. Cadmium removal from single- and multi-metal (Cd plus Pb plus Zn plus Cu) solutions by sorption on hydroxyapatite. J. Colloid Interf. Sci. 2008, 317, 402-408.
[352] Liu, N., Ai, F., Wang, W., Shao, H., Zhang, H., Wang, A., Xu, Z.J., Huang, Y. Nano-hydroxyapatite as an efficient polysulfide absorbent for high-performance Li-S batteries. Electrochim. Acta2016, 215, 162-170.
[353] Wang, L., Li, Y., Li, H., Liao, X., Wei, B., Ye, B., Zhang, F., Yang, L., Wang, W., Krafft, T. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride. Environ. Monit. Assess.2014, 186, 9041-9050.
[354] Landi, E., Riccobelli, S., Sangiorgi, N., Sanson, A., Doghieri, F., Miccio, F. Porous apatites as novel high temperature sorbents for carbon dioxide. Chem. Eng. J. 2014, 254, 586-596.
[355] Xu, J., White, T., Li, P., He, C., Han, Y.F. Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature. J. Am. Chem. Soc. 2010, 132, 13172-13173.
[356] Rodrigues, E.G., Keller, T.C., Mitchell, S., Pérez-Ramírez, J. Hydroxyapatite, an exceptional catalyst for the gas-phase deoxygenation of bio-oil by aldol condensation. Green Chem. 2014, 16, 4870-4874.
[357] Gruselle, M. Apatites: a new family of catalysts in organic synthesis. J. Organomet. Chem. 2015, 793, 93-101.
[358] Márquez Brazón, E., Piccirillo, C., Moreira, I.S., Castro, P.M.L. Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials. J.Environ. Manage. 2016, 182, 486-495.
[359] Domínguez, M.I., Romero-Sarria, F., Centeno, M.A., Odriozola, J.A. Gold/hydroxyapatite catalysts. Synthesis, characterization and catalytic activity to CO oxidation. Appl. Catalysis B 2009, 87, 245-251.
[360] Sun, H., Su, F.Z., Ni, J., Cao, Y., He, H.Y., Fan, K.N. Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes. Angew. Chem. Int. Ed. Engl. 2009, 48, 4390-4393.
[361] Boukha, Z., Ayastuy, J.L., González-Velasco, J.R., Gutiérrez-Ortiz, M.A. CO elimination processes over promoter-free hydroxyapatitesupported palladium catalysts.Appl. Catal. B: Environmental2017, 201, 189-201.
[362] Holzmann, D., Holzinger, D., Hesser, G., Schmidt, T., Knör, G. Hydroxyapatite nanoparticles as novel low-refractive index additives for the long-term UV-photoprotection of transparent composite materials. J. Mater. Chem. 2009, 19, 8102-8106.
[363] Piccirillo, C., Rocha, C., Tobaldi, D.M., Pullar, R.C., Labrincha, J.A., Ferreira, M.O., Castro, P.M.L., Pintado, M.M.E. A hydroxyapatite-Fe2O3 based material of natural origin as an active sunscreen filter. J. Mater. Chem. B 2014, 2, 5999-6009.
[364] Nagai, M., Nishino, T., Saeki, T.A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics. Sensor Actuator 1988, 15, 145-151.
[365] Petrucelli, G.C., Kawachi, E.Y., Kubota, L.T., Bertran, C.A. Hydroxyapatite-based electrode: a new sensor for phosphate. Anal. Commun. 1996, 33, 227-229.
[366] Tagaya, M., Ikoma, T., Hanagata, N., Chakarov, D., Kasemo, B., Tanaka, J. Reusable hydroxyapatite nanocrystal sensors for protein adsorption. Sci. Technol. Adv. Mater. 2010, 11, 045002.
[367] Khairnar, R.S., Mene, R.U., Munde, S.G., Mahabole, M.P. Nano-hydroxyapatite thick film gas sensors. AIP Conf. Proc. 2011, 1415, 189-192.
[368] Yang, F., He, D., Liu, Y., Li, N., Wang, Z., Ma, Q., Dong, G. Conservation of bone relics using hydroxyapatite as protectivematerial. Appl. Phys. A 2016, 122, 479.
[369] Lu, B.Q., Zhu, Y.J., Chen, F. Highly flexible and nonflammable inorganic hydroxyapatite paper. Chem. Eur. J. 2014, 20, 1242-1246.
[370] Wada, N., Horiuchi, N., Mukougawa, K., Nozaki, K., Nakamura, M., Nagai, A., Okura, T., Yamashita, K. Electrostatic induction power generator using hydroxyapatite ceramicelectrets. Mater. Res. Bull. 2016, 74, 50-56.
[371] Encyclopaedia; or, a dictionary of arts, sciences, and miscellaneous literature; Conſtructed on a Plan, by which the different sciences and arts are digeſted into the Form of diſtinct treatises or systems, comprihending the history, theory, and practice, of each, According to the Lateſt Diſcoveries and Improvements; and full explanations given of the various detached parts of knowledge, where relating to Natural and Artificial Objects, or to Matters Ecclesiastical, Civil, Military, Commercial, &c. Including Elucidations of the moſt important Topics relative to Religion, Morals, Manners, and the Oeconomy of Life. Together with A Description of all the Countries, Cities, principle Mountains, Seas, Rivers, &c. throughout the World; A General History, Ancient and Modern, of the different Empires, Kingdoms, and States; and An Account of the Lives of the moſt Eminent Perſons in every Nation, from the earliest ages down to the preſent times. The first American edition, in eighteen volumes, greatly improved. Vol. XIV. PAS – PLA Philadelphia: printed by Thomas Dobson, at the Stone-house, No 41, South second-street. 1798, 797 pp.
[372] Tõnsuaadu, K., Gross, K.A., Plūduma, L., Veiderma, M. A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 2012, 110, 647-659.
[373] Busch, S., Dolhaine, H., Duchesne, A., Heinz, S., Hochrein, O., Laeri, F., Podebrad, O., Vietze, U., Weiland, T., Kniep, R. Biomimetic morphogenesis of fluorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur. J. Inorg. Chem. 1999, 1643-1653.
[374] Wu, Y.J., Tseng, Y.H., Chan, J.C.C. Morphology control of fluorapatite crystallites by citrate ions. Cryst. Growth Des. 2010, 10, 4240-4242.
[375] Mazelsky, R., Hopkins, R.H., Kramer, W.E. Czochralski-growth of calcium fluorophosphates. J. Cryst. Growth 1968, 3-4, 260-264.
[376] Loutts, G.B., Chai, B.H.T. Growth of high-quality single crystals of FAP (Ca5(PO4)3F) and its isomorphs. Proc. SPIE – Int. Soc. Optical Eng. 1993, 1863, 31-34.
[377] Warren, R.W. Defect centers in calcium fluorophosphate. Phys. Rev. B 1972, B6, 4679-4689.
[378] Mann, A.W., Turner, A.G. Excess calcium fluoride in fluorapatite. Aust. J. Chem. 1972, 25, 2701-2703.
[379] Dorozhkin, S.V. A hierarchical structure for apatite crystals. J. Mater. Sci. Mater. Med. 2007, 18, 363-366.
[380] Mehmel, M. On the structure of apatite. I. Z. Kristallogr. 1930, 75, 323-331.
[381] Naray-Szabo, S. The structure of apatite (CaF)Ca4(PO4)3. Z. Kristallogr. 1930, 75, 387-398.
[382] Li, C.X., Duan, Y.H., Hu, W.C. Electronic structure, elastic anisotropy, thermal conductivity and optical properties of calcium apatite Ca5(PO4)3X (X = F, Cl or Br). J. Alloy Compd.2015, 619, 66-77.
[383] Pavan, B., Ceresoli, D., Tecklenburg, M.M.J., Fornari, M. First principles NMR study of fluorapatite under pressure. Solid State Nucl. Mag. 2012, 45-46, 59-65.
[384] Nikcevic, I., Jokanovic, V., Mitric, M., Nedic, Z., Makovec, D., Uskokovic, D. Mechanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite. J. Solid State Chem. 2004, 177, 2565-2574.
[385] Montazeri, L., Javadpour, J., Shokrgozar, M.A., Bonakdar, S., Javadian, S. Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders. Biomed. Mater. 2010, 5, 045004.
[386] Zhu, Q., Jiang, W., Wang, H., Shao, C. Preparing fluorhydroxyapatite by aqueous precipitation method. Adv. Mater. Res. 2012, 412, 167-170.
[387] Rodríguez-Lorenzo, L.M., Hart, J.N., Gross, K.A. Structural and chemical analysis of well-crystallized hydroxyfluorapatites. J. Phys. Chem. B 2003, 107, 8316-8320.

[388] Azami, M., Jalilifiroozinezhad, S., Mozafari, M. Calcium fluoride/
hydroxyfluorapatite nanocrystals as novel biphasic solid solution for tooth tissue engineering and regenerative dentistry. Key Eng. Mater. 2012, 493-494, 626-631.
[389] Prostak, K.S., Seifert, P., Skobe, Z. Enameloid formation in two tetraodontiform fish species with high and low fluoride contents in enameloid. Arch. Oral Biol. 1993, 38, 1031-1044.
[390] Dahm, S., Risnes, S. A comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentine, and a geological apatite. Calcif. Tiss. Int. 1999, 65, 459-465.
[391] Carr, A., Kemp, A., Tibbetts, I., Truss, R., Drennan, J. Microstructure of pharyngeal tooth enameloid in the parrotfish Scarus rivulatus (Pisces: Scaridae). J. Microscopy 2006, 221, 8-16.
[392] Enax, J., Janus, A.M., Raabe, D., Epple, M., Fabritius, H.O.Ultrastructural organization and micromechanical properties of shark tooth enameloid. Acta Biomater. 2014, 10, 3959-3968.
[393] Leveque, I., Cusack, M., Davis, S.A., Mann, S. Promotion of fluorapatite crystallization by soluble-matrix proteins from Lingula Anatina shells. Angew.Chem. Int. Ed. Engl.2004, 43, 885-888.
[394] Schemehorn, B.R., Wood, G.D., McHale, W., Winston, A.E. Comparison of fluoride uptake into tooth enamel from two fluoride varnishes containing different calcium phosphate sources. J. Clin. Dent. 2011, 22, 51-54.
[395] Hattab, F.N. Remineralisation of carious lesions and fluoride uptake by enamel exposed to various fluoride dentifrices in vitro. Oral Health Prev. Dent. 2013, 11, 3, 281-290.
[396] Heling, L., Heindel, R., Merin, B. Calcium-fluorapatite. A new material for bone implants. J. Oral Implantol. 1981, 9, 548-555.
[397] Gineste, L., Gineste, M., Ranz, X., Ellefterion, A., Guilhem, A., Rouquet, N., Frayssinet, P. Degradation of hydroxylapatite, fluorapatite and fluorhydroxyapatite coatings of dental implants in dogs. J. Biomed. Mater. Res. 1999, 48, 224-234.
[398] Agathopoulos, S., Tulyaganov, D.U., Marques, P.A.A.P., Ferro, M.C., Fernandes, M.H., Correia, R.N. The fluorapatite – anorthite system in biomedicine. Biomaterials 2003, 24, 1317-1331.
[399] Yoon, B.H., Kim, H.W., Lee, S.H., Bae, C.J., Koh, Y.H., Kong, Y.M., Kim, H.E. Stability and cellular responses to fluorapatite-collagen composites. Biomaterials 2005, 26, 2957-2963.
[400] Bogdanov, B.I., Pashev, P.S., Hristov, J.H., Markovska, I.G. Bioactive fluorapatite-containing glass ceramics. Ceram. Int. 2009, 35, 1651-1655.

[401] Nordquist, W.D., Okudera, H., Kitamura, Y., Kimoto, K., Okudera, T., Krutchkoff, D.J. Part II: Crystalline fluorapatite-coated hydroxyapatite implant material: a dog study with histologic comparison of osteogenesis seen with FA-coated HA grafting material versus HA controls: potential bacteriostatic effect of fluoridated HA. J. Oral Implant. 2011, 37, 35-42.
[402] Kheradmandfard, M., Fathi, M.H., Ahangarian, M., Zahrani, E.M. In vitro bioactivity evaluation of magnesium-substituted fluorapatite nanopowders. Ceram. Int. 2012, 38, 169-175.
[403] Sharifnabi, A., Fathi, M.H., Yekta, B.E., Hossainalipour, M. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant. Appl. Surf. Sci. 2014, 288, 331-340.
[404] Savarino, L., Fini, M., Ciapetti, G., Cenni, E., Granchi, D., Baldini, N., Greco, M., Rizzi, G., Giardino, R., Giunti, A. Biologic effects of surface roughness and fluorhydroxyapatite coating on osteointegration in external fixation systems: an in vivo experimental study. J. Biomed. Mater. Res. A 2003, 66A, 652-661.
[405] Vitkovič, M., Noaman, M.S.M., Palou, M.T., Jantová, S. Potential applications of fluorhydroxyapatite as biomaterials in medicine. Central Eur. J. Chem. 2009, 7, 246-251.
[406] Chaari, K., Ayed, F.B., Bouaziz, J., Bouzouita, K. Elaboration and characterization of fluorapatite ceramic with controlled porosity. Mater. Chem. Phys. 2009, 113, 219-226.
[407] Qu, H., Wei, M. The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater. 2006, 2, 113-119.
[408] Bhadang, K.A., Holding, C.A., Thissen, H., McLean, K.M., Forsythe, J.S., Haynes, D.R. Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends. Acta Biomater. 2010, 6, 1575-1583.
[409] Theiszova, M., Jantova, S., Letasiova, S., Palou, M., Cipak, L. Cytotoxicity of hydroxyapatite, fluorapatite and fluor-hydroxyapatite: a comparative in vitro study. Neoplasma 2008, 55, 312-316.
[410] Davis, T.S., Kreidler, E.R., Parodi, J.A., Soules, T.F. The luminescent properties of antimony in calcium halophosphates. J. Luminescence 1971, 4, 48-62.
[411] Fu, L., Fu, Z., Yu, Y., Wu, Z., Jeong, J.H. An Eu/Tb-codoped inorganic apatite Ca5(PO4)3F luminescent thermometer. Ceram. Int. 2015, 41, 7010-7016.
[412] Mazelsky, R., Ohlmann, R.C., Steinbruegge, K. Crystal growth of a new laser material, fluorapatite. J. Electrochem. Soc. Solid State Sci. 1968, 115, 68-70.
[413] Ohlmann, R.C., Steinbruegge, K.B., Mazelsky, R. Spectroscopic and laser characteristics of neodymium-doped calcium fluorophosphate. Appl. Optics 1968, 7, 905-914.
[414] An, L., Zhang, L., Zou, J. Fluorapatite: an effective solid base catalyst for Michael addition of indole/pyrrole to nitroalkenes under solventless condition. Chin. J. Chem. 2009, 27, 2223-2228.
[415] Rogers, A.F. Dahllite (podolite) from Tonopah, Nevada: voelckerite, a new basic calcium phosphate; remarks on the chemical composition of apatite and phosphate rock. Am. J. Sci., Ser. 4, 1912, 33, 475-482.
[416] Rogers, A.F. A new locality for voelckerite and the validity of voelckerite as a mineral species. Miner. Mag. 1914, 17, 155-162.
[417] Voelcker, J.A. Die chemische Zusammensetzung des Apatits nach eigenen vollständigen Analysen. Ber. Dtsch. Chem. Ges. 1883, 16, 2460-2464.
[418] Gross, K.A., Berndt, C.C., Dinnebier, R., Stephens, P. Oxyapatite in hydroxyapatite coatings.J. Mater. Sci. Mater. Med. 1998, 33, 3985-3991.
[419] Hartmann, P., Jäger, C., Barth, S., Vogel, J., Meyer, K. Solid state NMR, X-ray diffraction, and infrared characterization of local structure in heat-treated oxyhydroxyapatite microcrystals: an analog of the thermal decomposition of hydroxyapatite during plasma-spray procedure. J. Solid State Chem. 2001, 160, 460-468.
[420] Alberius-Henning, P., Adolfsson, E., Grins, J., Fitch, A. Triclinic oxy-hydroxyapatite. J. Mater. Sci. 2001, 36, 663-668.
[421] Wang, T., Dorner-Reisel, A. Thermo-analytical investigations of the decomposition of oxyhydroxyapatite. Mater. Lett. 2004, 58, 3025-3028.
[422] Liu, Y., Shen, Z. Dehydroxylation of hydroxyapatite in dense bulk ceramics sintered by spark plasma sintering. J. Eur. Ceram. Soc. 2012, 32, 2691-2696.
[423] van’t Hoen, C., Rheinberger, V., Höland, W., Apel, E. Crystallization of oxyapatite in glass-ceramics. J. Eur. Ceram. Soc. 2007, 27, 1579-1584.
[424] Duff, E.J. Orthophosphates – VII. Thermodynamical considerations concerning the stability of oxyapatite, Ca10O(PO4)6, in aqueous media. J. Inorg. Nuclear Chem. 1972, 34, 853-857.
[425] Gross, K.A., Pluduma, L. Putting oxyhydroxyapatite into perspective: a pathway to oxyapatite and its applications. In: Calcium phosphates: structure, synthesis, properties, and applications. Heimann, R.B. (Ed.) Nova Science Publishers: New York, NY, USA, 2012; pp. 95-120.
[426] de Leeuw, N.H., Bowe, J.R., Rabone, J.A.L. A computational investigation of stoichiometric and calcium-deficient oxy- and hydroxy-apatites. Faraday Disc. 2007, 134, 195-214.
[427] Rey, C., Trombe, J.C., Montel, G. Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice – III Synthesis and properties of some oxygenated apatites. J. Inorg. Nucl. Chem. 1978, 40, 27-30.
[428] Zhao, H., Li, X., Wang, J., Qu, S., Weng, J., Zhang, X. Characterization of peroxide ions in hydroxyapatite lattice. J. Biomed. Mater. Res. 2000, 52, 157-163.
[429] Yu, H., Zhang, H., Wang, X., Gu, Z., Li, X., Deng, F. Local structure of hydroxy–peroxy apatite: a combined XRD, FT-IR, Raman, SEM, and solid-state NMR study. J. Phys. Chem. Solids 2007, 68 1863-1871.
[430] Hilgenstock, G. Eine neue Verbindung von P2O5 und CaO. Stahl und Eisen 1883, 3, 498.
[431] Hilgenstock, G. Das vierbasische Kalkphosphat und die Basicitätsstufe des Silicats in der Thomas-Schlacxke. Stahl und Eisen 1887, 7, 557-560.
[432] Kai, D., Fan, H., Li, D., Zhu, X., Zhang, X. Preparation of tetracalcium phosphate and the effect on the properties of calcium phosphate cement. Mater. Sci. Forum 2009, 610-613, 1356-1359.
[433] Romeo, H.E., Fanovich, M.A. Synthesis of tetracalcium phosphate from mechanochemically activated reactants and assessment as a component of bone cements. J. Mater. Sci. Mater. Med. 2008, 19, 2751-2760.
[434] Jalota, S., Tas, A.C., Bhaduri, S.B. Synthesis of HA-seeded TTCP (Ca4(PO4)2O) powders at 1230ºC from Ca(CH3COO)2·H2O and NH4H2PO4. J. Am. Ceram. Soc. 2005, 88, 3353-3360.
[435] Moseke, C., Gbureck, U. Tetracalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2010, 6, 3815-3823.
[436] Gross, K.A., Rozite, E. Synthesis of tetracalcium phosphate at reduced temperatures. Key Eng. Mater. 2015, 631, 93-98.
[437] Martin, I., Brown, P.W. Hydration of tetracalcium phosphate. Adv. Chem. Res. 1993, 5, 115-125.
[438] Jillavenatesa, A., Condrate, Sr. R.A. The infrared and Raman spectra of tetracalcium phosphate (Ca4(PO4)2O). Spectrosc. Lett. 1997, 30, 1561-1570.
[439] Nakano, T., Kaibara, K., Umakoshi, Y., Imazato, S., Ogata, K., Ehara, A., Ebisu, S., Okazaki, M. Change in microstructure and solubility improvement of HAp ceramics by heat-treatment in a vacuum. Mater. Transact. 2002, 43, 3105-3111.
[440] Ellinger, R.F., Nery, E.B., Lynch, K.L. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int. J. Periodont. Restor. Dent. 1986, 3, 22-33.
[441] Nery, E.B., Lynch, K.L., Hirthe, W.M., Mueller, K.H. Bioceramic implants in surgically produced infrabony defects. J. Periodontol. 1975, 46, 328-347.
[442] Pan, L., Li, Y., Weng, W., Cheng, K., Song, C., Du, P., Zhao, G., Shen, G., Wang, J., Han, G. Preparation of submicron biphasic α-TCP/HA powders. Key Eng. Mater. 2006, 309-311, 219-222.
[443] Kui, C. Slip casting derived α-TCP/HA biphasic ceramics. Key Eng. Mater. 2007, 330-332, 51-54.

[444] Li, Y., Kong, F., Weng, W. Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. J. Biomed. Mater. Res. B (Appl. Biomater.) 2009, 89B, 508-517.
[445] Wang, R., Weng, W., Deng, X., Cheng, K., Liu, X., Du, P., Shen, G., Han, G. Dissolution behavior of submicron biphasic tricalcium phosphate powders. Key Eng. Mater. 2006, 309-311, 223-226.
[446] Li, Y., Weng, W., Tam, K.C. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomater. 2007, 3, 251-254.
[447] Li, Y., Li, D., Weng, W. In vitro dissolution behavior of biphasic tricalcium phosphate composite powders composed of α-tricalcium phosphate and β-tricalcium phosphate. Key Eng. Mater. 2008, 368-372, 1206-1208.
[448] Vani, R., Girija, E.K., Elayaraja, K., Parthiban, S.P., Kesavamoorthy, R., Kalkura, S.N. Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. J. Mater. Sci. Mater. Med. 2009, 20, S43-S48.
[449] Lafon, J.P., Champion, E., Bernache-Assollant, D. Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)(6-x)(CO3)(x)(OH)(2-x-2y)(CO3)(y) ceramics with controlled composition. J. Eur. Ceram. Soc. 2008, 28, 139-147.
[450] Tonegawa, T., Ikoma, T., Yoshioka, T., Hanagata, N., Tanaka, J. Crystal structure refinement of A-type carbonate apatite by X-ray powder diffraction. J. Mater. Sci. 2010, 45, 2419-2426.
[451] Yahia, F.B.H., Jemal, M. Synthesis, structural analysis and thermochemistry of B-type carbonate apatites. Thermochim. Acta 2010, 50, 22-32.
[452] Silvester, L., Lamonier, J.F., Vannier, R.N., Lamonier, C., Capron, M., Mamede, A.S., Pourpoint, F., Gervasini, A., Dumeignil, F. Structural, textural and acid-base properties of carbonate-containing hydroxyapatites. J. Mater. Chem. A 2014, 2, 11073-11090.
[453] Fleet, M. Carbonated hydroxyapatite: materials, synthesis, and applications. Pan Stanford: Singapore, 2015, 278 pp.
[454] Kannan, S., Rebelo, A., Lemos, A.F., Barba, A., Ferreira, J.M.F. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J. Eur. Ceram. Soc. 2007, 27, 2287-2294.
[455] García-Tuñón, E., Couceiro, R., Franco, J., Saiz, E., Guitián, F. Synthesis and characterisation of large chlorapatite single-crystals with controlled morphology and surface roughness. J. Mater. Sci. Mater. Med. 2012, 23, 2471-2482.
[456] Zhao, P., Zhao, T., Ren, X., Zhao, S., Yang, K. Molten salt synthesis of chlorapatite whiskers. Adv. Mater. Res. 2013, 668, 302-304.
[457] Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., Ferreira, J.M.F. Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement. J. Am. Ceram. Soc. 2008, 91, 1-12.
[458] Boanini, E., Gazzano, M., Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882-1894.
[459] Shepherd, J.H., Shepherd, D.V., Best, S.M. Substituted hydroxyapatites for bone repair. J. Mater. Sci. Mater. Med. 2012, 23, 2335-2347.
[460] Grigg, A.T., Mee, M., Mallinson, P.M., Fong, S.K., Gan, Z., Dupree, R., Holland, D. Cation substitution in β-tricalcium phosphate investigated using multi-nuclear, solid-state NMR. J. Solid State Chem. 2014, 212, 227-236.
[461] Šupová, M. Substituted hydroxyapatites for biomedical applications: a review. Ceram. Int. 2015, 41, 9203-9231.
[462] Cacciotti, I. Cationic and anionic substitutionsin hydroxyapatite. In: Handbook of bioceramics and biocomposites. Antoniac, I.V. (Ed.) Springer: Switzerland, 2015; pp. 145-211.
[463] Renaudin, G., Gomes, S., Nedelec, J.M. First-row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study. Materials 2017, 10, 92.
[464] Pushpakanth, S., Srinivasan, B., Sastry, T.P., Mandal, A.B. Biocompatible and antibacterial properties of silver-doped hydroxyapatite. J. Biomed. Nanotechnol. 2008, 4, 62-66.
[465] Zhang, Y., Yin, Q.S., Zhang, Y., Xia, H., Ai, F.Z., Jiao, Y.P., Chen, X.Q. Determination of antibacterial properties and cytocompatibility of silver-loaded coral hydroxyapatite. J. Mater. Sci. Mater. Med. 2010, 21, 2453-2462.
[466] Kim, T.N., Feng, Q.L., Kim, J.O., Wu, J., Wang, H., Chen, G.C., Cui, F.Z. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci. Mater. Med. 1998, 9, 129-134.
[467] Kolmas, J., Groszyk, E., Kwiatkowska-Róhycka, D. Substituted hydroxyapatites with antibacterial properties. BioMed Res. Int. 2014, 2014, 178123 (15 pages).
[468] Stanić, V., Dimitrijević, S., Antić-Stanković, J., Mitrić, M., Jokić, B., Plećaš, I.B., Raičević, S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 2010, 256, 6083-6089.
[469] Li, Y., Ho, J., Ooi, C.P. Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles. Mater. Sci. Eng. C 2010, 30, 1137-1144.
[470] Thomas, S., Assi, P., Marycel, B., Correa, M., Liberato, W., Brito, V. Yttrium 90-hydroxyapatite, a new radioisotope for chronic synovitis in hemophilia. Haemophilia 2008, 14, 77.

[471] Chinol, M., Vallabhajosula, S., Goldsmith, S.J., Klein, M.J., Deutsch, K.F., Chinen, L.K., Brodack, J.W., Deutsch, E.A., Watson, B.A., Tofe, A.J. Chemistry and biological behavior of samarium-153 and rhenium-186-labeled hydroxyapatite particles: potential radiopharmaceuticals for radiation synovectomy. J. Nucl. Med. 1993, 34, 1536-1542.
[472] Argüelles, M.G., Berlanga, I.S.L., Torres, E.A. Preparation of 153Sm-particles for radiosynovectomy. J. Radioanal. Nucl. Chem. 1999, 240, 509-511.
[473] O’Duffy, E., Clunie, G., Lui, D., Edwards, J., Ell, P. Double blind glucocorticoid controlled trial of samarium-153 particulate hydroxyapatite radiation synovectomy for chronic knee synovitis. Ann. Rheum. Dis. 1999, 58, 554-558.
[474] Lin, K., Wu, C., Chang, J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014, 10, 4071-4102.
[475] Hughes, E.A.B., Williams, R.L., Cox, S.C., Grover, L.M. Biologically analogous calcium phosphate tubes from a chemical garden. Langmuir 2017, 33, 2059-2067.
[476] Palmer, L.C., Newcomb, C.J., Kaltz, S.R., Spoerke, E.D., Stupp, S.I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 2008, 108, 4754-4783.
[477] Grynpas, M.D., Hancock, R.G., Greenwood, C., Turnquist, J., Kessler, M.J. The effects of diet, age, and sex on the mineral content of primate bones. Calcif. Tiss. Int. 1993, 52, 399-405.
[478] Elliott, J.C. Calcium phosphate biominerals. In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Vol. 48. Hughes, J.M., Kohn, M., Rakovan, J. (Eds.) Mineralogical Society of America: Washington, D.C., USA, 2002; pp. 13-49.
[479] Boskey, A.L. Assessment of bone mineral and matrix using backscatter electron imaging and FTIR imaging. Curr. Osteoporos. Rep. 2006, 4, 71-75.
[480] Rey, C., Combes, C., Drouet, C., Glimcher, M.J. Bone mineral: update on chemical composition and structure. Osteoporosis Int. 2009, 20, 1013-1021; Erratum: ibid. p. 2155.
[481] Vallet-Regiì, M., González-Calbet, J.M. Calcium phosphates as substitution of bone tissues. Progr. Solid State Chem. 2004, 32, 1-31.
[482] Holt, L.E., la Mer, V.K., Chown, H.B. Studies in calcification. I. The solubility product of secondary and tertiary calcium phosphate under various conditions. J. Biol. Chem. 1925, 64, 509-565.
[483] Holt, L.E., la Mer, V.K., Chown, H.B. Studies in calcification. II. Delayed equilibrium between the calcium phosphates and its biological significance. J. Biol. Chem. 1925, 64, 567-578.
[484] Gassmann, T. The preparation of a complex salt corresponding to apatite-typhus and its relations to the constitution of bones. H.-S. Z. Physiol. Chem. 1913, 83, 403-408.
[485] de Jong, W.F. La substance minérale dans les os. Recl. Trav. Chim. Pays-Bas 1926, 45, 445-448.
[486] Bredig, M.A. Zur Apatitstruktur der anorganischen Knochen- und Zahnsubstanz. H.-S. Z. Physiol. Chem. 1933, 216, 239-243.
[487] Taylor, N.W., Sheard, C. Microscopic and X-ray investigations on the calcification of tissue. J. Biol. Chem. 1929, 81, 479-493.
[488] Weiner, S., Wagner, H.D. Material bone: structure-mechanical function relations. Ann. Rev. Mater. Sci. 1998, 28, 271-298.
[489] Weiner, S., Traub, W., Wagner, H.D. Lamellar bone: structure-function relations. J. Struct. Biol. 1999, 126, 241-255.
[490] Loveridge, N. Bone: more than a stick. J. Anim. Sci. 1999, 77, Suppl. 2, 190-196.
[491] Nightingale, J.P., Lewis, D. Pole figures of the orientation of apatite in bones. Nature 1971, 232, 334-335.
[492] Currey, J.D. Bones: structure and mechanics. Princeton Univercity Press: Princeton, USA, 2002; 456 pp.
[493] Rho, J.Y., Kuhn-Spearing, L., Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998, 20, 92-102.
[494] Tzaphlidou, M. Bone architecture: collagen structure and calcium/phosphorus maps. J. Biol. Phys. 2008, 34, Spec. Iss. 1-2, 39-49.
[495] Davison, K.S., Siminoski, K., Adachi, J.D., Hanley, D.A., Goltzman, D., Hodsman, A.B., Josse, R., Kaiser, S., Olszynski, W.P., Papaioannou, A., Ste-Marie, L.G., Kendler, D.L., Tenenhouse, A., Brown, J.P. Bone strength: the whole is greater than the sum of its parts. Semin. Arthritis Rheum. 2006, 36, 22-31.
[496] Turner, C.H., Burr, D.B. Basic biomechanical measurements of bone: a tutorial. Bone 1993, 14, 595-608.
[497] Currey, J.D. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J. Biomech. 2004, 37, 549-556.
[498] Currey, J.D., Brear, K., Zioupos, P. Notch sensitivity of mammalian mineralized tissues in impact. Proc. R. Soc. London B 2004, 217, 517-522.
[499] Anderson, J.C., Eriksson, C. Piezoelectric properties of dry and wet bone. Nature 1970, 227, 491-492.
[500] Lang, S.B. Pyroelectric effect in bone and tendon. Nature 1966, 212, 704-705.
[501] Haynes, V. Radiocarbon: analysis of inorganic carbon of fossil bone and enamel. Science 1968, 161, 687-688.
[502] Rensberger, J.M., Watabe, M. Fine structure of bone in dinosaurs, birds and mammals. Nature 2000, 406, 619-622.
[503] Kolodny, Y., Luz, B., Sander, M., Clemens, W.A. Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils. Palaeo 1996, 126, 161-171.
[504] Trueman, C.N., Tuross, N. Trace elements in recent and fossil bone apatite. In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Vol. 48. Hughes, J.M., Kohn, M., Rakovan, J. (Eds.) Mineralogical Society of America: Washington, D.C., USA, 2002; pp. 489-522.
[505] Currey, J.D., Brear, K. Hardness, Young’s modulus and yield stress in mammalian mineralized tissues. J. Mater. Sci. Mater. Med. 1990, 1, 14-20.
[506] Lerebours, C., Thomas, C.D.L., Clement, J.G., Buenzli, P.R., Pivonka, P. The relationship between porosity and specific surface in human cortical bone is subject specific. Bone 2015, 72, 109-117.
[507] Watt, J.C. The deposition of calcium phosphate and calcium carbonate in bone and in areas of calcification. Arch. Surg. Chicago 1925, 10, 983-990.
[508] Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.Y., Kaufman, M.J., Douglas, E.P., Gower, L.B. Bone structure and formation: a new perspective. Mater. Sci. Eng. R 2007, 58, 77-116.
[509] Boskey, A.L. Mineralization of bones and teeth. Elements 2007, 3, 385-391.
[510] Glimcher, M.J. Bone: nature of the calcium phosphate crystals and cellular, structural and physical chemical mechanisms in their formation. In: Medical Mineralogy and Geochemistry, Series: Reviews in Mineralogy and Geochemistry. Vol. 64. Sahai, N., Schoonen, M.A.A. (Eds.) Mineralogical Society of America: Washington, D.C., USA, 2006; pp. 223-282.
[511] Boskey, A.L., Roy, R. Cell culture systems for studies of bone and tooth mineralization. Chem. Rev. 2008, 108, 4716-4733.
[512] Currey, J.D. Hierarchies in biomineral structures. Science 2005, 309, 253-254.
[513] Cui, F.Z., Li, Y., Ge, J. Self-assembly of mineralized collagen composites. Mater. Sci. Eng. R 2007, 57, 1-27.
[514] Fratzl, P., Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263-1334.
[515] Boskey, A.L., Coleman, R. Aging and bone. J. Dent. Res. 2010, 89, 1333-1348.
[516] Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1-206.
[517] Reznikov, N., Shahar, R., Weiner, S. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone 2014, 59, 93-104.
[518] Reznikov, N., Shahar, R., Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815-3826.
[519] Tertuliano, O.A., Greer, J.R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 2016, 15, 1195-1202.
[520] Liu, Y., Luo, D., Wang, T. Hierarchical structures of bone and bioinspired bonetissue engineering. Small 2016, 12, 4611-4632.
[521] Athanasiou, K.A., Zhu, C., Lanctot, D.R., Agrawal, C.M., Wang, X. Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng. 2000, 6, 361-381.
[522] Nikolov, S., Raabe, D. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys. J. 2008, 94, 4220-4232.
[523] Gupta, H.S., Wagermaier, W., Zickler, G.A., Aroush, D.R.B., Funari, S.S., Roschger, P., Wagner, H.D., Fratzl, P. Nanoscale deformation mechanisms in bone. Nano Lett. 2005, 5, 2108-2111.
[524] Peterlik, H., Roschger, P., Klaushofer, K., Fratzl, P. From brittle to ductile fracture of bone. Nature Mater. 2006, 5, 52-55.
[525] Ruppel, M.E., Miller, L.M., Burr, D.B. The effect of the microscopic and nanoscale structure on bone fragility. Osteop. Int. 2008, 19, 1251-1265.
[526] Duer, M.J. The contribution of solid-state NMR spectroscopy to understandingbiomineralization: atomic and molecular structure of bone. J. Magn. Reson. 2015, 253, 98-110.
[527] Fratzl, P., Gupta, H.S., Paschalis, E.P., Roschger, P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 2004, 14, 2115- 2123.
[528] Eppell, S.J., Tong, W., Katz, J.L., Kuhn, L., Glimcher, M.J. Shape and size of isolated bone mineralites measured using atomic force microscopy. J. Orthop. Res. 2001, 19, 1027-1034.
[529] Clark, S.M., Iball, J. Orientation of apatite crystals in bone. Nature 1954, 174, 399-400.
[530] Rubin, M.A., Jasiuk, I., Taylor, J., Rubin, J., Ganey, T., Apkarian, R.P. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 2003, 33, 270-282.
[531] Su, X., Sun, K., Cui, F.Z., Landis, W.J. Organization of apatite crystals in human woven bone. Bone 2003, 32, 150-162.
[532] Landis, W.J., Hodgens, K.J., Arena, J., Song, M.J., McEwen, B.F. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Techn. 1996, 33, 192-202.
[533] Rosen, V.B., Hobbs, L.W., Spector, M. The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 2002, 23, 921-928.
[534] Sato, K. Inorganic-organic interfacial interactions in hydroxyapatite mineralization processes. Topics Curr. Chem. 2006, 270, 127-153.
[535] Hartgerink, J.D., Beniash, E., Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.
[536] Burger, C., Zhou, H., Wang, H., Sics, I., Hsiao, B.S., Chu, B., Graham, L., Glimcher, M. Lateral packing of mineral crystals in bone collagen fibrils. Biophys. J. 2008, 95, 1985-1992.
[537] Marino, A.A., Becker, R.O. Evidence for direct physical bonding between the collagen fibres and apatite crystals in bone. Nature 1967, 213, 697-698.
[538] Hu, Y.Y., Rawal, A., Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 2010, 107, 22425-22429.
[539] Xie, B., Nancollas, G.H. How to control the size and morphology of apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 2010, 107, 22369-22370.
[540] Hall, B.K. Bones and cartilage: developmental skeletal biology. 2nd Ed. Academic Press: New York, USA, 2015; 920 pp.
[541] Wang, Y., Azaïs, T., Robin, M., Vallée, A., Catania, C., Legriel, P., Pehau-Arnaudet, G., Babonneau, F., Giraud-Guille, M.M., Nassif, N. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nature Mater. 2012, 11, 724-733.
[542] George, A., Veis, A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem. Rev. 2008, 108, 4670-4693.
[543] Stock, S.R., Blackburn, D., Gradassi, M., Simon, H.G. Bone formation during forelimb regeneration: a microtomography (microCT) analysis. Dev. Dyn. 2003, 226, 410-417.
[544] Marino, A.A., Becker, R.O. Evidence for epitaxy in the formation of collagen and apatite. Nature 1970, 226, 652-653.
[545] Jodaikin, A., Weiner, S., Talmon, Y., Grossman, E., Traub, W. Mineral-organic matrix relations in tooth enamel. Int. J. Biol. Macromol. 1988, 10, 349-352.
[546] Fincham, A.G., Moradian-Oldak, J., Diekwisch, T.G.H., Lyaruu, D.M., Wright, J.T., Bringas, P., Slavkin, H.C. Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J. Struct. Biol. 1995, 115, 50-59.
[547] Iijima, M. Moriwaki, Y. Orientation of apatite andorganic matrix in Lingula unguis shell. Calcif. Tiss. Int. 1990, 47, 237-242.
[548] Williams, A., Cusack, M., Buckman, J.O., Stachel, T. Siliceous tablets in the larval shells of apatitic discinid Brachiopods. Science 1998, 297, 2094-2096.
[549] Lang, L., Kirsimäe, K., Vahur, S. Diagenetic fate of bioapatite in linguliform brachiopods:multiple apatite phases in shells of Cambrian lingulatebrachiopod Ungula ingrica (Eichwald). Lethaia 2016, 49, 13-27.
[550] Nakano, T., Ishimoto, T., Lee, J.W., Umakoshi, Y. Preferential orientation of biological apatite crystallite in original, regenerated and diseased cortical bones. J. Ceram. Soc. Jpn. 2008, 116, 313-315.
[551] Nakano, T., Ishimoto, T., Umakoshi, Y., Tabata, Y. Variation in bone quality during regenerative process. Mater. Sci. Forum 2007, 539-543, 675-680.
[552] Suvorova, E.I., Petrenko, P.P., Buffat, P.A., Scanning and transmission electron microscopy for evaluation of order/disorder in bone structure. Scanning 2007, 29, 162-170.
[553] Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504-1508.
[554] Rodan, G.A., Martin, T.J. Therapeutic approaches to bone diseases. Science 2000, 289, 1508-1514.
[555] Schilling, A.F., Filke, S., Brink, S., Korbmacher, H., Amling, M., Rueger, J.M. Osteoclasts and biomaterials. Eur. J. Trauma 2006, 32, 107-113.
[556] Rey, C., Miquel, J.L., Facchini, L., Legrand, A.P., Glimcher, M.J. Hydroxyl groups in bone mineral. Bone 1995, 16, 583-586.
[557] Loong, C.K., Rey, C., Kuhn, L.T., Combes, C., Wu, Y., Chen, S.H., Glimcher, M.J. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron scattering study. Bone 2000, 26, 599-602.
[558] Seo, S.J., Song, S.B., Chae, J.H., Ahn, J.H., Kim, T.W., Hwang, H.C., Kim, J., Lee, K.W., Kang, N.H., Cho, C.S., Kim, J.Y., Kang, K.W. Hydroxyl groups in demineralized bone matrix. Key Eng. Mater. 2007, 342-343, 381-384.
[559] Cho, G., Wu, Y., Ackerman, J.L. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 2003, 300, 1123-1127.
[560] Taylor, M.G., Parker, S.F., Mitchell, P.C.H. A study by high energy transfer inelastic neutron scatteringspectroscopy of the mineral fraction of ox femur bone. J. Mol. Struct. 2003, 651-653, 123-126.
[561] Tung, M.S., Brown, W.E. An intermediate state in hydrolysis of amorphous calcium phosphate. Calcif. Tiss. Int. 1983, 35, 783-790.
[562] Tung, M.S., Brown, W.E. The role of octacalcium phosphate in subcutaneous heterotopic calcification. Calcif. Tiss. Int. 1985, 37, 329-331.
[563] Brown, W.E., Eidelman, N., Tomazic, B.B. Octacalcium phosphate as a precursor in biomineral formation. Adv. Dent. Res. 1987, 1, 306-313.
[564] Siew, C., Gruninger, S.E., Chow, L.C., Brown, W.E. Procedure for the study of acidic calcium phosphate precursor phases in enamel mineral formation. Calcif. Tiss. Int. 1992, 50, 144-148.
[565] Crane, N.J., Popescu, V., Morris, M.D., Steenhuis, P., Ignelzi, J.M.A. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 2006, 39, 434-442.
[566] Tseng, Y.H., Mou, C.Y., Chan, J.C.C. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J. Am. Chem. Soc. 2006, 128, 6909-6918.
[567] Eanes, E.D., Gillessen, I.H., Posner, A.S. Intermediate states in the precipitation of hydroxyapatite. Nature 1965, 208, 365-367.
[568] Termine, J.D., Posner, A.S. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science 1966, 153, 1523-1525.
[569] Termine, J.D., Posner, A.S. Infra-red determination of the percentage of crystallinity in apatitic calcium phosphates. Nature 1966, 211, 268-270.
[570] Harper, R.A., Posner, A.S. Measurement of non-crystalline calcium phosphate in bone mineral. Proc. Soc. Exptl. Biol. Med. 1966, 122, 137-142.
[571] Posner, A.S. Crystal chemistry of bone mineral. Physiol. Rev. 1969, 49, 760-792.
[572] Posner, A.S. Bone mineral on the molecular level. Fed. Proc. 1973, 32, 1933-1937.
[573] Boskey, A.L., Posner, A.S. Formation of hydroxyapatite at low supersaturation. J. Phys. Chem. 1976, 80, 40-44.
[574] Posner, A.S. The chemistry of bone mineral. Bull. Hosp. Joint Dis. 1978, 39, 126-144.
[575] Glimcher, M.J., Bonar, L.C., Grynpas, M.D., Landis, W.J., Roufosse, A.H. Recent studies of bone mineral: is the amorphous calcium phosphate theory valid? J. Cryst. Growth 1981, 53, 100-119.
[576] Meyer, J.L., Eanes, E.D. A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation. Calcif. Tiss. Res. 1978, 25, 59-68.
[577] Meyer, J.L., Eanes, E.D. A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate. Calcif. Tiss. Res. 1978, 28, 209-216.
[578] Politi, Y., Arad, T., Klein, E., Weiner, S., Addadi, L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 2004, 306, 1161-1164.
[579] Weiner, S., Sagi, I., Addadi, L. Choosing the crystallization path less traveled. Science 2005, 309, 1027-1028.
[580] Weiner, S. Transient precursor strategy in mineral formation of bone. Bone 2006, 39, 431-433.
[581] Pekounov, Y., Petrov, O.E. Bone resembling apatite by amorphous-to-crystalline transition driven self-organisation. J. Mater. Sci. Mater. Med. 2008, 19, 753-759.
[582] Gower, L.B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551-4627.
[583] Weiner, S., Mahamid, J., Politi, Y., Ma, Y., Addadi, L. Overview of the amorphous precursor phase strategy in biomineralization. Front. Mater. Sci. China 2009, 3, 104-108.
[584] Mahamid, J., Sharir, A., Addadi, L., Weiner, S. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc. Natl. Acad. Sci. USA 2008, 105, 12748-12753.
[585] Mahamid, J., Aichmayer, B., Shimoni, E., Ziblat, R., Li, C., Siegel, S., Paris, O., Fratzl, P., Weiner, S., Addadi, L. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Natl. Acad. Sci. USA 2010, 107, 6316-6321.

[586] Bennet, M., Akiva, A., Faivre, D., Malkinson, G., Yaniv, K., Abdelilah-Seyfried, S., Fratzl, P., Masic, A. Simultaneous Raman microspectroscopy and fluorescence imaging of bone mineralization in living zebrafish larvae. Biophys. J. 2014, 106, L17-L19.
[587] Akiva, A., Kerscnitzki, M., Pinkas, I., Wagermaier, W., Yaniv, K., Fratzl, P., Addadi, L., Weiner, S. Mineral formation in the larval zebrafish tail bone occurs via anacidic disordered calcium phosphate phase. J. Am. Chem. Soc. 2016, 138, 14481-14487.
[588] Nudelman, F., Pieterse, K., George, A., Bomans, P.H.H., Friedrich, H., Brylka, L.J., Hilbers, P.A.J., de With, G., Sommerdijk, N.A.J.M. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature Mater. 2010, 9, 1004-1009.
[589] Cölfen, H. A crystal-clear view. Nature Mater. 2010, 9, 960-961.
[590] Driessens, F.C.M., Wolke, J.G.C., Jansen, J.A. A new theoretical approach to calcium phosphates, aqueous solutions and bone remodeling. J. Austral. Ceram. Soc. 2012, 48, 144-149.
[591] Boonrungsiman, S., Gentleman, E., Carzaniga, R., Evans, N.D., McComb, D.W., Porter, A.E., Stevens, M.M. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc. Natl. Acad. Sci. USA 2012, 109, 14170-14175.
[592] Combes, C., Cazalbou, S., Rey, C. Apatite biominerals. Minerals 2016, 6, 34 (25 pages).
[593] Neuman, W.F., Bareham, B.J. Evidence for the presence of secondary calcium phosphatein bone and its stabilization by acid production. Calcif. Tissue Res. 1975, 18, 161-172.
[594] Roufosse, A.H., Aue, W.P., Roberts, J.E., Glimcher, M.J., Griffin, R.G. Investigation of the mineral phases of bone by solid-statephosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochemistry 1984, 23, 6115-6120.
[595] Sahar, N.D., Hong, S.I., Kohn, D.H. Micro- and nano-structural analyses of damage in bone. Micron 2005, 36, 617-629.
[596] Meneghini, C., Dalconi, M.C., Nuzzo, S., Mobilio, S., Wenk, R.H. Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys. J. 2003, 84, 2021-2029.
[597] Bilezikian, J.P., Raisz, L.G., Martin, T.J. Principles of bone biology. 3rd Ed. Academic Press: New York, USA, 2008; 1900 pp.
[598] Rao, D.V., Gigante, G.E., Cesareo, R., Brunetti, A., Schiavon, N., Akatsuka, T., Yuasa, T., Takeda, T. Synchrotron-based XRD from rat bone of different age groups. Mater. Sci. Eng. C 2017, 74, 207-218.
[599] Burnell, J.M., Teubner, E.J., Miller, A.G. Normal maturational changes in bone matrix, mineral, and crystal size in the rat. Calcif. Tiss. Int. 1980, 31, 13-19.
[600] Weiner, S., Traub, W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 1986, 206, 262-266.
[601] Hanschin, R.G., Stern, W.B. X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone 1995, 16, Suppl. 4, 355S-363S.
[602] Pellegrino, E.D., Blitz, R.M. Mineralization in the chick embryo I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex. Calcif. Tiss. Res. 1972, 10, 128-135.
[603] LeGeros, R.Z. Balmain, N., Bonel, G. Age-related changes in mineral of rat and bovine cortical bone. Calcif. Tiss. Int. 1987, 41, 137-144.
[604] Rey, C., Hina, A., Tofighi, A., Glimcher, M.J. Maturation of poorly crystalline apatites: chemical and structural aspect in vivo and in vitro behavior. Cell Mater. 1995, 5, 345-356.
[605] Verdelis, K., Lukashova, L., Wright, J.T., Mendelsohn, R., Peterson, M.G.E., Doty, S., Boskey, A.L. Maturational changes in dentine mineral properties. Bone 2007, 40, 1399-1407.
[606] Yerramshetty, J.S., Lind, C., Akkus, O. The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 2006, 39, 1236-1243.
[607] Kuhn, L.T., Grynpas, M.D,, Rey, C., Wu, Y., Ackerman, J.L., Glimcher, M.J. A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages. Calcif. Tiss. Int. 2008, 83, 146-154.
[608] Donnelly, E., Boskey, A.L., Baker, S.P., van der Meulen, M.C. Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J. Biomed. Mater. Res. A 2009, 92A, 1048-1056.
[609] Li, Z., Pasteris, J.D. Tracing the pathway of compositional changes in bone mineral with age: preliminary study of bioapatite aging in hypermineralized dolphin’s bulla. Biochim. Biophys. Acta 2014, 40, 2331-2339.
[610] Li, Z., Li, Q., Wang, S.J., Zhang, L., Qiu, J.Y., Wu, Y., Zhou, Z.L. Rapid increase of carbonate in cortical bones of hens during laying period. Poult. Sci. 2016, 95, 2889-2894.
[611] Lowenstam, H.A. Minerals formed by organisms. Science 1981, 211, 1126-1131.
[612] Lowenstam, H.A., Weiner, S. Mineralization by organisms and the evolution of biomineralization. In: Biomineralization and biological metal accumulation. Westbroek, P., de Jong, E.W. (Eds.) D. Reidel Pub. Co.: Dordrecht, Holland, 1983; pp. 191-203.
[613] Plate, U., Tkotz, T., Wiesmann, H.P., Stratmann, U., Joos, U., Höhling, H.J. Early mineralization of matrix vesicles in the epiphyseal growth plate. J. Microsc. 1996, 183, 102-107.
[614] Stratmann, U., Schaarschmidt, K., Wiesmann, H.P., Plate, U., Höhling, H.J. Mineralization during matrix-vesicle-mediated mantle dentine formation in molars of albino rats: a microanalytical and ultrastructural study. Cell Tiss. Res. 1996, 284, 223-230.
[615] Jahnen-Dechent, W., Schinke, T., Trindl, A., Muller-Esterl, W., Sablitzky, F., Kaiser, S., Blessing, M. Cloning and targeted deletion of the mouse fetuin gene. J. Biol. Chem. 1997, 272, 31496-31503.
[616] Schinke, T., McKnee, M.D., Karsenty, G. Extracellular matrix calcification: where is the action? Nature Genetics 1999, 21, 150-151.
[617] Jahnen-Dechent, W., Schäfer, G., Heiss, A., Grötzinger, J. Systemic inhibition of spontaneous calcification by the serum protein a2-HS glycoprotein/fetuin. Z. Kardiol. 2001, 90, Suppl. 3, III/47-III/56.
[618] Savelle, J.M., Habu, J. A processual investigation of a Thule whale bone house, Somerset Island, Arctic Canada. Arct. Anthropol. 2004, 41, 204-221.
[619] Chen, L., Kivelä, J., Helenius, J., Kangas, A. Meat bone meal as fertiliser for barley and oat. Agr. Food Sci. 2011, 20, 235-244.
[620] Delloye, C., Cornu, O., Druez, V., Barbier, O. Bone allografts. What they can offer and what they cannot. J. Bone Joint Surg. Br. 2007, 89, 574-579.
[621] Araújo, M., Linder, E., Lindhe, J. Effect of a xenograft on early bone formation in extraction sockets: an experimental study in dog. Clin. Oral Implan. Res. 2009, 20, 1-6.
[622] Koussoulakou, D.S., Margaritis, L.H., Koussoulakos, S.L. A curriculum vitae of teeth: evolution, generation, regeneration. Int. J. Biol. Sci. 2009, 5, 226-243.
[623] Jones, F.H. Teeth and bones: application of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 2001, 42, 75-205.
[624] Avery, J.K. Oral development and histology. 3rd Ed. Thieme Medical Publishers Inc.: New York, USA, 2001; 435 pp.
[625] Nanci, A. Ten Cate’s oral histology: development, structure, and function.8th Ed. Mosby-Year Book: Saint Louis, USA, 2012; 400 pp.
[626] Xue, J., Zhang, L., Zou, L., Liao, Y., Li, J., Xiao, L., Li, W. High-resolution X-ray microdiffraction analysis of natural teeth. J. Synchrotron Radiat. 2008, 15, 235-238.
[627] Gaft, M., Shoval, S., Panczer, G., Nathan, Y., Champagnon, B., Garapon, C. Luminescence of uranium and rare-earth elements in apatite of fossil fish teeth. Palaeogeogr. Palaeocl. 1996, 126, 187-193.
[628] Huang, C.M., Zhang, Q., Bai, S., Wang, C.S. FTIR and XRD analysis of hydroxyapatite from fossil human and animal teeth in Jinsha Relict, Chengdu. Spectrosc. Spect. Anal. 2007, 27, 2448-2452.
[629] Yin, Z., Zhang, P., Chen, Q., Luo, Q., Zheng, C., Li, Y.A comparison of modern and fossil ivories using multiple techniques. Gems and Gemology 2013, 49, 16-27.
[630] Ho, S.P., Yu, B., Yun, W., Marshall, G.W., Ryder, M.I., Marshall, S.J. Structure, chemical composition and mechanical properties of human and rat cementum and its interface with root dentine. Acta Biomater. 2009, 5, 707-718.
[631] Bosshardt, D.D., Selvig, K.A. Dental cementum: the dynamic tissue covering of the root. Periodontol. 2000 1997, 13, 41-75.
[632] Ho, S.P., Senkyrikova, P., Marshall, G.W., Yun, W., Wang, Y., Karan, K., Li, C., Marshall, S.J. Structure, chemical composition and mechanical properties of coronal cementum in human deciduous molars. Dental Mater. 2009, 25, 1195-1204.
[633] Yamamoto, T., Li, M., Liu, Z., Guo, Y., Hasegawa, T., Masuki, H., Suzuki, R., Amizuka, N. Histological review of the human cellular cementum with special reference to an alternating lamellar pattern. Odontology 2010, 98, 102-109.
[634] Chai, H., Lee, J.J.W., Constantino, P.J., Lucas, P.W., Lawn, B.R. Remarkable resilience of teeth. Proc. Natl. Acad. Sci. USA 2009, 106, 7289-7293.
[635] He, L.H., Swain, M.V. Enamel – a ‘metallic-like’ deformable biocomposite. J. Dent. 2007, 35, 431-437.
[636] Margolis, H.C., Beniash, E., Fowler, C.E. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J. Dent. Res. 2006, 86, 775-793.
[637] Vieira, A., Hancock, R., Limeback, H., Schwartz, M., Grynpas, M.D. How does fluoride concentration in the tooth affect apatite crystal size? J. Dent. Res. 2003, 82, 909-913.
[638] Cui, F.Z., Ge, J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J. Tissue Eng. Regener. Med. 2007, 1, 185-191.
[639] Jandt, K.D. Probing the future in functional soft drinks on the nanometre scale – towards tooth friendly soft drinks. Trends Food Sci. Technol. 2006, 17, 263-271.
[640] Chen, H., Chen, Y., Orr, B.G., Banaszak-Holl, M., Majoros, I., Clarkson, B.H. Nanoscale probing of the enamel nanorod surface using polyamidoamine dendrimers. Langmuir 2004, 20, 4168-4171.
[641] Rönnholm, E. The amelogenesis of human teeth as revealed by electron microscopy. II. The development of the enamel crystallites. J. Ultrastruct. Res. 1962, 6, 249-303.
[642] Nylen, M.U., Evans, E.D., Omnel, K.A. Crystal growth in rat enamel. J. Cell. Biol. 1963, 18, 109-123.
[643] Miake, Y., Shimoda, S., Fukae, M., Aoba, T. Epitaxial overgrowth of apatite crystals on the thin-ribbon precursor at early stages of porcine enamel mineralization. Calcif. Tiss. Int. 1993, 53, 249-256.
[644] Daculsi, G., Menanteau, J., Kerebel, L.M., Mitre, D. Length and shape of enamel crystals. Calcif. Tiss. Int. 1984, 36, 550-555.
[645] Jodaikin, A., Traub, W., Weiner, S., Enamel rod relations in the developing rat incisor. J. Ultrastruct. Res. 1984, 89, 324-332.
[646] Bres, E.F., Hutchison, J.L. Surface structure study of biological calcium phosphate apatite crystals from human tooth enamel. J. Biomed. Mater. Res. 2002, 63, 433-440.
[647] Schroeder, I., Frank, R.M. High-resolution transmission electron microscopy of adult human peritubular dentine. Cell Tiss. Res. 1985, 242, 449-451.
[648] Brès, E.F., Voegel, J.C., Frank, R.M. High-resolution electron microscopy of human enamel crystals. J. Microsc. 1990, 160, 183-201.
[649] Chen, Y., Wang, J., Sun, J., Mao, C., Wang, W., Pan, H., Tang, R., Gu, X. Hierarchical structure and mechanical properties of remineralized dentin. J. Mech. Behav. Biomed. Mater. 2014,40, 297-306.
[650] Robinson, C., Connell, S., Kirkham, J., Shore, R., Smith, A. Dental enamel – a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J. Mater. Chem. 2004, 14, 2242-2248.
[651] Mugnaioli, E., Reyes-Gasga, J., Kolb, U., Hemmerlé, J., Brès, É. Evidence of noncentrosymmetry of human tooth hydroxyapatite crystals. Chem. Eur. J. 2014, 20, 6849-6852.
[652] Warf, R.D., Watson, R.R. Calcium phosphate – nutrition in prevention of early childhood dental caries. In: Wild-type food in health promotion and disease prevention: the Columbus concept. de Meester, F., Watson, R.R., (Eds.) Humana Press: Totowa, NJ, USA, 2008; pp. 343-353.
[653] Brown, W.E., Chow, L.C. Chemical properties of bone mineral. Ann. Rev. Mater. Sci. 1976, 6, 213-236.
[654] Simmer, J.P., Fincham, A.G. Molecular mechanisms of dental enamel formation. Crit. Rev. Oral Biol. Med. 1995, 6, 84-108.
[655] Diekwisch, T.G., Berman, B.J., Genters, S., Slavkin, H.C. Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tiss. Res. 1995, 279, 149-167.
[656] Aoba, T. Recent observations on enamel crystal formation during mammalian amelogenesis. Anat. Rec. 1996, 245, 208-218.
[657] Bonar, L.C., Shimizu, M., Roberts, J.E., Griffin, R.G., Glimcher, M.J. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, X-ray diffraction, and 31P and proton nuclear magnetic resonance study. J. Bone Miner. Res. 1991, 6, 1167-1176.
[658] Beniash, E., Metzler, R.A., Lam, R.S.K., Gilbert, P.U.P.A. Transient amorphous calcium phosphate in forming enamel. J. Struct. Biol. 2009, 166, 133-143. Corrigendum ibid. 167, p. 95.
[659] Smith, C.E. Cellular and chemical events during enamel maturation. Crit. Rev. Oral. Biol. Med. 1998, 9, 128-161.
[660] Sydney-Zax, M., Mayer, I., Deutsch, D. Carbonate content in developing human and bovine enamel. J. Dent. Res. 1991, 70, 913-916.
[661] Rey, C., Renugopalakrishnan, V., Shimizu, M., Collins, B., Glimcher, M.J. A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO32- ion in the mineral phase of enamel during its formation and maturation. Calcif. Tiss. Int. 1991, 49, 259-268.
[662] Takagi, T., Ogasawara, T., Tagami, J., Akao, M., Kuboki, Y., Nagai, N., LeGeros, R.Z. pH and carbonate levels in developing enamel. Connect. Tissue Res. 1998, 38, 181-187.
[663] Selvig, K.A., Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calcif. Tiss. Res. 1970, 6, 227-238.
[664] Selvig, K.A., Electron microscopy of dental enamel: analysis of crystal lattice images. Cell Tiss. Res. 1973, 137, 271-280.
[665] Gasga, J.R., Carbajal-De-La-Torre, G., Bres, E., Gil-Chavarria, I.M., Rodríguez-Hernández, A.G., Garcia-Garcia, R. STEM-HAADF electron microscopy analysis of the central dark line defect of human tooth enamel crystallites. J. Mater. Sci. Mater. Med.2008, 19, 877-882.
[666] Pankaew, P., Hoonnivathana, E., Sujinnapram, S., Thamaphat, K., Limsuwan, P., Naemchanthara, K. Characterization of apatite from human teeth via XRD, FT-IR and TGA techniques. Adv. Mater. Res. 2012, 506, 90-93.
[667] Cuisinier, F.J.G., Steuer, P., Senger, B., Voegel, J.C., Frank, R.M. Human amelogenesis: high resolution electron microscopy of nanometer-sized particles. Cell Tiss. Res. 1993, 273, 175-182.
[668] Houllé, P., Voegel, J.C., Schultz, P., Steuer, P., Cuisinier, F.J.G. High resolution electron microscopy: structure and growth mechanisms of human dentine crystals. J. Dent. Res. 1997, 76, 895-904.
[669] Mann, S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 1993, 365, 499-505.
[670] Kirkham, J., Zhang, J., Brookes, S.J., Shore, R.C., Wood, S.R., Smith, D.A., Wallwork, M.L., Ryu, O.H., Robinson, C. Evidence for charge domains on developing enamel crystal surfaces. J. Dent. Res. 2000, 79, 1943-1947.
[671] Smith, T.M., Tafforeau, P. New visions of dental tissue research: tooth development, chemistry, and structure. Evol. Anthropol. 2008, 17, 213-226.
[672] Habelitz, S., Marshall, S.J., Marshall, Jr., G.W., Balooch, M. The functional width of the dentino-enamel junction determined by AFM-based nanoscratching. J. Struct. Biol. 2001, 135, 294-301.
[673] Chan, Y.L., Ngan, A.H.W., King, N.M. Nano-scale structure and mechanical properties of the human dentine-enamel junction. J. Mech. Behav. Biomed. Mater. 2011, 4, 785-795.

[674] Kolmas, J., Kalinowski, E., Wojtowicz, A., Kolodziejski, W. Mid-infrared reflectance microspectroscopy of human molars: chemical comparison of the dentin-enamel junction with the adjacent tissues. J. Mol. Struct. 2010, 966, 113-121.
[675] Desoutter, A., Salehi, H., Slimani, A., Marquet, P., Jacquot, B., Tassery, H., Cuisinier, F.J.G. Structure and chemical composition of the dentin-enamel junction analyzed by Confocal Raman Microscopy. Proc. SPIE 2014, 8929, Lasers in Dentistry XX,892907.
[676] Xu, C., Yao, X., Walker, M.P., Wang, Y. Chemical/molecular structure of the dentine-enamel junction is dependent on the intratooth location. Calcif. Tiss. Int. 2009, 84, 221-228.
[677] Imbeni, V., Kruzic, J.J., Marshall, G.W., Marshall, S.J., Ritchie, R.O. The dentin-enamel junction and the fracture of human teeth. Nature Mater. 2005, 4, 229-232.
[678] Marshall, S.J., Balooch, M., Habelitz, S., Balooch, G., Gallagher, R., Marshall, G.W. The dentin-enamel junction – a natural, multilevel interface. J. Eur. Ceram. Soc. 2003, 23, 2897-2904.
[679] Sui, T., Li, T., Sandholzer, M.A., Bourhis, E.L., Zeng, K., Landini, G., Korsunsky, A.M. Structure-property characterization of the dentine-enamel junction (DEJ). Lecture Notes in Engineering and Computer Science 2014, 2, 1529-1534.
[680] Arsenault, A.L., Robinson, B.W. The dentino-enamel junction: a structural and microanalytical study of early mineralization. Calcif. Tiss. Int. 1989, 45, 111-121.
[681] Hayashi, Y. High resolution electron microscopy in the dentino-enamel junction. J. Electron Microsc. (Tokyo) 1992, 41, 387-391.
[682] Hayashi, Y. High resolution electron microscopic study on the human dentine crystal. J. Electron Microsc. (Tokyo) 1993, 42, 141-146.
[683] Bodier-Houllé, P., Steuer, P., Meyer, J.M., Bigeard, L., Cuisinier, F.J.G. High-resolution electron-microscopic study of the relationship between human enamel and dentin crystals at the dentinoenamel junction. Cell Tiss. Res. 2000, 301, 389-395.
[684] Takano, Y., Hanaizumi, Y., Oshima, H. Occurrence of amorphous and crystalline mineral deposits at the epithelial-mesenchymal interface of incisors in the calcium-loaded rat: implication of novel calcium binding domains. Anat. Rec. 1996, 245, 174-185.
[685] Dong, W., Warshawsky, H. Lattice fringe continuity in the absence of crystal continuity in enamel. Adv. Dent. Res. 1996, 10, 232-237.
[686] Wang, R., Hu, Y., Ng, C. Microstructure and interfacial fracture at the cementum-enamel junctions in equine and bovine teeth. J. Mater. Res. 2006, 21, 2146-2155.
[687] Ho, S.P., Balooch, M., Goodis, H.E., Marshall, G.W., Marshall, S.J. Ultrastructure and nanomechanical properties of cementum dentin junction. J. Biomed. Mater. Res.A 2004, 68A, 343-351.
[688] Ho, S.P., Sulyanto, R.M., Marshall, S.J., Marshall, G.W. The cementum-dentin junction also contains glycosaminoglycans and collagen fibrils. J. Struct. Biol. 2005, 151, 69-78.
[689] Jang, A.T., Lin, J.D., Choi, R.M., Seto, M.L., Ryder, M.I., Gansky, S.A., Curtis, D.A., Ho, S.P. Adaptive properties of human cementum and cementum dentin junction with age. J. Mech. Behav. Biomed. Mater. 2014, 39, 184-196.
[690] Paine, M.L., White, S.N., Luo, W., Fong, H., Sarikaya, M., Snead, M.L. Regulated gene expression dictates enamel structure and tooth function. Matrix Biol. 2001, 20, 273-292.
[691] Barbour, M.E., Rees, J.S. The laboratory assessment of enamel erosion: a review. J. Dent. 2004, 32, 591-602.
[692] Low, I.M., Alhuthali, A. In-situ monitoring of dental erosion in tooth enamel when exposed to soft drinks. Mater. Sci. Eng. C 2008, 28, 1322-1325.
[693] White, A.J., Yorath, C., ten Hengel, V., Leary, S.D., Huysmans, M.C.D.N.J.M., Barbour, M.E. Human and bovine enamel erosion under 'single-drink' conditions. Eur. J. Oral Sci. 2010, 118, 604-609.
[694] LeGeros, R.Z. Calcium phosphates in demineralization and remineralization processes. J. Clin. Dent. 1999, 10, 65-73.
[695] Cochrane, N.J., Saranathan, S., Cai, F., Cross, K.J., Reynolds, E.C. Enamel subsurface lesion remineralisation with casein phosphopeptide stabilised solutions of calcium, phosphate and fluoride. Caries Res. 2008, 42, 88-97.
[696] Langhorst, S.E., O’Donnell, J.N.R., Skrtic, D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent. Mater. 2009, 25, 884-891.
[697] Weir, M.D., Chow, L.C., Xu, H.H.K. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J. Dent. Res. 2012, 91, 979-984.
[698] Lippert, F., Parker, D.M., Jandt, K.D. In situ remineralisation of surface softened human enamel studied with AFM nanoindentation. Surf. Sci. 2004, 553, 105-114.
[699] Lippert, F., Parker, D.M., Jandt, K.D. In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J. Colloid Interf. Sci. 2004, 280, 442-448.
[700] Lippert, F., Parker, D.M., Jandt, K.D. Toothbrush abrasion of surface softened enamel studied with tapping mode AFM and AFM nanoindentation. Caries Res. 2004, 38, 464-472.
[701] Hannig, C., Hannig, M. Natural enamel wear – a physiological source of hydroxylapatite nanoparticles for biofilm management and tooth repair? Medical Hypotheses 2010, 74, 670-672.
[702] Busch, S. Regeneration of human tooth enamel. Angew. Chem. Int. Ed. Engl. 2004, 43, 1428-1431.
[703] Onuma, K., Yamagishi, K., Oyane, A. Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J. Cryst. Growth 2005, 282, 199-207.
[704] He, L., Feng, Z. Preparation and characterization of dicalcium phosphate dihydrate coating on enamel. Mater. Lett. 2007, 61, 3923-3926.
[705] Li, L., Pan, H., Tao, J., Xu, X., Mao, C., Gu, X., Tang, R. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J. Mater. Chem. 2008, 18, 4079-4084.
[706] Wang, X., Xia, C., Zhang, Z., Deng, X., Wei, S., Zheng, G., Chen, H. Direct growth of human enamel-like calcium phosphate microstructures on human tooth. J. Nanosci. Nanotechnol. 2009, 9, 1361-1364.
[707] Roveri, N., Battistella, E., Bianchi, C.L., Foltran, I., Foresti, E., Iafisco, M., Lelli, M., Naldoni, A., Palazzo, B., Rimondini, L. Surface enamel remineralization: biomimetic apatite nanocrystals and fluoride ions different effects. J. Nanomater. 2009, 2009, 746383 (9 pages).
[708] Roveri, N., Foresti, E., Lelli, M., Lesci, I.G. Recent advancements in preventing teeth health hazard: the daily use of hydroxyapatite instead of fluoride. Rec. Pat. Biomed. Eng. 2009, 2, 197-215.
[709] Peters, M.C., Bresciani, E., Barata, T.J.E., Fagundes, T.C., Navarro, R.L., Navarro, M.F.L., Dickens, S.H. In vivo dentine remineralization by calcium-phosphate cement. J. Dent. Res. 2010, 89, 286-291.
[710] Orsini, G., Procaccini, M., Manzoli, L., Giuliodori, F., Lorenzini, A., Putignano, A. A double-blind randomized-controlled trial comparing the desensitizing efficacy of a new dentifrice containing carbonate/hydroxyapatite nanocrystals and a sodium fluoride/potassium nitrate dentifrice. J. Clin. Periodontol. 2010, 37, 510-517.
[711] Uysal, T., Amasyali, M., Koyuturk, A.E., Ozcan, S., Sagdic, D. Amorphous calcium phosphate-containing orthodontic composites. Do they prevent demineralisation around orthodontic brackets? Austral. Orthodontic J. 2010, 26, 10-15.
[712] Niu, L.N., Zhang, W., Pashley, D.H., Breschi, L., Mao, J., Chen, J.H., Tay, F.R. Biomimetic remineralization of dentin. Dent. Mater. 2014, 30, 77-96.
[713] Li, X., Wang, J., Joiner, A., Chang, J. The remineralisation of enamel: a review of the literature. J. Dent. 2014, 42, Suppl. 1, S12-S20.
[714] Driessens, F.C.M. Relation between apatite solubility and anti-cariogenic effect of fluoride. Nature 1973, 243, 420-421.
[715] Moreno, E.C., Kresak, M., Zahradnik, R.T. Fluoridated hydroxyapatite solubility and caries formation. Nature 1974, 247, 64-65.
[716] McClendon, J.F. Fluorapatite and teeth. Science 1966, 151, 151.
[717] Wang, X., Klocke, A., Mihailova, B., Tosheva, L., Bismayer, U. New insights into structural alteration of enamel apatite induced by citric acid and sodium fluoride solutions. J. Phys. Chem. B 2008, 112, 8840-8848.
[718] Yue, Z., Deng, X., Feng, H. The mechanisms of deer antlers development and regeneration. J. Econ. Animal 2005, 9, 46-49.
[719] Zhao, L., Yue, Z., Zhang, X., Deng, X. The deer antlers endochondral ossification and its regulation mechanisms. J. Econ. Animal 2006, 10, 238-241.
[720] Landete-Castilleijos, T., Garcia, A., Gallego, L. Body weight, early growth and antler size influence antler bone mineral composition of Iberian Red Deer (Cervus elaphus hispanicus). Bone 2007, 40, 230-235.
[721] Huxley, J. The relative size of antlers of deer. Proc. Zool. Soc. London 1931, 72, 819-864.
[722] Kierdorf, U., Li, C., Price, J.S. Improbable appendages: deer antler renewal as a unique case of mammalian regeneration. Semin. Cell Dev. Biol. 2009, 20, 535-542.
[723] Kierdorf, U., Kierdorf, H. Deer antlers – a model of mammalian appendage regeneration: an extensive review. Gerontology 2011, 57, 53-65.
[724] Chen, P.Y., Stokes, A.G., McKittrick, J. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomater. 2009, 5, 693-706.
[725] Landete-Castilleijos, T., Currey, J.D., Estevez, J.A., Gaspar-Lopez, E., Garcia, A., Gallego, L. Influence of physiological effort of growth and chemical composition on antler bone mechanical properties. Bone 2007, 41, 794-803.
[726] Evans, L.A., McCutcheon, A.L., Dennis, G.R., Mulley, R.C., Wilson, M.A. Pore size analysis of fallow deer (Dama dama) antler bone. J. Mater. Sci. 2005, 40, 5733-5739.
[727] Akhtar, R., Daymond, M. R., Almer, J. D., Mummery, P. M. Elastic strains in antler trabecular bone determined by synchrotron X-ray diffraction. Acta Biomater. 2008, 4, 1677-1687.
[728] Currey, J.D., Landete-Castillejos, T., Estevez, J., Ceacero, F., Olguin, A., Garcia, A., Gallego, L. The mechanical properties of red deer antler bone when used in fighting. J. Exp. Biol. 2009, 212, 3985-3993.
[729] Bubenik, G.A., Bubenik, P.G. Palmated antlers of moose may serve as a parabolic reflector of sounds. Eur. J. Wildlife Res. 2008, 54, 533-535.
[730] Price, J., Faucheux, C., Allen, S. Deer antlers as a model of mammalian regeneration. Curr. Top. Dev. Biol. 2005, 67, 2-49.
[731] Landete-Castilleijos, T., Estevez, J.A., Martinez, A., Ceacero, F., Garcia, A., Gallego, L. Does chemical composition of antler bone reflect the physiological effort made to grow it? Bone 2007, 40, 1095-1102.
[732] Li, C., Zhao, H., Liu, Z., McMahon, C. Deer antler – a novel model for studying organ regeneration in mammals. Int. J. Biochem. Cell Biol. 2014, 56, 111-122.
[733] Kierdorf, U., Kierdorf, H. Antlers as biomonitors of environmental pollution by lead and fluoride: a review. Eur. J. Wildlife Res. 2005, 51, 137-150.
[734] Kierdorf, U., Kierdorf, H. The fluoride content of antlers as an indicator of fluoride exposure in red deer (Cervus elaphus): a historical biomonitoring study. Fluoride 2000, 33, 92-94.
[735] Pathak, N.N., Pattanaik, A.K., Patra, R.C., Arora, B.M. Mineral composition of antlers of three deer species reared in captivity. Small Rumin. Res. 2001, 42, 61-65.
[736] Yuxia, Y., Rui, D., Wang, Y., Wang, S. Calcium and phosphors contents of three-branched and two-branched antler and ossificational antler from sika deer. J. Econ. Animal 2002, 6, 6-8.
[737] Li, C., Suttie, J.M., Clarck, D.E. Histological examination of antler regeneration in red deer (Cervus elaphus). Anat. Rec. 2005, 282A, 163-174.
[738] Gomez, S., Garcia, A.J., Luna, S., Kierdorf, U., Kierdorf, H., Gallego, L., Landete-Castillejos, T. Labeling studies on cortical bone formation in the antlers of red deer (Cervus elaphus). Bone 2013, 52, 506-515.
[739] Meister, W. Changes in biological structure of the long bones of white-tailed deer during the growth of antlers. Anat. Rec. 1956, 124, 709-721.
[740] Muir, P.D., Sykes, A.R., Barrell, G.K. Calcium metabolism in red deer (Cervus elaphus) offered herbages during antlerogenesis: kinetic and stable balance studies. J. Agric. Sci. Camb. 1987, 109, 357-364.
[741] Baxter, B.J., Andrews, R.N., Barrell, G.K. Bone turnover associated with antler growth in red deer (Cervus elaphus). Anat. Rec. 1999, 256, 14-19.
[742] Baciut, M., Baciut, G., Simon, V., Albon, C., Coman, V., Prodan, P., Florian, S., Bran, S. Investigation of deer antler as a potential bone regenerating biomaterial. J. Optoelectron. Adv. Mater. 2007, 9, 2547-2550.
[743] Hasan, I., Keilig, L., Reimann, S., Rahimi, A., Wahl, G., Bourauel, C. Material parameters of the reindeer antler for use in dental implant biomechanics. Ann. Anat. 2012, 194, 518-523.
[744] Zhang, X., Cai, Q., Liu, H., Heng, B.C., Peng, H., Song, Y., Yang, Z., Deng, X. Osteoconductive effectiveness of bone graft derived from antler cancellous bone: an experimental study in the rabbit mandible defect model. Int. J. Oral Maxillofac. Surg. 2012, 41, 1330-1337.
[745] Zhang, X., Xu, M., Song, L., Wei, Y., Lin, Y., Liu, W., Heng, B.C., Peng, H., Wang, Y., Deng, X. Effects of compatibility of deproteinized antler cancellous bone with various bioactive factors on their osteogenic potential. Biomaterials 2013, 34, 9103-9114.
[746] Shi, H., Yu, T., Li, Z., Lu, W., Zhang, M., Ye, J. Bone regeneration strategy inspired by the study of calcification behavior in deer antler. Mater. Sci. Eng. C 2015, 57, 67-76.
[747] Block, G.A., Hulbert-Shearon, T.E., Levin, N.W., Port, F.K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 1998, 31, 607-617.
[748] Kazama, J.J., Amizuka, N., Fukagawa, M. Ectopic calcification as abnormal biomineralization. Ther. Apher. Dial. 2006, 10, Suppl. 1, S34-S38.
[749] Aristotle. In: The complete works of Aristotle. History of animals: Book II. Barnes, J. (Ed.). Princeton, NJ, USA; Princeton University Press, 1991, p. 38.
[750] Pearson, G. Experiments and observations, tending to show the composition and properties of urinary concretions. Phil. Trans. R. Soc. Lond. 1798, 88, 15-46.
[751] Poloni, L.N., Ward, M.D. The materials science of pathological crystals. Chem. Mater. 2014, 26, 477-495.
[752] Brancaccio, D., Cozzolino, M. The mechanism of calcium deposition in soft tissues. Contrib. Nephrol. 2005, 149, 279-286.
[753] Goff, A.K., Reichard, R. A soft-tissue calcification: differential diagnosis and pathogenesis. J. Forensic Sci. 2006, 51, 493-497.
[754] Bittmann, S., Gunther, M.W., Ulus, H. Tumoral calcinosis of the gluteal region in a child: case report with overview of different soft-tissue calcifications. J. Pediatric Surg. 2003, 38, E4-E7.
[755] Molloy, E.S., McCarthy, G.M. Basic calcium phosphate crystals: pathways to joint degeneration. Curr. Opin. Rheumatol. 2006, 18, 187-192.
[756] Giachelli, C.M. Vascular calcification mechanisms. J. Am. Soc. Nephrol. 2004, 15, 2959-2964.
[757] Kazama, J.J., Amizuka, N., Fukagawa, M. The making of a bone in blood vessels: from the soft shell to the hard bone. Kidney Int. 2007, 72, 533-534.
[758] Giannossi, M.L., Summa, V. Calcium phosphate urinary stones: prevalence, composition and management. In: Calcium phosphates: structure, synthesis, properties, and applications. Heimann, R.B. (Ed.) Nova Science Publishers: New York, NY, USA, 2012; pp. 343-361.
[759] Mukherjee, A.K. Human kidney stone analysis using X-ray powder diffraction. J. Indian Inst. Sci. 2014, 94, 35-44.
[760] Zhu, W.Y., Xu, M., Wang, F.X., Ouyang, J.M. Comparative analysis of compositions between calcium phosphate calculi and urinary crystallites in the stone-formers. Adv. Mater. Res. 2014, 881-883, 457-460.
[761] Huo, J., Liu, Z.Y., Wang, K.F., Xu, Z.Q. In vivo evaluation of chemical composition of eight types of urinary calculi using spiral computerized tomography in a Chinese population. J. Clin. Labor. Anal. 2015, 29, 370-374.
[762] Selvaraju, R., Raja, A., Thiruppathi, G. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization. Spectrochim. Acta A 2015, 137, 1397-1402.
[763] Çiftçioglu, N., Çiftçioglu, V., Vali, H., Turcott, E., Kajander, E.O. Sedimentary rocks in our mouth: dental pulp stones made by nanobacteria. P. SPIE1998, 3441, 130-137.
[764] Kodaka, T., Hirayama, A., Mori, R., Sano, T. Spherulitic brushite stones in the dental pulp of a cow. J. Electron Microsc. 1998, 47, 57-65.
[765] Hayashizaki, J., Ban, S., Nakagaki, H., Okumura, A., Yoshii, S., Robinson, C. Site specific mineral composition and microstructure of human supra-gingival dental calculus. Arch. Oral Biol. 2008, 53, 168-174.
[766] Zelentsov, E.L., Moroz, T.N., Kolmogorov, Y.P., Tolmachev, V.E., Dragun, G.N., Palchik, N.A., Grigorieva, T.N. The elemental SRXRF analysis and mineral composition of human salivary stones. NIM A 2001, 470, 417-421.
[767] Luers, J.C., Petry-Schmelzer, J.N., Hein, W.G., Gostian, A.O., Hüttenbrink, K.B., Beutner, D. Fragmentation of salivary stones with a 980nm diode laser. Auris Nasus Larynx 2014, 41, 76-80.
[768] Qiao, T., Ma, R.H., Luo, X.B., Luo, Z.L., Zheng, P.M., Yang, L.Q.A microstructural study of gallbladder stones using scanning electron microscopy. Microsc. Res. Techniq. 2013, 76, 443-452.
[769] Hussain, S.M., Al-Jashamy, K.A. Determination of chemical composition of gallbladder stones and their association with induction of cholangiocarcinoma. Asian Pac. J. Cancer Prev. 2013, 14, 6257-6260.
[770] Güney, M., Ayranci, E., Kaplan, S. Development and histology of the pineal gland in animals. In: Step by step experimental pinealectomy techniques in animals for researchers. Turgut, M. (Ed.) Nova Science Publishers: New York, NY, USA, 2013; pp. 33-52.
[771] Ortlepp, J.R., Schmitz, F., Mevissen, V., Weiß, S., Huster, J., Dronskowski, R., Langebartels, G., Autschbach, R., Zerres, K., Weber, C., Hanrath, P., Hoffmann, R. The amount of calcium-deficient hexagonal hydroxyapatite in aortic valves is influenced by gender and associated with genetic polymorphisms in patients with severe calcific aortic stenosis. Eur. Heart J. 2004, 25, 514-522.
[772] Tomazic, B.B. Physicochemical principles of cardiovascular calcification. Z. Kardiol. 2001, 90, Suppl. 3, III68-III80.
[773] Marra, S.P., Daghlian, C.P., Fillinger, M.F., Kennedy, F.E. Elemental composition, morphology and mechanical properties of calcified deposits obtained from abdominal aortic aneurysms. Acta Biomater. 2006, 2, 515-520.
[774] Kurabayashi, M. Role of calcium and phosphate in atherosclerosis and vascular calcification. Clin. Calcium 2013, 23, 489-496.
[775] Fitzpatrick, L.A., Turner, R.T., Ritman, E.R. Endochondral bone formation in the heart: a possible mechanism of coronary calcification. Endocrinology 2003, 144, 2214-2219.
[776] Matsui, K., Machida, H., Mitsuhashi, T., Omori, H., Nakaoka, T., Sakura, H., Ueno, E. Analysis of coronary arterial calcification components with coronary CT angiography using single-source dual-energy CT with fast tube voltage switching. Int. J. Cardiovasc. Imaging 2015, 31, 639-647.
[777] Suvorova, E.I., Buffat, P.A. Pathological mineralization of cardiac valves: causes and mechanism. J. Long Term Eff. Med. Implant. 2005, 15, 355-367.
[778] Bertazzo, S., Gentleman, E. Aortic valve calcification: a bone of contention. Eur. Heart J. 2016, (early view).
[779] Pettenazzo, E., Deiwick, M., Thiene, G., Molin, G., Glasmacher, B., Martignago, F., Bottio, T., Reul, H., Valente, M. Dynamic in vitro calcification of bioprosthetic porcine valves: evidence of apatite crystallization. J. Thorac. Cardiovasc. Surg. 2001, 121, 500-509.
[780] Schoen, F.J., Levy, R.J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg. 2005, 79, 1072-1080.
[781] Delogne, C., Lawford, P.V., Habesch, S.M., Carolan, V.A. Characterization of the calcification of cardiac valve bioprostheses by environmental scanning electron microscopy and vibrational spectroscopy. J. Microsc. 2007, 228, 62-77.
[782] Sensui, K., Saitoh, S., Kametani, K., Makino, K., Ohira, M., Kimura, T., Cheng, G.A., Hata, Y. Property analysis of ectopic calcification in the carpal tunnel identification of apatite crystals: a case report. Arch. Orthop. Trauma Surg. 2003, 123, 442-445.
[783] Namba, J., Murase, T., Moritomo, H., Denno, K., Henmi, S., Yoshikawa, H. Tumorous calcification causing carpal tunnel syndrome. Handchirurgie Mikrochirurgie Plastische Chirurgie 2008, 40, 294-298.
[784] Carlson, A.P., Yonas, H.M., Turner, P.T. Disorders of tumoral calcification of the spine: illustrative case study and review of the literature. J. Spinal Disord. Techn. 2007, 20, 97-103.
[785] Sprecher, E. Familial tumoral calcinosis: from characterization of a rare phenotype to the pathogenesis of ectopic calcification. J. Invest. Dermatol. 2010, 130, 652-660.
[786] Slavin, R.E., Wen, J., Barmada, A. Tumoral calcinosis – a pathogenetic overview: a histological and ultrastructural study with a report of two new cases, one in infancy. Int. J. Surg. Pathol. 2012, 20, 462-473.
[787] Kim, S.W., Kwon, Y.H., Park, C.K., Kim, Y.H. Tumoral calcinosis in the nose in a patient with scleroderma: an unusual site for a rare tumor. J. Craniofac. Surg. 2013, 24, 1483-1484.
[788] Burns, R.E., Bicknese, E.J., Westropp, J.L., Shiraki, R., Stalis, I.H. Tumoral calcinosis form of hydroxyapatite deposition disease in related red-bellied short-necked turtles, Emydura subglobosa. Vet. Pathol. 2013, 50, 443-450.
[789] Kim, C.J., Choi, S.K. Analysis of aqueous humor calcium and phosphate from cataract eyes with and without diabetes mellitus. KJO 2007, 21, 90-94.
[790] Koinzer, S., Scharpenack, P., Katzke, H., Leuschner, I., Roider, J. Cataracta ossea – ultrastructural and specimen analysis. Ann. Anat. 2009, 191, 563-567.
[791] Ho, K.L. Morphogenesis of Michaelis-Gutmann bodies in cerebral malacoplakia. An ultrastructural study. Arch. Pathol. Lab. Med. 1989, 113, 874-879.
[792] Katsamenis, O.L., Karoutsos, V., Kontostanos, K., Panagiotopoulos, E.C., Papadaki, H., Bouropoulos, N. Microstructural characterization of CPPD and hydroxyapatite crystal depositions on human menisci. Cryst. Res. Technol. 2012, 47, 1201-1209.
[793] Dessombz, A., Nguyen, C., Ea, H.K., Rouzière, S., Foy, E., Hannouche, D., Réguer, S., Picca, F.E., Thiaudière, D., Lioté, F., Daudon, M., Bazin, D. Combining μX-ray fluorescence, μXANES and μXRD to shed light on Zn2+ cations in cartilage and meniscus calcifications. J. Trace Elem. Med. Bio. 2013, 27, 326-333.
[794] Stock, S.R., Ignatiev, K., Lee, P.L., Abbott, K., Pachman, L.M. Pathological calcification in juvenile dermatomyositis (JDM): microCT and synchrotron X-ray diffraction reveal hydroxyapatite with varied microstructures. Connect. Tissue Res. 2004, 45, 248-256.
[795] Pachman, L.M., Boskey, A.L. Clinical manifestations and pathogenesis of hydroxyapatite crystal deposition in juvenile dermatomyositis. Curr. Rheumatol. Rep. 2006, 8, 236-243.
[796] Bazin, D., Haymann, J.P., Letavernier, E., Rode, J., Daudon, M. Calcifications pathologiques: un diagnostic médical basé sur leurs parameters physicochimiques. Presse Med. 2014, 43, 135-148.
[797] Hale, E.K. Metastatic calcification. Dermatology Online J. 2003, 9, 2 (http://dermatology.cdlib.org/94/NYU/Nov2001/3.html) – accessed in February 2017.
[798] Alkan, O., Tokmak, N., Demir, S., Yildirim, T. Metastatic pulmonary calcification in a patient with chronic renal failure. J. Radiol. Case Reports 2009, 3, 14-17.
[799] Grech, P., Ell, P.J., Martin, T.J., Barrington, N.A., Martin, T.J. Diagnosis in metabolic bone disease. Hodder Arnold H&S: USA, 1998; 300 pp.
[800] White, D.J. Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur. J. Oral Sci. 1997, 105, 508-522.
[801] Ciftçioğlu, N., McKay, D.S. Pathological calcification and replicating calcifying-nanoparticles: general approach and correlation. Pediatr. Res. 2010, 67, 490-499.
[802] Lee, R.S., Kayser, M.V., Ali, S.Y. Calcium phosphate microcrystal deposition in the human intervertebral disc. J. Anat. 2006, 208, 13-19.
[803] Rosenthal, A.K. Update in calcium deposition diseases. Curr. Opin. Rheumatol. 2007, 19, 158-162.
[804] Lagier, R., Baud, C.A. Magnesium whitlockite, a calcium phosphate crystal of special interest in pathology. Pathol. Res. Pract. 2003, 199, 329-335.
[805] Mohr, W. Apatitkrankheiten. Ihr pathohistologisches substrat in abhängigkeit von der gewebsaufbereitung und erörterungen zur pathogenese. Aktuel Rheumatol. 2003, 28, 53-58.
[806] Wesson, J.A., Ward, M.D. Pathological biomineralization of kidney stones. Elements 2007, 3, 415-421.
[807] Hayes, C.W., Conway, W.F. Calcium hydroxyapatite deposition disease. Radiographics: a review publication of the Radiological Society of North America Inc. 1990, 10, 1031-1048.
[808] Best, J.A., Shapiro, R.D., Kalmar, J., Westsson, P.L. Hydroxyapatite deposition disease of the temporomandibular joint in a patient with renal failure. J. Oral Maxillofac. Surg. 1997, 55, 1316-1322.
[809] Garcia, G.M., McCord, G.C., Kumar, R. Hydroxyapatite crystal deposition disease. Semin. Musculoskelet. Radiol. 2003, 7, 187-193.
[810] Melrose, J., Burkhardt, D., Taylor, T.K.F., Dillon, C.T., Read, R., Cake, M., Little, C.B. Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease. Eur. Spine J. 2009, 18, 479-489.
[811] LeGeros, R.Z. Orly, I., LeGeros, J.P., Gomez, C., Kazimiroff, J., Tarpley, T., Kerebel, B. Scanning electron microscopy and electron probe microanalyses of the crystalline components of human and animal dental calculi. Scan. Microsc. 1988, 2, 345-356.
[812] Grases, F., Llobera, A. Experimental model to study sedimentary kidney stones. Micron 1998, 29, 105-111.
[813] Lieske, J.C., Norris, R., Toback, F.G. Adhesion of hydroxyapatite crystals to anionic sites on the surface of renal epithelial cells. Am. J. Physiol. 1997, 273, F224-F233.
[814] Kirsch, T. Determinants of pathological mineralization. Curr. Opin. Rheumatol. 2006, 18, 174-180.
[815] Kirsch, T. Physiological and pathological mineralization: a complex multifactorial process. Curr. Opin. Orthop. 2007, 18, 425-427.
[816] Speer, M.Y., Giachelli, C.M. Regulation of cardiovascular calcification. Cardiovasc. Pathol. 2004, 13, 63-70.
[817] Giachelli, C.M. Inducers and inhibitors of biomineralization: lessons from pathological calcification. Orthod. Craniofac. Res. 2005, 8, 229-231.
[818] Giachelli, C.M., Speer, M.Y., Li, X., Rajachar, R.M., Yang, H. Regulation of vascular calcification: roles of phosphate and osteopontin. Circ. Res. 2005, 96, 717-722.
[819] Schmitt, C.P., Odenwald, T., Ritz, E. Calcium, calcium regulatory hormones, and calcimimetics: impact on cardiovascular mortality. J. Am. Soc. Nephrol. 2006, 17, 78-80.
[820] Azari, F., Vali, H., Guerquin-Kern, J.L., Wu, T.D., Croisy, A., Sears, S.K., Tabrizian, M., McKee, M.D. Intracellular precipitation of hydroxyapatite mineral and implications for pathologic calcification. J. Struct. Biol. 2008, 162, 468-479.
[821] Shafiee, M.A., Logan, A.G., Halperin, M.L. How protective mechanisms interact to prevent overnight calcium phosphate precipitation – an observational study to determine factors against calcium phosphate lithogenesis in a healthy cohort. Nephron 2016, 132, 238-243.
[822] Dey, A., Bomans, P.H.H., Müller, F.A., Will, J., Frederik, P.M., de With G., Sommerdijk, N.A.J.M. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nature Mater. 2010, 9, 1010-1014.
[823] Lamas, G.A., Ackermann, A. Clinical evaluation of chelation therapy: is there any wheat amidst the chaff? Am. Heart J. 2000, 140, 4-5.
[824] Knudtson, M.L., Wyse, D.G., Galbraith, P.D., Brant, R., Hildebrand, K., Paterson, D., Richardson, D., Burkart, C., Burgess, E. Chelation therapy for ischemic heart disease: a randomized controlled trial. JAMA 2002, 287, 481-486.
[825] Ehrlich, H., Koutsoukos, P.G., Demadis, K.D., Pokrovsky, O.S. Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history. Micron 2008, 39, 1062-1091.
[826] Ehrlich, H., Koutsoukos, P.G., Demadis, K.D., Pokrovsky, O.S. Principles of demineralization: modern strategies for the isolation of organic frameworks. Part II. Decalcification. Micron 2009, 40, 169-193.
[827] Green, D., Walsh, D., Mann, S., Oreffo, R.O.C. The potential of biomimesis in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons. Bone 2002, 30, 810-815.
[828] Burke, D.E., de Markey, C.A., le Quesne, P.W., Cook, J.M. Biomimetic synthesis of the bis-indole alkaloid macralstonine. J. Chem. Soc. Chem. Communic. 1972, 1346-1347.
[829] Breslow, R. Centenary lecture: biomimetic chemistry. Chem. Soc. Rev. 1972, 1, 553-580.
[830] Benyus, J.M. Biomimicry: innovation inspired by nature. William Morrow, New York, 1997, 308 pp.
[831] Watt, J.C. The behavior of calcium phosphate and calcium carbonate (bone salts) precipitated in various media, with applications to bone formation. Biol. Bull. 1923, 44, 280-288.
[832] Dorozhkin, S.V., Dorozhkina, E.I., Epple, M. A model system to provide a good in vitro simulation of biological mineralization. Cryst. Growth Des. 2004, 4, 389-395.
[833] Jahromi, M.T., Yao, G., Cerruti, M. The importance of amino acid interactions in the crystallization of hydroxyapatite. J. R. Soc. Interface 2013, 10, 20120906 (14 pages).
[834] Izquierdo-Barba, I., Salinas, A.J., Vallet-Regiì, M. Effect of the continuous solution exchange on the in vitro reactivity of a CaO – SiO2 sol-gel glass. J. Biomed. Mater. Res. 2000, 51, 191-199.
[835] Vallet-Regiì, M., Pėrez-Pariente, J., Izquierdo-Barba, I., Salinas, A.J. Compositional variations in the calcium phosphate layer growth on gel glasses soaked in a simulated body fluid. Chem. Mater. 2000, 12, 3770-3775.
[836] Koutsoukos, P., Amjad, Z., Tomson, M.B., Nancollas, G.H. Crystallization of calcium phosphates: a constant composition study. J. Am. Chem. Soc. 1980, 102, 1553-1557.
[837] Tomson, M.B., Nancollas, G.H. Mineralization kinetics: a constant composition approach. Science 1978, 200, 1059-1060.
[838] Manjubala, I., Scheler, S., Bössert, J., Jandt, K.D. Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater. 2006, 2, 75-84.
[839] Cai, H.Q., Li, Q.L., Zhou, J., Tang, J., Chen, H. Biomimetic synthesis and cytocompatibility of agar-hydroxyapatite composites. J. Clin. Rehabil. Tiss. Eng. Res. 2010, 14, 410-414.
[840] Yokoi, T., Kawashita, M., Kikuta, K., Ohtsuki, C. Biomimetic mineralization of calcium phosphate crystals in polyacrylamide hydrogel: effect of concentrations of calcium and phosphate ions on crystalline phases and morphology. Mater. Sci. Eng. C 2010, 30, 154-159.
[841] Sadjadi, M.S., Meskinfam, M., Sadeghi, B., Jazdarreh, H., Zare, K. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Mater. Chem. Phys. 2010, 124, 217-222.
[842] Dorozhkin, S.V., Dorozhkina, E.I. The influence of bovine serum albumin on the crystallization of calcium phosphates from a revised simulated body fluid. Colloid.Surf. A 2003, 215, 191-199.
[843] Dorozhkina, E.I., Dorozhkin, S.V. In vitro crystallization of carbonateapatite on cholesterol from a modified simulated body fluid. Colloid. Surf. A 2003, 223, 231-237.
[844] Dorozhkin, S.V., Dorozhkina, E.I., Epple, M. Precipitation of carbonateapatite from a revised simulated body fluid in the presence of glucose. J. Appl. Biomater. Biomech. 2003, 1, 200-208.
[845] Dorozhkin, S.V., Dorozhkina, E.I. In vitro simulation of vascular calcification by the controlled crystallization of amorphous calcium phosphates onto porous cholesterol. J. Mater. Sci. 2005, 40, 6417-6422.
[846] Dorozhkin, S.V. In vitro mineralization of silicon containing calcium phosphate bioceramics. J. Am. Ceram. Soc. 2007, 90, 244-249.
[847] Becker, A., Epple, M. A high-throughput crystallisation device to study biomineralisation in vitro. Mater. Res. Soc. Symp. Proc. 2005, 873E, K12.1.1-K12.1.10.
[848] Krings, M., Kanellopoulou, D., Mavrilas, D., Glasmacher, B. In vitro pH-controlled calcification of biological heart valve prostheses. Mat.-Wiss. u. Werkstofftech. 2006, 37, 432-435.
[849] 849. Wang, L.J., Guan, X.Y., Yin, H.Y., Moradian-Oldak, J., Nancollas, G.H. Mimicking the self-organized microstructure of tooth enamel. J. Phys. Chem. C 2008, 112, 5892-5899.
[850] Tas, A.C. The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater. 2014, 10, 1771-1792.
[851] Tyrode, M.V. The mode of action of some purgative salts. Arch. Int. Pharmacod. T. 1910, 20, 205-223.
[852] Earle, W.R. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J. Nat. Cancer Inst. 1943, 4, 165-212.
[853] Termine, J.D., Eanes, E.D. Calcium phosphate deposition from balanced salt solutions. Calcif. Tiss. Res. 1974, 15, 81-84.
[854] Hanks, J.H., Wallace, R.E. Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. Exp. Biol. Med. 1949, 71, 196-200.
[855] Shibata, Y., Takashima, H., Yamamoto, H., Miyazaki, T. Functionally gradient bonelike hydroxyapatite coating on a titanium metal substrate created by a discharging method in HBSS without organic molecules. Int. J. Oral Max. Impl. 2004, 19, 177-183.
[856] Marques, P.A.A.P., Serro, A.P., Saramago, B.J., Fernandes, A.C., Magalhães, M.C.F., Correia, R.N. Mineralisation of two phosphate ceramics in HBSS: role of albumin. Biomaterials 2003, 24, 451-460.
[857] Mareci, D., Chelariu, R., Ciurescu, G., Sutiman, D., Gloriant, T. Electrochemical aspects of Ti-Ta alloys in HBSS. Mater. Corros. 2010, 61, 768-774.
[858] Meuleman, N., Tondreau, T., Delforge, A., Dejeneffe, M., Massy, M., Libertalis, M., Bron, D., Lagneaux, L. Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical α-MEM medium. Eur. J. Haematol. 2006, 76, 309-316.
[859] Touny, A.H., Dawkins, H., Zhou, H., Bhaduri, S.B. Hydrolysis of monetite/chitosan composites in α-MEM and SBF solutions. J. Mater. Sci. Mater. Med. 2011, 22, 1101-1109.

[860] Coelho, M.J., Cabral, A.T., Fernandes, M.H. Human bone cell cultures in biocompatibility testing. Part I: Osteoblastic differentiation of serially passaged human bone marrow cells cultured in α-MEM and in DMEM. Biomaterials 2000, 21, 1087-1094.
[861] Mandel, S., Tas, A.C. Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5ºC. Mater. Sci. Eng. C 2010, 30, 245-254.
[862] Rohanová, D., Boccaccini, A.R., Horkavcová, D., Bozděchová, P., Bezdička, P., Častorálová, M. Is non-buffered DMEM solution a suitable medium for in vitro bioactivity tests?J. Mater. Chem. B 2014, 2, 5068-5076.
[863] Gao, Y.B., Weng, W.J., Deng, X.L., Cheng, K., Liu, X.G., Du, P.Y., Shen, G., Han, G.R. Surface morphology variations of porous nano-calcium phosphate/poly(L-lactic acid) composites in PBS. Key Eng. Mater. 2006, 309-311, 569-572.
[864] Lichtenauer, M., Nickl, S., Hoetzenecker, K., Mangold, A., Mitterbauer, A., Hacker, S., Zimmermann, M., Ankersmit, H.J. Effect of PBS solutions on chemokine secretion of human peripheral blood mononuclear cells. Am. Lab. 2011, 43, 30-33.
[865] Sato, Y., Sato, T., Niwa, M., Aoki, H. Precipitation of octacalcium phosphates on artificial enamel in artificial saliva. J. Mater. Sci. Mater. Med. 2006, 17, 1173-1177.
[866] Ionta, F.Q., Mendonça, F.L., de Oliveira, G.C., de Alencar, C.R.B., Honório, H.M., Magalhães, A.C., Rios, D. In vitro assessment of artificial saliva formulations on initial enamel erosion remineralization. J. Dent. 2014, 42, 175-179.
[867] Okulus, Z., Héberger, K., Voelkel, A. Sorption, solubility, and mass changes of hydroxyapatite-containing composites in artificial saliva, food simulating solutions, tea, and coffee. J. Appl. Polym. Sci. 2014, 131, 39856.
[868] Assimos, D. Rapid oxalate determination in blood and synthetic urine using a newly developed oxometer. J. Urol. 2013, 189, 575-576.
[869] Dbira, S., Bensalah, N., Bedoui, A., Cañizares, P., Rodrigo, M.A. Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes. Environ. Sci. Pollut. Res. 2015, 22, 6176-6184.
[870] Jenness, R., Koops, J. Preparation and properties of a salt solution which simulates milk ultrafiltrate. Neth. Milk Dairy J. 1962, 16, 153-164.
[871] Spanos, N., Patis, A., Kanellopoulou, D., Andritsos, N., Koutsoukos, P.G. Precipitation of calcium phosphate from simulated milk ultrafiltrate solutions. Cryst. Growth Des. 2007, 7, 25-29.

[872] Gao, R., van Halsema, F.E.D., Temminghoff, E.J.M., van Leeuwen, H.P., van Valenberg, H.J.F., Eisner, M.D., Giesbers, M., van Boekel, M.A.J.S. Modelling ion composition in simulated milk ultrafiltrate (SMUF). I: Influence of calcium phosphate precipitation. Food Chem. 2010, 122, 700-709.
[873] Gao, R., van Halsema, F.E.D., Temminghoff, E.J.M., van Leeuwen, H.P., van Valenberg, H.J.F., Eisner, M.D., van Boekel, M.A.J.S. Modelling ion composition in simulated milk ultrafiltrate (SMUF). II. Influence of pH, ionic strength and polyphosphates. Food Chem. 2010, 122, 710-715.
[874] Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J.Biomed. Mater. Res.1990, 24, 721-734.
[875] Lu, X., Leng, Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 2005, 26, 1097-1108.
[876] Tas, A.C. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials2000, 21, 1429-1438.
[877] Landi, E., Tampieri, A., Celotti, G., Langenati, R., Sandri, M., Sprio, S. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development. Biomaterials 2005, 26, 2835-2845.
[878] Jalota, S., Bhaduri, S.B., Tas, A.C. Using a synthetic body fluid (SBF) solution of 27 mM HCO3- to make bone substitutes more osteointegrative. Mater. Sci. Eng. C 2008, 28, 129-140.
[879] Kim, H.M., Miyazaki, T., Kokubo, T., Nakamura, T. Revised simulated body fluid. In: Bioceramics 13, Giannini, S., Moroni, A. (Eds.) Trans Tech Publ.:Pfaffikon, Switzerland, 2001, 192-195, pp. 47-50.
[880] Oyane, A., Kim, H.M., Furuya, T., Kokubo, T., Miyazaki, T., Nakamura, T. Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. A 2003, 65A, 188-195.
[881] Müller, L., Müller, F.A. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006, 2, 181-189.
[882] Hu, K., Yang, X.J., Cai, Y.L., Cui, Z.D., Wei, Q. Preparation of bone-like composite coating using a modified simulated body fluid with high Ca and P concentrations. Surf. Coat. Technol. 2006, 201, 1902-1906.
[883] Wen, Z., Wu, C., Dai, C., Yang, F. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid. J. Alloy Compd. 2009, 488, 392-399.
[884] Gemelli, E., Resende, C.X., de Soares, G.D.A. Nucleation and growth of octacalcium phosphate on treated titanium by immersion in a simplified simulated body fluid. J. Mater. Sci. Mater. Med. 2010, 21, 2035-2047.
[885] Kokubo, T., Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907-2915.
[886] Bohner, M., Lemaitre, J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009, 30, 2175-2179.
[887] Pan, H., Zhao, X., Darvell, B.W., Lu, W.W. Apatite-formation ability – predictor of “bioactivity”? Acta Biomater. 2010, 6, 4181-4188.
[888] Zadpoor, A.A. Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. Mater. Sci. Eng. C 2014, 35, 134-143.
[889] Kim, H.M. Ceramic bioactivity and related biomimetic strategy. Curr. Opin. Solid State Mater. Sci. 2003, 7, 289-299.
[890] Marques, P.A.A.P., Magalhães, M.C.F., Correia,R.N. Inorganic plasma with physiological CO2/HCO3- buffer. Biomaterials 2003, 24, 1541-1548.
[891] Dorozhkina, E.I., Dorozhkin, S.V. Surface mineralisation of hydroxyapatite in modified simulated body fluid (mSBF) with higher amounts of hydrogencarbonate ions. Colloid. Surf. A 2002, 210, 41-48.
[892] Marques, P.A.A.P., Cachinho, S.C.P., Magalhães, M.C.F., Correia,R.N., Fernandes, M.H.V. Mineralization of bioceramics in simulated plasma with physiological CO2/HCO3- buffer and albumin. J. Mater. Chem. 2004, 14, 1861-1866.
[893] Pasinli, A., Yuksel, M., Celik, E., Sener, S., Tas, A.C. A new approach in biomimetic synthesis of calcium phosphate coatings using lactic acid – Na lactate buffered body fluid solution. Acta Biomater. 2010, 6, 2282-2288.
[894] Sun, T., Wang, M. Electrochemical deposition of apatite/collagen composite coating on NiTi shape memory alloy and coating properties. Mater. Res. Soc. Symp. Proc. 2010, 1239, 141-146.
[895] Dorozhkin, S.V., Dorozhkina, E.I. Crystallization from a milk-based revised simulated body fluid. Biomed. Mater. 2007, 2, 87-92.
[896] Miyaji, F., Kim, H.M., Handa, S., Kokubo, T., Nakamura, T. Bonelike apatite coating on organic polymers: novel nucleation process using sodium silicate solution. Biomaterials 1999, 20, 913-919.
[897] Kim, H.M., Kishimoto, K., Miyaji, F., Kokubo, T., Yao, T., Suetsugu, Y., Tanaka, J., Nakamura, T. Composition and structure of apatite formed on organic polymer in simulated body fluid with a high content of carbonate ion. J. Mater. Sci. Mater. Med. 2000, 11, 421-426.
[898] Barrere, F., van Blitterswijk, C.A., de Groot, K., Layrolle, P. Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials 2002, 23, 1921-1930.
[899] Barrere, F., van Blitterswijk, C.A., de Groot, K., Layrolle, P. Nucleation of biomimetic Ca-P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium. Biomaterials 2002, 23, 2211-2220.
[900] Tas, A.C., Bhaduri, S.B. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10x simulated body fluid. J. Mater. Res. 2004, 19, 2742-2749.
[901] Demirtaş, T.T., Kaynak, G., Gümüşderelioğlu, M. Bone-like hydroxyapatite precipitated from 10×SBF-like solutionby microwave irradiation. Mater. Sci. Eng. C 2015, 49, 713-719.
[902] Dorozhkina, E.I., Dorozhkin, S.V. Structure and properties of the precipitates formed from condensed solutions of the revised simulated body fluid. J. Biomed. Mater. Res. A 2003, 67A, 578-581.
[903] Sato, K. Mechanism of hydroxyapatite mineralization in biological systems. J. Ceram. Soc. Jpn. 2007, 115, 124-130.
[904] Nassif, N., Gobeaux, F., Seto, J., Belamie, E., Davidson, P., Panine, P., Mosser, G., Fratzl, P., Giraud Guille, M.M. Self-assembled collagen-apatite matrix with bone-like hierarchy. Chem. Mater. 2010, 22, 3307-3309.
[905] Li, H., Guo, Z., Xue, B., Zhang, Y., Huang, W. Collagen modulating crystallization of apatite in a biomimetic gel system. Ceram. Int. 2011, 37, 2305-2310.
[906] Xia, Z., Yu, X., Wei, M. Biomimetic collagen/apatite coating formation on Ti6Al4V substrates. J. Biomed. Mater. Res. B (Appl. Biomater.) 2012, 100B, 871-881.
[907] Antebi, B., Cheng, X., Harris, J.N., Gower, L.B., Chen, X.D., Ling, J. Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tiss. Eng. C 2013, 19, 487-496.
[908] Xia, Z., Yu, X., Jiang, X., Brody, H.D., Rowe, D.W., Wei, M. Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater. 2013, 9, 7308-7319.
[909] Xia, Z., Villa, M.M., Wei, M.A biomimetic collagen-apatite scaffold with a multi-level lamellar structure for bone tissue engineering. J. Mater. Chem. B 2014, 2, 1998-2007.
[910] Rosseeva, E.V., Buder, J., Simon, P., Schwarz, U., Frank-Kamenetskaya, O.V., Kniep, R. Synthesis, characterization, and morphogenesis of carbonated fluorapatite-gelatine nanocomposites: a complex biomimetic approach toward the mineralization of hard tissues. Chem. Mater. 2008, 20, 6003-6013.
[911] Liu, X., Smith, L.A., Hu, J., Ma, P.X. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 2009, 30, 2252-2258.
[912] Raz, M., Moztarzadeh, F., Shokrgoza, M.A., Azami, M., Tahriri, M. Development of biomimetic gelatin-chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications. Int. J. Mater. Res. 2014, 105, 493-501.
[913] Wang, G., Zheng, L., Zhao, H., Miao, J., Sun, C., Liu, H., Huang, Z., Yu, X., Wang, J., Tao, X. Construction of a fluorescent nanostructured chitosan-hydroxyapatite scaffold by nanocrystallon induced biomimetic mineralization and its cell biocompatibility. ACS Appl. Mater. Interf. 2011, 3, 1692-1701.
[914] Lu, Z.H., Yin, C.G., Zhao, D.M. Biomimetic scaffolds containing chitosan and hydroxyapatite for bone tissue engineering. Adv. Mater. Res. 2014, 971-973, 21-25.
[915] Wang, J., Layrolle, P., Stigter, M., de Groot, K. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials 2004, 25, 583-592.
[916] Bigi, A., Boanini, E., Bracci, B., Facchini, A., Panzavolta, S., Segatti, F., Sturba, L. Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 2005, 26, 4085-4089.
[917] Liu, F., Xu, J., Wang, F., Zhao, L., Shimizu, T. Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy. Surf. Coat. Technol. 2010, 204, 3294-3299.
[918] Liu, F., Qiu, W., Wang, H.R., Song, Y., Wang, F.P. Biomimetic deposition of apatite coatings on biomedical NiTi alloy coated with amorphous titanium oxide by microarc oxidation. Mater. Sci. Technol. 2013, 29, 749-753.
[919] Dorozhkin, S.V. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 2014, 10, 2919-2934.
[920] Iwatsubo, T., Kusumocahyo, S.P., Kanamori, T., Shinbo, T. Mineralization of hydroxyapatite on a polymer substrate in a solution supersaturated by polyelectrolyte. J. Appl. Polymer Sci. 2006, 100, 1465-1470.
[921] Bodin, A., Gustafsson, L., Gatenholm, P. Surface-engineered bacterial cellulose as template for crystallization of calcium phosphate. J. Biomater. Sci. Polym. Ed. 2006, 17, 435-447.
[922] Toworfe, G.K., Composto, R.J., Shapiro, I.M., Ducheyne, P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 2006, 27, 631-642.
[923] Spoerke, E.D., Stupp, S.I. Colonization of organoapatite-titanium mesh by preosteoblastic cells. J. Biomed. Mater. Res. A 2003, 67A, 960-969.
[924] Storrie, H., Stupp, S.I. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials 2005, 26, 5492-5499.
[925] Hench, L.L. Biomaterials: a forecast for the future. Biomaterials 1998, 19, 1419-1423.
[926] Jones, J.R., Hench, L.L. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 2003, 7, 301-307.
[927] Griffith, L.G., Naughton, G. Tissue engineering – current challenges and expanding opportunities. Science 2002, 295, 1009-1014.
[928] Hench, L.L., Polak, J.M. Third-generation biomedical materials. Science 2002, 295, 1014-1017.
[929] Ratner, B.D., Bryant, S.J. Biomaterials: where we have been and where we are going. Ann. Rev. Biomed. Eng. 2004, 6, 41-75.
[930] Zhang, F., Lin, K., Chang, J., Lu, J., Ning, C. Spark plasma sintering of macroporous calcium phosphate scaffolds from nanocrystalline powders. J. Eur. Ceram. Soc. 2008, 28, 539-545.
[931] Grossin, D., Rollin-Martinet, S., Estournès, C., Rossignol, F., Champion, E., Combes, C., Rey, C., Geoffroy, C., Drouet, C. Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects. Acta Biomater. 2010, 6, 577-585.
[932] Kolk, A., Handschel, J., Drescher, W., Rothamel, D., Kloss, F., Blessmann, M., Heiland, M., Wolff, K.D., Smeets, R.Current trends and future perspectives of bone substitute materials –from space holders to innovative biomaterials. J. Cran. Maxillofac. Surg. 2012, 40, 706-718.
[933] Garg, T., Goyal, A.K.Biomaterial-based scaffolds – current status and future directions. Expert Opin. Drug Deliv. 2014, 11, 767-789.
[934] Tang, J.D., Diehl, S.V. Omics and the future of sustainable biomaterials. ACS Symp. Ser. 2014, 1158, 59-79.
[935] Zhou, H., Lee, J.Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011, 7, 2769-2781.
[936] Zakaria, S.M., Zein, S.H.S., Othman, M.R., Yang, F., Jansen, J.A.Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tiss. Eng.B 2013, 19, 431-441.
[937] Shao, R., Quan, R., Zhang, L., Wei, X., Yang, D., Xie, S.Porous hydroxyapatite bioceramics in bone tissue engineering: current uses and perspectives. J. Ceram. Soc. Jpn. 2015, 123, 17-20.
[938] Dorozhkin, S.V. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J. Funct. Biomater. 2015, 6, 708-832.
[939] Dorozhkin, S.V. Nanodimensional and nanocrystalline calcium orthophosphates. Int. J. Chem. Mater. Sci. 2013, 1, 105-174.
[940] Galea, L., Bohner, M., Thuering, J., Doebelin, N., Aneziris, C.G., Graule, T.Control of the size, shape and composition of highly uniform, non-agglomerated, sub-micrometer β-tricalcium phosphate and dicalcium phosphate platelets. Biomaterials 2013, 34, 6388-6401.
[941] Kalia, P., Vizcay-Barrena, G., Fan, J.P., Warley, A., di Silvio, L., Huang, J.Nanohydroxyapatite shape and its potential role in bone formation: an analytical study. J. R. Soc. Interface2014, 11, 20140004, (11 pages).
[942] Marya, I.R., Soniaa, S., Vijia, S., Mangalaraja, D., Viswanathana, C., Ponpandian, N.Novel multiform morphologies of hydroxyapatite: synthesis and growth mechanism. Appl. Surf. Sci. 2016, 361, 25-32.
[943] Dorozhkin, S.V. Green chemical synthesis of calcium phosphate bioceramics. J.Appl. Biomater. Biomech. 2008, 6, 104-109.
[944] Daculsi, G., Miramond, T., Borget, P., Baroth, S. Smart calcium phosphate bioceramic scaffold for bone tissueengineering. Key Eng. Mater. 2013, 529-530, 19-23.
[945] Feng, J., Chong, M., Chan, J., Zhang, Z.Y., Teoh, S.H., Thian, E.S.Apatite-based microcarriers for bone tissue engineering. Key Eng. Mater. 2013, 529-530, 34-39.
[946] Miura, M., Fukasawa, J., Yasutomi, Y., Maehashi, H., Matsuura, T., Aizawa, M. Reconstruction of tissue-engineered bone using an apatite-fiberscaffold, rat bone marrow cells and radial-flow bioreactor: optimizationof flow rate in circulating medium. Key Eng. Mater. 2013, 529-530,397-401.
[947] Wang, P., Zhao, L., Liu, J., Weir, M.D., Zhou, X., Xu, H.H.K. Bone tissue engineering via nanostructured calciumphosphate biomaterials and stem cells. Bone Res. 2014, 2, 14017 (14 pages).
[948] Ohura, K., Bohner, M., Hardouin, P., Lemaître, J., Pasquier, G., Flautre, B. Resorption of, and bone formation from, new β-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J. Biomed. Mater. Res. 1996, 30, 193-200.
[949] Wald, T., Spoutil, F., Osickova, A., Prochazkova, M., Benada, O., Kasparek, P., Bumba, L., Klein, O.D., Sedlacek, R., Sebo, P., Prochazka, J., Osicka, R. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl. Acad. Sci. USA 2017, 114, E1641-E1650.

Part II

[1] Dorozhkin, S.V. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford, Singapore, 2012, 850 pp.
[2] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016, 405 pp.
[3] Roycroft, P.D., Cuypers, M. The etymology of the mineral name ‘apatite’: a clarification. Irish J. Earth Sci.2015, 33, 71-75.
[4] McConnell, D. Apatite its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. Applied mineralogy 5. Springer, New York, Wien. 1973, 111 pp.
[5] http://en.wikipedia.org/wiki/Calcium (accessed in February 2017).
[6] Davy, H. The Bakerian lecture: On some new phenomena of chemical changes produced by electricity, particularly the decomposition of the fixed alkalies, and the exhibition of the new substances which constitute their bases; and on the general nature of alkaline bodies. Phil. Trans. R. Soc. Lond. 1808, 98, 1-44.
[7] Davy, H. Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia. Phil. Trans. R. Soc. Lond. 1808, 98, 333-370.
[8] http://en.wikipedia.org/wiki/Phosphorus (accessed in February 2017).
[9] Le phosphore de M. Krafft ov liqueur & terra ſeiche de ſa compoſition qui iettent continuellement de grands éclats de lumiere. Le Journal des Sçavans 1677, 190-191.
[10] Boyle, R. The aerial noctiluca, or, Some new phœnomena, and a process of a factitious self-shining substance imparted in a letter to a friend living in the country. London: printed by Tho. Snowden, and are to be sold by Nath. Ranew, bookseller in St. Paul’s Church-Yard, 1680.

[11] A paper of the honourable Robert Boyl’s, depoſited with the secretaries of the Royal Society, Octob. 14. 1680. and opened ſince his death; being an account of his making the phoſphorus, etc. Phil. Trans. 1693, 17, 583-584. (please, note the old-fashioned replacement of letter “s” by “ſ” in some words).
[12] http://en.wikipedia.org/wiki/History (accessed in February 2017).
[13] Driskell, T.D. Early history of calcium phosphate materials and coatings. In: Characterization and performance of calcium phosphate coatings for implants. ASTM STP 1196. Horowitz, E. Parr, J.E. (Eds.), American Society for Testing and Materials, Philadelphia, USA, 1994, pp. 1-9.
[14] Albee, F.H., assisted by Morrison, H.F. Studies in bone growth triple calcium phosphate as a stimulus to osteogenesis. Ann Surg. 1920, 71, 32-39.
[15] Shackelford, J.F. Bioceramics – an historical perspective. Mater. Sci. Forum 1999, 293, 1-4.
[16] Hulbert, S.F., Hench, L.L., Forbers, D., Bowman, L.S. History of bioceramics. Ceram. Int. 1982, 8, 131-140.
[17] Hulbert, S.F., Hench, L.L., Forbers, D., Bowman, L.S. History of bioceramics. In: Ceramics in Surgery. Vincenzini, P. (Ed.), Elsevier, Amsterdam, The Netherlands. 1983, pp. 3-29.
[18] Shepperd, J. The early biological history of calcium phosphates. In: Fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. Epinette, J.A., Manley, M.T. (Eds.), Springer, France, 2004, pp. 3-8.
[19] Leeuwenhoek, A.P. Microſcopical obſervations from M. Leeuwenhoeck, concerning blood, milk, bones, the brain, spitle, and cuticula, etc. communicated by the ſaid obſerver to the publiſher in a letter, dated June 1. 1674. Phil. Trans. 1674, 9, 121-128. (please, note the old-fashioned replacement of letter “s” by “ſ” in some words).
[20] Leeuwenhoek, A.P. Microſcopical obſervations of the structure of teeth and other bones: made and communicated, in a letter by Mr. Anthony Leeuwenhoeck. Phil. Trans. 1677, 12, 133-142.
[21] Leeuwenhoek, A.P. An abſtract of a letter from Mr. Anthony Leevvenhoeck at Delft, dated Sep. 17. 1683. containing ſome microſcopical obſervations, about animals in the ſcurf of the teeth, the ſubstance call’d worms in the noſe, the cuticula conſiſting of scales. Phil. Trans. 1684, 14, 1568-574.
[22] Leeuwenhoek, A.P. An extract of a letter from Mr. Anth. Van Leuwenhoek, concerning animalcules found on the teeth; of the scaleyneß of the skin, &c. Phil. Trans. 1693, 17, 646-649.
[23] Leeuwenhoek, A.P. Part of a letter of Mr. Anthony van Leeuwenhoeck, dated Delft, Sept. 10. 1697. concerning the eggs of snails, roots of vegetables, teeth, and young oyſters. Phil. Trans. 1695, 19, 790-799.
[24] Havers, C. Osteologia nova, or some New Observations of the bones, and the Parts belonging to them, with the manner of their Accretion, and Nutrition, Communicated to the Royal Society in ſeveral Diſcourſes. I. Of the Membrane, Nature, Conſtituent Parts, and Internal Structure of the Bones. II. Of Accretion and Nutrition; alſo of the Affections of the Bones in the Rickets, and of Venereal Nodes. III. Of the Medulla, or Marrow. IV. Of the Mucilaginous Glands, with the Etiology or Explication of the Cauſes of a Rheumatiſm, and the Gout, and the manner how they are produced. To which is added, A Fifth Discourſe of the Cartilages. London: Printed for Samuel Smith, at the Princes Arms in St. Paul’s Church-Yard. 1691, 294 pp.
[25] An abſtract of a treatiſe of the calculus humanus in anſwer to ſeveral queries propoſed by Sir John Hoſkins; by the learned and ingenious Fred. Slare M.D. and fellow of the Royal Society. Phil. Trans. 1684, 14, 523-533.
[26] Fourcroy, A.F. A general system of chemical knowledge; and its application to the phenomena of nature and art. In eleven volumes. Translated from the original French by William Nicholson. Vol. IX. Printed for Cadell and Davies, Strand; Longman and Rees, G. and J. Robinson, and J. Walker, Paternoster-row; Vernor and Hood, Poultry; Clarke and sons, Portugal-street; Cuthell and Martin, and Ogilvy and son, Holborn; and S. Bagster, Strand. London, 1804, 561 pp.
[27] Roscoe, H.E., Schorlemmer, C. A treatise on chemistry. Volume I: The non-metallic elements. Macmillan and Co., London, 1881, 751 pp.
[28] Thomson, T. Chemistry of animal bodies. Edinburgh: Adam and Charles Black. Longman, Brown, Green, & Longmans, London. 1843, 702 pp.
[29] Scheele, C.W. Chemische Untersuchung des Flusspats und dessen Säure. In: Carl Wilhelm Scheele, Apotheker zu Köping in Schweden, der Königl. Academie der Wiſſenſchaften zu Stockholm, der Akademie zu Turin, der Churfürſtlichen Maynziſchen Akademie nützlicher Wiſſenſchaften zu Erfurth; und der Geſellſchaft naturforſchender Freunde zu Berlin etc. etc. Mitglied, Sämmtliche physische und chemische Werke, nach dem Tode des Verfaſſers geſammelt und in deutſcher Sprache herausgegeben von D. Sigismund Friedrich Hermbstädt, Zweyter Band. Berlin, 1793. Bet Heinrich August Rottmann, 446 pp., pp.5-32.
[30] A dictionary of chemistry. Containing the theory and practice of that science: its application to natural philosophy, natural history, medicine, and animal economy: with full explanations of the qualities and modes of action of chemical remedies: and the fundamental principles of the arts, trades, and manufactures, dependent on chemistry. Translated from the French. With notes, additions, and plates. The second edition. To which is added, as an appendix, a treatise on the various kinds of permanently elastic fluids, or gases. Vol. III. Printed for T. Cadell, and P. Elmsly, in the Strand. London, 1777, 666 pp.
[31] The monthly review; or, literary journal: by several hands. Vol. XLII. Printed for R. Griffiths: and sold by T. Becket and P.A. de Hondt, in the Strand. London, 1770, 584 pp.
[32] Extrait d’une lettre de M. Klaproth, a M. Ferber, Conſeiller des Mines de Pruſſe: Sur l’Analyse de l’Apatit. In: Observations sur la physique, sur l’historie naturelle et sur les arts, avec des planches en taille-douce; dédiées a MGR. le comte d’artois; Par M. l‘Abbé Rozier, de pluſieurs Académies; par M. J. A. Mongez le jeune, Chanoine Régulier de Sainte Geneviève, des Académies Royales des Sciences de Rouen, de Dijon, de Lyon, etc. etc. et par M. de la Métherie, Doeteur en Médecine, de pluſieurs Académies. Juillet 1788. tome XXXIII. A Paris, au bureau du Journal de Phyſique, rue & hôtel Serpėnte. pp. 313-314.
[33] Catalogue methodique et raisonné de la collection des fossils de MLLE. Éléonore de Raab. Par MR. de Born. Tome premier. A Vienne. Aux Dépens de J.V. Degen, par I. Alberti, 1790, 504 pp.
[34] Crell, L. Chemische Annalen für die Freunde der Naturlehre, Arznengelahrtheit, Haushaltungskunst und Manufakturen. Helmstadt und Leipzig, in ber J.O. Müllerschen Buchhandlung, 1789, 568 pp.
[35] Exchaquet, H., Struve, Nouvelle méthode d’obtenir l’acide phoſphorique des os, plus pur que par les procédés ordinaries. Histoire et memoires de la société des sciences physiques de Lausanne. Tome second. Années 1784, 1785 &1786. A Lausanne, Chez Mourer, Libraire. 1789, pp. 219-227.
[36] Lavoisier, Elements of chemistry, in a new systematic order, containing all the modern discoveries. Translated from the French, by Robert Kerr. Printed for William Creech, and sold in London by G.G. and J.J. Robinsons. Edinburgh, 1790, 511 pp.
[37] Pelletier, B. Donadei, L. Mémoire sur le phosphate calcaire. Journal de Physique 1790, 37, Part II, 161-168.
[38] Pelletier, B. Donadei, L.Mé moire sur le phosphate calcaire. Ann. Chim. 1790, 7, 79-96.
[39] Fourcroy, Elements of natural history and chemistry. Tranſlated from the ſast Paris Edition, 1789, being the third, in 5 vols 8vo. Vol. III. Aaron C. Jewett, London: Printed for C. Elliot and T. Kay, at Dr. Cullen’s Head, No 332. Strand; and C. Elliot, Edinburgh. 1790, 594 pp.
[40] Fourcroy, A.F. A general system of chemical knowledge; and its application to the phenomena of nature and art. In eleven volumes. Translated from the original French by William Nicholson. Vol. III. Printed for Cadell and Davies, Strand; Longman and Rees, G. and J. Robinson, and J. Walker, Paternoster-row; Vernor and Hood, Poultry; Clarke and sons, Portugal-street; Cuthell and Martin, and Ogilvy and son, Holborn; and S. Bagster, Strand. London, 1804, 472 pp.
[41] Encyclopaedia Perthensis; or Universal dictionary of the arts, Sciences, literature, &c. intended to supersede the use of other books of reference. Second edition, in twenty-three volumes. Vol. XVII. Printed by John Brown, Anchor Close, for the proprietors, and sold by all the booksellers in the United Kingdom. Edinburgh, 1816, 720 pp.
[42] Dundonald, E. A treatise, shewing the intimate connection that subsists between agriculture and chemistry. Addressed to the cultivators of the soil, to the proprietors of fens and mosses, in Great Britain and Ireland, and to the proprietors of West India Estates. London: printed for the author, and sold by R. Edwards, No. 142, New Bond street. March 1795, 252 pp.
[43] Nisbet, W. A general dictionary of chemistry, containing the leading principles of the science, in regard to facts, experiments, and nomenclature. For the use of students. Printed for S. Highley (successor to the late Mr. John Murray). London, No. 24, Fleet-street, 1805, 415 pp.
[44] Murray, J. A system of chemistry. In four volumes. Vol. I. Printed for Longman, Hurst, Rees & Orme, London; and William Creech, and A. Constable & Co. Edinburgh. Edinburgh, 1806, 592 pp.
[45] A dictionary of chemistry and mineralogy, with an account of the processes employed in many of the most important chemical manufactures. To which are added a description of chemical apparatus, and various useful tables of weights and measures, chemical instruments, &c. &c. Illustrated with fifteen engravings. By A. & C. R. Aikin. Vol. II. London: Printed for John and Arthur Arch, Couninll; and William Phillips, George Yard, Lombard Street. 1807, 176 pp.
[46] Bache, F. A system of chemistry for the use of students of medicine. Printed and published for the author. William Fry, Printer. Philadelphia, 1819, 624 pp.
[47] Encyclopædia Britannica; or, a dictionary of arts, sciences, and miscellaneous literature; enlarged and improved. The fourth edition. Vol. V. Printed by Andrew Bell, the Proprietor, for Archibald Constable and Company, Edinburgh; and for Vernor, Hood, and Sharpe, London. Edinburgh, 1810, 797 pp.
[48] Good, J.M., Olinthus, G., Newton, B. Pantologia. A new cyclopædia, comprehending a complete series of Essays, Treatises, and Systems, alphabetically arranged; with a general dictionary of arts, sciences, and words: the whole presenting a distinct survey of Human Genius, Learning, and Industry. vol. IX. P – PYX, G. Kearsley, London. 1813.
[49] Thomson, T. Experiments to determine the true Atomic Weight of Strontian, Lime, Magnesia, Phosphoric Acid, and Arsenic Acid. The Annals of Philosophy. New Series. January to June, 1821. Vol. I of the seventeenth from the commencement. London: Printed by C. Baldwin, New Bridge-street; For Baldwin, Cradock, and Joy, Paternoster-row.
[50] Henry, W. The elements of experimental chemistry. The ninth edition, comprehending all the recent discoveries; and illustrated with ten plates by lowry, and several engravings on wood. In two volumes. Vol. I. London; Printed for Baldwin, Cradock, and Joy, Paternoster-row, and R. Hunter, St. Paul’s church yard. 1823, 639 pp.
[51] http://en.wikipedia.org/wiki/Equivalent_weight (accessed in February 2017).
[52] Webster, J.W. A manual of chemistry, on the basis of professor Brande’s; containing the principle facts of the science, arranged in the order in which they are discussed and illustrated in the lectures at Harvard University, N.E., The United States Military Academy, West Point; Brown University, Amherst, and several other colleges in the United States. Compiled from the works of the most distinguished chemists. Designed as a text book for the use of students, and persons attending lectures on chemistry. The second edition, comprehending the recent discoveries, and illustrated with nine plates and several engravings on wood. Boston: Published by Richardson and Lord, No. 133, Washington Street. 1828, 631 pp.
[53] Green, J. A text book of chemical philosophy. On the basis of Dr. Turners elements of chemistry; in which the principle discoveries and doctrines of the science are arranged in a new systematic order. Philadelphia: R.H. Smalt – Chesnut street. 1829, 616 pp.
[54] Rose, G. Über die chemische Zusammensetzung der Apatite. Ann. Phys. 1827, 9, 185-214.
[55] Sainte-Claire Deville H., Caron, H. On apatite, wagnerite, and some artificial species of metallic phosphates. Phil. Mag. S. 4 1859, 17, 128-131.
[56] Muhlenberg, W.F. Address in Hygiene. In: Transactions of the medical society of the state of Pennsylvania, at its thirty-third annual session, held at Titusville, May 10, 11 and 12, 1832. Vol. XIV. Times printing house. Philadelphia, 1832, pp. 81-102.
[57] Graham, T. Researches on the arseniates, phosphates, and modifications of phosphoric acid. Phil. Trans. R. Soc. Lond. 1833, 123, 253-284.
[58] Mitscherlich, E. Lehrbuch der Chemie. Erster Band. Die Metalloïde. Vierte Auflage. Berlin, 1844, 609 pp.
[59] Joy, C.A. Miscellaneous chemical researchers. Inaugural dissertation for the degree of doctor of philosophy, addressed to the philosophical faculty of the University of Göttingen. Göttingen: Printed at the university press, by E. A. Huth. 1853, 49 pp.
[60] Daubrée, Extrait d’un mémoir sur le gisement, la constitution et l’origine des amas de minerai d’étain. Bulletin de la Société Géologique de France. Tome 12, 1840 a 1841. Paris, au lieu des séances de la société, aus du Vieux-Colombier, 16, 1841, 567 pp.
[61] von Kobell, F. Instructions for the discrimination of minerals by simple chemical experiments. Translated from the German by Robert Corbet Campbell. Glasgow: Published by Richard Griffin & company. and Thomas Tegg, London. 1841, 51 pp.
[62] Gray, A. Elements of chemistry; containing the principles of the science, both experimental and practical, intended as a text-book for academies, high schools, and colleges. Illustrated with numerous engravings. Second edition, revised and enlarged. New York: Published by Dayton and Saxton, school book publishers, Corner of Fulton and Nassau Streets. Boston: Saxton and Pierce. 1841, 396 pp.
[63] Pereira, J. The elements of material medica and therapeutics. Forth edition, enlarged and improved, including notices of most of the medicinal substrates in use in the civilized world, and forming an Encyclopædia of Materia Medica. Vol. I. London: printed for Longman, Brown, Green, and Longmans. Paternoster row. 1854, 831 pp.
[64] Fremy, E. Recherches chimiques sur les os. Ann. Chim. Pphys.1855, 43, 47-107.
[65] Percy, J. Notice of a new hydrated phosphate of lime. Mem. Proc. Chem. Soc. 1843, 2, 222-223.
[66] Percy, J. Notice of a new hydrated phosphate of lime. Phil. Mag. S. 3 1845, 26, 194-195.
[67] Berzelius, J. Untersuchungen über die Zusammensetzung der Phosphorsäure, der phosphorigen Säure und ihrer Salze. Ann. Phys. 1816, 53, 393-446.
[68] Berzelius, J. Ueber basische phosphorsaure Kalkerde. Justus Liebigs Ann. Chem. 1845, 53, 286-288.
[69] Rees, G.O. On separating the phosphates of lime and magnesia. Phil. Mag. S. 3 1883, 2, 442-443.
[70] Baruel, M. Analysis of a double phosphate of lead and lime. J. Franklin Inst. 1838, 25, 343.
[71] Jones, H.B. Contributions to the chemistry of the urine. On the variations in the alkaline and earthy phosphates in the healthy state, and on the alkalescence of the urine from fixed alkalies. Phil. Trans. R. Soc. Lond. 1845, 135, 335-349.
[72] Jones, H.B. Contributions to the chemistry of the urine. Part II. On the variations in the alkaline and earthy phosphates in disease. Phil. Trans. R. Soc. Lond. 1846, 136, 449-459.
[73] Jones, H.B. Contributions to the chemistry of the urine. Paper III. Part IV. On the variations of the sulphates and phosphates in disease. Phil. Trans. R. Soc. Lond. 1850, 140, 661-668.
[74] Smith, J.D. Ueber die Zusammensetzung verschiedener Arten von südamerikanischem Guano, nebst der Beschreibung einer neuen Methode, Ammoniak zu bestimmen, so wie Kalk und Magnesia, wenn sie an Phosphorsäure gebunden sind, zu trennen. J. Prakt. Chem. 1845, 35, 277-291.
[75] Lassaigne, Solubility of phosphate of lime in water saturated with carbonic acid. Phil. Mag. S. 3 1847, 30, 298.
[76] Dorozhkin, S.V. Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int. J. Mater. Chem. 2012, 2, 19-46.
[77] Hassall, A.H. On the frequent occurrence of phosphate of lime, in the crystalline form, in human urine, and on its pathological importance. Proc. R. Soc. Lond. 1859, 10, 281-288.
[78] Beale, L. A course of lectures on urine, urinary deposits, and calculi. BMJ 1860, 205, 929-932.
[79] F. On the method by which the phosphate and carbonate of lime is introduced into the organs of plants. J. Franklin Inst. 1849, 48, 156.
[80] Bischof, G. Elements of chemical and physical geology. Translated from the manuscript of the author, by Benjamin H. Paul, F.C.S. Vol. II. London: Printed for the Cavendish society by Harrison & sons, St. Martins’ lane, 1855, 523 pp.
[81] Warington, R., Jr. Researches on the phosphates of calcium, and upon the solubility of tricalcic phosphate. J. Chem. Soc. 1866, 19, 296-318.
[82] Voelcker, A. On the solubility of phosphatic materials, with special reference to the practical efficacy of the various forms in which bones are used in agriculture. J. R. Agric. Soc. England, Second Series 1868, 4, 176-196.
[83] Warington, R. On the solubility of the phosphates of bone-ash in carbonic water. J. Chem. Soc. 1871, 24, 80-83.
[84] Williams, C.P. On the solubility of some forms of phosphate of lime. J. Franklin Inst. 1871, 92, 419-423.
[85] An inquiry into the degree of solubility requisite in manures, with special reference to precipitated calcic and magnesic phosphates. Nature 1883, 27, 325-326.
[86] Wilson, G. Chemistry. William and Robert Chambers, Edinburgh, 1850, 316 pp.
[87] Jenkins, E.E. Phosphate of lime. M.D. thesis. Medical College of the State of South Carolina. 1853, 32 pp.
[88] Horsford, E.N. Improvement in preparing phosphoric acid as a substitute for other solid acids. U.S. Pat. No. 14,722, issued Apr. 22,1856.
[89] Horsford, E.N. Improved double phosphate of lime and soda for culinary and other purposes. U.S. Pat. No. 42,140, issued Mar.29, 1864.
[90] Brande, W.T., Taylor, A.S. Chemistry. Blanchard and Lea, Philadelphia, USA, 1863, 696 pp.
[91] Morfit, C. On Colombian guano; and certain peculiarities in the chemical behavior of “bone phosphate of lime”. J. Franklin Inst. 1855, 30, 325-329.
[92] Warington, R. On a curious change in the composition of bones taken from the guano. Mem. Proc. Chem. Soc. 1843, 2, 223-226.
[93] Warington, R. On the decomposition of tricalcic phosphate by water. J. Chem. Soc. 1873, 26, 983-989.
[94] Fresenius, R. Ueber die Bestimmung der Phosphorsäure im Phosphorit nebst Mittheilung der Analysen des Phosphorits und Staffelits aus dem Lahnthal. Z. Anal. Chem. 1867, 6, 403-409.
[95] Lorah, J.R., Tartar, H.V., Wood, L. A basic phosphate of calcium and of strontium and the adsorption of calcium hydroxide by basic calcium phosphate and by tricalcium phosphate. J. Am. Chem. Soc. 1929, 51, 1097-1106.
[96] Wells, H.G. Pathological calcification. J. Med. Res. 1906, 14, 491-525.
[97] Roscoe, H.E., Schorlemmer, C. A treatise on chemistry. Volume II: Metals. Part 1. Macmillan and Co., London, UK, 1879, 504 pp.
[98] Damour, A. Sur l’hydro-apatite, espèce minérale. Annales des Mines 1856, 10, 65-68.
[99] Voelcker, J.A. Die chemische Zusammensetzung des Apatits nach eigenen vollständigen Analysen. Ber. Deut. Chem. Ges. 1883, 16, 2460-2464.
[100] Rogers, A.F. Dahllite (podolite) from Tonopah, Nevada: voelckerite, a new basic calcium phosphate; remarks on the chemical composition of apatite and phosphate rock. Am. J. Sci., Ser. 4, 1912, 33, 475-482.
[101] Rogers, A.F. A new locality for voelckerite and the validity of voelckerite as a mineral species. Miner. Mag. 1914, 17, 155-162.
[102] Hassall, A. On the detection and preservation of crystalline deposits of uric acid, urate of ammonia, phosphate of lime, triple phosphate, oxalate of lime, and other salts. Lancet 1852, 59, 466-467.
[103] Abel, F.A. On the occurrence of considerable deposits of crystallized phosphate of lime in teak-wood. J. Chem. Soc. 1862, 15, 91-93.
[104] Reichardt, E. Ueber neutralen phosphorsauren Kalk, Darstellung und Löslichkeit desselben. Z. Anal. Chem. 1872, 11, 275-277.
[105] Stammer, C. Bestimmung kohlensauren Kalkes neben phosphorsaurem Kalk. Z. Anal. Chem. 1863, 2, 96-97.
[106] Roussin, Z. Prüfung des Wismuthsubnitrats auf eine Verfälschung mit Kalkphosphat. Z. Anal. Chem. 1868, 7, 511.
[107] Birnbaum, K., Chojnacki, C. Ueber die Bestimmung der Phosphorsäure in Phosphoriten. Z. Anal. Chem. 1870, 9, 203-207.
[108] Graeser, P. Maassanalytische Bestimmung der Phosphorsäure in Phosphoriten. Z. Anal. Chem. 1870, 9, 355-357.
[109] Janovsky, J.V. Ueber die verschiedenen Methoden der Phosphorsäure-Bestimmung neben Eisenoxyd, Thonerde, Kalk und Magnesia. Z. Anal. Chem. 1872, 11, 153-167.
[110] Thiercelin, Zur Bestimmung des Jods in Phosphoriten. Z. Anal. Chem. 1875, 14, 97.
[111] Maly, R. Eine Methode zur alkalimetrischen Bestimmung der Phosphorsäure und der alkalischen Phosphate. Z. Anal. Chem. 1876, 15, 417-425.
[112] Pellet, H. Die Zusammensetzung des Niederschlags, welcher durch Ammoniak aus sauren Lösungen von Phosphorsäure, Baryt, Kalk und Magnesia gefällt wird. Z. Anal. Chem. 1882, 21, 261.
[113] Stokvis, B.J., Salkowski, E., Smith, W.G. Ueber die Löslichkeitsverhältnisse des phosphorsauren Kalks im Harn. Z. Anal. Chem. 1884, 23, 273-274 (in reality, this publication represents a set of 3 short independent studies performed by 3 individual authors but combined under a general title).
[114] Ott, A. Die Löslichkeitsverhältnisse des phosphorsauren Kalks im Harn. Z. Anal. Chem. 1886, 25, 279-280.
[115] Kennepohl, G. Zur Bestimmung von Eisenoxyd und Thonerde neben Kalk und Phosphorsäure. Z. Anal. Chem. 1889, 28, 343.
[116] Immendorff, H., Reitmair, O. Zur Bestimmung des Kalks in Gegenwart von Phosphorsäure, Eisen, Thonerde und Mangan. Z. Anal. Chem. 1892, 31, 313-316 (in reality, this publication represents a set of 2 short independent studies performed by 2 individual authors but combined under a general title).
[117] Fingerling, G., Grombach, A. Eine neue Modifikation der Bestimmung der zitratlöslichen Phosphorsäure in den Futterkalken nach Petermann. Z. Anal. Chem. 1907, 46, 756-760.
[118] Schulze, B. Untersuchung des phosphorsauren Futterkalkes. Z. Anal. Chem. 1911, 50, 126-127.
[119] Hinden, F. Anreicherungsmethode zur Bestimmung der Phosphorsäure in phosphorsäurearmen Kalksteinen. Z. Anal. Chem. 1915, 54, 214-216.
[120] Mohr, C. Ueber die quantitative Bestimmung der zurückgegangenen Phosphorsäure und der Phosphorsäure im Dicalciumphosphat. Z. Anal. Chem. 1884, 23, 487-491.
[121] Glaser, C. Bemerkungen zu der Abhandlung des Herrn Carl Mohr über die quantitative Bestimmung der zurückgegangenen Phosphorsäure und der Phosphorsäure im Dicalciumphosphat. Z. Anal. Chem. 1885, 24, 180.
[122] Hutchings, W.M. Occurrence of apatite in slag. Nature 1887, 36, 460.
[123] Hilgenstock, G. Eine neue Verbindung von P2O5 und CaO. Stahl und Eisen 1883, 3, 498.
[124] 124. Hilgenstock, G. Das vierbasische Kalkphosphat und die Basicitätsstufe des Silicats in der Thomas-Schlacxke. Stahl und Eisen 1887, 7, 557-560.
[125] Scheibler, C. Ueber die Herstellung reicher Kalkphosphate in Verbindung mit einer Verbesserung des Thomasprocesses. Ber. Dtsch. Chem. Ges. 1886, 19, 1883-1893.
[126] Tzschucke, H. Versuch einer directen Bestimmung der Phosphorsäure als dreibasisch phosphorsauren Kalk. Angew. Chem. 1888, 1, 383-385.
[127] Georgievics, G.V. Über das Verhalten des Tricalciumphosphats gegen Kohlensäure und Eisenhydroxyd. Monatsh. Chem. 1891, 12, 566-581.
[128] Duncan, A. Jun. The Edinburgh new dispensatory: containing, I. The Elements of Pharmaceutical Chemistry. II. The Materia Medica; or, the Natural, Pharmaceutical and Medical Hiſtory of the different Subſtances employed in Medicine. III. The Pharmaceutical Preparations and Compositions; including complete and accurate translations of the Octavo Edition of the London Pharmacopoeia, published in 1803. Illuſtrated and Explained in the Language and according to the Principles of Modern Chemistry. Printed for Bell & Bradfute; G. & J. Robinson, London; and Gilbert & Hodges, Dublin. Edinburgh, 1803, 710 pp.
[129] Pusey, P. On superphosphate of lime. J. R. Agric. Soc. England 1846, 6, 324-328.
[130] Buckland, W. On the causes of the general presence of phosphates in the strata of the earth, and in all fertile soils; with observations on pseudo-coprolites, and on the possibility of converting the contents of sewers and cesspools into manure. J. R. Agric. Soc.1843, 10, 520-525.
[131] Lawes, J.B. Improvements in manure. In: The chemist; or, reporter of chemical discoveries and improvements, and protector of the rights of the chemist and chemical manufactures. Edited by Charles and John Watt. Vol. IV. Vol. I. New series. London: Alexander Watt, 310, strand. 1843, p. 72.
[132] Kennedy, J.C.G. Agriculture of the United States in 1860; compiled from the original returns of the eighth census, under the direction of the secretary of the interior. Washington: Government Printing Office. 1864, 292 pp.
[133] Fresenius, R. Zur Analyse der Superphosphate. Z. Anal. Chem. 1868, 7, 304-309.
[134] Chesshire, J.A., Hughes, J., Sutton, F., Sibson, A. Ueber die Bestimmung des Betrags an “reducirten” Phosphaten in Superphosphaten. Z. Anal. Chem. 1870, 9, 524-527 (in reality, this publication represents a set of 4 short independent studies performed by 4 individual authors but combined under a general title).
[135] Rümpler, A. Ueber eisen- und thonerdehaltige Superphosphate und deren analytische Untersuchung. Z. Anal. Chem. 1873, 12, 151-163.
[136] Albert, H., Siegfried, L. Beiträge zur Werthbestimmung der Superphosphate. Z. Anal. Chem. 1877, 16, 182-188.
[137] Albert, H., Siegfried, L. Beiträge zur Werthbestimmung der Superphosphate. Z. Anal. Chem. 1879, 18, 220-224.
[138] Pavec, A. Zur maassanalytischen Bestimmung der Phosphorsäure im Superphosphat und Spodium mittelst Uranlösung. Z. Anal. Chem. 1879, 18, 360-361.
[139] Mohr, C. Ein maassanalytisches Bestimmungsverfahren der in Rohphosphaten und Superphosphaten enthaltenen Phosphorsäure mit Uran bei Gegenwart von Eisenoxyd. Z. Anal. Chem. 1880, 19, 150-153.

[140] Erlenmeyer, E., Wattenberg, H., Wein, E., Rösch, L., Lehmann, J., Johnson, S.W., Jenkins, E.H. Zur Analyse der Superphosphate. Z. Anal. Chem. 1880, 19, 243-246 (in reality, this publication represents a set of 7 short independent studies performed by 7 individual authors but combined under a general title).
[141] Meyer, C.F. Weitere Mittheilungen über das Zurückgehen der eisen- und thonerdehaltigen Superphosphate – Berichtigung. Z. Anal. Chem. 1880, 19, 309-311.
[142] Drewsen, S. Zur Bestimmung der löslichen Phosphorsäure in Superphosphaten. Z. Anal. Chem. 1881, 20, 54-57.
[143] Lloyd, F.J. On the estimation of retrograde phosphates.J. Chem. Soc. Trans. 1882, 41, 306-317.
[144] Mollenda, A. Eine neue Methode zur maassanalytischen Bestimmung der Phosphorsäure in den Superphosphaten. Z. Anal. Chem. 1883, 22, 155-159.
[145] Phillips, W.B. Rate of reversion in superphosphates prepared from red Navassa rock. J. Am. Chem. Soc. 1884, 6, 224-228.
[146] Wagner, P. Eine neue Methode zur Feststellung des Handelswerthes der Superphosphate. Z. Anal. Chem. 1886, 25, 272-278.
[147] Emmerling, A. Eine Methode zur Bestimmung der wasserlöslichen Phosphorsäure in Superphosphaten auf maassanalvtischem Wege. Z. Anal. Chem. 1887, 26, 244-247.
[148] Stoklasa, J. Bestimmung des Wassers in den Superphosphaten. I. Z. Anal. Chem. 1890, 29, 390-397.
[149] Crispo, D. Belgische Methode zur Bestimmung der in Wasser löslichen Phosphorsäure in den Superphosphaten. Z. Anal. Chem. 1891, 30, 301-303.
[150] Güssefeld, O. Eine Schüttelmaschine für die Analyse von Superphosphaten. Z. Anal. Chem. 1892, 31, 556.
[151] Keller, A. Eine Schüttelmaschine für Superphosphaten. Z. Anal. Chem. 1893, 32, 590-591.
[152] Kalmann, W., Meissels, K. Eine Methode zur maassanalytischen Schätzung der wasserlöslichen Phosphorsäure in Superphosphaten. Z. Anal. Chem. 1894, 33, 764-766.
[153] Glaser, C. Zur maassanalytischen Bestimmung der wasserlöslichen Phosphorsäure in Superphosphaten. Z. Anal. Chem. 1895, 34, 768-769.
[154] Seib, O. Bestimmung der zitratlöslichen Phosphorsäure in Superphosphaten. Z. Anal. Chem. 1905, 44, 397-398.
[155] Cameron, F.K., Bell, J.M. The phosphates of calcium, III; Superphosphate. J. Am. Chem. Soc. 1906, 28, 1222-1229.
[156] Gilmour, R. Phosphoric acid: purification, uses, technology, and economics. CRC Press, Boca Raton, FL, USA. 2013, 354 pp.
[157] C. Vitreous phosphate of lime. J. Franklin Inst. 1877, 104, 315.
[158] Church, A.H. New analyses of certain mineral arseniates and phosphates. 1. Apatite; 2. Arseniosiderite; 3. Childrenite; 4. Ehlite; 5. Tyrolite; 6. Wavellite. J. Chem. Soc. 1873, 26, 101-111.
[159] Felton, L.D., Kauffmann, G., Stahl, H.J. The precipitation of bacterial polysaccharides with calcium phosphate. Pneumococcus. J. Bacteriol. 1935, 29, 149-161.
[160] Row, R. On some effects of the constituents of Ringer’s circulating fluid on skeletal muscular contractions in Rana hexadactyla. J. Physiol. 1903, 29, 440-450.
[161] Ringer, S. Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. J. Physiol. 1882, 3, 380-393.
[162] Ringer, S. A further contribution regarding the effect of minute quantities of inorganic salts on organised structures. J. Physiol. 1886, 7, 118-127.
[163] Ringer, S., Buxton, D.W. Concerning the action of calcium, potassium, and sodium salts upon the eel's heart and upon the skeletal muscles of the frog. J. Physiol. 1887, 8, 15-19.
[164] Ringer, S. Regarding the action of lime potassium and sodium salts on skeletal muscle. J. Physiol. 1887, 8, 20-24.
[165] Ringer, S. The influence of carbonic acid dissolved in saline solutions on the ventricle of the frog’s heart. J. Physiol. 1893, 14, 125-130.
[166] Cameron, F.K., Hurst, L.A. The action of water and saline solutions upon certain slightly soluble phosphates. J. Am. Chem. Soc. 1904, 26, 885-913

.
[167] Cameron, F.K., Seidell, A. The action of water upon the phosphates of calcium. J. Am. Chem. Soc. 1904, 26, 1454-1463.
[168] Cameron, F.K., Seidell, A. The phosphates of calcium. I. J. Am. Chem. Soc. 1905, 27, 1503-1512.
[169] Cameron, F.K., Bell, J.M. The phosphates of calcium. II. J. Am. Chem. Soc. 1905, 27, 1512-1514.
[170] Cameron, F.K., Bell, J.M. The action of water and aqueous solutions upon soil phosphates. Bureau of Soils – Bulletin No. 41. U. S. Department of Agriculture. Washington: Government Printing Office. 1907, 58 pp.
[171] Cameron, F.K., Bell, J.M. The phosphates of calcium. IV. J. Am. Chem. Soc. 1910, 32, 869-873.
[172] Cameron, F.K., McCaughey, W.J. Apatite and spodiosite. J. Phys. Chem. 1911, 15, 463-470.
[173] Mebane, W.M., Dobbins, J.T., Cameron, F.K. The solubility of the phosphates of calcium in aqueous solutions of sulfur dioxide. J. Phys. Chem. 1929, 33, 961-969.
[174] Hughes, A.E., Cameron, F.K. Action of sulfur dioxide on phosphates of calcium. Ind. Eng. Chem. 1931, 23, 1262-1271.
[175] Bassett, H., Jr. Beiträge zum Studium der Calciumphosphate. I. Die Hydrate der Calcium-Hydroorthophosphate. Z. Anorg. Chem. 1907, 53, 34-48.
[176] Bassett, H., Jr. Beiträge zum Studium der Calciumphosphate. II. Die Einwirkung von Ammoniakgas auf Calcium-Hydroorthophosphate. Z. Anorg. Chem. 1907, 53, 49-62.
[177] Bassett, H., Jr. Beiträge zum Studium der Calciumphosphate. III. Das System CaO – P2O5 – H2O.Z. Anorg. Chem. 1908, 59, 1-55.
[178] Bassett, H., Jr. The phosphates of calcium. Part IV. The basic phosphates. J. Chem. Soc. 1917, 111, 620-642.
[179] Bassett, H., Bedwell, W.L.211. Studies of phosphates. Part II. Orthophosphates of the type M3(PO4)2, xH2O. J. Chem. Soc. 1933, 871-876.
[180] Bassett, H. 601. The phosphates of calcium. Part V. Revision of the earlier space diagram.J. Chem. Soc. 1958, 2949-2955.
[181] Norton, T.H., Newman, H.E. On a soluble compound of hydrastine with monocalcium phosphate. J. Am. Chem. Soc. 1897, 19, 838-840.
[182] Bell, J.M. The rate of extraction of plant food constituents from the phosphates of calcium and from a loam soil. J. Am. Chem. Soc. 1910, 32, 879-884.
[183] Rolfe, B.H. Autunite (hydrated uranium-calcium phosphate). Lancet 1911, 177, 766.
[184] Gaßmann, T. Die Darstellung eines dem Apatit-Typus entsprechenden Komplexsalzes und seine Beziehungen zum Knochenbau. H.-S. Z. Physiol. Chem. 1913, 83, 403-408.
[185] Gaßmann, T. Nachtrag zur Darstellung des Phosphatocalciumchlorides (aus Knochen- und Zahnasche). H.-S. Z. Physiol. Chem. 1914, 90, 250-253.
[186] Meigs, E.B. The osmotic properties of calcium and magnesium phosphate in relation to those of living cells. Am. J. Physiol. 1915, 38, 456-489.
[187] Withers, W.A., Field, A.L. A conductivity study of the reaction between calcium nitrate and dipotassium phosphate in dilute solution. J. Am. Chem. Soc. 1915, 37, 1091-1105.
[188] Wendt, G.L., Clarke, A.H. An electrometric study of the neutralization of phosphoric acid by calcium hydroxide. J. Am. Chem. Soc. 1923, 45, 881-887.
[189] de Toni, G.M. Ueber kolloides Kalziumphosphat. Kolloid Z. 1921, 28, 145-148.
[190] Gaubert, P. Sur les cristaux liquides de phosphate de calcium. Cr. Hebd. Acad. Sci. 1922, 174, 1115-1117.
[191] Shipley, P.G., Kramer, B., Howland, J. Studies upon calcification in vitro. Biochem J. 1926, 20, 379-387.
[192] von Oettingen, W.F., Pickett, R.E. The effect of phosphate and bicarbonate buffers on the ionization of calcium salts in physiologic salt solutions. J. Pharmacol. Exp. Ther. 1932, 44, 435-443.
[193] Benjamin, H.R. The forms of the calcium and inorganic phosphorus in human and animal sera II. The nature and significance of the filtrable, adsorbable calcium-phosphorus complex. J. Biol. Chem. 1933, 100, 57-78.
[194] Ramsay, A.A. The solubility of calcium phosphates in citric acid. J. Agr. Sci. 1917, 8, 277-298.
[195] Shear, M.J., Kramer, B. Composition of bone. III. Physicochemical mechanism. J. Biol. Chem. 1928, 79, 125-145.
[196] Trömel, G., Möller, H. Die Bildung schwerlöslicher Calciumphosphate aus wäßriger Lösung und die Beziehungen dieser Phosphate zur Apatitgruppe. Z. Anorg. Allg. Chem. 1932, 206, 227-240.
[197] Larson, H.W.E. Preparation and properties of mono-, di-, and tricalcium phosphates. Ind. Eng. Chem. Anal. Ed. 1935, 7, 401-406.
[198] Elsenberger, S., Lehrman, A., Turner, W.D. The basic calcium phosphates and related systems. Some theoretical and practical aspects. Chem. Rev. 1940, 26, 257-296.
[199] MacIntire, W.H., Wintrerberg, S.H., Marshall, H.L., Palmer, G., Fetzer, W.R. Industrial precipitated tricalcium phosphates. Ind. Eng. Chem. 1944, 36, 547-552.
[200] Brasseur, H., Dallemagne, M.J., Melon, J. Chemical nature of salts from bones and teeth and of tricalcium phosphate precipitates. Nature 1946, 157, 453.
[201] MacIntire, W.H., Palmer, G., Marshall, H.L. A “reference” precipitated tricalciurn phosphate hydrate. Ind. Eng. Chem. 1945, 37, 164-169.
[202] Hausen, H. Die Apatite, deren chemische Zusammensetzung und ihr Verhältnis zu den physikalischen und morphologischen Eigenschaften. Acta Acad. Åbo. Ser. B, Mathematica et Physica 1929, 5, No. 3, 62 pp.
[203] Náray-Szabó, S. The structure of apatite (CaF)Ca4(PO4)3. Z. Kristallogr. 1930, 75, 387-398.
[204] Mehmel, M. Über die Struktur des Apatits. Z. Kristallogr. 1930, 75, 323-331.
[205] Mehmel, M. Beziehungen zwischen Kristallstruktur und chemischer Formel des Apatits.Z. Phys. Chem. [B] 1931, 15, 223-241.
[206] Hendricks, S.B., Hill, W.L., Jacob, K.D., Jefferson, M.E. Structural characteristics of apatite-like substances and composition of phosphate rock and bone as determined from microscopical and X-ray diffraction. Ind. Eng. Chem. 1931, 23, 1413-1418.
[207] McConnell, D. A structural investigation of the isomorphism of the apatite group. Am. Mineral. 1938, 23, 1-19.
[208] Trömel, G. Untersuchungen über die Bildung eines halogenfreien Apatits aus basischen Calciumphosphaten. Z. Physiol. A 1932, 158, 422-432.
[209] Gruner, J.W., McConnell, D. The problem of the carbonate-apatites. The structure of francolite. Z. Kristallogr. 1937, 97, 208-215.
[210] McConnell, D. The problem of the carbonate apatites; a carbonate oxy-apatite (dahllite). Am. J. Sci. 1938, 36, 296-303.
[211] Terpstra, P. On the crystallography of brushite. Z. Kristallogr. 1937, 97, 229-233.
[212] Hodge, H.C., Lefevre, M.L., Bale, W.F. Chemical and X-ray diffraction studies of calcium phosphates. Ind. Eng. Chem. Anal. Ed. 1938, 10, 156-161.
[213] Holt, L.E., la Mer, V.K., Chown, H.B. Studies in calcification. I. The solubility product of secondary and tertiary calcium phosphate under various conditions. J. Biol. Chem. 1925, 64, 509-565.
[214] Holt, L.E., la Mer, V.K., Chown, H.B. Studies in calcification. II. Delayed equilibrium between the calcium phosphates and its biological significance. J. Biol. Chem. 1925, 64, 567-578.
[215] Holt, L.E., Gittleman, I. The solubility of tertiary calcium phosphate in cerebrospinal fluid. J. Biol. Chem. 1925, 66, 23-28.
[216] Stollenwerk, W. Untersuchungen über die Löslichkeit des Monocalciumphosphats in Wasser. Z. Anorg. Allg. Chem. 1926, 156, 37-55.
[217] Sendroy, J., Hastings, A.B. Studies of the solubility of calcium salts. II. The solubility of tertiary calcium phosphate in salt solutions and biological fluids. J. Biol. Chem. 1927, 71, 783-796.
[218] Sendroy, J., Hastings, A.B. Studies of the solubility of calcium salts. III. The solubllity of calcium carbonate and tertiary calcium phosphate under various conditions. J. Biol. Chem. 1927, 71, 797-846.
[219] Csapo, J. The influence of proteins on the solubility of calcium phosphate. J. Biol. Chem. 1927, 75, 509-515.
[220] Clark, N.A. The system P2O5–CaO–H2O and the recrystallization of monocalcium phosphate. J. Phys. Chem. 1931, 35, 1232-1238.
[221] Lugg, J.W.H. A study of aqueous salt solutions in equilibrium with solid secondary calcium phosphate at 40°C. Trans. Faraday Soc. 1931, 27, 297-309.
[222] Logan, M.A., Taylor, H.L. Solubility of bone salt. J. Biol. Chem. 1937, 119, 293-307.
[223] Logan, M.A., Taylor, H.L. Solubility of bone salt: II. Factors affecting its formation. J. Biol. Chem. 1938, 125, 377-390.
[224] Logan, M.A., Taylor, H.L. Solubility of bone salt: III. Partial solution of bone and carbonate-containing calcium phosphate precipitates. J. Biol. Chem. 1938, 125, 391-397.
[225] Logan, M.A., Kane, L.W. Solubility of bone salt: IV. Solubility of bone in biological fluids. J. Biol. Chem. 1939, 127, 705-710.
[226] Greenwald, I. The solubility of calcium phosphate I. The effect of pH and of amount of solid phase. J. Biol. Chem. 1942, 143, 703-710.
[227] Greenwald, I. The solubility of calcium phosphate II. The solubility product. J. Biol. Chem. 1942, 143, 711-714.
[228] Kuyper, A.C. The chemistry of bone formation. I. The composition of precipitates formed from salt solutions. J. Biol. Chem. 1945, 159, 411-416.
[229] Kuyper, A.C. The chemistry of bone formation. II. Some factors which affect the solubility of calcium phosphate in blood serum. J. Biol. Chem. 1945, 159, 417-424.
[230] Jenkins, G.N., Forster, M.G. The solubility of calcium phosphate and dental tissues in incubated mixtures of saliva and flours of different extraction rates. Biochem. J. 1948, 42, lvi.
[231] Rae, J.J., Clegg, C.T. The effect of various inorganic salts on the solubility of calcium phosphate, tooth enamel, and whole teeth in lactic acid. J. Dent. Res. 1948, 27, 52.
[232] Rae, J.J., Clegg, C.T. Changes in the calcium and phosphate concentrations of saliva and inorganic salt solutions on shaking with calcium phosphate. J. Dent. Res. 1948, 27, 54-57.
[233] Muhler, J.C., Boyd, T.M., van Huysen, G. Effect of fluorides and other compounds on the solubility of enamel, dentin, and tricalcium phosphate in dilute acids. J. Dent. Res. 1950, 29, 182-193.
[234] Ericsson, Y. Enamel-apatite solubility: investigations into the calcium phosphate equilibrium between enamel and saliva and its relation to dental caries. Stockholm, 1949, 139 pp.
[235] Whittier, E.O. Buffer intensities of milk and milk constituents. II. Buffer action of calcium phosphate. J. Biol. Chem. 1933, 102, 733-747.
[236] Bredig, M.A., Franck, H.H., Fülnder, H. Beiträge zur Kenntnis der Kalk-Phosphorsäure-Verbindungen. II. Z. Elktrochem. Angew. P. 1932, 38, 158-164.
[237] Trömel, G. Beiträge zur Kenntnis des Systems Kalziumoxyd-Phosphorpentoxyd. Mitt. Kaiser-Wilhelm-Inst. Eisenforsch. Düsseldorf 1932, 14, 25-34.
[238] Jansen, W. Über die Reduktion des Tricalciumphosphates. Z. Anorg. Allg. Chem. 1933, 210, 113-124.
[239] Keenen, F.G. Reactions occurring during the ammoniation of superphosphate. Ind. Eng. Chem. 1930, 22, 1378-1382.
[240] Keenen, F.G. Available phosphoric acid content of ammoniated superphosphate. Ind. Eng. Chem. 1932, 24, 44-49.
[241] MacIntire, W.H., Shaw, W.M. Chemical changes in mixtures of superphosphate with dolomite and with limestone. Ind. Eng. Chem. 1932, 24, 933-941.
[242] MacIntire, W.H., Shaw, W.M. Reactivity between dolomite and superphosphate components. Ind. Eng. Chem. 1932, 24, 1401-1409.
[243] White, L.M., Hardesty, J.O., Ross, W.H. Ammoniation of double superphosphate. Ind. Eng. Chem. 1935, 27, 563-567.
[244] Hill, W.L., Hendricks, S.B. Composition and properties of superphosphate - calcium phosphate and calcium sulfate constituents as shown by chemical and X-ray diffraction analysis. Ind. Eng. Chem. 1936, 28, 440-447.
[245] Copson, R.L., Newton, R.H., Lindsay, J.D. Superphosphate manufacture - mixing phosphate rook with concentrated phosphoric acid. Ind. Eng. Chem. 1936, 28, 923-927.
[246] Newton, R.H., Copson, R.L. Superphosphate manufacture - composition of superphosphate made from phosphate rock and concentrated phosphoric acid. Ind. Eng. Chem. 1936, 28, 1182-1186.
[247] Beeson, K.C., Jacob, K.D. Chemical reactions in fertilizer mixtures - reactions of calcined phosphate with ammonium sulfate and superphosphate. Ind. Eng. Chem. 1938, 30, 304-308.
[248] Whittaker, C.W., Lundstrom, F.O., Shimp, J.H. Action of urea on calcium orthophosphates. Ind. Eng. Chem. 1934, 26, 1307-1311.
[249] Southard, J.C., Milner, R.T. Low temperature specific heats. V. The heat capacity of tricalcium phosphate between 15 and 298 degrees K. J. Am. Chem. Soc. 1935, 57, 983-984.
[250] Nagelschmidt, G. A new calcium silicophosphate. J. Chem. Soc. 1937, 865-867.
[251] McConnell, D. The substitution of SiO4- and SO4-groups for PO4-groups in the apatite structure; ellestadite, the end-member. Amer. Min. 1937, 22, 977-989.
[252] Hill, W.L., Hendricks, S.B., Jefferson, M.E., Reynolds, D.S. Phosphate fertilizers by calcination process. Composition of defluorinated phosphate. Ind. Eng. Chem. 1937, 29, 1299-1304.
[253] Marshall, H.L., Reynolds, D.S., Jacob, K.D., Tremearne, T.H. Phosphate fertilizers by calcination process. Reversion of defluorinated phosphate at temperatures below 1400°C. Ind. Eng. Chem. 1937, 29, 1294-1298.
[254] Curtis, H.A., Copson, R.L., Brown, E.H., Pole, G.R. Fertilizer from rock phosphate conversion by fusion and treatment with water vapor. Ind. Eng. Chem. 1937, 29, 766-771.
[255] MacIntire, W.H., Hammond, J.W. Removal of fluorides from natural waters by calcium phosphates. Ind. Eng. Chem. 1938, 30, 160-162.
[256] Adler, H., Klein, G., Lindsay, F.K. Removal of fluorides from potable water by tricalcium phosphate. Ind. Eng. Chem. 1938, 30, 163-165.
[257] Behrman, A.S., Gustafson, H. Removal of fluorine from water – a development in the use of tricalcium phosphate. Ind. Eng. Chem. 1938, 30, 1011-1013.
[258] Moore, L.A. Activation of dicalcium phosphate for the chromatographic determination of carotene. Ind. Eng. Chem. 1942, 14, 707-708.
[259] Elmore, K.L., Farr, T.D. Equilibrium in the system calcium oxide–phosphorus pentoxide–water. Ind. Eng. Chem. 1940, 32, 580-586.
[260] Arnold, P.W. The nature of precipitated calcium phosphates. Trans. Faraday Soc. 1950, 46, 1061-1072.
[261] Frondel, C. Whitlockite: a new calcium phosphate, Ca3(PO4)2. Am. Mineral. 1941, 26, 145-152.
[262] Salk, J.E. Partial purification of the virus of epidemic influenza by adsorption on calcium phosphate. Proc. Soc. Exp. Biol. Med. 1941, 46, 709-712.
[263] Salk, J.E. The immunizing effect of calcium phosphate adsorbed influenza virus. Science 1945, 101, 122-124.
[264] Stanley, W.M. The precipitation of purified concentrated influenza virus and vaccine on calcium phosphate. Science 1945, 101, 332-335.
[265] Hill, W.L., Hendricks, S.B., Fox, E.J., Cady, J.G. Acid pyro- and metaphosphates produced by thermal decomposition of monocalcium phosphate. Ind. Eng. Chem. 1947, 39, 1667-1672.
[266] Egan, E.P., Jr., Wakefield, Z.T., Elmore, K.L. High-temperature heat content of hydroxyapatite. J. Am. Chem. Soc. 1950, 72, 2418-2421.
[267] Greenwald, I. Anomalous effects in the titration of phosphoric acid with calcium hydroxide. J. Am. Chem. Soc. 1944, 66, 1305-1306.
[268] Kirwan, R. Elements of mineralogy. Second edition with considerable improvements and additions. Vol. I. Earth and stones. Printed by J. Nichols, for P. Elmsly, in the strand. London, 1794, 510 pp.
[269] Encyclopaedia; or, a dictionary of arts, sciences, and miscellaneous literature; Conſtructed on a Plan, by which the different sciences and arts are digeſted into the Form of diſtinct treatises or systems, comprihending the history, theory, and practice, of each, According to the Lateſt Diſcoveries and Improvements; and full explanations given of the various detached parts of knowledge, where relating to Natural and Artificial Objects, or to Matters Ecclesiastical, Civil, Military, Commercial, &c. Including Elucidations of the moſt important Topics relative to Religion, Morals, Manners, and the Oeconomy of Life. Together with A Description of all the Countries, Cities, principle Mountains, Seas, Rivers, &c. throughout the World; A General History, Ancient and Modern, of the different Empires, Kingdoms, and States; and An Account of the Lives of the moſt Eminent Perſons in every Nation, from the earliest ages down to the preſent times. The first American edition, in eighteen volumes, greatly improved. Vol. XIV. PAS – PLA Philadelphia: printed by Thomas Dobson, at the Stone-house, No 41, South second-street. 1798, 797 pp.
[270] Chaptal, M.I.A. Elements of chemistry. Translated from the French. The third edition. In three volumes. Vol. II. Printed for G.G. and J. Robinson, PaterNoster-Row, by R. Noble, in the Old Bailey. London, 1800, 488 pp.
[271] Murray, J. A system of chemistry. In four volumes. Second edition. Vol. III. Edinburgh. Printed for Longman, Hurst, Rees & Orme, and John Murray London; and for William Creech, Bell & Bradfute, and W. Laing, Edinburg. Edinburgh, 1809, 712 pp.
[272] Sowerby, J. Exotic mineralogy: or, coloured pictures of foreign minerals, as a supplement to British mineralogy. London: Printed by Benjamin Meredith, Silver street, Wood street, Cheapside. 1811, 700 pp.
[273] Jameson, R. A system of mineralogy, in which minerals are arranged according to the natural history method. Third edition, enlarged and improved. Vol. II. Printed for Archibald Constable & Co. Edinburgh; and Hurst, Robinson & Co. Cheapside, London. Edinburgh, 1820, 632 pp.
[274] Lowry, D. Conversations on mineralogy. First American from the last London edition. Published and sold by Uriah Hunt, No. 239, Market Street. Philadelphia, Sept. 1822, 332 pp.
[275] Haidinger, W. On the series of crystallisation of apatite. The Edinburgh philosophical journal, exhibiting a view of the process of discovery in natural philosophy, chemistry, natural history, practical mechanics, geography, navigation, statistics, and the fine and useful arts, from October 1. 1823 to April 1. 1824. Conducted by Dr Brewster and Professor Jameson. To be continued quarterly. Vol. X. Edinburgh: Printed for Archibald Constable & Co. Edinburgh; and Hurst, Robinson & Co. London. 1824, pp. 140-153.
[276] Composition of apatite. Phil. Mag. S. 2 1827, 2, 311.
[277] Buckland, W. On the discovery of coprolites, or fossil fæces, in the Lias at Lyme Regis, and in otherformations. T. Geol. Soc. London, 1829, 3, 223-236.
[278] Pereira, J. The elements of material medica; comprehending the natural history, preparation, properties, composition, effects, and uses of medicines. Part I. Containing the general action and classification of medicines, and the mineral material medica. London: Longman, Orme, Brown, Green, and Longmans. 1839, 559 pp.
[279] Hitchcock, E. Final report on the geology of Massachusetts: Vol. I. containing I. Economical geology. II. Scienographical geology. Amherst: J. S. & C. Adams. Northhampton: J. H. Butler. 1841, 327 pp.
[280] Irving, C. An outline of the kingdoms of nature, for the use of schools. Bring a concise introduction to the animal, vegetable, mineral, and geological kingdoms. With plates and questions for examination. London: Darton and Clark, Holborn Hill. 1841, 298 pp.
[281] Stenhouse, J. On an œconomical method of procuring phosphate of lime and magnesia from urine for agricultural purposes. Phil. Mag. S. 3 1845, 27, 289-292.
[282] Harris, J. The agricultural value of phosphate of lime. In: Transactions of the N. Y. State Agricultural Society, with an abstract of the proceedings of the county agricultural societies, with B. P. Johnson’s report on the industrial exhibition, London, 1851. Vol. XI – 1851. Albany: Charles van Benthuysen, printer to the legislature, 407 Broadway, 1852, pp. 304-338.
[283] Holmes, F.S. Phosphate rock of South Caroline and the “Great Caroline marl bed,” with five colored illustrations. A popular and scientific view of their origin, geological position and age; also their chemical character and agricultural value; together with a history of their discovery and development. Charleston, S. C.: Published by Holmes’ book house. 1870, 87 pp.
[284] Wright, C.D. The phosphate industry of the United States. Washington: Government Printing Office. 1893, 145 pp.
[285] Yermolow, A.S. Recherches sur les gisements de phosphate de chaux fossile en Russie. Avec carteet tableaux analytiques. Imprimerie Trenké & Fusnot, St Pétersbourg. 1873, 43 pp.
[286] Daubeny, C., Widdrington, C. On the occurrence of phosphorite in Estremadura. Quarterly J. Geol. Soc. Lond. 1845, 1, 52-55.
[287] Austen, R.A.C. On the position in the Cretaceous series of beds containing phosphate of lime. Quarterly J. Geol. Soc. Lond.1848, 16, 256-262.
[288] dela Beche, H. Phosphate of lime in greensand and marl. Am. J. Sci. 1849, 58, 422-424.
[289] Henry, T.H. On Francolite, a supposed New Mineral. Phil. Mag. S. 3 1850, 36, 134-135.
[290] Meugy, A. 1855. Phosphate de chaux en nodules dans la craie de Rethel (Ardennes). Bulletin de la Société Géologique de France, Series 2 1855, 13, 604-605.
[291] Shepard, C.U. Five new mineral species. Am. J. Sci. Arts 1856, 22, 96-99.
[292] Johnson, C.W. The mineral phosphate of lime. The British Farmer’s Magazine. New series. 1865, 49, 164-167.
[293] Voelcker, The recently-discovered phosphatic deposits in North Wales. The British Farmer’s Magazine. New series. 1865, 49, 398-399.
[294] Forbes, D. On phosphorite from Spain. Phil. Mag. S. 4 1865, 29, 340-344.
[295] de Luna, M.R. On considerable deposits of phosphate of lime at Caceres, Estremadura. Geol. Mag. 1865, 2, 446.
[296] Moore, G.E. On brushite, a new mineral occurring in phosphatic guano. Am. J. Sci. Arts 1865, 39, 43-44.
[297] Dana, J.D. On the crystallization of brushite. Am. J. Sci. Arts 1865, 39, 45-46.
[298] Brodie, P.B. On a deposit of phosphatic nodules in the Lower Greensand, at Sandy, Bedfordshire. Geol. Mag.1866, 3, 153-155.
[299] Shepard, C.U. Note upon the origin of the phosphatic formation. Am. J. Sci. 1869, 97, 338-340.
[300] Gruner, M.L. Note sur les nodules phosphates de la Porte du Rhône. Bulletin de la Sociétié Géologique de France, Series2 1871, 28, 62-72.
[301] Fisher, O. On the phosphatic nodules of the Cretaceous rock of Cambridgeshire. Quarterly J. Geol. Soc. Lond.1873, 29, 52-63.
[302] Davies, D.C. The phosphorite deposits of North Wales. Quarterly J. Geol. Soc. Lond. 1875, 31, 357-367.
[303] Shepard, C.U. Jr. On two new minerals, monetite and monite, with a notice of pyroclasite. Am. J. Sci.1882, 23, 400-405.
[304] L., W.J. On a fine specimen of apatite from Tyrol, lately in the possession of Mr. Samuel Henson. Nature 1883, 27, 608-609.
[305] Solly, R.H. Francolite, a variety of apatite from Levant Mine, St. Just, Cornwall. Mineral. Mag. 1886, 7, 57-58.
[306] Robinson, H. Two analyses of crystals of apatite. Mineral. Mag. 1886, 7, 59-60.
[307] Shaler, N.S. Nature and origin of phosphate of lime. Science 1889, 13, 144-148.
[308] Brögger, W.C., Bäckström, H. Über den Dahllit, ein neues Mineral von Ödegärden, Bamle, Norwegen. Neues Jb. Miner. Geol. Paläont. 1890, 223-224.
[309] Lydekker, R. On the occurrence of the so-called Viverra Hastingsiæ of Hordwell in the French phosphorites. Quarterly J. Geol. Soc. Lond. 1892, 48, 373-374.
[310] Graber, H. Diopsid und Apatit von Zöptau. Tschermaks Mineral. Petrogr. Mitt. 1895, 14, 265-270.
[311] Church, A.H. Apatite in Ceylon. Nature 1901, 63, 464.
[312] Klein, C. Brushite from the island of Mona (between Haiti and Puerto Rico). Sitzber. K. Preuss. Aka. 1901, 720-725.
[313] Wolff, J.E., Palache, C. Apatite from Minot, Maine. Proc. Am. Acad. Arts Sci. 1902, 37, 517-528.
[314] Wolff, J.E., Palache, C. On apatite from Minot, Maine. Z. Kristallogr. Mineral. 1902, 36, 438-448.
[315] de Mercey, N. Sur des gites de phosphate de chaux de la Craie à Bélemnites, formés avant le soulèvement du Bray. C. R. Hebd. Seances Acad. Sci. 1902, 135, 1137-1138.
[316] Zimanyi, K. On the green apatite from Malmberget in Sweden. Z. Kristallogr. Mineral. 1904, 39, 505-519.
[317] Fraps, G.S. Availability of phosphoric acid of the soil. J. Am. Chem. Soc. 1906, 28, 823-834.
[318] Hopkins, C.G., Whiting, A.L. Soil bacteria and phosphates. Science 1916, 44, 246-249.
[319] Merrill, G.P. On the calcium phosphate in meteoric stones. Am. J. Sci. 1917, 43, S. 4, 322-324.
[320] Cook, P.J., Shergold, J.H., Burnett, W.C., Riggs, S.R. Phosphorite research: a historical overview. In: Phosphorite research and development. Notholt, A.J.G., Jarvis, I. (Eds.). Geological Society, London, Special Publications 1990, 52, 320 p., pp. 1-22.

[321] Elements of natural history, and of chemistry: being the second edition of the elementary lectures on those sciences, first published in 1782, and now greatly enlarged and improved, by the Author, M. de Fourcroy, doctor of the faculty of medicine at Paris, of the Royal Academy of Sciences, &c. &c. &c. Translated into English. With occasional notes, and an historical preface, by the translator. Vol. IV. Printed for G.G.J. and J. Robinson, Pater-Noster-Row. London, 1788, 465 pp.
[322] Mitchill on the diſeaſes of human teeth, etc. In: The New-York magazine, or literary repository. New series – Vol. II. Printed and ſold by T. and J. Swords, No. 99 Pearl ſtreet. New-York, 1797, pp. 60-68.
[323] Home, E. Some observations on the structure of the teeth of graminivorous quadrupeds; particularly those of the elephant and sus aethiopicus. Phil. Trans. R. Soc. Lond. 1799, 89, 237-258.
[324] Hatchett, C. Experiments and observations on shell and bone. Phil. Trans. R. Soc. Lond. 1799, 89, 315-334.
[325] Pearson, G. Experiments and observations, tending to show the composition and properties of urinary concretions. Phil. Trans. R. Soc. Lond. 1798, 88, 15-46.
[326] Two obſervations about stones found, the one in the bladder of a dogg, the other faſtned to the back-bone of a horſe: both mentioned in two Roman Journals de Letterati. Phil. Trans. 1672, 7, 4094-4095. (please, note the old-fashioned replacement of letter “s” by “ſ” in some words).
[327] An extract of a letter, written from Aberdeen Febr. 17.1676/7, concerning a man of a ſtrange imitating nature, as alſo of ſeveral human calculus’s of an unuſual bigness. Phil. Trans. 1677, 12, 842-843.
[328] Experiments on human calculi. In a letter from Mr. Timothy Lane, F. R. S. to William Pitcairn, M. D. F. R. S. Phil. Trans. R. Soc. Lond.1791, 81, 223-227.
[329] Wollaston, W.H. On gouty and urinary concretions. Phil. Trans. R. Soc. Lond. 1797, 87, 386-400.
[330] The monthly review; or literary journal, enlarged: From May to August, inclusive. 1801. Volume 35. London: Printed by A. Straban, Printers-Street, For R. Griffiths; and sold by T. Becket, in Pall Mall.
[331] Josse, Mémoire contenant l’examen physique et chimique des dents. Ann. Chim.1802, 43, 3-18.
[332] Morozzo, C. Analisi chimica del dente fossile fatta dal Dottor Morecchini. Mem. Mat. Fis. Soc. Ital. Sci. (Modena) 1803, 10, 1, 166-171.
[333] Morichini, D. Analisi dello smalto di un dente fossile di elefante e die denti umani: Memoria di Domenico Morichini presentata da Giachino Pessuti.Me m. Mat. Fis. Soc. Ital. Sci. (Modena) 1805, 12, 2, 73-88.
[334] Gay-Lussac, J.L. Lettre de M. Gay-Lussac à M. Berthollet sur la présence de l’acide fluorique dans les substances animales, et sur la pierre alumineuse de la Tolfa. Ann. Chim.1805, 55, 258-275.
[335] Klaproth, H. Recherches sur l’acide fluorique contenu dans un dent fossile d’éléphant. Mém. Acad. Royale Sci. 1807, 136-139.
[336] Nicholson, W. A dictionary of practical and theoretical chemistry, with its application to the arts and manufactures, and to the explanation of the phænomena of nature: including throughout the latest discoveries, and the present state of knowledge on those subjects. With plates and tables. Printed for Richard Phillips, No. 6, Bridge-street. 1808.
[337] Parr, B. The London medical dictionary; including under distinct heads every branch of medicine, viz. anatomy, physiology, and pathology, the practice of physic and surgery, therapeutics, and materia medica; with whatever relates to medicine in natural philosophy, chemistry and natural history. Vol. I. Printed for J. Johnson; F. and C. Rivington; J. Walker; G. Wilkie and J. Robinson; G. Robinson; Scatcherd and Letterman; J. Stockdale; Cuthell and Martin; Vernor, Hood, and Sharpe; G. Kearsley; Longman, Hurst, Rees, and Orme; Cadell and Davies; Lackington, Allen, and Co., B. Crosby and Co.; John Richardson; J.M. Richardson; R. Scholey; P. and W. Wynne; R. Phillips; J. Mawman; and W. Grace. London, 1809, 786 pp.
[338] Bostock, J. Analysis of the bones of the spine, in a case of mollities ossium. Med. Chir. Trans. 1813, 4, 38-44.
[339] Home, E. An account of some fossil remains of the rhinoceros, discovered by Mr. Whitby, in a cavern inclosed in the lime-stone rock, from which he is forming the break water at Plymouth. Phil. Trans. R. Soc. Lond. 1817, 107, 176-182.
[340] Parkes, S. The chemical catechism, with notes, illustrations, and experiments. The fifth edition. Printed for the author; and sold by Lackington, Allen, and Co. London, 1812, 562 pp.
[341] State of the urine during pregnancy and disease. Prov. Med. Surg. J. 1841, 2, 232-233.
[342] Davy, H. Conversations on chemistry, in which the elements of that science are familiarly explained and illustrated by experiments and plates. To which are added, some late discoveries on the subject of the fixed alkalies. Didnep’s Press, 1814, 383 pp.
[343] The monthly magazine; or, British register. Vol. 39. Part I for 1815. London: Printed for Richard Phillips. 680 pp.
[344] Wilson, J. Lectures on the structure and physiology of the parts composing the skeleton, and on the diseases of the bones and joints of the human body, preceded by some observations on the influence of the brain and nerves. Printed for Burgess and Hill, London, 1820, 410 pp.
[345] Rees, G.O. On the proportions of animal and earthy matter in the different bones of the human body. Med. Chir. Trans. 1838, 21, 406-413.
[346] Aikin, A. On bone and its uses in the arts. Transactions of the Society, Instituted at London, for the Encouragement of Arts, Manufactures, and Commerce. 1838, 52, 350-367.
[347] Daubeny, C. On the occurrence of fluorine in recent as well as in fossil bones. Mem. Proc. Chem. Soc. 1843, 2, 97-105.
[348] von Bibra, E. Chemische Untersuchungen über die Knochen und Zähne des Menschen und der Wirbeltiere, Kunstverlag, Schweinfurt. 1844, 460 pp.
[349] Notices of papers contained in the foreign journals. Q. J. Chem. Soc. 1850, 2, 356-366.
[350] Nasse, H. Ueber die Bestandtheile der Knochen in einigen Krankheiten. J. Prakt. Chem. 1842, 27, 274-280.
[351] Dumas, Traité de chimie appliqué aux arts. Tome huitiéme. A Paris, Bechet Jeune, libraire-éditeur, Place de l’école-de-médecine, No 1. 1846, 760 pp.
[352] Levy, M. Chemische Untersuchungen über osteomalacische Knochen. Z. Physiol. Chem. 1895, 19, 239-270.
[353] Aeby, C. Ueber die Constitution des phosphorsauren Kalkes der Knochen. J. Prakt. Chem. 1872, 5, 308-311.
[354] Aeby, C. Ueber die nähern Bestandtheile des Knochenphosphates. J. Prakt. Chem. 1873, 6, 169-171.
[355] Aeby, C. Ueber die Metamorphose der Knochen. J. Prakt. Chem. 1873, 7, 37-44.
[356] Aeby, C. Ueber die Constitution des Knochenphosphates. Ber. Deut. Chem. Ges. 1874, 7, 555-560.
[357] Aeby, C. Zur Chemie der Knochen. J. Prakt. Chem. 1875, 10, 408-416.
[358] Wibel, F. Die Constitution des Knochenphosphates, insbesondere die Existenz und Bildung einer basischen Verbindung (Ca3P2O8 + xCaO). J. Prakt. Chem. 1874, 9, 113-132.
[359] Weiske, H. Beitrag zur Knochenanalyse. Z. Physiol. Chem. 1883, 7, 474-478.
[360] Kramer, B., Shear, M.J. Composition of bone. IV. Primary calcification. J. Biol. Chem. 1928, 79, 147-160.
[361] Gabriel, S. Chemische Untersuchungen über die Mineralstoffe der Knochen und Zähne. Z. Physiol. Chem. 1894, 18, 257-303.
[362] Hoppe, F. Untersuchungen über die Constitution des Zahnschmelzes. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 1862, 24, 13-32.
[363] Beneke, W. On the physiology and pathology of the phosphate and oxalate of lime, and their relation to the formation of cells. Part I. Lancet 1851, 57, 431-434.
[364] Beneke, W. On the physiology and pathology of the phosphate and oxalate of lime, and their relation to the formation of cells. Part II. Lancet 1851, 57, 668-670 and 699-700.
[365] Annals of philosophy; or, magazine of chemistry, mineralogy, mechanics, natural history, agriculture, and the arts. By Thomas Thomson, M.D., F.R.S. L. & E., F.L.S. &c. member of the geological society, of the wernerian society, and of the imperial medico-chirurgical academy of Petersburgh. Vol. V. January to June, 1815. London: Printed by C. Baldwin, New Bridge-street; For Baldwin, Cradock, and Joy, 47, Paternoster-row. Sold also by W. Blackwood, Edinburgh; and J. Cumming, Dublin. 1815, 480 pp.
[366] Crabb, G. Universal technological dictionary on familiar explanation of the terms used in all arts and sciences, containing definitions drawn from the original writers, and illustrated by plates, diagrams, cuts, &c. In two volumes. Vol. I. London: Printed for Baldwin, Cradock, and Joy, Paternoster-row, by C. Baldwin, New Bridge-street, 1823.
[367] Wright, S. The physiology and pathology of the saliva. Lancet 1842, 37, 813-820.
[368] Wright, S. The physiology and pathology of the saliva. Lancet 1842, 38, 535-541.
[369] A dictionary of chemistry, in which the principles of the science are investigated anew, and its applications to the phenomena of nature, medicine, mineralogy, agriculture, and manufactures, detailed. By Andrew Ure, M.D. F.R.S. Professor of the Andersonian Institution, member of the geological and astronomical society of London, &c. &c. &c. translator of Berthollet on Dyeing. With an Introductory Dissertation; containing instructions for converting the alphabetical arrangement into a systematic order of study. Third edition, with numerous additions and corrections. London: Printed for Thomas Tegg, 73, Cheapside; T. Hurst and Co. St. Paul’s Churchyard; S. Highley, and T. and G. Underwood, Fleet-street; Simpkin and Marshall, Stationers’ court: also R. Griffin and Co. Glasgow; and J. Cumming, Dublin. 1827, 829 pp.
[370] Bird, G. On the occurrence of phosphatic deposits in urine. Prov. Med. J. Retrosp. Med. Sci. 1843, 6, 293-297.
[371] Liebig, J. On the constitution of the urine in man and carnivorous animals. Lancet 1844, 1, 327-333.
[372] Roberts, W. On the occurrence of deposits of crystallised phosphate of lime in human urine. Br. Med. J. 1861, 1, 332-333.
[373] Jones, H.B. II. – On the occurrence of deposits of crystallised phosphate of lime in human urine. J. Chem. Soc. 1862, 15, 8-15.
[374] Hassal, Phosphorsaurer Kalk im Urinsediment. Z. Anal. Chem. 1862, 1, 125.
[375] Smith, W.G. On the conditions affecting precipitation of phosphate of lime from urine by heat. Br. Med. J. 1883, 2, 68-69.
[376] Moss, Ueber das Vorkommen und die Bedeutung phosphorsaurer Kalkconcremente im Stamme des Gehörnerven. Arch. Psychiatr. Nervenkr. 1879, 9, 122-128.
[377] Tereg, Arnold, Das Verhalten der Calciumphosphate im Organismus der Fleischfresser. Pflüger’s Archiv für die Gesammte Physiologie des Menschen und der Tiere (currently Pflüger’s Arch. EJP) 1883, 32, 122-170.
[378] Tomes, C.S. On the chemical composition of enamel. J. Physiol. 1896, 19, 217-223.
[379] le Baron de Carendeffez. An analytical description of certain stony concretions (phosphates of lime), coughed up from the lungs, by Joseph Shildigger, a patient in the New-York hospital, with practical remarks on their formation. The medical repository, and review of American publications on medicine, surgery, and the auxiliary branches of science. Conducted by Samuel Latham Mitchill, M.D. and Edward Miller, M.D. Vol. 6. New-York: 1803, 482 pp.
[380] Brande, W. A letter on the differences in the structure of calculi, which arise from their being formed in different parts of the urinary passages; and on the effects that are produced upon them, by the internal use of solvent medicines. Phil. Trans. R. Soc. Lond. 1808, 98, 223-243.
[381] Henry, W. On urinary and other morbid concretions. Med. Chir. Trans. 1819, 10, Pt. 1, 125-146.
[382] Earle, H. On renal calculi. Med. Chir. Trans. 1821, 11, Pt. 1, 211-231.
[383] Yelloly, J. Remarks on the tendency to calculous diseases; with observations on the nature of urinary concretions, and an analysis of a large part of the collection belonging to the Norfolk and Norwich hospital. Phil. Trans. R. Soc. Lond. 1829, 119, 55-81.
[384] Under the care of Mr. Canton. Stone in the bladder of a boy for upwards of three years; lithotomy; extraction of a large oval calculus of phosphate of lime; recovery. Lancet 1856, 68, 650-651.
[385] Jones, S. St. Thomas’s hospital.: Lateral lithotomy; removal of large stone composed of oxalate of lime covered with phosphates; recovery. Lancet 1882, 119, 781-782.
[386] Hill, B. University college hospital.: Two cases of calculus of oxalate and phosphate of lime removed by lithotrity at a single sitting; singularly long duration of symptoms, with remarks upon an improved clover’s evacuating bottle. Lancet 1883, 121, 59-60.
[387] Virchow, R. Untersuchungen über die Entwicklung des Schädelgrundes im gesunden und krankhaften Zustände und über den Einfluss derselben auf Schädelform, Gesichtsbildung und Gehirnbau. Druck und Verlag von Georg Reimer, Berlin, 1857, 128 pp.
[388] Dana, J.D. On the occurrence of fluor spar, apatite and chondrodite in limestone. Phil. Mag. S. 3 1846, 29, 245-246.
[389] Reis, O.M. Ueber Phosphoritisirung der Cutis, der Testikel und des Rückenmarks bei fossilen Fischen. Archiv für Mikroskopische Anatomie 1895, 44, 87-119.
[390] Hotz, G. Phosphorsäure- und Kalkstoffwechsel bei Osteomalacie unter dem Einfluss der Phosphortherapie. Z. Exp. Pathol. Ther. 1906, 3, 605-632.
[391] Mörner, C.T. Über Dicalciumphosphat als Sediment im Harn. H.-S. Z. Physiol. Chem. 1909, 58, 440-451.
[392] Zuckmayer, F. Über die Frauenmilch der ersten Laktationszeit und den Einfluss einer Kalk- und Phosphorsäurezulage auf ihre Zusammensetzung. P Pflüger’s Archiv für die Gesammte Physiologie des Menschen und der Tiere (currently Pflüger’s Arch. EJP) 1914, 158, 209-218.
[393] Meigs, E.B., Blatherwick, N.R., Cary, C.A. and with the collaboration of Woodward, T.E. Further contributions to the physiology of phosphorus and calcium metabolism of dairy cows. J. Biol. Chem. 1919, 40, 469-500.
[394] de Wesselow, O.L.V. The calcium and inorganic phosphorus content of the maternal blood during pregnancy and lactation. Lancet 1922, 200, 227-228.
[395] Herbst, O. Calcium und Phosphor beim Wachstum am Ende der Kindheit. Z. Kinderheilkd. 1913, 7, 161-192.
[396] Studies on infant feeding. IX. The availability of dicalcium phosphate when present as a constituent of infant’s food. Boston Med. Surg. J. 1917, 177, 864-867.
[397] Schneider, J.Z. The calcium to phosphorus ratio as related to mineral metabolism. Int. J. Orthodontia Oral Surg. Radiography 1930, 16, 277-285.
[398] Gaßmann, T. Chemische Untersuchungen der Zähne. H.-S. Z. Physiol. Chem. 1908, 55, 455-465.
[399] Gaßmann, T. Chemische Untersuchungen der Zähne: II. Teil. H.-S. Z. Physiol. Chem. 1909, 63, 397-400.
[400] Gaßmann, T. Chemische Untersuchungen von gesunden und rachitischen Knochen. H.-S. Z. Physiol. Chem. 1910, 70, 161-170.
[401] Gaßmann, T. Der Nachweis des Selens im Knochen- und Zahngewebe. H.-S. Z. Physiol. Chem. 1916, 97, 307-310.
[402] Gaßmann, T. Die quantitative Bestimmung des Selens im Knochen- und Zahngewebe und im Harn. H.-S. Z. Physiol. Chem. 1916, 98, 182-189.
[403] Gaßmann, T. Über die künstliche Darstellung des Hauptbestandteiles der Knochen und der Zähne. H.-S. Z. Physiol. Chem. 1928, 178, 62-66.
[404] Gaßmann, T. Bemerkungen zur Arbeit von R. Klement “Über die Zusammensetzung der Knochenstützsubstanz”. H.-S. Z. Physiol. Chem. 1929, 185, 234-236.
[405] Gaßmann, T. Über den künstlichen Aufbau der Knochen und der Zähne. 1. Mitteilung: Darstellung von Glykokoll-Hexolsalz bzw. Glykokoll-Phosphatocalciumcarbonat. H.-S. Z. Physiol. Chem. 1930, 192, 61-69.
[406] Gaßmann, T. Bemerkungen zur Arbeit von R. Klement über die Zusammensetzung und Bildung von Knochenstützsubstanz. H.-S. Z. Physiol. Chem. 1931, 201, 284.
[407] Zuckmayer, F. Beitrag zur Aufnahme und Verwertung von Kalk und Phosphorsäure durch den Darm. Pflüger’s Archiv für die Gesammte Physiologie des Menschen und der Tiere (currently Pflüger’s Arch. EJP) 1912, 148, 225-256.
[408] Blühdorn, K. Untersuchungen des Kalk- und Phorphorsäurestoffwechsels bei Verabfolgung großer Gaben von Kalk und Natriumphosphat. Z. Kinderheilkd. 1921, 29, 43-55.
[409] Watt, J.C. The deposition of calcium phosphate and calcium carbonate in bone and in areas of calcification. Arch. Surg. Chicago 1925, 10, 983-990.
[410] de Jong, W.F. La substance minérale dans les os. Recueil des Travaux Chimiques des Pays-Bas 1926, 45, 445-448.
[411] Taylor, N.W., Sheard, C. Microscopic and X-ray investigations on the calcification of tissue. J. Biol. Chem. 1929, 81, 479-493.
[412] Roseberry, H.H., Hastings, A.B., Morse, J.K. X-ray analysis of bone and teeth. J. Biol. Chem. 1931, 90, 395-407.
[413] Klement, R., Trömel, G. Hydroxylapatit, der Hauptbestandteil der anorganischen Knochen- und Zahnsubstanz. Hoppe-Seylers Z. Physiol. Chem. 1932, 213, 263-269.
[414] Henschen, C., Straumann, R., Bucher, R. Ergebnisse röntgenspektrographischer Untersuchungen am Knochen - I. Mitteilung. Krystallitbau des anorganischen und des organischen Knochens. Deut. Z. Chir. 1932, 236, 485-514.
[415] Bredig, M.A. Zur Apatitstruktur der anorganischen Knochen- und Zahnsubstanz. H.-S. Z. Physiol. Chem. 1933, 216, 239-243.
[416] Thewlis, J., Glock, G.E., Murray, M.M. Chemical and X-ray analysis of dental, mineral and synthetic apatites. Trans. Faraday Soc. 1939, 35, 358-363.
[417] Bale, W.F. A comparative Roentgen-ray diffraction study of several nature apatites and the apatite-like constituent of bone and tooth substance. Am. J. Roentgenol. 1940, 43, 735-747.
[418] Lowy, R. The necessity of normal calcium phosphorus metabolism. Int. J. Orthodontia, Oral Surgery and Radiography 1930, 16, 947-950.
[419] Barrio, N.G. Comparative studies in the chemistry of blood and cerebrospinal fluid. II. Calcium, magnesium, and phosphorus. J. Labor. Clin. Med. 1923, 9, 54-56.
[420] Wang, C.C., Felsher, A.R. The effect of hemolysis on the calcium and inorganic phosphorus content of serum and plasma. J. Labor. Clin. Med. 1925, 10, 269-272.
[421] Nitschke, A. Darstellung Einer den Calciumgehalt und Einer den Phosphatgehalt des Serum Senkenden Substanz - II. Mitteilung. Nachweis in Milz und Lymphknoten. Klin. Wochenschr. 1929, 8, 794.
[422] Lowenberg, C., Mattice, M.R. Note on the determination of inorganic phosphate of serum and spinal fluid on the supernatant fluid from calcium estimation. J. Labor. Clin. Med. 1930, 15, 598-600.
[423] Needles, M.S., Marberg, C.M. A study of the total and ultrafiltrable calcium and the acid soluble phosphate content of the blood serum of four hundred and twenty two healthy children. J. Lab. Clin. Med. 1933, 18, 1227-1234.
[424] Krasnow, F., Karshan, M., Krejci, L.E. The determination of calcium and phosphorus in saliva. J. Labor. Clin. Med. 1932, 17, 1148-1152.
[425] Timpe, O. Das Verhalten des Calcium- und Phosphorspiegels des Serums in der Schwangerschaft und bei Osteomalacie unter der Einwirkung von Vigantol. Arch. Gynakol. 1931, 146, 240-247.
[426] Klauder, J.V., Brown, H. Study of the calcium-phosphorus ratio in the serum of syphilitic pregnant women. Am. J. Obstet. Gynecol. 1931, 22, 60-64.
[427] Lierle, D.M., Sage, R.A. A study of the calcium, phosphorus and potassium of the serum and spinal fluid in asthma. J. Allergy 1932, 3, 325-331.
[428] Greenberg, D.M. On the state of calcium and phosphate of the blood. Proc. Soc. Exp. Biol. Med. 1933, 30, 1005-1007.
[429] Greenberg, D.M., Larson, C.E., Tufts, E.V. Colloidal calcium phosphate of blood and calcium partition in serum. Proc. Soc. Exp. Biol. Med. 1935, 32, 647-650.
[430] Finola, G.C., Trump, R.A., Grimson, M. Bone changes in the fetus following the administration of dicalcium phosphate and viosterol to the pregnant mother. Am. J. Obstet. Gynecol. 1937, 34, 955-968.
[431] Fisher, T. A singular case of extensive deposit of phosphate of lime in the lungs. Lancet 1901, 157, 244-245.
[432] Moody, D.W.K. Note on a case of a large concretion composed mainly of calcium phosphate found inside the fistulous channel in a case of fistula in ano. Lancet 1913, 181, 684.
[433] Möller, H., Trömel, G. Röntgenographische Untersuchung über den Aufbau der anorganischen Zahnsubstanz. Naturwissenschaften 1933, 21, 346-348.
[434] Möller, H., Trömel, G. Über die Kristallorientierung im Zahnschmelz. Naturwissenschaften 1936, 24, 377-378.
[435] Bale, W.F., Hodge, H.C., Warren, S.L. Roentgen-ray diffraction studies of enamel and dentine. Am. J. Roentgenol. Rad. Therapy 1934, 32, 369-376.
[436] Schmidt, C.L.A., Greenberg, D.M. Occurrence, transport and regulation of calcium, magnesium and phosphorus in animal organism. Physiol. Rev. 1935, 15, 297-434.
[437] Huggins, C. The composition of bone and the function of the bone cell. Physiol. Rev. 1937, 17, 119-143.
[438] Hendricks, S.B., Hill, W.L. The inorganic constitution of bone. Science 1942, 96, 255-257.
[439] Hendricks, S.B., Hill, W.L. The nature of bone and phosphate rock. Proc. Natl. Acad. Sci. USA. 1950, 36, 731-737.
[440] Wood, N.V., Jr. Specific surfaces of bone, apatite, enamel, and dentine. Science 1947, 105, 531-532.
[441] Jensen, A.T., Moller, A. Determination of size and shape of the apatite particles in different dental enamels and in dentin by the X-ray powder method. J. Dent. Res. 1948, 27, 524-531.
[442] Neuman W.F., Neuman, M.W. The nature of the mineral phase of bone. Chem. Rev. 1953, 53, 1-45.
[443] Duncan, A. Sen., Duncan, A. Jun. Annals of medicine, for the year 1797. Exhibiting a concise view of the latest and most important discoveries in medicine and medical philosophy. Vol. II. Edinburgh: printed for G. Mudie & son, South bridge; and for G. G. & J. Robinson, London. 1798, 470 pp.
[444] Kneeland, S., Jr. Phosphate of lime as a remedy in pulmonary consumption. Edinburgh Med. Surg. J. 1852, 78, 492-494.
[445] Weiske, H. Ueber den Einfluss von kalk- oder phosphorsäurearmer Nahrung auf die Zusammensetzung der Knochen. Z. Biol. 1871,7, 179-184, 333-337.
[446] Blanc, H. On the treatment of phthisis by the phosphate of lime and the juice of raw meat. Lancet 1874, 103, 831-832.
[447] Fessenden, R.A. Cancer and secondary rays from calcium phosphate. Lancet 1913, 182, 1804.
[448] Chinol, M., Vallabhajosula, S., Goldsmith, S.J., Klein, M.J., Deutsch, K.F., Chinen, L.K., Brodack, J.W., Deutsch, E.A., Watson, B.A., Tofe, A.J. Chemistry and biological behavior of samarium-153 and rhenium-186-labeled hydroxyapatite particles: potential radiopharmaceuticals for radiation synovectomy. J. Nucl. Med. 1993, 34, 1536-1542.
[449] Argüelles, M.G., Berlanga, I.S.L., Torres, E.A. Preparation of 153Sm-particles for radiosynovectomy. J. Radioanal. Nucl. Chem. 1999, 240, 509-511.
[450] O’Duffy, E., Clunie, G., Lui, D., Edwards, J., Ell, P. Double blind glucocorticoid controlled trial of samarium-153 particulate hydroxyapatite radiation synovectomy for chronic knee synovitis. Ann. Rheum. Dis. 1999, 58, 554-558.
[451] Thomas, S., Assi, P., Marycel, B., Correa, M., Liberato, W., Brito, V. Yttrium 90-hydroxyapatite, a new radioisotope for chronic synovitis in hemophilia. Haemophilia 2008, 14, 77.
[452] Sterling, A. The value of phosphorus and calcium in asthma, hay fever, and allied diseases. J. Labor. Clin. Med. 1928, 13, 997-1005.
[453] Maynard, L.A. The value of different calcium supplements in animal feeding. J. Anim. Sci. 1933, 303-308.
[454] Moss, H.V., Schilb, T.W., Warning, W.G. Tricalcium phosphate as a caking inhibitor in salt and sugar. Ind. Eng. Chem. 1933, 25, 142-147.
[455] Cummings, A.B. Calcium phosphate in the filtration of sugar liquors. Ind. Eng. Chem. 1942, 34, 398-402.
[456] Ratner, B.D. A history of biomaterials. In: Biomaterials science: an introduction to materials in medicine. Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (Eds.), 3rd Ed. Academic Press, San Diego, CA, USA. 2012, pp. xli-liii.
[457] Huebsch, N., Mooney, D.J. Inspiration and application in the evolution of biomaterials. Nature 2009, 462, 426-432.
[458] Popp, H. Zur Geschichte der Prosthesen. Med. Welt 1939, 13, 961-964.
[459] Ring, M.E. Dentistry: an illustrated history. Harry N. Abrams, New York, USA, 1992, 320 pp.
[460] Bobbio, A. The first endosseous alloplastic implant in the history of man. Bull. Hist. Dent. 1972, 20, 1-6.
[461] Crubezy, E., Murail, P., Girard, L., Bernadou, J.P. False teeth of the Roman world. Nature 1998, 391, 29.
[462] van Meekeren, J. Heel- en geneeskonstige aanmerkingen. Amsterdam, Commelijn, 1668, 542 pp.
[463] von Walter, P. Wiedereinheilung der bei der Trapanation ausgebohrten Knochenscheibe.J. Chir. Augen Heilkunde 1821, 2, 571.
[464] Macewen, W. Observations concerning transplantation of bone. Illustrated by a case of inter-human osseous transplantation, whereby over two-thirds of the shaft of a humerus was restored. Proc. R. Soc. Lond. 1881, 32, 232-247.
[465] de Boer, H.H. The history of bone grafts. Clin. Orthop. Relat. Res. 1988, 226, 292-298.
[466] Corruccini, R.S., Pacciani, E. “Orthodontistry” and dental occlusion in Etruscans. Angle Orthod. 1989, 59, 61-64.
[467] Khalifah, E.S. Arabian description of dental caries in the tenth century. J. Am. Dent. Ass. Dent. Cosmos 1937, 24, 1847-1852.
[468] Almahdi, S. Muslim scholar contribution in restorative dentistry. J. Int. Soc. Hist. Islam. Med. 2003, 2, 56-57.
[469] Hunter, J. The natural history of the human teeth: explaining their structure, use, formation, growth, and diseases. Printed for J. Johnson, No72. St. Paul’s Church-yard, London, 1771, 191 pp.
[470] Hoffman-Axthelm, W. History of dentistry. Quintessence, Chicago, USA, 1981, 436 pp.
[471] Wildgoose, D.G., Johnson, A., Winstanley, R.B. Glass/ceramic/refractory techniques, their development and introduction into dentistry: a historical literature review. J. Prosthet. Dent. 2004, 91, 136-143.
[472] Cravens, J.E. Lacto-phosphate of lime; pathology and treatment of exposed dental pulps and sensitive dentine. Dent. Cosmos 1876, 18, 463-469; discussion 469-476.
[473] Pendleton, L.W. The lacto-phosphate of lime. Transactions of the Maine Medical Association 1873, 4, 313-318.
[474] Dorozhkin, S.V. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J. Funct. Biomater. 2015, 6, 708-832.
[475] Dreesmann, H. Ueber Knochenplombierung. Beitr. Klin. Chir. 1892, 9, 804-810.
[476] Gluck, T. Referat über die durch das moderne chirurgische. Langenbecks Arch. Klin. Chir. 1891, 41, 187-239.
[477] Muster, D. Themistocles Gluck, Berlin 1890: a pioneer of multidisciplinary applied research into biomaterials for endoprostheses. Bull. Hist. Dent. 1990, 38, 3-6.
[478] Eynon-Lewis, N.J., Ferry, D., Pearse, M.F. Themistocles Gluck: an unrecognised genius. BMJ 1992, 305, 1534-1536.
[479] Weinberger, B.W. An introduction to the history of dentistry with medical and dental chronology and bibliographic data. Two volumes. The C. V. Mosby Company, St. Louis, USA, 1948, 992 pp.
[480] Baden, E. Prosthetic therapy of congenital and acquired clefts on the palate: an historical essay. J. Hist. Med. Alld. Sci. 1955, 10, 290-301.
[481] Ratner, B.D., Bryant, S.J. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 2004, 6, 41-75.
[482] Dammaschke, T. The history of direct pulp capping. J. Hist. Dent. 2008, 56, 9-23.
[483] Daculsi, G. History of development and use of the bioceramics and biocomposites. In: Handbook of bioceramics and biocomposites. Antoniac, I.V. (Ed.), Springer, 2016; 1980 pp., pp. 1-20.
[484] Albee, F.H. Bone-graft surgery. W.B. Saunders Company, Philadelphia and London, 1915, 417 pp.
[485] Groves, E.W.H. Some contributions to the reconstructive surgery of the hip. Br. J. Surg. 1927, 14, 486-517.
[486] Murray, C.R. Delayed and non-union in fractures in the adult. Ann. Surg. 1931, 93, 961-967.
[487] Murray, C.R. The modern conception of bone formation and its relation to surgery. J. Dent. Res. 1931, 11, 837-845.
[488] Huggins, C. The formation of bone under the influence of epithelium of the urinary tract. Arch. Surg. 1931, 22, 377-408.
[489] Levander, G. On the formation of new bone in bone transplantation. Acta Chir. Scand. 1934, 74, 425-426.
[490] Levander, G. A study of bone regeneration. Surg. Gynecol. Obstet. 1938, 67, 705-714.
[491] Haldeman, K.O., Moore, J.M. Influence of a local excess of calcium and phosphorus on the healing of fractures. An experimental study. Arch. Surg. 1934, 29, 385-396.
[492] Stewart, W.J. Experimental bone regeneration using lime salts and autogenous grafts as sources of available calcium. Surg. Gynec. Obstet. 1934, 59, 867-871.
[493] Key, J.A. The effect of a local calcium depot on osteogenesis and healing of fractures. J. Bone Joint Surg. 1934, 16, 176-184.
[494] Shands, A.R., Jr. Studies in bone formation: the effect of the local presence of calcium salts on osteogenesis. J. Bone Joint Surg. 1937, 19, 1065-1076.
[495] Schram, W.R., Fosdick, L.S. Stimulation of healing in long bones by use of artificial material. J. Oral Surg. 1948, 6, 209-217.
[496] Ray, R.D., Ward, A.A., Jr. A preliminary report on studies of basic calcium phosphate in bone replacement. Surg. Form. 1951, 3, 429-434.
[497] McClendon, J.F., Carpousis, A. Prevention of dental caries by brushing the teeth with powdered fluorapatite. J. Dent. Res. 1945, 24, 199.
[498] Earle, W.R., with the technical assistance of Schilling, E.L., Stark, T.H., Straus, N.P., Brown, M.F., Shelton, E. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J. Natl. Cancer Inst. 1943, 4, 165-212.
[499] Hanks, J.H., Wallace, R.E. Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. Exp. Biol. Med. 1949, 71, 196-200.
[500] Kingery, W.D. II, Cold-setting properties. J. Am. Ceram. Soc. 1950, 33, 242-246.
[501] Dorozhkin, S.V. Self-setting calcium orthophosphate formulations. J. Funct. Biomater. 2013, 4, 209-311.
[502] Driskell, T.D., Heller, A.L., Koenigs, J.F. Dental treatments. US Patent No. 3913229. October 21, 1975.
[503] Köster, K., Karbe, E., Kramer, H., Heide, H., König, R. Experimenteller Knochenersatz durch resorbierbare Calciumphosphat-Keramik. Langenbecks Arch. Chir. 1976, 341, 77-86.
[504] LeGeros, R.Z., Chohayeb, A., Shulman, A. Apatitic calcium phosphates: possible dental restorative materials. J. Dent. Res. 1982, 61, Spec. Iss., 343.
[505] Brown, W.E., Chow, L.C. A new calcium phosphate setting cement. J. Dent. Res. 1983, 62, Spec. Iss., 672.
[506] Robinson, R.A., Watson, M.L. Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann. NY Acad. Sci. 1955, 60, 596-660.
[507] Posner, A.S., Stutman, J.M., Lippincott, E.R. Hydrogen-bonding in calcium-deficient hydroxyapatites. Nature 1960, 188, 486-487.
[508] Hayek, E., Newesely, H., checked by Rumpel, M.L. Pentacalcium monohydroxyorthophosphate (hydroxylapatite). In: Inorganic syntheses, Vol. VII. Kleinberg, J. (Ed.), McGraw-Hill Book Company, Inc., New York, 1963; pp. 63-65.
[509] Kay, M.I., Young, R.A., Posner, A.S. Crystal structure of hydroxyapatite. Nature 1964, 204, 1050-1052.
[510] LeGeros, R.Z. Effect of carbonate on the lattice parameters of apatite. Nature 1965, 206, 403-404.
[511] Levitt, S.R., Crayton, P.H., Monroe, E.A., Condrate, R.A. Forming methods for apatite prostheses. J. Biomed. Mater. Res. 1969, 3, 683-684.
[512] Dorozhkin, S.V. Calcium orthophosphate bioceramics. Ceram. Int. 2015, 41, 13913-13966.
[513] Bhaskar, S.N., Brady, J.M., Getter, L., Grower, M.F., Driskell, T. Biodegradable ceramic implants in bone. Electron and light microscopic analysis. Oral Surg. Oral Med. Oral Pathol. 1971, 32, 336-346.
[514] Blakeslee, K.C., Condrate, R.A., Sr. Vibrational spectra of hydrothermally prepared hydroxyapatites. J. Am. Ceram. Soc. 1971, 54, 559-563.
[515] Garrington, G.E., Lightbody, P.M. Bioceramics and dentistry. J. Biomed. Mater. Res. 1972, 6, 333-343.
[516] Cini, L., Sandrolini, S., Paltrinieri, M., Pizzoferrato, A., Trentani, C. Materiali bioceramici in funzione sostitutiva. Nota preventiva. [Bioceramic materials for replacement purposes. Preliminary note]. Chir. Organi. Mov. 1972, 60, 423-430.
[517] Rivault, M.A. Evolution, conception et technologie des travaux de protheÌse fixe, reìaliseìs en ceìramo-meìtallique. [Evolution, conception and technology of fixed prosthesis made of ceramic and metal]. Rev. Fr. Odontostomatol. 1966, 13, 1367-1402.
[518] Dumont, A., Appel, M., Favard, E. ProtheÌses plurales en ceìramique sur meìtal. Soudage et artifices de jonction. [Multiple prostheses made of ceramics on metal. Soldering and artifacts of the junction]. Ann. Odontostomatol. (Lyon) 1968, 25, 231-240.
[519] Hulbert, S.F., Young, F.A., Mathews, R.S., Klawitter, J.J., Talbert, C.D., Stelling, F.H. Potential of ceramic materials as permanently implantable skeletal prostheses. J. Biomed. Mater. Res. 1970, 4, 433-456.
[520] Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 1971, 2, 117-141.
[521] Griffin, W.L., Åmli, R., Heier, K.S. Whitlockite and apatite from lunar rock 14310 and from Ödegården, Norway. Earth Planet. Sci. Lett. 1972, 15, 53-58.
[522] Reed, Jr., G.W., Jovanovic, S. Fluorine in lunar samples: implications concerning lunar fluorapatite. Geochim. Cosmochim. Acta 1973, 37, 1457-1462.
[523] Graham, F.L., van der Eb, A.J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 1973, 52, 456-467.
[524] Driskell, T.D., Hassler, C.R., Tennery, V.J., McCoy, L.R., Clarke, W.J. Calcium phosphate resorbable ceramics: a potential alternative to bone grafting. J. Dent. Res. 1973, 52, 123.
[525] Nery, E.B., Lynch, K.L., Hirthe, W.M., Mueller, K.H. Bioceramic implants in surgically produced infrabony defects. J. Periodontol. 1975, 46, 328-347.
[526] Roberts, S.C., Jr., Brilliant, J.D. Tricalcium phosphate as an adjunct to apical closure in pulpless permanent teeth. J. Endod. 1975, 1, 263-269.
[527] Denissen, H.W., de Groot, K. Immediate dental root implants from synthetic dense calcium hydroxylapatite. J. Prosthet. Dent. 1979, 42, 551-556.
[528] León, B., Jansen, J.A. (Eds.), Thin calcium phosphate coatings for medical implants. Springer, New York, USA, 2009, 326 pp.
[529] Dorozhkin, S.V. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Eng. C 2015, 55, 272-326.
[530] Sudo, S.Z., Schotzko, N.K., Folke, L.E.A. Use of hydroxyapatite coated glass beads for preclinical testing of potential antiplaque agents. Appl. Environ. Microbiol. 1976, 32, 428-437.
[531] Bonfield, W., Grynpas, M.D., Tully, A.E., Bowman, J., Abram, J. Hydroxyapatite reinforced polyethylene – a mechanically compatible implant material for bone replacement. Biomaterials 1981, 2, 185-189.
[532] Bonfield, W., Bowman, J., Grynpas, M.D. Composite material for use in orthopaedics. UK Patent8032647, 1981.
[533] Jarcho, M., Bolen, C.H., Thomas, M.B., Bobick, J., Kay, J.F., Doremus, R.H. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 1976, 11, 2027-2035.
[534] Jarcho, M., O’Connor, J.R., Paris, D.A. Ceramic hydroxylapatite as a plaque growth and drug screening substrate. J. Dent. Res. 1977, 56, 151-156.
[535] Jarcho, M., Salsbury, R.L., Thomas, M.B., Doremus, R.H. Synthesis and fabrication of β-tricalcium phosphate ceramics for potential prosthetic applications. J. Mater. Sci. 1979, 14, 142-150.
[536] Jarcho, M. Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Rel. Res. 1981, 157, 259-278.
[537] Rejda, B.V., Peelen, J.G.J., de Groot, K. Tricalcium phosphate as a bone substitute. J. Bioeng. 1977, 1, 93-97.
[538] de Groot, K. Bioceramics consisting of calcium phosphate salts. Biomaterials 1980, 1, 47-50.
[539] de Groot, K. (Ed.), Bioceramics of calcium phosphate. CRC Press, Boca Raton, FL, USA, 1983, 146 pp.
[540] Aoki, H., Kato, K.M., Ogiso, M., Tabata, T. Studies on the application of apatite to dental materials. J. Dent. Eng. 1977, 18, 86-89.
[541] Kato, K., Aoki, H., Tabata, T., Ogiso, M. Biocompatibility of apatite ceramics in mandibles. Biomater. Med. Dev. Artif. Organs 1979, 7, 291-297.
[542] Akao, M., Aoki, H., Kato, K. Mechanical properties of sintered hydroxyapatite for prosthetic applications. J. Mater. Sci. 1981, 16, 809-812.
[543] Akao, M., Aoki, H., Kato, K., Sato, A. Dense polycrystalline β-tricalcium phosphate for prosthetic applications. J. Mater. Sci. 1982, 17, 343-346.
[544] Habraken, W., Habibovic, P., Epple, M., Bohner, M. Calcium phosphates in biomedicalapplications: materials for the future? Mater. Today 2016, 19, 69-87.
[545] Roy, D.M., Linnehan, S.K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974, 247, 220-222.
[546] Holmes, R.E. Bone regeneration within a coralline hydroxyapatite implant. Plast. Reconstr. Surg. 1979, 63, 626-633.
[547] Elsinger, E.C., Leal, L. Coralline hydroxyapatite bone graft substitutes. J. Foot Ankle Surg. 1996, 35,396-399.
[548] Shipman, P., Foster, G., Schoeninger, M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci. 1984, 11, 307-325.
[549] LeGeros, R.Z., LeGeros, J.P. Calcium phosphate bioceramics: past, present, future. Key Eng. Mater. 2003, 240-242, 3-10.
[550] Randzio, J., Thoma, K., Alex, R., Rhomberg, B. Einheilung und Pharmakokinetik einer β-Trikalziumphosphat-Gentamicin-Kombination im Tierversuch (vorläufige Mitteilung). Dtsch. Zahnarztl. Z. 1985, 40, 668-671.
[551] Dorozhkin, S.V. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram. Int. 2016, 42, 6529-6554.
[552] Anuta, D.A., Richardson, D. Biphasic hydroxyapatite/beta-tricalcium phosphate granules bound in polymerized methyl methacrylate: bone substitute studies. Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the Interna. 1985, 8, 62.
[553] Moore, D.C., Chapman, M.W., Manske, D.J. Evaluation of a new biphasic calcium phosphate ceramic for use in grafting long bone diaphyseal defects. Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the Interna. 1985, 8, 160.
[554] Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J.Biomed. Mater. Res. 1990, 24, 721-734.
[555] Dorozhkin, S.V. Nanodimensional and nanocrystalline calcium orthophosphates. Am. J. Biomed. Eng. 2012, 2, 48-97.
[556] Layrolle, P., Lebugle, A. Characterization and reactivity of nanosized calcium phosphate prepared in anhydrous ethanol. Chem. Mater. 1994, 6, 1996-2004.
[557] Cui, F.Z., Wen, H.B., Zhang, H.B., Ma, C.L., Li, H.D. Nanophase hydroxyapatite-like crystallites in natural ivory. J. Mater. Sci. Lett. 1994, 13, 1042-1044.
[558] Li, Y.B., de Wijn, J., Klein, C.P.A.T., de Meer, S.V., de Groot, K. Preparation and characterization of nanograde osteoapatite-like rod crystals. J. Mater. Sci. Mater. Med. 1994, 5, 252-255.
[559] Li, Y.B., de Groot, K., de Wijn, J., Klein, C.P.A.T., de Meer, S.V. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J. Mater. Sci. Mater. Med. 1994, 5, 326-331.
[560] Shirkhanzadeh, M. X-ray diffraction and Fourier transform infrared analysis of nanophase apatite coatings prepared by electrocrystallization. Nanostruct. Mater. 1994, 4, 677-684.
[561] Norman, M.E., Elgendy, H.M., Shors, E.C., El-Amin, S.F., Laurencin, C.T. An in-vitro evaluation of coralline porous hydroxyapatite as a scaffold for osteoblast growth. Clin. Mater. 1994, 17, 85-91.
[562] Dekker, R.J., de Bruijn, J.D., van den Brink, I., Bovell, Y.P., Layrolle, P., van Blitterswijk, C.A. Bone tissue engineering on calcium phosphate-coated titanium plates utilizing cultured rat bone marrow cells: a preliminary study. J. Mater. Sci. Mater. Med. 1998, 9, 859-863.
[563] Friedman, C.D., Costantino, P.D. Hydroxyapatite cement, a smart biomaterial for craniofacial skeletal tissue engineering. Surg. Technol. Int. 1998, 7, 421-423.
[564] Friedman, C.D., Costantino, P.D., Takagi, S., Chow, L.C. BoneSource™ hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J. Biomed. Mater. Res. 1998, 43, 428-432.
[565] Misra, D.N. (Ed.), Adsorption on and surface chemistry of hydroxyapatite. Plenum Press, New York, USA. 1984, 192 pp.
[566] LeGeros, R.Z. Calcium phosphates in oral biology and medicine. Monographs in Oral Science. Vol. 15. Karger, Basel, Switzerland. 1991, 201 pp.
[567] Aoki, H. Science and medical applications of hydroxyapatite. JAAS, Tokyo, Japan. 1991, 214 pp.
[568] Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry. Vol. 18. Elsevier, Amsterdam, Netherlands. 1994, 389 pp.
[569] Proust, J.L. Lettre de M. Proust a M. d’Arcet sur un sel phosphorique calcairenaturel. J. Phys. 1788,32, 241-247.
[570] Aristotle. In:The complete works of Aristotle. History of animals: Book II. Barnes, J.(Ed.). Princeton, NJ, USA; Princeton University Press,1991, p. 38.
[571] Eden, R.T. Untersuchungen über Vorgänge bei der Verknöcherung. Klin. Wochenschr. 1923, 2, 1798-1804.

If you have any questions or comments with regards to this book, please fill out the form below. Thank you!

You have not viewed any product yet.