Table of Contents
Table of Contents
Preface
Abbreviations
PART I. Calcium Orthophosphate (CaPO4)-Containing Biocomposites and Hybrid Biomaterials
Chapter 1. Introduction
Chapter 2. General Information and Knowledge
Chapter 3. The Major Constituents of Biocomposites and Hybrid Biomaterials for Bone Grafting
Chapter 4. Biocomposites and Hybrid Biomaterials Based On Capo4
Chapter 5. Interactions among the Phases in Capo4-Based Formulations
Chapter 6. Bioactivity and Biodegradation of Capo4-Based Formulations
Chapter 7. Some Challenges and Critical Issues
Chapter 8. Conclusions
References
PART II. Self-Setting Calcium Orthophosphate (Capo4) Formulations
Chapter 9. Introduction
Chapter 10. General Information and Knowledge
Chapter 11. Three Major Types of the Self-Setting Capo4 Formulations
Chapter 12. Various Properties
Chapter 13. Bioresorption and Replacement of the Self-Setting Capo4 Formulations by Bones
Chapter 14. The Mechanical Properties
Chapter 15. Reinforced Capo4 Formulations and Concretes
Chapter 16. Biomedical and Clinical Applications
Chapter 17. Non-Biomedical Applications
Chapter 18. Recent Achievements and Future Developments
Chapter 19. Conclusions
References
PART III. The Dissolution Mechanism of Calcium Apatites in Acids
Chapter 20. Introduction
Chapter 21. Critical Analysis of the Dissolution Models of Calcium Apatites
Chapter 22. Summary on the Dissolution Models
Chapter 23. A Reasonable Classification of the Dissolution Models
Chapter 24. Brief Information on Apatite Structure
Chapter 25. Necessary Assumptions and Limitations
Chapter 26. Creation of the General Dissolution Mechanism
Chapter 27. Conclusions
References
Author Contact Information
Index
References
Part I
[1] Chau, A.M.T., Mobbs, R.J. Bone graft substitutes in anterior cervical discectomy and fusion. Eur. Spine J. 2009, 18, 449-464.
[2] Kaveh, K., Ibrahim, R., Bakar, M.Z.A., Ibrahim, T.A. Bone grafting and bone graft substitutes. J. Anim. Vet. Adv. 2010, 9, 1055-1067.
[3] Shibuya, N., Jupiter, D.C. Bone graft substitute: allograft and xenograft. Clin. Podiatr. Med. Surg. 2015, 32, 21-34.
[4] Conway, J.D. Autograft and nonunions: morbidity with intramedullary bone graft versus iliac crest bone graft. Orthop. Clin. North Am. 2010, 41, 75-84.
[5] Li, S., Chen, Y., Lin, Z., Cui, W., Zhao, J., Su, W.A systematic review of randomized controlled clinical trials comparing hamstring autografts versus bone-patellar tendon-bone autografts for the reconstruction of the anterior cruciate ligament. Arch. Orthop. Trauma Surg. 2012, 132, 1287-1297.
[6] Keller, E.E., Triplett, W.W. Iliac crest bone grafting: review of 160 consecutive cases. J. Oral Maxillofac. Surg. 1987, 45, 11-14.
[7] Schaaf, H., Lendeckel, S., Howaldt, H.P., Streckbein, P. Donor site morbidity after bone harvesting from the anterior iliac crest. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 52-58.
[8] Carlsen, A., Gorst-Rasmussen, A., Jensen, T. Donor site morbidity associated with autogenous bone harvesting from the ascending mandibular ramus. Implant Dent. 2013, 22, 503-506.
[9] Qvick, L.M., Ritter, C.A., Mutty, C.E., Rohrbacher, B.J., Buyea, C.M., Anders, M.J. Donor site morbidity with reamer-irrigator-aspirator (RIA) use for autogenous bone graft harvesting in a single centre 204 case series. Injury 2013, 44, 1263-1269.
[10] Li, Z., Kawashita, M. Current progress in inorganic artificial biomaterials. J. Artif. Organ. 2011, 14, 163-170.
[11] Bojar, W., Kucharska, M., Ciach, T., Koperski, Ł., Jastrzębski, Z., Szałwiński, M. Bone regeneration potential of the new chitosan-based alloplastic biomaterial. J. Biomater. Appl. 2014, 28, 1060-1068.
[12] Panchbhavi, V.K. Synthetic bone grafting in foot and ankle surgery. Foot Ankle Clin. 2010, 15, 559-576.
[13] Dinopoulos, H., Dimitriou, R., Giannoudis, P.V. Bone graft substitutes: what are the options?Surgeon 2012, 10, 230-239.
[14] Weiner, S., Wagner, H.D. The material bone: structure-mechanical function relations. Ann. Rev. Mater. Sci. 1998, 28, 271-298.
[15] Rey, C., Combes, C., Drouet, C., Glimcher, M.J. Bone mineral: update on chemical composition and structure. Osteoporos. Int. 2009, 20, 1013-1021.
[16] Dorozhkin, S.V. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford, Singapore, 2012; 854 pp.
[17] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016; 405 pp.
[18] Burr, D.B. The contribution of the organic matrix to bone’s material properties. Bone 2002, 31, 8-11.
[19] Fratzl, P., Gupta, H.S., Paschalis, E.P., Roschger, P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 2004, 14, 2115-2123.
[20] Olszta, M.J., Cheng, X.G., Jee, S.S., Kumar, B.R., Kim, Y.Y., Kaufman, M.J., Douglas, E.P., Gower, L.B. Bone structure and formation: a new perspective. Mater. Sci. Eng. R 2007, 58, 77-116.
[21] Fonseca, H., Moreira-Gonçalves, D., Coriolano, H.J.A., Duarte, J.A. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014, 44, 37-53.
[22] Murugan, R., Ramakrishna, S. Development of nanocomposites for bone grafting. Compos. Sci. Technol. 2005, 65, 2385-2406.
[23] Suchanek, W., Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94-117
[24] Vallet-Regi, M., Arcos, D. Nanostructured hybrid materials for bone tissue regeneration. Curr. Nanosci. 2006, 2, 179-189.
[25] Doblaré, M., Garcia, J.M., Gómez, M.J. Modelling bone tissue fracture and healing: a review. Eng. Fract. Mech. 2004, 71, 1809-1840.
[26] Vallet-Regi, M. Revisiting ceramics for medical applications. Dalton Trans. 2006, 5211-5220.
[27] Pioletti, D.P. Biomechanics in bone tissue engineering. Comput. Methods Biomech. Biomed. Engin. 2010, 13, 837-846.
[28] Huiskes, R., Ruimerman, R., van Lenthe, H.G., Janssen, J.D. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 2000, 405, 704-706.
[29] Boccaccini, A.R., Blaker, J.J. Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Dev. 2005, 2, 303-317.
[30] Hutmacher, D.W., Schantz, J.T., Lam, C.X.F., Tan, K.C., Lim, T.C. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 2007, 1, 245-260.
[31] Guarino, V., Causa, F., Ambrosio, L. Bioactive scaffolds for bone and ligament tissue. Expert Rev. Med. Dev. 2007, 4, 405-418.
[32] Yunos, D.M., Bretcanu, O., Boccaccini, A.R. Polymer-bioceramic composites for tissue engineering scaffolds. J. Mater. Sci. 2008, 43, 4433-4442.
[33] Zhao, H.X. Progress of study on drug-loaded chitosan/hydroxyapatite composite in bone tissue engineering.J. Funct. Mater. 2014, 45, 13006-13012+13020.
[34] Hench, L.L., Polak, J.M. Third-generation biomedical materials. Science 2002, 295, 1014-1017.
[35] Mathijsen, A. Nieuwe Wijze van Aanwending van het Gips-Verband bij Beenbreuken. J.B. van Loghem, Haarlem, Netherlands, 1852, 21 pp.
[36] Dreesman, H. Über Knochenplombierung. Beitr. Klin. Chir. 1892, 9, 804-810.
[37] Wang, M. Developing bioactive composite materials for tissue replacement. Biomaterials 2003, 24, 2133-2151.
[38] http://en. wikipedia. org/wiki/Composite_material (assessed in December 2016).
[39] Gibson, R.F. A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 2010, 92, 2793-2810.
[40] Evans, S.L., Gregson, P.J. Composite technology in load-bearing orthopaedic implants. Biomaterials 1998, 19, 1329-1342.
[41] Wan, Y.Z., Hong, L., Jia, S.R., Huang, Y., Zhu, Y., Wang, Y.L., Jiang, H.J. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos. Sci. Technol. 2006, 66, 1825-1832.
[42] Wan, Y.Z., Huang, Y., Yuan, C.D., Raman, S., Zhu, Y., Jiang, H.J., He, F., Gao, C. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater. Sci. Eng. C 2007, 27, 855-864.
[43] Ohtsuki, C., Kamitakahara, M., Miyazaki, T. Coating bone-like apatite onto organic substrates using solutions mimicking body fluid. J. Tissue Eng. Regen. Med. 2007, 1, 33-38.
[44] Oyane, A. Development of apatite-based composites by a biomimetic process for biomedical applications. J. Ceram. Soc. Jpn. 2010, 118, 77-81.
[45] Dorozhkin, S.V. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Eng. C 2015, 55, 272-326.
[46] Surmenev, R.A., Surmeneva, M.A., Ivanova, A.A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis – a review. Acta Biomater. 2014, 10, 557-579.
[47] Dorozhkin, S.V. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 2014, 10,2919-2934.
[48] Zhao, J., Guo, L.Y., Yang, X.B., Weng, J. Preparation of bioactive porous HA/PCL composite scaffolds. Appl. Surf. Sci. 2008, 255, 2942-2946.
[49] Dorozhkin, S., Ajaal, T. Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings. Proc. Inst. Mech. Eng. H 2009, 223, 459-470.
[50] Woo, A.S., Jang, J.L., Liberman, R.F., Weinzweig, J. Creation of a vascularized composite graft with acellular dermal matrix and hydroxyapatite. Plast. Reconstr. Surg. 2010, 125, 1661-1669.
[51] Zhao, J., Duan, K., Zhang, J.W., Lu, X., Weng, J. The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds. Appl. Surf. Sci. 2010, 256, 4586-4590.
[52] Dong, J., Uemura, T., Kojima, H., Kikuchi, M., Tanaka, J., Tateishi, T. Application of low-pressure system to sustain in vivo bone formation in osteoblast/porous hydroxyapatite composite. Mater. Sci. Eng. C 2001, 17, 37-43.
[53] Zerbo, I.R., Bronckers, A.L.J.J., de Lange, G., Burger, E.H. Localisation of osteogenic and osteoclastic cells in porous β-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials 2005, 26, 1445-1451.
[54] Mikán, J., Villamil, M., Montes, T., Carretero, C., Bernal, C., Torres, M.L., Zakaria, F.A. Porcine model for hybrid material of carbonated apatite and osteoprogenitor cells. Mater. Res. Innov. 2009, 13, 323-326.
[55] Oe, K., Miwa, M., Nagamune, K., Sakai, Y., Lee, S.Y., Niikura, T., Iwakura, T., Hasegawa, T., Shibanuma, N., Hata, Y., Kuroda, R, Kurosaka, M. Nondestructive evaluation of cell numbers in bone marrow stromal cell/β-tricalcium phosphate composites using ultrasound. Tissue Eng. C 2010, 16, 347-353.
[56] Krout, A., Wen, H.B., Hippensteel, E., Li, P. A hybrid coating of biomimetic apatite and osteocalcin. J. Biomed. Mater. Res. A 2005, 73A, 377-387.
[57] Kundu, B., Soundrapandian, C., Nandi, S.K., Mukherjee, P., Dandapat, N., Roy, S., Datta, B.K., Mandal, T.K., Basu, D., Bhattacharya, R.N. Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm. Res. 2010, 27, 1659-1676.
[58] Kickelbick, G. (Ed.) Hybrid materials. Synthesis, characterization, and applications, Wiley-VCH Verlag: Weinheim, Germany, 2007; 498 pp.
[59] Matthews, F.L., Rawlings, R.D. Composite materials: engineering and science. CRC Press: Boca Raton, FL, USA, 2000; 480 pp.
[60] Xia, Z., Riester, L., Curtin, W.A., Li, H., Sheldon, B.W., Liang, J., Chang, B., Xu, J.M. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 2004, 52, 931-944.
[61] Tavares, M.I.B., Ferreira, O., Preto, M., Miguez, E., Soares, I.L., da Silva, E.P. Evaluation of composites miscibility by low field NMR. Int. J. Polym. Mater. 2007, 56, 1113-1118.
[62] Kiran, E. Polymer miscibility, phase separation, morphological modifications and polymorphic transformations in dense fluids. J. Supercrit. Fluids 2009, 47, 466-483.
[63] Šupová, M. Problem of hydroxyapatite dispersion in polymer matrices: a review. J. Mater. Sci. Mater. Med. 2009, 20, 1201-1213.
[64] Böstman, O., Pihlajamäki, H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 2000, 21, 2615-2621.
[65] John, M.J., Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343-364.
[66] Rea, S.M., Bonfield, W. Biocomposites for medical applications. J. Aust. Ceram. Soc. 2004, 40, 43-57.
[67] Tanner, K.E. Bioactive ceramic-reinforcedcomposites for bone augmentation. J. R. Soc. Interface 2010, 7, S541-S557.
[68] Gravitis, Y.A., Teìeìyaeìr, R.E., Kallavus, U.L., Andersons, B.A., Ozol’-Kalnin, V.G., Kokorevich, A.G., Eìrin’sh, P.P., Veveris, G.P. Biocomposite structure of wood cell membranes and their destruction by explosive autohydrolysis. Mech. Compos. Mater. 1987, 22, 721-725.
[69] Bernard, S.L., Picha, G.J. The use of coralline hydroxyapatite in a ‘biocomposite’ free flap. Plast. Reconstr. Surg. 1991, 87, 96-107.
[70] 70 Dorozhkin, S.V. Calcium orthophosphates and human beings. A historical perspective from the 1770s until 1940. Biomatter 2012, 2, 53-70.
[71] Dorozhkin, S.V. A detailed history of calcium orthophosphates from 1770s till 1950. Mater. Sci. Eng. C 2013, 33, 3085-3110.
[72] Hing, K.A. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int. J. Appl. Ceram. Technol. 2005, 2, 184-199.
[73] Naqshbandi, A.R., Sopyan, I., Gunawan, Development of porous calcium phosphate bioceramics for bone implant applications: a review. Rec. Pat. Mater. Sci. 2013, 6, 238-252.
[74] LeGeros, R.Z. Calcium phosphates in oral biology and medicine. Monographs in oral science. Myers, H.M. (Ed.); Karger: Basel, Switzerland, 1991; Vol. 15, 201 pp.
[75] Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates, Studies in inorganic chemistry. Elsevier: Amsterdam, Netherlands, 1994; Vol. 18, 389 pp.
[76] Amjad, Z. (Ed.) Calcium phosphates in biological and industrial systems. Kluwer: Boston, MA, USA, 1997; 529 pp.
[77] Heimann, R.B.(Ed.)Calcium phosphate: structure, synthesis, properties, and applications. Nova Science, NY, USA, 2012; 498 pp.
[78] Gshalaev, V.S., Demirchan, A.C. (Eds.)Hydroxyapatite: synthesis, properties and applications. Nova Science, NY, USA, 2012; 477 pp.
[79] Carraher, C.E., Jr. Introduction to polymer chemistry. 2nd Ed., CRC Press: Boca Raton, FL, USA, 2010; 534 pp.
[80] Young, R.J., Lovell, P.A. Introduction to polymers.3rdEd., CRC Press:Boca Raton, FL, USA, 2011; 688 pp.
[81] Thomson, R.C., Ak, S., Yaszemski, M.J., Mikos, A.G. Polymer scaffold processing. In: Principles of Tissue Engineering, Academic Press: NY, USA, 2000; pp. 251-262.
[82] Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.W. Biomedical applications of polymer-composite materials: a review. Compos. Sci. Technol. 2001, 61, 1189-1224.
[83] Shastri, V.P. Non-degradable biocompatible polymers in medicine: past, present and future. Curr. Pharm. Biotechnol. 2003, 4, 331-337.
[84] Chen, H., Yuan, L., Song, W., Wu, Z., Li, D. Biocompatible polymer materials: role of protein-surface interactions. Prog. Polym. Sci. 2008, 33, 1059-1087.
[85] Tanaka, M., Sato, K., Kitakami, E., Kobayashi, S., Hoshiba, T., Fukushima, K. Design of biocompatible and biodegradable polymers based on intermediate water concept. Polymer J. 2015, 47, 114-121.
[86] Lanza, R.P., Hayes, J.L., Chick, W.L. Encapsulated cell technology. Nature Biotechnol. 1996, 14, 1107-1111.
[87] Shukla, S.C., Singh, A., Pandey, A.K., Mishra, A. Review on production and medical applications of ɛ-polylysine. Biochem. Eng. J. 2012, 65, 70-81.
[88] Agrawal, C.M., Ray, R.B. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 2001, 55, 141-150.
[89] Kweon, H., Yoo, M., Park, I., Kim, T., Lee, H., Lee, S., Oh, J., Akaike, T., Cho, C. A novel degradable polycaprolactone network for tissue engineering. Biomaterials 2003, 24, 801-808.
[90] Wang, Y.C., Zhang, P.H. Electrospun absorbable polycaprolactone (PCL) scaffolds for medical applications. Adv. Mater. Res. 2014, 906, 221-225.
[91] Sartori, S., Chiono, V., Tonda-Turo, C., Mattu, C., Gianluca, C. Biomimetic polyurethanes in nano and regenerative medicine. J. Mater. Chem. B 2014, 2, 5128-5144.
[92] Temenoff, J.S., Mikos, A.G. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 2000, 21, 2405-2412.
[93] Behravesh, E., Yasko, A.W., Engel, P.S., Mikos, A.G. Synthetic biodegradable polymers for orthopaedic applications. Clin. Orthop. Rel. Res. 1999, 367S, S118-S125.
[94] Lewandrowski, K.U., Gresser, J.D., Wise, D.L., White, R.L., Trantolo, D.J. Osteoconductivity of an injectable and bioresorbable poly(propyleneglycol-co-fumaric acid) bone cement. Biomaterials 2000, 21, 293-298.
[95] Lee, K.W., Wang, S., Fox, B.C., Ritman, E.L., Yaszemski, M.J., Lu, L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 2007, 8, 1077-1084.
[96] Xu, J., Feng, E., Song, J. Renaissance of aliphatic polycarbonates: new techniques and biomedical applications. J. Appl. Polym. Sci. 2014, 131, 39822 (16 pages).
[97] Boland, E.D., Coleman, B.D., Barnes, C.P., Simpson, D.G., Wnek, G.E., Bowlin, G.L. Electrospinning polydioxanone for biomedical applications. Acta Biomater. 2005, 1, 115-123.
[98] Gilbert, J.L. Acrylics in biomedical engineering. In: Encyclopedia of materials: science and technology, Elsevier: Amsterdam, Netherlands, 2001; pp. 11-18.
[99] Frazer, R.Q., Byron, R.T., Osborne, P.B., West, K.P. PMMA: an essential material in medicine and dentistry. J. Long-Term Eff. Med. Implants 2005, 15, 629-639.
[100] Li, Y.W., Leong, J.C, Y., Lu, W.W., Luk, K.D, K., Cheung, K.M.C., Chiu, K.Y., Chow, S.P. A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study. J. Biomed. Mater. Res. 2000, 52, 164-170.
[101] Mckellop, H., Shen, F., Lu, B., Campbell, P., Salovey, R. Development of an extremely wear resistant UHMW polyethylene for total hip replacements. J. Orthop. Res. 1999, 17, 157-167.
[102] Kurtz, S.M., Muratoglu, O.K., Evans, M., Edidin, A.A. Advances in the processing, sterilization and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 1999, 20, 1659-1688.
[103] Laurencin, C.T., Ambrosio, M.A., Borden, M.D., Cooper, J.A., Jr. Tissue engineering: orthopedic applications. Ann. Rev. Biomed. Eng. 1999, 1, 19-46.
[104] Meijer, G.J., Cune, M.S., van Dooren, M., de Putter, C., van Blitterswijk, C.A. A comparative study of flexible (Polyactive™) versus rigid (hydroxylapatite) permucosal dental implants. I. Clinical aspects. J. Oral Rehabil. 1997, 24, 85-92.
[105] Meijer, G.J., Dalmeijer, R.A., de Putter, C., van Blitterswijk, C.A. A comparative study of flexible (Polyactive™) versus rigid (hydroxylapatite) permucosal dental implants. II. Histological aspects. J. Oral Rehabil. 1997, 24, 93-101.
[106] Waris, E., Ashammakhi, N., Lehtimäki, M., Tulamo, R.M., Törmälä, P., Kellomäki, M., Konttinen, Y.T. Long-term bone tissue reaction to polyethylene oxide/polybutylene terephthalate copolymer (Polyactive®) in metacarpophalangeal joint reconstruction. Biomaterials 2008, 29, 2509-2515.
[107] Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Gatenholm, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005, 26, 419-431.
[108] Rampinelli, G., di Landro, L., Fujii, T. Characterization of biomaterials based on microfibrillated cellulose with different modifications. J. Reinf. Plast. Compos. 2010, 29, 1793-1803.
[109] Granja, P.L., Barbosa, M.A., Pouysége, L., de Jéso, B., Rouais, F., Baquuey, C. Cellulose phosphates as biomaterials. Mineralization of chemically modified regenerated cellulose hydrogels. J. Mater. Sci. 2001, 36, 2163-2172.
[110] Granja, P.L., Jéso, B.D., Bareille, R., Rouais, F., Baquey, C., Barbosa, M.A. Cellulose phosphates as biomaterials. In vitro biocompatibility studies. React. Funct. Polym. 2006, 66, 728-739.
[111] Thomas, V., Dean, D.R., Vohra, Y.K. Nanostructured biomaterials for regenerative medicine. Curr. Nanosci. 2006, 2, 155-177.
[112] Dee, K.C., Bizios, R. Mini-review: proactive biomaterials and bone tissue engineering. Biotechnol. Bioeng. 1996, 50, 438-442.
[113] Ashammakhi, N., Rokkanen, P. Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 1997, 18, 3-9.
[114] Boyan, B., Lohmann, C., Somers, A., Neiderauer, G., Wozney, J., Dean, D., Carnes, D., Schwartz, Z. Potential of porous poly-D, L-lactide-co-glycolide particles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in vivo. J. Biomed. Mater. Res. 1999, 46, 51-59.
[115] Hollinger, J.O., Leong, K. Poly(α-hydroxyacids): carriers for bone morphogenetic proteins. Biomaterials 1996, 17, 187-194.
[116] Griffith, L.G. Polymeric biomaterials. Acta Mater. 2000, 48, 263-277.
[117] Peter, S.J., Miller, M.J., Yasko, A.W., Yaszemski, M.J., Mikos, A.G. Polymer concepts in tissue engineering. J. Biomed. Mater. Res. 1998, 43, 422-427.
[118] Ishuang, S.L., Payne, R.G., Yaszemski, M.J., Aufdemorte, T.B., Bizios, R., Mikos, A.G. Osteoblast migration on poly(α-hydroxy esters). Biotechnol. Bioeng. 1996, 50, 443-451.
[119] Shikinami, Y., Okuno, M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials 1999, 20, 859-877.
[120] Khor, E., Lim, L.Y. Implantable applications of chitin and chitosan. Biomaterials 2003, 24, 2339-2349.
[121] di Martino, A., Sittinger, M., Risbud, M.V. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005, 26, 5983-5990.
[122] Piskin, E., Bölgen, N., Egri, S., Isoglu, I.A. Electrospun matrices made of poly(α-hydroxy acids) for medical use. Nanomedicine 2007, 2, 441-457.
[123] Rezwana, K., Chena, Q.Z., Blakera, J.J., Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413-3431.
[124] Seal, B.L., Otero, T.C., Panitch, A. Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. R 2001, 34, 147-230.
[125] Mano, J.F., Sousa, R.A., Boesel, L.F., Neves, N.M., Reis, R.L. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos. Sci. Technol. 2004, 64, 789-817.
[126] Middleton, J., Tipton, A. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335-2346.
[127] Coombes, A.G., Meikle, M.C. Resorbable synthetic polymers as replacements for bone graft. Clin. Mater. 2004, 17, 35-67.
[128] de las Heras Alarcón, C., Pennadam, S., Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276-285.
[129] Kohane, D.S., Langer, R. Polymeric biomaterials in tissue engineering. Pediatric Res. 2008, 63, 487-491.
[130] Okada, M. Chemical syntheses of biodegradable polymers. Prog. Polym. Sci. 2002, 27, 87-133.
[131] Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A., Jasiuk, I. Experimental trends in polymer nanocomposites – a review. Mater. Sci. Eng. A 2005, 393, 1-11.
[132] Liu, X., Chu, P.K., Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R 2004, 47, 49-121.
[133] Hanawa, T. Biofunctionalization of titanium for dental implant. Jpn. Dent. Sci. Rev. 2010, 46, 93-101.
[134] Frosch, K.H., Stürmer, K.M. Metallic biomaterials in skeletal repair. Eur. J. Trauma 2006, 32, 149-159.
[135] Nasab, M.B., Hassan, M.R., Sahari, B.B. Metallic biomaterials of knee and hip –a review. Trends Biomaterials Artif. Organ. 2010, 24, 69-82.
[136] Chen, Q., Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R 2015, 87, 1-57.
[137] Ryan, G., Pandit, A., Apatsidis, D.P. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 2006, 27, 2651-2670.
[138] Levine, B. A new era in porous metals: applications in orthopaedics. Adv. Eng. Mater. 2008, 10, 788-792.
[139] Chen, C., Zhang, M. Fabrication methods of porous tantalum metal implants for use as biomaterials. Adv. Mater. Res. 2012, 476-478, 2063-2066.
[140] Ma, P.X. Biomimetic materials for tissue engineering. Adv. Drug Deliver. Rev. 2008, 60, 184-198.
[141] Kathuria, Y.P. The potential of biocompatible metallic stents and preventing restenosis. Mater. Sci. Eng. A 2006, 417, 40-48.
[142] Purnama, A., Hermawan, H., Couet, J., Mantovani, D. Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomater. 2010, 6, 1800-1807.
[143] Walker, J., Shadanbaz, S., Woodfield, T.B.F., Staiger, M.P., Dias, G.J. Magnesium biomaterials for orthopedic application: a review from a biological perspective. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102B, 1316-1331.
[144] Knowles, J.C. Phosphate based glasses for biomedical applications. J. Mater. Chem. 2003, 13, 2395-2401.
[145] Tilocca, A. Current challenges in atomistic simulations of glasses for biomedical applications. Phys. Chem. Chem. Phys. 2014, 16, 3874-3880.
[146] Kasuga, T. Development of phosphate glass-ceramics for biomedical applications. J. Ceram. Soc. Jpn. 2007, 115, 455-459.
[147] Abdelghany, A.M., ElBatal, F.H., ElBatal, H.A. Zinc containing borate glasses and glass-ceramics: search for biomedical applications. Process. Appl. Ceram. 2014, 8, 185-193.
[148] Hench, L.L. Bioceramics. J. Am. Ceram. Soc. 1998, 81, 1705-1728.
[149] Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967-978.
[150] Jones, J.R. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013, 9, 4457-4486.
[151] Weizhong, Y., Dali, Z., Guangfu, Y. Research and development of A-W bioactive glass ceramic. J. Biomed. Eng. 2003, 20, 541-545.
[152] Li, G., Zhou, D., Xue, M., Yang, W., Long, Q., Cao, B., Feng, D. Study on the surface bioactivity of novel magnetic A-W glass ceramic in vitro. Appl. Surf. Sci. 2008, 255, 559-561.
[153] Höland, W., Schweiger, M., Watzke, R., Peschke, A., Kappert, H. Ceramics as biomaterials for dental restoration. Expert Rev. Med. Dev. 2008, 5, 729-745.
[154] Li, R.W.K., Chow, T.W., Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: state of the art. J. Prosthodont. Res. 2014, 58, 208-216.
[155] Ramesh, T.R., Gangaiah, M., Harish, P.V., Krishnakumar, U., Nandakishore, B. Zirconia ceramics as a dental biomaterial –an over view. Trends Biomater. Artif. Organs 2012, 26, 154-160.
[156] Wang, C.H., Wang, M.C., Du, J.K., Sie, Y.Y, Hsi, C.S., Lee, H.E. Phase transformation and nanocrystallite growth behavior of 2 mol% yttria-partially stabilized zirconia (2Y-PSZ) powders. Ceram. Int. 2013, 39, 5165-5174.
[157] Garvie, R.C. A personal history of the development of transformation toughened PSZ ceramics. J. Aust. Ceram. Soc. 2014, 50, 15-22.
[158] Benson, J. Elemental carbon as a biomaterial. J. Biomed. Mater. Res. 1972, 5, 41-47.
[159] Olborska, A., Swider, M., Wolowiec, R., Niedzielski, P., Rylski, A., Mitura, S. Amorphous carbon – biomaterial for implant coatings. Diamond Relat. Mater. 1994, 3, 899-901.
[160] Saito, N., Usui, Y., Aoki, K., Narita, N., Shimizu, M., Hara, K., Ogiwara, N., Nakamura, K., Ishigaki, N., Kato, H., Taruta, S, Endo, M. Carbon nanotubes: biomaterial applications. Chem. Soc. Rev. 2009, 38, 1897-1903.
[161] Saito, N., Haniu, H., Usui, Y., Aoki, K., Hara, K., Takanashi, S., Shimizu, M., Narita, N., Okamoto, M., Kobayashi, S., Nomura, H., Kato, H., Nishimura, N., Taruta, S., Endo, M. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 2014, 114, 6040-6079.
[162] Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K., Beguin, F. In vitro studies of carbon nanotubes biocompatibility. Carbon 2006, 44, 1106-1111.
[163] Saito, N., Usui, Y., Aoki, K., Narita, N., Shimizu, M., Ogiwara, N., Nakamura, K., Ishigaki, N., Kato, H., Taruta, S. Carbon nanotubes for biomaterials in contact with bone. Curr. Med. Chem. 2008, 15, 523-527.
[164] Banerjee, S., Kahn, M.G.C., Wong, S.S. Rational chemical strategies for carbon nanotube functionalization. Chem. Eur. J. 2003, 9, 1898-1908.
[165] Beuvelot, J., Bergeret, C., Mallet, R., Fernandez, V., Cousseau, J., Baslé, M.F., Chappard, D. In vitro calcification of chemically functionalized carbon nanotubes. Acta Biomater. 2010, 6, 4110-4117.
[166] Xiao, Y., Gong, T., Zhou, S. The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite. Biomaterials 2010, 31, 5182-5190.
[167] Converse, G.L., Yue, W., Roeder, R.K. Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone. Biomaterials 2007, 28, 927-935.
[168] Converse, G.L., Roeder, R.K. Tensile properties of hydroxyapatite whisker reinforced polyetheretherketone. Mater. Res. Soc. Symp. Proc. 2005, 898, 44-49.
[169] Choi, W.Y., Kim, H.E., Kim, M.J., Kim, U.C., Kim, J.H., Koh, Y.H. Production and characterization of calcium phosphate (CaP) whisker-reinforced poly(ε-caprolactone) composites as bone regenerative. Mater. Sci. Eng. C 2010, 30, 1280-1284.
[170] Zhang, H., Darvell, B.W. Failure and behavior in water of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. J. Mech. Behav. Biomed. Mater. 2012, 10, 39-47.
[171] Liu, F., Wang, R., Cheng, Y., Jiang, X., Zhang, Q., Zhu, M. Polymer grafted hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical properties. Mater. Sci. Eng. C 2013, 33, 4994-5000.
[172] Liu, F.W., Bao, S., Jin, Y., Jiang, X.Z., Zhu, M.F. Novel bionic dental resin composite reinforced by hydroxyapatite whisker. Mater. Res. Innov. 2014, 18, S4854-S4858.
[173] Nouri-Felekori, M., Mesgar, A.S.M., Mohammadi, Z. Development of composite scaffolds in the system of gelatin – calcium phosphate whiskers/fibrous spherulites for bone tissue engineering. Ceram. Int. 2015, 41, 6013-6019.
[174] Watanabe, T., Ban, S., Ito, T., Tsuruta, S., Kawai, T., Nakamura, H. Biocompatibility of composite membrane consisting of oriented needle-like apatite and biodegradable copolymer with soft and hard tissues in rats. Dental Mater. J. 2004, 23, 609-612.
[175] Li, H., Chen, Y., Xie, Y. Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Mater. Lett. 2003, 57, 2848-2854.
[176] Nejati, E., Firouzdor, V., Eslaminejad, M.B., Bagheri, F. Needle-like nano hydroxyapatite/poly(L-lactide acid) composite scaffold for bone tissue engineering application. Mater. Sci. Eng. C 2009, 29, 942-949.
[177] Sun, S.P., Wei, M., Olson, J.R., Shaw, M.T.A modified pultrusion process for preparing composites reinforced with continuous fibers and aligned hydroxyapatite nano needles. Polym. Composite 2015, 36, 931-938.
[178] Kasuga, T., Ota, Y., Nogami, M., Abe, Y. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 2000, 22, 19-23.
[179] Smith, L. Ceramic-plastic material as a bone substitute. Arch. Surg. 1963, 87, 653-661.
[180] Bonfield, W., Grynpas, M.D., Tully, A.E., Bowman, J., Abram, J. Hydroxyapatite reinforced polyethylene – a mechanically compatible implant material for bone replacement. Biomaterials 1981, 2, 185-189.
[181] Bonfield, W., Bowman, J., Grynpas, M.D. Composite material for use in orthopaedics. UK Patent 8032647, 1981.
[182] Bonfield, W. Composites for bone replacement. J. Biomed. Eng. 1988, 10, 522-526.
[183] Guild, F.J., Bonfield, W. Predictive character of hydroxyapatite-polyethelene HAPEX™ composite. Biomaterials 1993, 14, 985-993.
[184] Huang, J., di Silvio, L., Wang, M., Tanner, K.E., Bonfield, W. In vitro mechanical and biological assessment of hydroxyapatite-reinforced polyethylene composite. J. Mater. Sci. Mater. Med. 1997, 8, 775-779.
[185] Wang, M., Joseph, R., Bonfield, W. Hydroxyapatite-polyethylene composites for bone substitution: effect of ceramic particle size and morphology. Biomaterials 1998, 19, 2357-2366.
[186] Ladizesky, N.H., Ward, I.M., Bonfield, W. Hydroxyapatite/high-performance polyethylene fiber composites for high load bearing bone replacement materials. J. Appl. Polym. Sci. 1997, 65, 1865-1882.
[187] Nazhat, S.N., Joseph, R., Wang, M., Smith, R., Tanner, K.E., Bonfield, W. Dynamic mechanical characterisation of hydroxyapatite reinforced polyethylene: effect of particle size. J. Mater. Sci. Mater. Med. 2000, 11, 621-628.
[188] Guild, F.J., Bonfield, W. Predictive modelling of the mechanical properties and failure processes of hydroxyapatite-polyethylene (HAPEX™) composite. J. Mater. Sci. Mater. Med. 1998, 9, 497-502.
[189] Wang M., Ladizesky NH., Tanner, K.E., Ward IM., Bonfield, W. Hydrostatically extruded HAPEX™. J. Mater. Sci. 2000, 35, 1023-1030.
[190] That PT., Tanner, K.E., Bonfield, W. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. I. Uniaxial fatigue. J. Biomed. Mater. Res. 2000, 51, 453-460.
[191] That PT., Tanner, K.E., Bonfield, W. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. II. Biaxial fatigue. J. Biomed. Mater. Res. 2000, 51, 461-468.
[192] Bonner M., Saunders LS., Ward IM., Davies GW., Wang M., Tanner, K.E., Bonfield, W. Anisotropic mechanical properties of oriented HAPEX™. J. Mater. Sci. 2002, 37, 325-334.
[193] di Silvio, L., Dalby, M.J., Bonfield, W. Osteoblast behaviour on HA/PE composite surfaces with different HA volumes. Biomaterials 2002, 23, 101-107.
[194] Dalby, M.J., Kayser, M.V., Bonfield, W., di Silvio, L. Initial attachment of osteoblasts to an optimised HAPEX™ topography. Biomaterials 2002, 23, 681-690.
[195] Zhang, Y., Tanner, K.E., Gurav, N., di Silvio, L. In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite. J. Biomed. Mater. Res. A 2007, 81A, 409-417.
[196] Rea, S.M., Brooks, R.A., Schneider, A., Best, S.M., Bonfield, W. Osteoblast-like cell response to bioactive composites-surface-topography and composition effects. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 70B, 250-261.
[197] Salernitano, E., Migliaresi, C. Composite materials for biomedical applications: a review. J. Appl. Biomater. Biomech. 2003, 1, 3-18.
[198] Pandey, A., Jan, E., Aswath, P.B. Physical and mechanical behavior of hot rolled HDPE/HA composites. J. Mater. Sci. 2006, 41, 3369-3376.
[199] Bonner M., Ward IM., McGregor W., Tanner, K.E., Bonfield, W. Hydroxyapatite/polypropylene composite: a novel bone substitute material. J. Mater. Sci. Lett. 2001, 20, 2049-2052.
[200] Suppakarn, N., Sanmaung, S., Ruksakulpiwa, Y., Sutapun, W. Effect of surface modification on properties of natural hydroxyapatite/polypropylene composites. Key Eng. Mater. 2008, 361-363, 511-514.
[201] Younesi, M., Bahrololoom, M.E. Formulating the effects of applied temperature and pressure of hot pressing process on the mechanical properties of polypropylene-hydroxyapatite bio-composites by response surface methodology. Mater. Des. 2010, 31, 4621-4630.
[202] Younesi, M., Bahrololoom, M.E. Effect of polypropylene molecular weight, hydroxyapatite particle size, and Ringer’ssolution on creep and impact behavior ofpolypropylene-surface treatedhydroxyapatite biocomposites. J. Compos. Mater. 2011, 45, 513-523.
[203] Sousa, R.A., Reis, R.L., Cunha, A.M., Bevis, M.J. Processing and properties of bone-analogue biodegradable and bioinert polymeric composites. Compos. Sci. Technol. 2003, 63, 389-402.
[204] Wang, M., Deb, S., Bonfield, W. Chemically coupled hydroxyapatite-polyethylene composites: processing and characterisation. Mater. Lett. 2000, 44, 119-124.
[205] Wang, M., Bonfield, W. Chemically coupled hydroxyapatite-polyethylene composites: structure and properties. Biomaterials 2001, 22, 1311-1320.
[206] Homaeigohar, S.S., Shokrgozar, M.A., Khavandi, A., Sadi, A.Y. In vitro biological evaluation of β-TCP/HDPE – a novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells. J. Biomed. Mater. Res. A 2008, 84A, 491-499.
[207] Sadi, A.Y., Homaeigohar, S. Sh., Khavandi, A.R., Javadpour, J. The effect of partially stabilized zirconia on the mechanical properties of the hydroxyapatite-polyethylene composites. J. Mater. Sci. Mater. Med. 2004, 15, 853-858.
[208] Nath, S., Bodhak, S., Basu, B. HDPE-Al2O3-HAp composites for biomedical applications: processing and characterizations. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88B, 1-11.
[209] Downes, R.N., Vardy, S., Tanner, K.E., Bonfield, W. Hydroxyapatite-polyethylene composite in orbital surgery. Bioceramics 4. 1991; pp. 239-246.
[210] Dornhoffer, H.L. Hearing results with the dornhoffer ossicular replacement prostheses. Laryngoscope 1998, 108, 531-536.
[211] Swain, R.E., Wang, M., Beale, B., Bonfield, W. HAPEX™ for otologic applications. Biomed. Eng. Appl. Basis Commun. 1999, 11, 315-320.
[212] Yi, Z., Li, Y., Jidong, L., Xiang, Z., Hongbing, L., Yuanyuan, W., Weihu, Y. Novel bio-composite of hydroxyapatite reinforced polyamide and polyethylene: composition and properties. Mater. Sci. Eng. A 2007, 452-453, 512-517.
[213] Unwin, A.P., Ward, I, M., Ukleja, P., Weng, J. The role of pressure annealing in improving the stiffness of polyethylene/hydroxyapatite composites. J. Mater. Sci. 2001, 36, 3165-3177.
[214] Fang, L.M., Leng, Y., Gao, P. Processing and mechanical properties of HA/UHMWPE nanocomposites. Biomaterials 2006, 27, 3701-3707.
[215] Fang, L.M., Gao, P., Leng, Y. High strength and bioactive hydroxyapatite nano-particles reinforced ultrahigh molecular weight polyethylene. Composites B 2007, 38, 345-351.
[216] Fang, L.M., Leng, Y., Gao, P. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications. Biomaterials 2005, 26, 3471-3478.
[217] Selvin, T.P., Seno, J., Murukan, B., Santhosh, A.A., Sabu, T., Weimin, Y., Sri, B. Poly(ethylene-co-vinyl acetate)/calcium phosphate nanocomposites: thermo mechanical and gas permeability measurements. Polym. Composite 2010, 31, 1011-1019.
[218] Reis, R.L., Cunha, A.M., Oliveira, M.J., Campos, A.R., Bevis, M.J. Relationship between processing and mechanical properties of injection molded high molecular mass polyethylene + hydroxyapatite composites. Mater. Res. Inn. 2001, 4, 263-272.
[219] Sousa, R.A., Reis, R.L., Cunha, A.M., Bevis, M.J. Structure development and interfacial interactions in high-density polyethylene/hydroxyapatite (HDPE/HA) composites molded with preferred orientation. J. Appl. Polym. Sci. 2002, 86, 2873-2886.
[220] Mirsalehi, S.A., Khavandi, A., Mirdamadi, S., Naimi-Jamal, M.R., Kalantari, S.M. Nanomechanical and tribological behavior of hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposites for biomedical applications. J. Appl. Polym. Sci. 2015, 132, 42052.
[221] Donners, J.J.J.M., Nolte, R.J.M., Sommerdijk, N.A, J.M. Dendrimer-based hydroxyapatite composites with remarkable materials properties. Adv. Mater. 2003, 15, 313-316.
[222] Schneider, O.D., Stepuk, A., Mohn, D., Luechinger, N.A., Feldman, K., Stark, W.J. Light-curable polymer/calcium phosphate nanocomposite glue for bone defect treatment. Acta Biomater. 2010, 6, 2704-2710.
[223] Ignjatovic, N.L., Plavsic, M., Miljkovic, M.S., Zivkovic, L.M., Uskokovic, D.P. Microstructural characteristics of calcium hydroxyapatite/poly-L-lactide based composites. J. Microsc. 1999, 196, 243-248.
[224] Skrtic, D., Antonucci, J.M., Eanes, E.D. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J. Res. Natl. Inst. Stand. Technol. 2003, 108, 167-182.
[225] Rizzi, S.C., Heath, D.J., Coombes, A.G, A., Bock, N., Textor, M., Downes, S. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. J. Biomed. Mater. Res. 2001, 55, 475-486.
[226] Navarro, M., Planell, J.A. Bioactive composites based on calcium phosphates for bone regeneration. Key Eng. Mater. 2010, 441, 203-233.
[227] Zhang, R.Y., Ma, P.X. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res. 1999, 45, 285-293.
[228] Liu, Q., de Wijn, J.R., van Blitterswijk, C.A. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix. J. Biomed. Mater. Res. 1998, 40, 490-497.
[229] Cerrai, P., Guerra, G.D., Tricoli, M., Krajewski, A., Ravaglioli, A., Martinetti, R., Dolcini, L. Fini, M., Scarano, A., Piattelli, A. Periodontal membranes from composites of hydroxyapatite and bioresorbable block copolymers. J. Mater. Sci. Mater. Med. 1999, 10, 677-682.
[230] Roeder, R.K., Sproul, M.M., Turner, C.H. Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J. Biomed. Mater. Res. A 2003, 67A, 801-812.
[231] Wagoner Johnson, A.J., Herschler, B.A.A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011, 7, 16-30.
[232] Hutmacher, D.W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529-2543.
[233] Mathieu, L.M., Bourban, P.E., Manson, J.A.E. Processing of homogeneous ceramic/polymer blends for bioresorbable composites. Compos. Sci. Technol. 2006, 66, 1606-1614.
[234] Redepenning, J., Venkataraman, G., Chen, J., Stafford, N. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. J. Biomed. Mater. Res. A 2003, 66A, 411-416.
[235] Rhee, S.H., Tanaka, J. Synthesis of a hydroxyapatite/collagen/chondroitin sulfate nanocomposite by a novel precipitation method. J. Am. Ceram. Soc. 2001, 84, 459-461.
[236] Pezzotti, G., Asmus, S.M.F. Fracture behavior of hydroxyapatite/polymer interpenetrating network composites prepared by in situ polymerization process. Mater. Sci. Eng. A 2001, 316, 231-237.
[237] Weickmann, H., Gurr, M., Meincke, O., Thomann, R., Mülhaupt, R. A versatile solvent-free “one-pot” route to polymer nanocomposites and the in situ formation of calcium phosphate/layered silicate hybrid nanoparticles. Adv. Funct. Mater. 2010, 20, 1778-1786.
[238] Aryal, S., Bhattarai, S.R., Bahadur, K.C.R., Khil, M.S., Lee, D.R., Kim, H.Y. Carbon nanotubes assisted biomimetic synthesis of hydroxyapatite from simulated body fluid. Mater. Sci. Eng. A 2006, 426, 202-207.
[239] Kealley, C., Ben-Nissan, B., van Riessen, A., Elcombe, M. Development of carbon nanotube reinforced hydroxyapatite bioceramics. Key Eng. Mater. 2006, 309-311, 597-600.
[240] Kealley, C., Elcombe, M., van Riessen, A., Ben-Nissan, B. Development of carbon nanotube reinforced hydroxyapatite bioceramics. Physica B 2006, 385-386, 496-498.
[241] Aryal, S., Bahadur, K.C.R., Dharmaraj, N., Kim, K.W., Kim, H.Y. Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix. Scripta Mater. 2006, 54, 131-135.
[242] Rautaray, D., Mandal, S., Sastry, M. Synthesis of hydroxyapatite crystals using amino acid-capped gold nanoparticles as a scaffold. Langmuir 2005, 21, 5185-5191.
[243] Wang, X.J., Li, Y., Wei, J., de Groot, K. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials 2002, 23, 4787-4791.
[244] Wei, J., Li, Y. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur. Polym. J. 2004, 40, 509-515.
[245] Memoto, R., Nakamura, S., Isobe, T., Senna, M. Direct synthesis of hydroxyapatite-silk fibroin nano-composite sol via a mechano-chemical route. J. Sol Gel Sci. Technol. 2001, 21, 7-12.
[246] Yoshida, A., Miyazaki, T., Ashizuka, M., Ishida, E. Bioactivity and mechanical properties of cellulose/carbonate hydroxyapatite composites prepared in situ through mechanochemical reaction. J. Biomater. Appl. 2006, 21, 179-194.
[247] Fujiwara, M., Shiokawa, K., Morigaki, K., Tatsu, Y., Nakahara, Y. Calcium phosphate composite materials including inorganic powders, BSA or duplex DNA prepared by W/O/W interfacial reaction method. Mater. Sci. Eng. C 2008, 28, 280-288.
[248] Nagata, F., Miyajima, T., Yokogawa, Y. A method to fabricate hydroxyapatite/poly(lactic acid) microspheres intended for biomedical application. J. Eur. Ceram. Soc. 2006, 26, 533-535.
[249] Russias, J., Saiz, E., Nalla, R.K., Tomsia, A.P. Microspheres as building blocks for hydroxyapatite/polylactide biodegradable composites. J. Mater. Sci. 2006, 41, 5127-5133.
[250] Khan, Y.M., Cushnie, E.K., Kelleher, J.K., Laurencin, C.T. In situ synthesized ceramic-polymer composites for bone tissue engineering: bioactivity and degradation studies. J. Mater. Sci. 2007, 42, 4183-4190.
[251] Liu, X., Okada, M., Maeda, H., Fujii, S., Furuzono, T. Hydroxyapatite/
biodegradable poly(L-lactide-co-ε-caprolactone) composite microparticles as injectable scaffolds by a Pickering emulsion route. Acta Biomater. 2011, 7, 821-828.
[252] Hu, Y., Zou, S., Chen, W., Tong, Z., Wang, C. Mineralization and drug release of hydroxyapatite/poly(L-lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating. Colloid Surface B2014,122, 559-565.
[253] Kim, H.W., Knowles, J.C., Kim, H.E. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J. Biomed. Mater. Res. A 2005, 72A, 136-145.
[254] Mohandes, F., Salavati-Niasari, M. Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite. RSC Adv. 2014, 4, 25993-26001.
[255] Sinha, A., Das, G., Sharma, B.K., Roy, R.P., Pramanick, A.K., Nayar, S. Poly(vinyl alcohol)-hydroxyapatite biomimetic scaffold for tissue regeneration. Mater. Sci. Eng. C 2007, 27, 70-74.
[256] Sugawara, A., Yamane, S., Akiyoshi, K. Nanogel-templated mineralization: polymer-calcium phosphate hybrid nanomaterials. Macromol. Rapid Commun. 2006, 27, 441-446.
[257] Kickelbick, G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 2003, 28, 83-114.
[258] Liu, Q., de Wijn, J.R., van Blitterswijk, C.A. Nanoapatite/polymer composites: mechanical and physicochemical characteristics. Biomaterials 1997, 18, 1263-1270.
[259] Uskokovic, P.S., Tang, C.Y., Tsui, C.P., Ignjatovic, N., Uskokovic, D.P. Micromechanical properties of a hydroxyapatite/poly-L-lactide biocomposite using nanoindentation and modulus mapping. J. Eur. Ceram. Soc. 2007, 27, 1559-1564.
[260] Todo, M., Kagawa, T. Improvement of fracture energy of HA/PLLA biocomposite material due to press processing. J. Mater. Sci. 2008, 43, 799-801.
[261] Woo, K.M., Seo, J., Zhang, R.Y., Ma, P.X. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials 2007, 28, 2622-2630.
[262] Baji, A., Wong, S.C., Srivatsan, T.S., Njus, G.O., Mathur, G. Processing methodologies for polycaprolactone-hydroxyapatite composites: a review. Mater. Manuf. Process. 2006, 21, 211-218.
[263] Guan, L., Davies, J.E. Preparation and characterization of a highly macroporous biodegradable composite tissue engineering scaffold. J. Biomed. Mater. Res. A 2004, 71A, 480-487.
[264] Sun, F., Zhou, H., Lee, J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011, 7, 3813-3828.
[265] Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K. Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose 2015, 21, 3409-3426.
[266] Teng, X.R., Ren, J., Gu, S.Y. Preparation and characterization of porous PDLLA/HA composite foams by supercritical carbon dioxide technology. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81B, 185-193.
[267] Ren, J., Zhao, P., Ren, T., Gu, S., Pan, K. Poly (D, L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J. Mater. Sci. Mater. Med. 2008, 19, 1075-1082.
[268] Wang, M., Yue, C.Y., Chua, B. Production and evaluation of hydroxyapatite reinforced polysulfone for tissue replacement. J. Mater. Sci. Mater. Med. 2001, 12, 821-826.
[269] Chlopek, J., Rosol, P., Morawska-Chochol, A. Durability of polymer-ceramics composite implants determined in creep tests. Compos. Sci. Technol. 2006, 66, 1615-1622.
[270] Robinson, P., Wilson, C., Mecholsky, J. Processing and mechanical properties of hydroxyapatite-polysulfone laminated composites. J. Eur. Ceram. Soc. 2014, 34, 1387-1396.
[271] Xu, F., Li, Y., Yao, X., Liao, H., Zhang, L. Preparation and in vivo investigation of artificial cornea made of nano-hydroxyapatite/poly (vinyl alcohol) hydrogel composite. J. Mater. Sci. Mater. Med. 2007, 18, 635-640.
[272] Xu, F., Li, Y., Deng, Y., Xiong, G. Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro. J. Biomater. Sci. Polym. Edn. 2008, 19, 431-439.
[273] Nayar, S., Pramanick, A.K., Sharma, B.K., Das, G., Kumar, B.R., Sinha, A. Biomimetically synthesized polymer-hydroxyapatite sheet like nano-composite. J. Mater. Sci. Mater. Med. 2008, 19, 301-304.
[274] Poursamar, S.A., Orang, F., Bonakdar, S., Savar, M.K. Preparation and characterisation of poly vinyl alcohol/hydroxyapatite nanocomposite via in situ synthesis: a potential material as bone tissue engineering scaffolds. Int. J. Nanomanuf. 2010, 5, 330-334.
[275] Guha, A., Nayar, S., Thatoi, H.N. Microwave irradiation enhances kinetics of the biomimetic process of hydroxyapatite nanocomposites. Bioinspir. Biomim. 2010, 5, 024001 (5 pages).
[276] Pramanik, N., Biswas, S.K., Pramanik, P. Synthesis and characterization of hydroxyapatite/poly(vinyl alcohol phosphate) nanocomposite biomaterials. Int. J. Appl. Ceram. Technol. 2008, 5, 20-28.
[277] Bigi, A., Boanini, E., Gazzano, M., Rubini, K. Structural and morphological modifications of hydroxyapatite-polyaspartate composite crystals induced by heat treatment. Cryst. Res. Technol. 2005, 40, 1094-1098.
[278] Bertoni, E., Bigi, A., Falini, G., Panzavolta, S., Roveri, N. Hydroxyapatite polyacrylic acid nanocrystals. J. Mater. Chem. 1999, 9, 779-782.
[279] Qiu, H.J., Yang, J., Kodali, P., Koh, J., Ameer, G.A. A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials 2006, 27, 5845-5854.
[280] Greish, Y.E., Brown, P.W. Chemically formed HAp-Ca poly(vinyl phosphonate) composites. Biomaterials 2001, 22, 807-816.
[281] Greish, Y.E., Brown, P.W. Preparation and characterization of calcium phosphate-poly(vinyl phosphonic acid) composites. J. Mater. Sci. Mater. Med. 2001, 12, 407-411.
[282] Greish, Y.E., Brown, P.W. Formation and properties of hydroxyapatite-calcium poly(vinyl phosphonate) composites. J. Am. Ceram. Soc. 2002, 85, 1738-1744.
[283] Sailaja, G.S., Velayudhan, S., Sunny, M.C., Sreenivasan, K., Varma, H.K., Ramesh, P. Hydroxyapatite filled chitosan-polyacrylic acid polyelectrolyte complexes. J. Mater. Sci. 2003, 38, 3653-3662.
[284] Piticescu, R.M., Chitanu, G.C., Albulescu, M., Giurginca, M., Popescu, M.L., Łojkowski, W. Hybrid HAp-maleic anhydride copolymer nanocomposites obtained by in-situ functionalisation. Solid State Phenom. 2005, 106, 47-56.
[285] Song, J., Saiz, E., Bertozzi, C.R. A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites. J. Am. Chem. Soc. 2003, 125, 1236-1243.
[286] Kutikov, A.B., Song J.An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells. Acta Biomater. 2013, 9, 8354-8364.
[287] Abu Bakar, M.S., Cheng, M.H.W., Tang, S.M., Yu, S.C., Liao, K., Tan, C, T., Khor, K.A., Cheang, P. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 2003, 24, 2245-2250.
[288] Abu Bakar, M.S., Cheang, P., Khor, K.A. Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Compos. Sci. Technol. 2003, 63, 421-425.
[289] Abu Bakar, M.S., Cheang, P., Khor, K.A. Tensile properties and microstructural analysis of spheroidized hydroxyapatite-poly(etheretherketone) biocomposites. Mater. Sci. Eng. A 2003, 345, 55-63.
[290] Fan, J.P., Tsui, C.P., Tang, C.Y. Modeling of the mechanical behavior of HA/PEEK biocomposite under quasi-static tensile load. Mater. Sci. Eng. A 2004, 382, 341-350.
[291] Wang, L., Weng, L., Song, S., Sun, Q. Mechanical properties and microstructure of polyetheretherketone-hydroxyapatite nanocomposite materials. Mater. Lett. 2010, 64, 2201-2204.
[292] Li, K., Yeung, C.Y., Yeung, K.W.K., Tjong, S.C. Sintered hydroxyapatite/ polyetheretherketone nanocomposites: mechanical behavior and biocompatibility. Adv. Eng. Mater. 2012,14, B155-B165.
[293] Wang, L., He, S., Wu, X., Liang, S., Mu, Z., Wei, J., Deng, F., Deng, Y., Wei, S. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials2014,35,6758-6775.
[294] Gong, X.H., Tang, C.Y., Hu, H.C., Zhou, X.P. Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in situ polymerization of styrene. J. Mater. Sci. Mater. Med. 2004, 15, 1141-1146.
[295] Fu, G., Xia, Z., Jiang, J., Jing, B., Zhang, X. Fabrication and characterization of nanocomposites with high-impact polystyrene and hydroxyapatite with well-defined polystyrene via ATRP. J. Reinf. Plast. Comp. 2011, 30, 1445-1453.
[296] Petricca, S.E., Marra, K.G., Kumta, P.N. Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications. Acta Biomater. 2006, 2, 277-286.
[297] Kim, S.S., Ahn, K.M., Park, M.S., Lee, J.H., Choi, C.Y., Kim, B.S. A poly (lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J. Biomed. Mater. Res. A 2007, 80A, 206-215.
[298] Oliveira, J., Miyazaki, T., Lopes, M., Ohtsuki, C., Santos, J. Bonelike®/PLGA hybrid materials for bone regeneration: preparation route and physicochemical characterization. J. Mater. Sci. Mater. Med. 2005, 16, 253-259.
[299] Aboudzadeh, N., Imani, M., Shokrgozar, M.A., Khavandi, A., Javadpour, J., Shafieyan, Y., Farokhi, M. Fabrication and characterization of poly(D, L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. J. Biomed. Mater. Res. A 2010, 94A, 137-145.
[300] Zhou, H., Lawrence, J.G., Bhaduri, S.B. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta Biomater. 2012, 8, 1999-2016.
[301] Hoekstra, J.W.M., Ma, J., Plachokova, A.S., Bronkhorst, E.M., Bohner, M., Pan, J., Meijer, G.J., Jansen, J.A., van den Beucken, J.J.J.P. Thein vivo performance of CaP/PLGA composites with varied PLGA microsphere sizes and inorganic compositions. Acta Biomater. 2013, 9, 7518-7526.
[302] Leung, L.H. Naguib, H.E. Characterizing theviscoelastic behaviour ofpoly(lactide-co-glycolideacid)–hydroxyapatitefoams. J. Cell. Plast. 2013, 49, 497-505.
[303] Takeoka, Y., Hayashi, M., Sugiyama, N., Yoshizawa-Fujita, M., Aizawa, M., Rikukawa, M.In situ preparation of poly(l-lactic acid-co-glycolic acid)/hydroxyapatite composites as artificial bone materials. Polym. J. 2015, 47, 164-170.
[304] Fisher, P.D., Venugopal, G., Milbrandt, T.A., Hilt, J.Z., Puleo, D.A. Hydroxyapatite-reinforced in situ forming PLGA systems for intraosseous injection. J. Biomed. Mater. Res. A 2015, 103A, 2365-2373.
[305] Athanasiou, K.A., Schmitz, J.P., Agrawal, C.M. The effects of porosity on in vitro degradation of polylactic acid- polyglycolic acid implants used in repair of articular cartilage. Tissue Eng. 1998, 4, 53-63.
[306] Verheyen, C.C.P.M., Klein, C.P.A.T., de Blieck-Hogervorst, J.M.A., Wolke, J.G.C., de Wijin, J.R., van Blitterswijk, C.A., de Groot, K. Evaluation of hydroxylapatite poly(L-lactide) composites: physico-chemical properties. J. Mater. Sci. Mater. Med. 1993, 4, 58-65.
[307] Agrawal, C.M., Athanasiou, K.A. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J. Biomed. Mater. Res. Appl. Biomater. 1997, 38, 105-114.
[308] Li, H., Chang, J. pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Compos. Sci. Technol. 2005, 65, 2226-2232.
[309] Peter, S.J., Miller, S.T., Zhu, G., Yasko, A.W., Mikos, A.G. In vivo degradation of a poly(propylene fumarate)/β-tricalcium phosphate injectable composite scaffold. J. Biomed. Mater. Res. 1998, 41, 1-7.
[310] Ara, M., Watanabe, M., Imai, Y. Effect of blending calcium compounds on hydrolitic degradation of poly(D,L-lactic acid-co-glycolic acid). Biomaterials 2002, 23, 2479-2483.
[311] Linhart, W., Peters, F., Lehmann, W., Schwarz, K., Schilling, A., Amling, M., Rueger, J.M., Epple, M. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J. Biomed. Mater. Res. 2001, 54, 162-171.
[312] Schiller, C., Epple, M. Carbonated apatites can be used as pH-stabilizing filler for biodegradable polyesters. Biomaterials 2003, 24, 2037-2043.
[313] Schiller, C., Rasche, C., Wehmöller, M., Beckmann, F., Eufinger, H., Epple, M., Weihe, S. Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate. Biomaterials 2004, 25, 1239-1247.
[314] Shikinami, Y., Okuno, M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials 2001, 22, 3197-3211.
[315] Russias, J., Saiz, E., Nalla, R.K., Gryn, K., Ritchie, R.O., Tomsia, A.P. Fabrication and mechanical properties of PLA/HA composites: a study of in vitro degradation. Mater. Sci. Eng. C 2006, 26, 1289-1295.
[316] Akagi, H., Iwata, M., Ichinohe, T., Amimoto, H., Hayashi, Y., Kannno, N., Ochi, H., Fujita, Y., Harada, Y., Tagawa, M., Hara, Y. Hydroxyapatite/poly-L-lactide acid screws have better biocompatibility and femoral burr hole closure than does poly-L-lactide acid alone.J. Biomater. Appl. 2014, 28, 954-962.
[317] Kim, H.W., Lee, H.H., Knowles, J.C. Electrospinning biomedical nanocomposite fibers of hydroxyapaite/poly(lactic acid) for bone regeneration. J. Biomed. Mater. Res. A 2006, 79A, 643-649.
[318] Gross, K.A., Rodríguez-Lorenzo, L.M. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Biomaterials 2004, 25, 4955-4962.
[319] Zhang, H., Chen, Z. Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite biocomposite scaffolds for bone tissue engineering. J. Bioact. Compat. Polym. 2010, 25, 241-259.
[320] Durucan, C., Brown, P.W. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites. J. Biomed. Mater. Res. 2000, 51, 717-725.
[321] Durucan, C., Brown, P.W. Calcium-deficient hydroxyapatite-PLGA composites: mechanical and microstructural investigation. J. Biomed. Mater. Res. 2000, 51, 726-734.
[322] Durucan, C., Brown, P.W. Biodegradable hydroxyapatite-polymer composites. Adv. Eng. Mater.2001, 3, 227-231.
[323] Nazhat, S.N., Kellomäki, M., Törmälä, P., Tanner, K.E., Bonfield, W. Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides. J. Biomed. Mater. Res. 2001, 58, 335-343.
[324] Ignjatovic, N., Suljovrujic, E., Biudinski-Simendic, J., Krakovsky, I., Uskokovic, D. Evaluation of hot-presses hydroxyapatite/poly-L-lactide composite biomaterial characteristics. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71B, 284-294.
[325] Wang, X., Lou, T., Yang, J., Yang, Z., He, K. Preparation of PLLA/HAP/β-TCP composite scaffold for bone tissueengineering. Appl. Mech. Mater. 2014, 513-517, 143-146.
[326] Hasegawa, S., Tamura, J., Neo, M., Goto, K., Shikinami, Y., Saito, M., Kita, M., Nakamura, T. In vivo evaluation of a porous hydroxyapatite/poly-D,L-lactide composite for use as a bone substitute. J. Biomed. Mater. Res. A 2005, 75A, 567-579.
[327] Hasegawa, S., Neo, M., Tamura, J., Fujibayashi, S., Takemoto, M., Shikinami, Y., Okazaki, K., Nakamura, T. In vivo evaluation of a porous hydroxyapatite/poly-D,L-lactide composite for bone tissue engineering. J. Biomed. Mater. Res. A 2007, 81A, 930-938.
[328] Kim, S.S., Park, M.S., Jeon, Q., Choi, C.Y., Kim, B.S. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 1399-1409.
[329] Reis, R.L., Cunha, A.M. New degradable load-bearing biomaterials composed of reinforced starch based blends. J. Appl. Med. Polym. 2000, 4, 1-5.
[330] Sousa, R.A., Mano, J.F., Reis, R.L., Cunha, A.M., Bevis, M.J. Mechanical performance of starch based bioactive composites moulded with preferred orientation for potential medical applications. Polym. Eng. Sci. 2002, 42, 1032-1045.
[331] Marques, A.P., Reis, R.L. Hydroxyapatite reinforcement of different starch-based polymers affects osteoblast-like cells adhesion/spreading and proliferation. Mater. Sci. Eng. C 2005, 25, 215-229.
[332] Reis, R.L., Cunha, A.M., Allan, P.S., Bevis, M.J. Structure development and control of injection-molded hydroxylapatite-reinforced starch/EVOH composites. Adv. Polym. Tech. 1997, 16, 263-277.
[333] Vaz, C.M., Reis, R.L., Cunha, A.M. Use of coupling agents to enhance the interfacial interactions in starch-EVOH/hydroxylapatite composites. Biomaterials 2002, 23, 629-635.
[334] Leonor, I.B., Ito, A., Onuma, K., Kanzaki, N., Reis, R.L. In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy. Biomaterials 2003, 24, 579-585.
[335] Vaz, C.M., Reis, R.L., Cunha, A.M. Degradation model of starch-EVOH+HA composites. Mater. Res. Innov. 2001, 4, 375-380.
[336] Chen, L.J., Wang, M. Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomaterials 2002, 23, 2631-2639.
[337] Ni, J., Wang, M. In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater. Sci. Eng. C 2002, 20, 101-109.
[338] Carlo, E.C., Borges, A.P.B., Del Carlo, R.J., Martinez, M.M.M., Oliveira, P.M., Morato, G.O, Eleotério, R.B., Reis, M.S. Comparison of in vivo properties of hydroxyapatite-polyhydroxybutyrate composites assessed for bone substitution. J. Craniofac. Surg. 2009, 20, 853-859.
[339] Reis, E.C.C., Borges, A.P.B., Fonseca, C.C., Martinez, M.M.M., Eleotério, R.B., Morato, G.O., Oliveira, P.M. Biocompatibility, osteointegration, osteoconduction, and biodegradation of a hydroxyapatite-polyhydroxybutyrate composite. Braz. Arch. Biol. Technol. 2010, 53, 817-826.
[340] Sadat-Shojai, M., Khorasani, M.T., Jamshidi, A., Irani, S. Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties. Mater. Sci. Eng. C 2013, 33, 2776-2787.
[341] Chen, D.Z., Tang, C.Y., Chan, K.C., Tsui, C.P., Yu, P.H.F., Leung, M.C.P., Uskokovic, P.S. Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos. Sci. Technol. 2007, 67, 1617-1626.
[342] Rai, B., Noohom, W., Kithva, P.H., Grøndahl, L., Trau, M. Bionanohydro-xyapatite/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composites with improved particle dispersion and superior mechanical properties. Chem. Mater. 2008, 20, 2802-2808.
[343] Wang, Y.W., Wu, Q., Chen, J., Chen, G.Q. Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials 2005, 26, 899-904.
[344] Linhart, W., Lehmann, W., Siedler, M., Peters, F., Schilling, A.F., Schwarz,
K., Amling, M., Rueger, J.M., Epple, M. Composites of amorphous
calcium phosphate and poly(hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate) for bone substitution: assessment of the biocompatibility. J. Mater. Sci. 2006, 41, 4806-4813.
[345] Azevedo, M., Reis, R.L., Claase, M., Grijpma, D., Feijen, J. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. J. Mater. Sci. Mater. Med. 2003, 14, 103-107.
[346] Walsh, D., Furuzono, T., Tanaka, J. Preparation of porous composite implant materials by in situ polymerization of porous apatite containing ε-caprolactone or methyl methacrylate. Biomaterials 2001, 22, 1205-1212.
[347] Kim, H.W. Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J. Biomed. Mater. Res. A 2007, 83A, 169-177.
[348] Heo, S.J., Kim, S.E., Wei, J., Hyun, Y.T., Yun, H.S., Kim, D.H., Shin, J.W., Shin, J.W. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process.J. Biomed. Mater. Res. A 2009, 89A, 108-116.
[349] Chuenjitkuntaworn, B., Inrung, W., Damrongsri, D., Mekaapiruk, K.,
Supaphol, P., Pavasant, P. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J. Biomed. Mater. Res. A 2010, 94A, 241-251.
[350] Bang, L.T., Kawachi, G., Nakagawa, M., Munar, M., Ishikawa, K., Othman, R. The use of poly (ε-caprolactone) to enhance the mechanical strength of porous Si-substituted carbonate apatite. J. Appl. Polym. Sci. 2013, 130, 426-433.
[351] Mohd Yusoff, M.F., Abdul Kadir, M.R., Iqbal, N., Hassan, M.A., Hussain, R. Dipcoating of poly (ε-caprolactone)/hydroxyapatite composite coating on Ti6Al4V for enhanced corrosion protection. Surf. Coat. Technol. 2014, 245, 102-107.
[352] Kim, B.S., Yang, S.S., Lee, J.A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102B, 943-951.
[353] Causa, F., Netti, P.A., Ambrosio, L., Ciapetti, G., Baldini, N., Pagani, S., Martini, D., Giunti, A. Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J. Biomed. Mater. Res. A 2006, 76A, 151-162.
[354] Thomas, V., Jagani, S., Johnson, K., Jose, M.V., Dean, D.R., Vohra, Y.K., Nyairo, E. Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J. Nanosci. Nanotechol. 2006, 6, 487-493.
[355] Marra, K.G., Szem, J.W., Kumta, P.N., DiMilla, P.A., Weiss, L.E. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J. Biomed. Mater. Res. 1999, 47, 324-335.
[356] Dunn, A., Campbell, P., Marra, K.G. The influence of polymer blend composition on the degradation of polymer/hydroxyapatite biomaterials. J. Mater. Sci. Mater. Med. 2001, 12, 673-677.
[357] Calandrelli, L., Immirzi, B., Malinconico, M., Volpe, M., Oliva, A., Ragione, F. Preparation and characterization of composites based on biodegradable polymers for in vivo application. Polymer 2000, 41, 8027-8033.
[358] Chen, B., Sun, K. Poly(ε-caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym. Test. 2005, 24, 64-70.
[359] Kim, H.W., Knowles, J.C., Kim, H.E. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 2004, 25, 1279-1287.
[360] Ural, E., Kesenci, K., Fambri, L., Migliaresi, C., Piskin, E. Poly(D,L-lactide/ε-caprolactone)/hydroxyapatite composites. Biomaterials 2000, 21, 2147-2154.
[361] Rodenas-Rochina, J., Vidaurre, A., Cortázar, I.C., Lebourg, M. Effects of hydroxyapatite filler on long-term hydrolytic degradationof PLLA/PCL porous scaffolds. Polym. Degrad. Stabil.2015,119, 121-131.
[362] Kim, H.W., Lee, E.J., Kim, H.E., Salih, V., Knowles, J.C. Effect of fluoridation of hydroxyapatite in hydroxyapatite/polycaprolactone composites on osteoblast activity. Biomaterials 2005, 26, 4395-4404.
[363] Gloria, A., Russo, T., D’Amora, U., Zeppetelli, S., D’Alessandro, T., Sandri, M., Bañobre-López, M., Piñeiro-Redondo, Y., Uhlarz, M., Tampieri, A., Rivas, J., Herrmannsdörfer, T., Dediu, V.A., Ambrosio, L., de Santis, R. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering.J. R. Soc. Interface 2013, 10, 20120833.
[364] Shokrollahi, P., Mirzadeh, H., Scherman, O.A., Huck, W.T.S. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite. J. Biomed. Mater. Res. A 2010, 95A, 209-221.
[365] Mehmanchi, M., Shokrollahi, P., Atai, M., Omidian, H., Bagheri, R. Supramolecularpolycaprolactonenanocomposite based onfunctionalized hydroxyapatite. J. Bioact. Compat. Polym. 2012, 27, 467-480.
[366] Busch, S., Dolhaine, H., DuChesne, A., Heinz, S., Hochrein, O., Laeri, F., Podebrad, O., Vietze, U., Weiland, T., Kniep R. Biomimetic morphogenesis of fluorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur. J. Inorg. Chem. 1999, 1999, 1643-1653.
[367] Simon, P., Schwarz, U., Kniep, R. Hierarchical architecture and real structure in a biomimetic nano-composite of fluorapatite with gelatine: a model system for steps in dentino- and osteogenesis? J. Mater. Chem. 2005, 15, 4992-4996.
[368] Tlatlik, H., Simon, P., Kawska, A., Zahn, D., Kniep, R. Biomimetic fluorapatite-gelatin nanocomposites: pre-structuring of gelatin matrices by ion impregnation and its effect on form development. Angew. Chem. Int. Ed. Engl. 2006, 45, 1905-1910.
[369] Simon, P., Zahn, D., Lichte, H., Kniep, R. Intrinsic electric dipole fields and the induction of hierarchical form developments in fluorapatite-gelatin nanocomposites: a general principle for morphogenesis of biominerals? Angew. Chem. Int. Ed. Engl. 2006, 45, 1911-1915.
[370] Kniep, R., Simon, P. “Hidden” hierarchy of microfibrils within 3D-periodic fluorapatite-gelatin nanocomposites: development of complexity and form in a biomimetic system. Angew. Chem. Int. Ed. Engl. 2008, 47, 1405-1409.
[371] Brickmann, J., Paparcone, R., Kokolakis, S., Zahn, D., Duchstein, P., Carrillocabrera, W., Simon, P., Kniep, R. Fluorapatite-gelatine nanocomposite superstructures: new insights into a biomimetic system of high complexity. ChemPhysChem 2010, 11, 1851-1853.
[372] Vyalikh, A., Simon, P., Rosseeva, E., Buder, J., Kniep, R., Scheler, U. Intergrowth and interfacial structure of biomimetic fluorapatite-gelatin nanocomposite: a solid-state NMR study. J. Phys. Chem. B 2014, 118, 724-730.
[373] Gashti, M.P., Stir, M., Hulliger, J. Synthesis of bone-like micro-porous calcium phosphate/iota-carrageenan composites by gel diffusion. Colloid Surface B 2013, 110, 426-433.
[374] Behl, M., Razzaq, M.Y., Lendlein, A. Multifunctional shape-memory polymers. Adv. Mater. 2010, 22, 3388-3410.
[375] Deng, C., Wang, B., Dongqin, X., Zhou, S., Duan, K., Weng, J. Preparation and shape memory property of hydroxyapatite/poly (vinyl alcohol) composite. Polym.– Plast. Technol. Eng. 2012, 51, 1315-1318.
[376] Kutikov, A.B., Reyer, K.A., Song, J. Shape-memory performance of thermoplastic amphiphilic triblock copolymer poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA)/hydroxyapatite composites. Macromol. Chem. Phys. 2014, 215, 2482-2490.
[377] Wong, T.W., Wahit, M.U., Abdul Kadir, M.R., Soheilmoghaddam, M., Balakrishnan, H.A novel poly(xylitol-co-dodecanedioate)/hydroxyapatite composite with shape-memory behaviour. Mater. Lett. 2014, 126, 105-108.
[378] Handschel, J., Wiesmann, H.P., Stratmann, U., Kleinheinz, J., Meyer, U., Joos, U. TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials 2002, 23, 1689-1695.
[379] Kikuchi, M., Tanaka, J. Chemical interaction in β-tricalcium phosphate/
copolymerized poly-L-lactide composites. J. Ceram. Soc. Jpn. 2000, 108, 642-645.
[380] Aunoble, S., Clement, D., Frayssinet, P., Harmand, MF., le Huec, J.C. Biological performance of a new β-TCP/PLLA composite material for applications in spine surgery: in vitro and in vivo studies. J. Biomed. Mater. Res. A 2006, 78A, 416-422.
[381] Haaparanta, A.M., Haimi, S., Ellä, V., Hopper, N., Miettinen, S., Suuronen, R., Kellomäki, M. Porous polylactide/β-tricalcium phosphate composite scaffolds for tissue engineering applications. J. Tissue Eng. Regen. Med. 2010, 4, 366-373.
[382] Kikuchi, M., Koyama, Y., Yamada, T., Imamura, Y., Okada, T., Shirahama, N., Akita, K., Takakuda, K., Tanaka, J. Development of guided bone regeneration membrane composed of β-tricalcium phosphate and poly(L-lactide-co-glycolide-co-ε-caprolactone) composites. Biomaterials 2004, 25, 5979-5986.
[383] Chen, T.M., Yao, C.H., Wang, H.J., Chou, G.H., Lee, T.W., Lin, F.H. Evaluation of a novel malleable, biodegradable osteoconductive composite in a rabbit cranial defect model. Mater. Chem. Phys. 1998, 55, 44-50.
[384] Dong, G.C., Chen, H.M., Yao, C.H. A novel bone substitute composite composed of tricalcium phosphate, gelatin and drynaria fortunei herbal extract. J. Biomed. Mater. Res. A 2008, 84A, 167-177.
[385] Ji, J., Yuan, X., Xia, Z., Liu, P., Chen, J. Porous β-tricalcium phosphate composite scaffold reinforced by K2HPO4 and gelatin. Key Eng. Mater. 2010, 434-435, 620-623.
[386] Yao, C.H., Liu, B.S., Hsu, S.H., Chen, Y.S., Tsai, C.C. Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J. Biomed. Mater. Res. A 2004, 69A, 709-717.
[387] Eslaminejad, M.B., Mirzadeh, H., Mohamadi, Y., Nickmahzar, A. Bone differentiation of marrow-derived mesenchymal stem cells using β-tricalcium phosphate-alginate-gelatin hybrid scaffolds. J. Tissue Eng. Regen. Med. 2007, 1, 417-424.
[388] Takahashi, Y., Yamamoto, M., Tabata, Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials 2005, 26, 3587-3596.
[389] Bigi, A., Cantelli, I., Panzavolta, S., Rubini, K. α-tricalcium phosphate-gelatin composite cements. J. Appl. Biomater. Biomech. 2004, 2, 81-87.
[390] Yang, S.H., Hsu, C.K., Wang, K.C., Hou, S.M., Lin, F.H. Tricalcium phosphate and glutaraldehyde crosslinked gelatin incorporating bone morphogenetic protein – a viable scaffold for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 74B, 468-475.
[391] Kato, M., Namikawa, T., Terai, H., Hoshino, M., Miyamoto, S., Takaoka, K. Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials 2006, 27, 3927-3933.
[392] Muramatsu, K., Oba, K., Mukai, D., Hasegawa, K., Masuda, S., Yoshihara, Y. Subacute systemic toxicity assessment of β-tricalcium phosphate/carboxymethyl-chitin composite implanted in rat femur. J. Mater. Sci. Mater. Med. 2007, 18, 513-522.
[393] Panzavolta, S., Fini, M., Nicoletti, A., Bracci, B., Rubini, K., Giardino, R., Bigi, A. Porous composite scaffolds based on gelatin and partially hydrolyzed α-tricalcium phosphate. Acta Biomater. 2009, 5, 636-643.
[394] Uchino, T., Kamitakahara, M., Otsuka, M., Ohtsuki, C. Hydroxyapatite-forming capability and mechanical properties of organic-inorganic hybrids and α-tricalcium phosphate porous bodies. J. Ceram. Soc. Jpn. 2010, 118, 57-61.
[395] Boguń, M., Rabiej, S. The influence of fiber formation conditions on the structure and properties of nanocomposite alginate fibers containing tricalcium phosphate or montmorillonite. Polym. Composite 2010, 31, 1321-1331.
[396] Park, C.H., Kim, E.K., Tijing, L.D., Amarjargal, A., Pant, H.R., Kim, C.S., Shon, H.K. Preparation and characterization of LA/PCL composite fibers containing beta tricalcium phosphate (β-TCP) particles. Ceram. Int. 2014, 40, 5049-5054.
[397] Ngamviriyavong, P., Patntirapong, S., Janvikul, W., Arphavasin, S., Meesap, P., Singhatanadgit, W. Development of poly(butylene succinate)/calcium phosphate composites for bone engineering. Compos. Interface 2014, 21, 431-441.
[398] Flauder, S., Sajzew, R., Müller, F.A. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(σ-caprolactone) impregnation. ACS Appl. Mater. Interf. 2015, 7, 845-851.
[399] Agyemang, F.O., Sheikh, F.A., Appiah-Ntiamoah, R., Chandradass, J., Kim, H. Synthesis and characterization of poly (vinylidene fluoride)–calcium phosphate composite for potential tissue engineering applications. Ceram. Int. 2015, 41, 7066-7072.
[400] Cohen, B., Panker, M., Zuckerman, E., Foox, M., Zilberman, M. Effect of calcium phosphate-based fillers on the structure and bonding strength of novel gelatin-alginate bioadhesives.J. Biomater. Appl. 2014, 28, 1366-1375.
[401] Bleach, N.C., Tanner, K.E., Kellomäki, M., Törmälä, P. Effect of filler type on the mechanical properties of self-reinforced polylactide-calcium phosphate composites. J. Mater. Sci. Mater. Med. 2001, 12, 911-915.
[402] Liu, L., Xiong, Z., Yan, Y.N., Hu, Y.Y., Zhang, R.J., Wang, S.G. Porous morphology, porosity, mechanical properties of poly(α-hydroxy acid)-tricalcium phosphate composite scaffolds fabricated by low-temperature deposition. J. Biomed. Mater. Res. A 2007, 82A, 618-629.
[403] Zhang, Y., Zhang, M.Q. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J. Biomed. Mater. Res. 2001, 55, 304-312.
[404] Rai, B., Teoh, S.H., Hutmacher, D.W., Cao, T., Ho, K.H. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials 2005, 26, 3739-3748.
[405] Rai, B., Teoh, S.H., Ho, K.H., Hutmacher, D.W., Cao, T., Chen, F., Yacob, K. The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds. Biomaterials 2004, 25, 5499-5506.
[406] Lei, Y., Rai, B., Ho, K.H., Teoh, S.H. In vitro degradation of novel bioactive polycaprolactone – 20% tricalcium phosphate composite scaffolds for bone engineering. Mater. Sci. Eng. C 2007, 27, 293-298.
[407] Miyai, T., Ito, A., Tamazawa, G., Matsuno, T., Sogo, Y., Nakamura, C., Yamazaki, A., Satoh, T. Antibiotic-loaded poly-ε-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis. Biomaterials 2008, 29, 350-358.
[408] Li, Y., Wu, Z.G., Li, X.K., Guo, Z., Wu, S.H., Zhang, Y.Q., Shi, L., Teoh, S.H., Liu, Y.C., Zhang, Z.Y.A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model. Biomaterials 2014, 35, 5647-5659.
[409] Takahashi, Y., Yamamoto, M., Tabata, Y. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and β-tricalcium phosphate. Biomaterials 2005, 26, 4856-4865.
[410] Ignatius, A.A., Betz, O., Augat, P., Claes, L.E. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes. J. Biomed. Mater. Res. Appl. Biomater. 2001, 58, 701-709.
[411] Miao, X., Lim, W.K., Huang, X., Chen, Y. Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Mater. Lett. 2005, 59, 4000-4005.
[412] Dorozhkin, S.V. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram. Int. 2016, 42, 6529-6554.
[413] Brodie, J.C., Goldie, E., Connel, G., Merry, J., Grant, M.H. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. J. Biomed. Mater. Res. A 2005, 73A, 409-421.
[414] Zhang, L.F., Sun, R., Xu, L., Du, J., Xiong, Z.C., Chen, H.C., Xiong, C.D. Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture. Mater. Sci. Eng. C 2008, 28, 141-149.
[415] Ignjatovic, N., Ninkov, P., Ajdukovic, Z., Konstantinovic, V., Uskokovic, D. Biphasic calcium phosphate/poly-(D,L-lactide-co-glycolide) biocomposite as filler and blocks for reparation of bone tissue. Mater. Sci. Forum 2005, 494, 519-524.
[416] Ignjatovic, N., Ninkov, P., Ajdukovic, Z., Vasiljevic-Radovic, D., Uskokovic, D. Biphasic calcium phosphate coated with poly-D,L-lactide-co-glycolide biomaterial as a bone substitute. J. Eur. Ceram. Soc. 2007, 27, 1589-1594.
[417] Yang, W., Yin, G., Zhou, D., Gu, J., Li, Y. In vitro characteristics of surface-modified biphasic calcium phosphate/poly(L-Lactide) biocomposite. Adv. Eng. Mater. 2010, 12, B128-B132.
[418] Ignjatovic, N., Ninkov, P., Kojic, V., Bokurov, M., Srdic, V., Krnojelac, D., Selakovic, S., Uskokovic, D. Cytotoxicity and fibroblast properties during in vitrotest of biphasic calcium phosphate/poly-D,L-lactide-co-glycolide biocomposites and different phosphate materials. Microsc. Res. Techniq. 2006, 69, 976-982.
[419] Ajdukovic, Z., Ignjatovic, N., Petrovic, D., Uskokovic, D. Substitution of osteoporotic alveolar bone by biphasic calcium phosphate/poly-D,L-lactide-co-glycolide biomaterials. J. Biomater. Appl. 2007, 21, 317-328.
[420] Kim, H.W., Knowles, J.C., Kim, H.E. Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(ε-caprolactone) composite membranes. J. Biomed. Mater. Res. A 2004, 70A, 467-479.
[421] Kwak, K.A., Jyoti, M.A., Song, H.Y.In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly ε-caprolactone: effect of bio-functionalization for bone tissue engineering. Appl. Surf. Sci. 2014, 301, 307-314.
[422] van Leeuwen, A.C., Yuan, H., Passanisi, G., van der Meer, J.W., de Bruijn, J.D., van Kooten, T.G., Grijpma, D.W., Bos, R.R. Poly(trimethylene carbonate) and biphasic calcium phosphate composites for orbital floor reconstruction: a feasibility study in sheep. Eur. Cell. Mater. 2014,27, 81-96; discussion 96-97.
[423] Bakhtiari, L., Rezai, H.R., Hosseinalipour, S.M., Shokrgozar, M.A. Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram. Int. 2010, 36, 2421-2426.
[424] Bakhtiari, L., Rezai, H.R., Hosseinalipour, S.M., Shokrgozar, M.A. Preparation of porous Biphasic calcium phosphate-gelatin nanocomposite for bone tissue engineering. J. Nano Res. 2010, 11, 67-72.
[425] Matsuda, A., Ikoma, T., Kobayashi, H., Tanaka, J. Preparation and mechanical property of core-shell type chitosan/calcium phosphate composite fiber. Mater. Sci. Eng. C 2004, 24, 723-728.
[426] Rattanachan, S., Lorprayoon, C., Boonphayak, P. Synthesis of chitosan/brushite powders for bone cement composites. J. Ceram. Soc. Jpn. 2008, 116, 36-41.
[427] Ohsawa, H., Ito, A., Sogo, Y., Yamazaki, A., Ohno, T. Synthesis of albumin/DCP nano-composite particles. Key Eng. Mater. 2007, 330-332, 239-242.
[428] Xu, H.H.K., Sun, L., Weir, M.D., Antonucci, J.M., Takagi, S., Chow, L.C., Peltz, M. Nano DCPA-whisker composites with high strength and Ca and PO4 release. J. Dent. Res. 2006, 85, 722-727.
[429] Xu, H.H.K., Weir, M.D., Sun, L., Takagi, S., Chow, L.C. Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J. Dent. Res. 2007, 86, 378-383.
[430] Xu, H.H.K., Weir, M.D., Sun, L. Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent. Mater. 2007, 23, 1482-1491.
[431] Chen, W.C., Chang, K.C., Wu, H.Y., Ko, C.L., Huang, C.L. Thermal cycling effect of dicalcium phosphate-reinforced composites on auto-mineralized dental resin. Mater. Sci. Eng. C 2014, 45, 359-368.
[432] Tortet, L., Gavarri, J.R., Nihoul, G., Dianoux, A.J. Proton mobilities in brushite and brushite/polymer composites. Solid State Ionics 1997, 97, 253-256.
[433] Tortet, L., Gavarri, J.R., Musso, J., Nihoul, G., Sarychev, A.K. Percolation and modeling of proton conduction in polymer/brushite composites. J. Solid State Chem. 1998, 141, 392-403.
[434] Dorozhkin, S.V. Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int. J. Mater. Chem. 2012, 2, 19-46.
[435] Dorozhkin, S.V. Calcium orthophosphates (CaPO4) and dentistry. Bioceram. Dev. Appl. 2016, 6, 096 (28 pages).
[436] Gutierrez, M.C., Jobbágy, M., Ferrer, M.L., del Monte, F. Enzymatic synthesis of amorphous calcium phosphate-chitosan nanocomposites and their processing into hierarchical structures. Chem. Mater. 2008, 20, 11-13.
[437] Hakimimehr, D., Liu, D.M., Troczynski, T. In-situ preparation of poly(propylene fumarate) – hydroxyapatite composite. Biomaterials 2005, 26, 7297-7303.
[438] Antonucci, J.M., Regnault, W.F., Skrtic, D. Polymerization shrinkage and stressdevelopment in amorphous calciumphosphate/urethane dimethacryl-atepolymeric composites. J. Compos. Mater. 2010, 44, 355-367.
[439] Wang, K.W., Zhu, Y.J., Chen, F., Cao, S.W. Calcium phosphate/block copolymer hybrid porous nanospheres: preparation and application in drug delivery. Mater. Lett. 2010, 64, 2299-2301.
[440] Cao, S.W., Zhu, Y.J., Wu, J., Wang, K.W., Tang, Q.L. Preparation and sustained-release property of triblock copolymer/calcium phosphate nanocomposite as nanocarrier for hydrophobic drug. Nanoscale Res. Lett. 2010, 5,781-785.
[441] Suzuki, O. Octacalcium phosphate (OCP)-based bone substitute materials. Jpn. Dent. Sci. Rev. 2013, 49, 58-71.
[442] Dorozhkin, S.V. Self-setting calcium orthophosphate formulations. J. Funct. Biomater. 2013, 4, 209-311.
[443] Brückner, T., Schamel, M., Kübler, A.C., Groll, J., Gbureck, U. Novel bone wax based on poly(ethylene glycol)–calcium phosphate cement mixtures. Acta Biomater. 2016,33, 252-263.
[444] Lou, C.W., Huang, C.C., Chen, W.C., Hu, J.J., Lu, C.T., Lin, J.H. Preliminary studies in composite scaffolds of calcium phosphate bonecement with polylactide. Appl. Mech. Mater. 2012, 184-185, 1098-1101.
[445] Zhong, M.L., Chen, X.Q., Fan, H.S., Zhang, X.D. Incorporation of salmoncalcitonin-loaded poly(lactide-co-glycolide) (PLGA)microspheres into calciumphosphate bone cement andthe biocompatibility evaluationin vitro. J. Bioact. Compat. Polym. 2012, 27, 133-147.
[446] Bigi, A., Bracci, B., Panzavolta, S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials 2004, 25, 2893-2899.
[447] Bigi, A., Panzavolta, S., Sturba, L., Torricelli, P., Fini, M., Giardino, R. Normal and osteopenic bone-derived osteoblast response to a biomimetic gelatin-calcium phosphate bone cement. J. Biomed. Mater. Res. A 2006, 78A, 739-745.
[448] Panzavolta, S., Torricelli, P., Sturba, L., Bracci, B., Giardino, R., Bigi, A. Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone cements. J. Biomed. Mater. Res. A 2008, 84A, 965-972.
[449] Maazouz, Y., Montufar, E.B., Guillem-Marti, J., Fleps, I., Öhman, C., Persson, C., Ginebra, M.P. Robocasting of biomimetic hydroxyapatitescaffolds using self-setting inks. J. Mater. Chem. B 2014, 2,5378-5386.
[450] Rammelt, S., Neumann, M., Hanisch, U., Reinstorf, A., Pompe, W., Zwipp, H., Biewener, A. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J. Biomed. Mater. Res. A 2005, 73A, 284-294.
[451] Park, J.H., Lee, E.J., Knowles, J.C., Kim, H.W. Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration.J. Biomater. Appl. 2014, 28, 1079-1084.
[452] Wang, X., Ma, J., Feng, Q., Cui, F.Z. Skeletal repair in rabbits with calcium phosphate cements incorporated phosphorylated chitin. Biomaterials 2002, 23, 4591-4600.
[453] Xue, B., Zhang, C., Wang, Y., Wang, J., Zhang, J., Lu, M., Li, G., Cao, Z., Huang, Q.A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement. PLoS ONE 2014, 9, e113797.
[454] Cao, C., Li, H., Li, J., Liu, C., Yang, H., Li, B. Mechanical reinforcement of injectable calcium phosphate cement/silk fibroin (SF) composite by mineralized SF. Ceram. Int. 2014, 40, 13987-13993.
[455] Liu, W., Zhang, J., Rethore, G., Khairoun, K., Pilet, P., Tancret, F., Bouler, J.M., Weiss, P.A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Acta Biomater. 2014, 10, 3335-3345.
[456] Sadiasa, A., Sarkar, S.K., Franco, R.A., Min, Y.K., Lee, B.T. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration.J. Biomater. Appl. 2014, 28, 739-756.
[457] Perez, R.A., Patel, K.D., Kim, H.W. Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. RSC Adv. 2015, 5, 13411-13419.
[458] Canal, C., Ginebra, M.P. Fibre-reinforced calcium phosphate cements: a review.J. Mech. Behav. Biomed. Mater. 2011, 4, 1658-1671.
[459] Hasan, M.S., Carpenter, N., Wei, T.L., McNally, D., Ahmed, I., Boszczyk, B.M. Effects of adding resorbable phosphate glass fibres and PLA to calcium phosphate bone cements. J. Appl. Biomater. Funct. Mater. 2014, 12, 203-209.
[460] Low, K.L., Tan, S.H., Zein, S.H.S., McPhail, D.S., Boccaccini, A.R. Optimization of the mechanical properties of calcium phosphate/multi-walledcarbon nanotubes/bovine serum albumin composites using responsesurface methodology. Mater. Des. 2011, 32, 3312-3319.
[461] Chew, K.K., Low, K.L., Zein, S.H.S., McPhail, D.S., Gerhardt, L.C., Roether, J.A., Boccaccini, A.R. Reinforcement of calcium phosphate cement with multiwalled carbonnanotubes and bovine serum albumin for injectable bone substituteapplications. J. Mech. Behav. Biomed. Mater. 2011, 4, 331-339.
[462] Kim, S.B., Kim, Y.J., Yoon, T.L., Park, S.A., Cho, I.H., Kim, E.J., Kim, I.A., Shin, J.W. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Biomaterials 2004, 25, 5715-5723.
[463] Vallo, C.I., Montemartini, P.E., Fanovich, M.A., Lópes, J.M.P., Cuadrado, T.R. Polymethylmethacrylate-based bone cement modified with hydroxyapatite. J. Biomed. Mater. Res. B Appl. Biomater. 1999, 48, 150-158.
[464] Moursi, A.M., Winnard, A.V., Winnard, P.L., Lannutti, J.J., Seghi, R.R. Enhanced osteoblast response to a PMMA – HA composite. Biomaterials 2002, 23, 133-144.
[465] Dalby, MJ., di Silvio, L., Harper, E.J., Bonfield, W. Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 2002, 23, 569-576.
[466] Itokawa, H., Hiraide, T., Moriya, M., Fujimoto, M., Nagashima, G., Suzuki, R., Fujimoto, T. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite. Biomaterials 2007, 28, 4922-4927.
[467] Tham, W.L., Chow, W.S., Ishak, Z.A.M. Flexural and morphological properties of poly(methyl methacrylate)/hydroxyapatite composites: effects of planetary ball mill grinding time. J. Reinf. Plastics Compos. 2010, 29, 2065-2075.
[468] Pattanayak, D.K., Rao, B.T., Mohan, T.R.R. Calcium phosphate bioceramics and bioceramic composites. J. Sol Gel Sci. Technol. 2011, 59, 432-447.
[469] Arabmotlagh, M., Bachmaier, S., Geiger, F., Rauschmann, M. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1613-1619.
[470] Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., Tomsia, A.P., Ritchie, R.O. Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 2016, 28, 50-56.
[471] Harper, E.J., Behiri, J.C., Bonfield, W. Flexural and fatigue properties of a bone cement based upon polyethylmethacrylate and hydroxyapatite. J. Mater. Sci. Mater. Med. 1995, 6, 799-803.
[472] Arnold, J.C., Venditti, N.P. Prediction of the long-term creep behaviour of hydroxyapatite-filled polyethylmethacrylate bone cements. J. Mater. Sci. Mater. Med. 2007, 18, 1849-1858.
[473] Ohgaki, M., Yamashita, K. Preparation of polymethylmethacrylate-reinforced functionally graded hydroxyapatite composites. J. Am. Ceram. Soc. 2003, 86, 1440-1442.
[474] del Real, RP., Padilla, S., Vallet-Regi, M. Gentamicin release from hydroxyapatite/poly(ethyl methacrylate)/poly(methyl methacrylate)composites. J. Biomed. Mater. Res. 2000, 52, 1-7.
[475] Saito, M., Maruoka, A., Mori, T., Sugano, N., Hino, K. Experimental studies on a new bioactive bone cement: hydroxyapatite composite resin. Biomaterials 1994, 15, 156-160.
[476] Kawagoe, K., Saito, M., Shibuya, T., Nakashima, T., Hino, K., Yoshikawa, H. Augmentation of cancellous screw fixation with hydroxyapatite composite resin (CAP) in vivo. J. Biomed. Mater. Res. 2000, 53, 678-684.
[477] Turner, A.W.L., Gillies, R.M., Svehla, M.J., Saito, M., Walsh, W.R. Hydroxyapatite composite resin cement augmentation of pedicle screw fixation. Clin. Orthop. Rel. Res. 2003, 406, 253-261.
[478] Watson, K.E., Ten Huisen, K.S., Brown, P.W. The formation of hydroxyapatite – calcium polyacrylate composites. J. Mater. Sci. Mater. Med. 1999, 10, 205-213.
[479] Reed, C.S., Ten Huisen, K.S., Brown, P.W., Allcock, H.R. Thermal stability and compressive strength of calcium-deficient hydroxyapatite – poly[bis(carboxylatophenoxy)phosphazene] composites. Chem. Mater. 1996, 8, 440-447.
[480] Peter, S.J., Kim, P., Yasko, A.W., Yaszemski, M.J., Mikos, A.G. Crosslinking characteristics of an injectable poly(propylene fumarate)/β-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J. Biomed. Mater. Res. 1999, 44, 314-321.
[481] He, S., Yaszemski, M.J., Yasko, A.W., Engel, P.S., Mikos, A.G. Injectable biodegradable polymer composites based on poly (propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 2000, 21, 2389-2394.
[482] Ignjatovic, N., Jovanovic, J., Suljovrujic, E., Uskokovic, D. Injectable polydimethylsiloxane/hydroxyapatite composite cement. Biomed. Mater. Eng. 2003, 13, 401-410.
[483] Fei, Z., Hu, Y., Wu, D., Wu, H., Lu, R., Bai, J., Song, H. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. J. Mater. Sci. Mater. Med. 2008, 19, 1109-1116.
[484] Link, D.P., van den Dolder, J., van den Beucken, J.J.J.P., Cuijpers, V.M., Wolke, J.G.C., Mikos, A.G., Jansen, J.A. Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites. J. Biomed. Mater. Res. A 2008, 87A, 760-769.
[485] Chiang, T.Y., Ho, C.C., Chen, D.C.H., Lai, M.H., Ding, S.J. Physicochemical properties and biocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements. Mater. Chem. Phys. 2010, 120, 282-288.
[486] Fujishiro, Y., Takahashi, K., Sato, T. Preparation and compressive strength of α-tricalcium phosphate/gelatin gel composite cement. J. Biomed. Mater. Res. 2001, 54, 525-230.
[487] Miyazaki, K., Horibe, T., Antonucci, J.M., Takagi, S., Chow, L.C. Polymeric calcium phosphate cements: analysis of reaction products and properties. Dental Mater. 1993, 9, 41-45.
[488] Miyazaki, K., Horibe, T., Antonucci, J.M., Takagi, S., Chow, L.C. Polymeric calcium phosphate cements: setting reaction modifiers. Dental Mater. 1993, 9, 46-50.
[489] dos Santos, LA., de Oliveira, L.C., Rigo, E.C.S., Carrodeguas, R.G., Boschi, A.O., de Arruda, A.C.F. Influence of polymeric additives on the mechanical properties of α-tricalcium phosphate cement. Bone 1999, 25, 99S-102S.
[490] Greish, Y.E., Brown, P.W., Bender, J.D., Allcockm H.R., Lakshmim S., Laurencin, C.T. Hydroxyapatite-polyphosphazane composites prepared at low temperatures. J. Am. Ceram. Soc. 2007, 90, 2728-2734.
[491] Greish, Y.E., Bender, J.D., Lakshmi, S., Brown, P.W., Allcock, H.R., Laurencin, C.T. Formation of hydroxyapatite-polyphosphazene polymer composites at physiologic temperature. J. Biomed. Mater. Res. A 2006, 77A, 416-425.
[492] Greish, Y.E., Bender, J.D., Lakshmi, S., Brown, P.W., Allcock, H.R., Laurencin, C.T. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate) phosphazene composites for biomedical applications. Biomaterials 2005, 26, 1-9.
[493] Mickiewicz, R.A., Mayes, A.M., Knaack, D. Polymer – calcium phosphate cement composites for bone substitutes. J. Biomed. Mater. Res. 2002, 61, 581-592.
[494] Carey, L.E., Xu, H.H.K., Simon, C.G., Takagi, S., Chow, L.C. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005, 26, 5002-5014.
[495] Krüger, R., Seitz, J.M., Ewald, A., Bach, F.W., Groll, J. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.J. Mech. Behav. Biomed. Mater. 2013,20, 36-44.
[496] Miao, X., Tan, L.P., Tan, L.S., Huang, X. Porous calcium phosphate ceramics modified with PLGA – bioactive glass. Mater. Sci. Eng. C 2007, 27, 274-279.
[497] Lickorish, D., Guan, L., Davies, J.E. A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: evolution of scaffold design. Biomaterials 2007, 28, 1495-1502.
[498] Iwasakia, Y., Takahataa, Y., Fujii, S. Self-setting particle-stabilized emulsion for hard-tissue engineering. Colloid Surface B 2015, 126, 394-400.
[499] Xu, H.H.K., Simon, C.G. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 2005, 26, 1337-1348.
[500] Zhang, L., Li, Y., Zhou, G., Lu, GY., Zuo, Y. Setting mechanism of nano-hydroxyapatite/chitosan bone cement. J. Inorg. Mater. 2006, 21, 1197-1202.
[501] Ruhe, P.Q., Hedberg, E.L., Padron, N.T., Spauwen, P.H.M., Jansen, J.A., Mikos, A.G. Biocompatibility and degradation of poly(D,L-lactic-co-glycolic acid)/calcium phosphate cement composites. J. Biomed. Mater. Res. A 2005, 74A, 533-544.
[502] Guo, D.G., Sun, H.L., Xu, K.W., Han, Y. Long-term variations in mechanical properties and in vivo degradability of CPC/PLGA composite. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 533-544.
[503] Habraken, W.J.E.M., Wolke, J.G.C., Mikos, A.G., Jansen, J.A. Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics. J. Biomater. Sci. Polym. Edn. 2006, 17, 1057-1074.
[504] Ruhe, P.Q., Hedberg-Dirk, E.L., Padron, N.T., Spauwen, P.H.M., Jansen, J.A., Mikos, A.G. Porous poly (D,L-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects. Tissue Eng. 2006, 12, 789-800.
[505] Ruhe, P.Q., Hedberg, E.L., Padron, N.T., Spauwen, P.H.M., Jansen, J.A., Mikos, A.G. rhBMP-2 release from injectable poly (D,L-lactic-co-glycolic acid)/calcium phosphate composites. J. Bone Joint Surg. (Am.) 2003, 85A, Suppl. 3, 75-81.
[506] Plachokova, A., Link. D., van den Dolder. J., van den Beucken. J., Jansen, J.A. Bone regenerative properties of injectable PGLA–CaP composite with TGF-β1 in a rat augmentation model. J. Tissue Eng. Regen. Med. 2007, 1, 457-464.
[507] Roy, A., Jhunjhunwala, S., Bayer, E., Fedorchak, M., Little, S.R., Kumta, P.N. Porous calcium phosphate–poly (lactic-co-glycolic) acid composite bonecement: a viable tunable drug delivery system. Mater. Sci. Eng. C 2016, 59, 92-101.
[508] Sato, S., Koshino, T., Saito, T. Osteogenic response of rabbit tibia to hydroxyapatite particle – plaster of Paris mixture. Biomaterials 1998, 19, 1895-1900.
[509] Chen, W.L., Chen, C.K., Lee, J.W., Lee, Y.L., Ju, C.P., Ju, C.P., Lin, J.H.C. Structure, properties and animal study of a calcium phosphate/calcium sulfate composite cement. Mater. Sci. Eng. C 2014, 37, 60-67.
[510] Zhou, S., Ma, J., Shen, Y., Haapasalo, M., Ruse, N.D., Yang, Q., Troczynski, T.In vitrostudies of calcium phosphate silicate bone cements. J. Mater. Sci. Mater. Med. 2013, 24, 355-364.
[511] Motisuke, M., Santos, V.R., Bazanini, N.C., Bertran, C.A. Apatite bone cement reinforced with calcium silicate fibers. J. Mater. Sci. Mater. Med. 2014, 25, 2357-2363.
[512] Correa, D., Almirall, A., Carrodeguas, R.G., dos Santos, L.A., de Aza, A.H., Parra, J., Morejon, L., Delgado, J.A.α-Tricalcium phosphate cements modified with β-dicalcium silicate and tricalcium aluminate: physicochemical characterization, in vitro bioactivity and cytotoxicity. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103B, 72-83.
[513] Morejón-Alonso, L., Motisuke, M., Correa, J.R., Carrodeguas, R.G., dos Santos, L.A.In situsynchrotron X-ray powder diffraction study of the early hydration of α-tricalciumphosphate/tricalcium silicate composite bone cement. Mater. Res. 2015, 18, 164-169.
[514] Webster, T.J. Nanophase ceramics: the future orthopedic and dental implant material. Adv. Chem. Eng. 2001, 27, 125-166.
[515] Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000, 21, 1803-1810.
[516] Zakaria, S.M., Zein, S.H.S., Othman, M.R., Yang, F., Jansen, J.A. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng. B 2013, 19, 431-441.
[517] Dorozhkin, S.V. Nanodimensional and nanocrystalline calcium orthophosphates. Int. J. Chem. Mater. Sci. 2013,1, 105-174.
[518] Li, G., Huang, J., Li, Y., Zhang, R., Deng, B., Zhang, J., Aoki, H. In vitro study on influence of a discrete nano-hydroxyapatite on leukemia P388 cell behavior. Biomed. Mater. Eng. 2007, 17, 321-327.
[519] Tadic, D., Peters, F., Epple, M. Continuous synthesis of amorphous carbonated apatites. Biomaterials 2002, 23, 2553-2559.
[520] Xu, H.H.K., Sun, L., Weir, M.D., Takagi, S., Chow, L.C., Hockey, B. Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81B, 116-125.
[521] Shu, X., Shi, Q., Feng, J., Xie, X., Chen, Y. Design and in vitro evaluation of novel γ-PGA/hydroxyapatite nanocomposites for bone tissue engineering. J. Mater. Sci. 2014, 49, 7742-7749.
[522] Hong, Z.K., Zhang, P.B., He, C.L., Qiu, X.Y., Liu, A.X., Chen, L., Chen. X., Jing, X. Nanocomposite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 2005, 26, 6296-6304.
[523] Deng, C., Weng, J., Cheng, QY., Zhou, S.B., Lu, X., Wan, J.X., Qu, S.X., Feng, B., Li, X.H. Choice of dispersants for the nano-apatite filler of polylactide-matrix composite biomaterial. Curr. Appl. Phys. 2007, 7, 679-682.
[524] Deng, C., Weng, J., Lu, X., Zhou, S.B., Wan, J.X., Qu, S.X., Feng, B., Li. X.H., Cheng, Q.Y. Mechanism of ultrahigh elongation rate of poly(D,L-lactide)-matrix composite biomaterial containing nano-apatite fillers. Mater. Lett. 2008, 62, 607-610.
[525] Kothapalli, C.R., Shaw, M.T., Wei, M. Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties. Acta Biomater. 2005, 1, 653-662.
[526] Hong, Z., Qiu, X., Sun, J., Deng, M., Chen, X., Jing, X. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer 2004, 45, 6699-6706.
[527] Xiao, Y., Li, D., Fan, H., Li, X., Gu, Z., Zhang, X. Preparation of nano-HA/PLA composite by modified-PLA for controlling the growth of HA crystals. Mater. Lett. 2007, 61, 59-62.
[528] Qiu, X., Han, Y., Zhuang, X., Chen, X., Li, Y., Jing, X. Preparation of nano-hydroxyapatite/poly(L-lactide) biocomposite microspheres. J. Nanopart. Res. 2007, 9, 901-908.
[529] Deplaine, H., Ribelles, J.L.G., Ferrer, G.G. Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(L-lactide) – hybrid membranes. Compos. Sci. Technol. 2010, 70, 1805-1812.
[530] Aydin, E., Planell, J.A., Hasirci, V. Hydroxyapatite nanorod-reinforced biodegradable poly(L-lactic acid) composites for bone plate applications.J. Mater. Sci. Mater. Med. 2011, 22, 2413-2427.
[531] Bianco, A., Bozzo, B.M., Del Gaudio, C., Cacciotti, I., Armentano, I., Dottori, M., D’Angelo, F., Martino, S., Orlacchio, A., Kenny, J.M. Poly (L-lactic acid)/calcium-deficient nanohydroxyapatite electrospun mats for bone marrow stem cell cultures. J. Bioact. Compat. Polym. 2011,26,225-241.
[532] Chae, T., Yang, H., Ko, F., Troczynski, T. Bio-inspired dicalcium phosphate anhydrate/poly(lactic acid) nanocomposite fibrous scaffolds for hard tissue regeneration: In situ synthesis and electrospinning. J. Biomed. Mater. Res. A 2014,102A,514-522.
[533] Liu, Z., Chen, Y., Ding, W., Zhang, C. Filling behavior, morphology evolution and crystallization behavior of microinjection molded poly(lactic acid)/hydroxyapatite nanocomposites. Composites A 2015,72,85-95.
[534] Hong, Z., Zhang, P., Liu, A., Chen, L., Chen, X., Jing, X. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. J. Biomed. Mater. Res. A 2007,81Az 515-522.
[535] Huang, Y.X., Ren, J., Chen, C., Ren, T.B., Zhou, X.Y. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J. Biomater. Appl. 2008, 22, 409-432.
[536] Xue, D., Zheng, Q., Zong, C., Li, Q., Li, H., Qian, S., Zhang, B., Yu, L., Pan, Z. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. J. Biomed. Mater. Res. A 2010, 94A, 259-270.
[537] Torabinejad, B., Mohammadi-Rovshandeh, J., Davachi, S.M., Zamanian, A. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C 2014,42, 199-210.
[538] Wang, R.Z., Cui, F.Z., Lu, H.B., Wen, H.B., Ma, C.L., Li, H.D. Synthesis of nanophase hydroxyapatite/collagen composite. J. Mater. Sci. Lett. 1995, 14, 490-492.
[539] Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K., Tanaka, J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001, 22, 1705-1711.
[540] Kikuchi, M., Matsumoto, H.N., Yamada, T., Koyama, Y., Takakuda, K.,
Tanaka, J. Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials 2004, 25, 63-69.
[541] Lynn, A.K., Nakamura, T., Patel, N., Porter, A.E., Renouf, A.C., Laity, P.R., Best, S.M., Cameron, R.E., Shimizu, Y., Bonfield, W. Composition-controlled nanocomposites of apatite and collagen incorporating silicon as osseopromotive agent. J. Biomed. Mater. Res. A 2005, 74A, 447-453.
[542] Chang, M.C., Tanaka, J. FTIR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 2002, 23, 4811-4818.
[543] Chang, M.C., Tanaka, J. XPS study for the microstructure development of hydroxyapatite-collagen nanocomposites cross-linked using glutaraldehyde. Biomaterials 2002, 23, 3879-3885.
[544] Thomas, V., Dean, D.R., Jose, M.V., Mathew, B., Chowdhury, S., Vohra. Y.K. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 2007, 8, 631-637.
[545] Fukui, N., Sato, T., Kuboki, Y., Aoki, H. Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation. Biomed. Mater. Eng. 2008, 18, 25-33.
[546] Kim, T.G., Park, S.H., Chung, H.J., Yang, D.Y., Park, T.G. Microstructured scaffold coated with hydroxyapatite/collagen nanocomposite multilayer for enhanced osteogenic induction of human mesenchymal stem cells. J. Mater. Chem. 2010, 20, 8927-8933.
[547] Ebrahimi, M., Pripatnanont, P., Suttapreyasri, S., Monmaturapoj, N.In vitro biocompatibility analysis of novel nano-biphasic calcium phosphate scaffolds in different composition ratios. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102B, 52-61.
[548] Chen, L., Hu, J., Ran, J., Shen, X., Tong, H. Synthesis and cytocompatibility of collagen/hydroxyapatite nanocomposite scaffold for bone tissue engineering. Polym. Compos. 2016, 37, 81-90.
[549] Liao, S.S., Cui, F.Z., Zhu, Y. Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite: nHAC/PLA. J. Bioact. Compat. Polym. 2004, 19, 117-130.
[550] Liao, S.S., Cui, F.Z., Zhang, W., Feng, Q.L. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69B, 158-165.
[551] Liao, S.S., Cui, F.Z. In vitro and in vivo degradation of the mineralized collagen based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide). Tissue Eng. 2004, 10, 73-80.
[552] Liao, S.S., Wang, W., Uo, M., Ohkawa, S., Akasaka, T., Tamura, K., Cui, F.Z., Watari, F. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 2005, 26, 7564-7571.
[553] Zhang, C., Hu, Y.Y., Cui, F.Z., Zhang, S.M., Ruan, D.K. A study on a tissue-engineered bone using rhBMP-2 induced periosteal cells with a porous nano-hydroxyapatite/collagen/poly(L-lactic acid) scaffold. Biomed. Mater. 2006, 1, 56-62.
[554] Liao, S., Watari, F., Zhu, Y., Uo, M., Akasaka, T., Wang, W., Xu, G., Cui, F.Z. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/ PLGA composite membrane in vitro. Dent. Mater. 2007, 23, 1120-1128.
[555] Degirmenbasi, N., Kalyon, D.M., Birinci, E. Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol). Colloid Surface B 2006, 48, 42-49.
[556] Zhang, S.M., Cui, F.Z., Liao, S.S., Zhu, Y., Han, L. Synthesis and biocompatibility of porous nanohydroxyapatite/collagen/alginate composite. J. Mater. Sci. Mater. Med. 2003, 14, 641-645.
[557] Sotome, S., Uemura, T., Kikuchi, M., Chen, J., Itoh, S., Tanaka, J., Tateishi, T., Shinomiya, K. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater. Sci. Eng. C 2004, 24, 341-347.
[558] Pandi, K., Viswanathan, N. Synthesis of alginate bioencapsulated nano-hydroxyapatite composite for selective fluoride sorption. Carbohyd. Polym. 2014, 112, 662-667.
[559] Chang, M.C., Ikoma, T., Tanaka, J. Cross-linkage of hydroxyapatite/gelatin nanocomposite using EGDE. J. Mater. Sci. 2004, 39, 5547-5550.
[560] Teng, S., Shi, J., Peng, B., Chen, L. The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites. Compos. Sci. Technol. 2006, 66, 1532-1538.
[561] Chang, M.C., Ko, C.C., Douglas, W.H. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 2003, 24, 2853-2862.
[562] Mobini, S., Javadpour, J., Hosseinalipour, M., Ghazi-Khansari, M., Khavandi, A., Rezaie, H.R. Synthesis and characterisation of gelatin-nano hydroxyapatite composite scaffolds for bone tissue engineering. Adv. Appl. Ceram. 2008, 107,
4-8.
[563] Wang, H., Bongio, M., Farbod, K., Nijhuis, A.W., van den Beucken, J., Boerman, O.C., van Hest, J.C., Li, Y., Jansen, J.A., Leeuwenburgh, S.C. Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta Biomater. 2014, 10, 508-519.
[564] Maulida, H.N., Hikmawati, D., Budiatin, A.S. Injectable bone substitute paste based on hydroxyapatite, gelatin andstreptomycin for spinal tuberculosis. J, Spine 2015, 4, 1000266 (4 pages).
[565] Lewandrowski, K.U., Bondre, S.P., Wise, D.L., Trantolo, D.J. Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite. Biomed. Mater. Eng. 2003, 13, 115-124.
[566] Jayabalan, M., Shalumon, K.T., Mitha, M.K., Ganesan, K., Epple, M. Effect of hydroxyapatite on the biodegradation and biomechanical stability of polyester nanocomposites for orthopaedic applications. Acta Biomater. 2010, 6, 763-775.
[567] Jayabalan, M., Shalumon, K.T., Mitha, M.K., Ganesan, K., Epple, M. The effect of radiation processing and filler morphology on the biomechanical stability of a thermoset polyester composite. Biomed. Mater. 2010, 5, 025009.
[568] Wei, J., Li, Y., Chen, W., Zuo, Y. A study on nano-composite of hydroxyapatite and polyamide. J. Mater. Sci. 2003, 38, 3303-3306.
[569] Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., Cheng, L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007, 28, 3338-3348.
[570] Sender, C., Dantras, E., Dantras-Laffont, L., Lacoste, M.H., Dandurand, J., Mauzac, M., Lacout, J.L., Lavergne, C., Demont, P., Bernes, A., Lacabanne, C. Dynamic mechanical properties of a biomimetic hydroxyapatite/polyamide 6,9 nanocomposite. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83B, 628-635.
[571] Zhang, X., Li, Y., Zuo, Y., Lv, G.Y., Mu, Y, H., Li. H. Morphology, hydrogen-bonding and crystallinity of nano-hydroxyapatite/polyamide 66 biocomposites. Composites A 2007, 38, 843-848.
[572] Zhang, L., Li, Y., Wang, X., Wei, J., Peng, X. Studies on the porous scaffold made of the nano-HA/PA66 composite. J. Mater. Sci. 2005, 40, 107-110.
[573] Zhang, X., Li, Y., Lv, G.Y., Zuo, Y., Mu, Y.H., Lan, W. The study on interaction mechanism between n-HA and PA66 in n-HA/PA66 biocomposites. Funct. Mater. 2005, 36, 896-899.
[574] Menon, D., Anand, K.A., Anitha, V.C., Nair, S. Hydroxyapatite-reinforced polyamide 6,6 nanocomposites through melt compounding. Int. J. Polym. Mater. 2010, 59, 498-509.
[575] Hu, G., Wang, H., Yao, X., Bi, D., Zhu, G., Tang, S., Wei, J., Yang, L., Tong, P., Xiao, L. Development of nanofluorapatite polymer-based composite for bioactive orthopedic implants and prostheses. Int. J. Nanomedicine 2014,9, 3875-3884.
[576] Yusong, P., Dangsheng, X., Xiaolin, C. Mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. J. Mater. Sci. 2007, 42, 5129-5134.
[577] Xu, F., Li, Y., Wang, X., Wei, J., Yang, A. Preparation and characterization of nano-hydroxyapatite/poly(vinyl alcohol) hydrogel biocomposite. J. Mater. Sci. 2004, 39, 5669-5672.
[578] Wang, H.S., Wang, G.X., Pan, Q.X. Electrochemical study of the interactions of DNA with redox-active molecules based on the immobilization of dsDNA on the sol-gel derived nano porous hydroxyapatite-polyvinyl alcohol hybrid material coating. Electroanalysis 2005, 17, 1854-1860.
[579] Pramanik, N., Mohapatra, S., Pramanik, P., Bhargava, P. Processing and properties of nano-hydroxyapatite (n-HAp)/poly(ethylene-co-acrylic acid) (EAA) composite using a phosphonic acid coupling agent for orthopedic applications. J. Am. Ceram. Soc. 2007, 90, 369-375.
[580] Pramanik, N., Bhargava, P., Alam, S., Pramanik, P. Processing and properties of nano- and macro-hydroxyapatite/poly(ethylene-co-acrylic acid) composites. Polym. Compos. 2006, 27, 633-641.
[581] Zhang, Y.F., Cheng, X.R., Chen, Y., Shi, B., Chen, X.H., Xu, D.X., Ke, J. Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J. Biomater. Appl. 2007, 21, 333-349.
[582] Lu, X.Y., Wang, X.H., Qu, S.X., Weng, J. Preparation of nano-hydroxyapatite/chitosan hybrids. J. Inorg. Mater. 2008, 23, 332-336.
[583] Chen, J.D., Wang, Y., Chen, X. In situ fabrication of nano-hydroxyapatite in a macroporous chitosan scaffold for tissue engineering. J. Biomater. Sci. Polym. Edn. 2009, 20, 1555-1565.
[584] Thein-Han, W.W., Misra, R.D.K. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009, 5, 1182-1197.
[585] Chen, J., Nan, K., Yin, S., Wang, Y., Wu, T., Zhang, Q. Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Colloid Surface B 2010, 81, 640-647.
[586] Ma, X., Wang, Y., Guo H., Wang, J. Nano-hydroxyapatite/chitosansponge-like biocomposite forrepairing of rat calvarialcritical-sized bone defect. J. Bioact. Compat. Polym. 2011, 26, 335-346.
[587] Reves, B.T., Jennings, J.A., Bumgardner, J.D., Haggard, W.O. Preparation and functional assessment of compositechitosan-nano-hydroxyapatite scaffolds forbone regeneration. J. Funct. Biomater. 2012, 3, 114-130.
[588] Qu, Y., Ao, D., Wang, P., Wang, Y., Kong, X., Man, Y. Chitosan/nano-hydroxyapatitecomposite electret membranesenhance cell proliferation andosteoblastic expression in vitro. J. Bioact. Compat. Polym. 2014, 29, 3-14.
[589] Roy, P., Sailaja, R.R.N. Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies. Int. J. Biol. Macromol. 2015, 73, 170-181.
[590] Lu, Y., Zhu, A., Wang, W., Shi, H. New bioactive hybrid material of nano-hydroxyapatite based on N-carboxyethylchitosan for bone tissue engineering. Appl. Surf. Sci. 2010, 256, 7228-7233.
[591] Zhou, G., Li, Y., Zhang, L., Li, H., Wang, M., Cheng, L., Wang, Y., Wang, H., Shi, P. The study of tri-phasic interactions in nano-hydroxyapatite/konjac glucomannan/chitosan composite. J. Mater. Sci. 2007, 42, 2591-2597.
[592] Mohamed, K.R., El-Rashidy, Z.M., Salama, A.A. Preparation and characterization of nano hydroxyapatite/polymeric compositesmaterials. Part I. Mater. Chem. Phys. 2011, 130, 561-568.
[593] Bueno, V.B., Bentini, R., Catalani, L.H., Barbosa, L.R.S., Petri, D.F.S. Synthesis and characterization of xanthan-hydroxyapatite nanocomposites for cellular uptake. Mater. Sci. Eng. C 2014, 37, 195-230.
[594] Huang, J., Lin, Y.W., Fu, X.W., Best, S.M., Brooks, R.A., Rushton, N., Bonfield, W. Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds. J. Mater. Sci. Mater. Med. 2007, 18, 2151-2157.
[595] Lee, H.J., Choi, H.W., Kim, K.J., Lee, S.C. Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem. Mater. 2006, 18, 5111-5118.
[596] Lee, H.J., Kim, S.E., Choi, H.W., Kim, C.W., Kim, K.J., Lee, S.C. The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur. Polym. J. 2007, 43, 1602-1608.
[597] Hao, J.Y., Liu, Y., Zhou, S., Li, Z., Deng, X. Investigation of nanocomposites based on semi-interpenetrating network of [L-poly (ε-caprolactone)]/[net-poly (ε-caprolactone)] and hydroxyapatite nanocrystals. Biomaterials 2003, 24, 1531-1539.
[598] Boissard, C.I.R., Bourban, P.E., Tami, A.E., Alini, M., Eglin, D. Nanohydroxyapatite/poly(esterurethane) scaffold for bone tissue engineering. Acta Biomater. 2009, 5, 3316-3327.
[599] Grande, C.J., Torres, F.G., Gomez, C.M., Bañó, M.C. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 2009, 5, 1605-1615.
[600] Zadegan, S., Hossainalipour, M., Ghassai, H., Rezaie, H.R., Naimi-Jamal, M.R. Synthesis of cellulose-nanohydroxyapatite composite in 1-n-butyl-3-methylimidazolium chloride. Ceram. Int. 2010, 36, 2375-2381.
[601] Jia, N., Li, S.M., Zhu, J.F., Ma, M.G., Xu, F., Wang, B., Sun, R.C. Microwave-assisted synthesis and characterization of cellulose-carbonated hydroxyapatite nanocomposites in NaOH-urea aqueous solution. Mater. Lett. 2010, 64, 2223-2225.
[602] Pang, P., Li, W., Liu, Y. Effect of ball milling process on the microstructure of titanium-nanohydroxyapatite composite powder. Rare Metals 2007, 26, 118-123.
[603] Li, W., Pang, P., Liu, Y. Microstructure and phase composition of Ti-based biocomposites with different contents of nano-hydroxyapatite. Trans. Nonferrous Metals Soc. China 2007, 17, Spec. Iss., S1148-S1151.
[604] Niespodziana, K., Jurczyk, K., Jakubowicz, J., Jurczyk, M. Fabrication and properties of titanium-hydroxyapatite nanocomposites. Mater. Chem. Phys. 2010, 123, 160-165.
[605] Brook, I., Freeman, C., Grubb, S., Cummins, N., Curran, D., Reidy, C., Hampshire, S., Towler, M. Biological evaluation of nano-hydroxyapatite-zirconia (HA-ZrO2) composites and strontium-hydroxyapatite (Sr-HA) for load-bearing applications.J. Biomater. Appl. 2012, 27, 291-298.
[606] Chaudhry, A.A., Yan, H., Viola, G., Reece, M.J., Knowles, J.C., Gong, K., Rehman, I., Darr, J.A. Phase stability and rapid consolidation of hydroxyapatite-zirconia nano-coprecipitates made using continuous hydrothermal flow synthesis.J. Biomater. Appl. 2012, 27, 79-90.
[607] Gain, A.K., Zhang, L., Liu, W. Microstructure and material properties of porous hydroxyapatite-zirconia nanocomposites using polymethyl methacrylate powders. Mater. Des. 2015, 67, 136-144.
[608] Cicueìndez, M., Portoleìs, M.T., Izquierdo-Barba, I., Vallet-Regí, M. New nanocomposite system with nanocrystalline apatiteembedded into mesoporous bioactive glass. Chem. Mater. 2012, 24, 1100-1106.
[609] Govindan, R., Girija, E.K. Drug loaded phosphate glass/hydroxyapatite nanocomposite for orthopedic applications. J. Mater. Chem. B 2014, 2, 5468-5477.
[610] Akhavan, A., Sheikh, N., Khoylou, F., Naimian, F., Ataeivarjovi, E. Synthesis of antimicrobial silver/hydroxyapatite nanocomposite by gamma irradiation. Radiat. Phys. Chem. 2014, 98, 46-50.
[611] Bahrami, M., Fathi, M.H., Ahmadian, M. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite. Mater. Sci. Eng. C 2015, 48, 572-578.
[612] Yan, Y., Li, Y., Zheng, Y., Yi, Z., Wei, J., Xia, C., Chen, Y. Synthesis and properties of a copolymer of poly(1,4-phenylene sulfide)-poly(2,4-phenylene sulfide acid) and its nano-apatite reinforced composite. Eur. Polym. J. 2003, 39, 411-416.
[613] Bhattacharyya, S., Nair, L.S., Singh, A., Krogman, N.R., Bender, J., Greish, Y, E., Brown, P.W., Allcock, H, R., Laurencin, C.T. Development of biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers via electrospinning. MRS Symp. Proc. 2005, 845, 91-96.
[614] Zuo, Y., Li, Y., Wei, J., Han, J., Xu, F. The preparation and characterization of n-HA/PA series biomedical composite. Funct. Mater. 2004, 35, 513-516.
[615] Zhou, G., Li, Y., Zhang, L., Zuo, Y., Jansen, J.A. Preparation and characterization of nano-hydroxyapatite/chitosan/konjac glucomannan composite. J. Biomed. Mater. Res. A 2007, 83A, 931-939.
[616] Daniel-da-Silva, A.L., Lopes, A.B., Gil, A.M., Correia, R.N. Synthesis and characterization of porous κ-carrageenan/calcium phosphate nanocomposite scaffolds. J. Mater. Sci. 2007, 42, 8581-8591.
[617] Yang, K., Wang, C., Wei, J. A study on biocomposite of nano apatite/poly (1,4-phenylene-sulfide)-poly (2,4-phenylene sulfide acid). Composites B 2007, 38, 306-310.
[618] Jiang, L., Li, Y., Zhang, L., Liao, J. Preparation and properties of a novel bone repair composite: nano-hydroxyapatite/chitosan/carboxymethyl cellulose. J. Mater. Sci. Mater. Med. 2008, 19, 981-987.
[619] Liu, L., Liu, J., Wang, M., Min, S., Cai, Y., Zhu, L., Yao, J. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. J. Biomater. Sci. Polym. Edn. 2008, 19, 325-338.
[620] Ren, Y.J., Sun, X, D., Cui, F.Z., Wei, Y.T., Cheng, Z.J., Kong, X.D. Preparation and characterization of antheraea pernyi silk fibroin based nanohydroxyapatite composites. J. Bioact. Compat. Polym. 2007, 22, 465-474.
[621] Wei, J., Li, Y., Lau, K.T. Preparation and characterization of a nano apatite/polyamide6 bioactive composite. Composites B 2007, 38, 301-305.
[622] Sundaraseelan, J., Sastry, T.P. Fabrication of a biomimetic compound containing nano hydroxyapatite – demineralised bone matrix. J. Biomed. Nanotechnol. 2007, 3, 401-405.
[623] Hesaraki, S., Ebadzadeh, T., Ahmadzadeh-Asl, S. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties. J. Mater. Sci. Mater. Med. 2010, 21, 2141-2149.
[624] Niu, Y., Cao, L., Wei, J., Ma, Y., Song, S., Weng, W., Li, H., Liu, C., Su, J. Development of a bioactive composite of nano fluorapatite and poly(butylene succinate) for bone tissue regeneration. J. Mater. Chem. B 2014, 2, 1174-1181.
[625] Li, H., Yang, L., Dong, X., Gu, Y., Lv, G., Yan, Y. Composite scaffolds of nano calcium deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. J. Mater. Sci. Mater. Med. 2014, 25, 1257-1265.
[626] Pourdanesh, F., Jebali, A., Hekmatimoghaddam, S., Allaveisie, A.In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles. Mater. Sci. Eng. C 2014, 40, 382-388.
[627] Pistone, A., Iannazzo, D., Panseri, S., Montesi, M., Tampieri, A., Galvagno, S. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering. Nanotechnol. 2014, 25, 425701.
[628] Li, Z., Mi, W., Wang, H., Su, Y., He, C. Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties. Colloid Surface B 2014, 123, 959-964.
[629] Siqueira, I.A.W.B., Oliveira, C.A.G.S., Zanin, H., Grinet, M.A.V.M., Granato, A.E.C., Porcionatto, M.A., Marciano, F.R., Lobo, A.O. Bioactivity behaviour of nano-hydroxyapatite/freestanding aligned carbon nanotube oxide composite. J. Mater. Sci. Mater. Med. 2015, 26, 1-10.
[630] Gheisari, H., Karamian, E., Abdellahi, M.A novel hydroxyapatite – hardystonite nanocomposite ceramic. Ceram. Int. 2015, 41, 5967-5975.
[631] Sekar, S., Mandal, A., Manikandan, R., Sankar, S., Sastry, T.P. Synthesis and characterization of synthetic and natural nano hydroxyapatite composites containing poloxamer coated demineralized bone matrix as bone graft material: a comparative study. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 534-540.
[632] Zandi, M., Mirzadeh, H., Mayer, C., Urch, H., Eslaminejad, M.B., Bagheri, F., Mivehchi, H. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J. Biomed. Mater. Res. A 2010, 92A, 1244-1255.
[633] Sun, T.S., Guan, K., Shi, S.S., Zhu, B., Zheng, Y.J., Cui, F.Z., Zhang, W., Liao, S.S. Effect of nano-hydroxyapatite/collagen composite and bone morphogenetic protein-2 on lumbar intertransverse fusion in rabbits. Chin. J. Traumatol. 2004, 7, 18-24.
[634] Itoh, S., Kikuehi, M., Koyama, Y., Takakuda, K., Shinomiya, K., Tanaka, J. Development of a hydroxyapatite/collagen nanocomposite as a medical device. Cell Transp. 2004, 13, 451-461.
[635] Kester, M., Heakal, Y., Fox, T., Sharma, A., Robertson, G.P., Morgan, T.T., Altinoğlu, E.I., Tabaković, A., Parette, M.R., Rouse, S.M., Ruiz-Velasco, V., Adair, J.H. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett. 2008, 8, 4116-4121.
[636] Wang, K.W., Zhou, L.Z., Sun, Y., Wu, G.J., Gu, H.C., Duan, Y.R., Chen, F., Zhu, Y.J. Calcium phosphate/PLGA-mPEG hybrid porous nanospheres: a promising vector with ultrahigh gene loading and transfection efficiency. J. Mater. Chem. 2010, 20, 1161-1166.
[637] Gelinsky, M., Welzel, P.B., Simon, P., Bernhardt, A., König, U. Porous three-dimensional scaffolds made of mineralized collagen: preparation and properties of a biomimetic nanocomposite material for tissue engineering of bone. Chem. Eng. J. 2008, 137, 84-96.
[638] Hu, Q., Li, B.Q., Wang, M., Shen, J.C. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 2004, 25, 779-785.
[639] Wei, G., Ma, P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004, 25, 4749-4757.
[640] Liou, S.C., Chen, S.Y., Liu, D.M. Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect ratios. Biomaterials 2003, 24, 3981-3988.
[641] Liou, S.C., Chen, S.Y., Liu, D.M. Manipulation of nanoneedle and nanosphere apatite/poly(acrylic acid) nanocomposites. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 73B, 117-122.
[642] Huang, J., Best, S.M., Bonfield, W., Brooks, R.A., Rushton, N., Jayasinghe, S.N., Edirisinghe, M.J. In vitro assessment of the biological response to nano-size hydroxyapatite. J. Mater. Sci. Mater. Med. 2004, 15, 441-415.
[643] Kong, L., Gao, Y., Cao, W., Gong, Y., Zhao, N., Zhang, X. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J. Biomed. Mater. Res. A 2005, 75A, 275-282.
[644] Venkatesan, J., Kim, S.K. Nano-hydroxyapatite composite biomaterials forbone tissue engineering – a review.J. Biomed. Nanotechnol. 2014, 10, 3124-3140.
[645] Christenson, E.M., Anseth, K.S., van den Beucken, J.J.J.P., Chan, C.K., Ercan, B., Jansen, J.A., Laurencin, C.T., Li, W.J., Murugan, R., Nair. L.S., Ramakrishna, S., Tuan, R.S., Webster, T.J., Mikos, A.G. Nanobiomaterial applications in orthopedics. J. Orthop. Res. 2007, 25, 11-22.
[646] Gelse, K., Pöschl, E., Aigner, T. Collagens –structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531-1546.
[647] Fratzl, P. (Ed.) Collagen: structure and mechanics. Springer: New York, NY, USA, 2010; 510 pp.
[648] Tsai, C.H., Chou, M.Y., Jonas, M., Tien, Y.T., Chi, E.Y.A composite graft material containing bone particles and collagen in osteoinduction in mouse. J. Biomed. Mater. Res. 2002, 63, 65-70.
[649] Xie, J., Baumann, M.J., McCabe, L.R. Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression. J. Biomed. Mater. Res. A 2004, 71A, 108-117.
[650] Tcacencu, I., Wendel, M. Collagen-hydroxyapatite composite enhances regeneration of calvaria bone defects in young rats but postpones the regeneration of calvaria bone in aged rats. J. Mater. Sci. Mater. Med. 2008, 19, 2015-2021.
[651] Yamauchi, K., Goda, T., Takeuchi, N., Einaga, H., Tanabe, T. Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials 2004, 25, 5481-5489.
[652] Liu, C. Collagen–hydroxyapatitecomposite scaffolds for tissueengineering. In: Hydroxyapatite (HAp) for biomedical applications. Mucalo, M.R. (Ed.); Woodhead publishing series in biomaterials:Number 95; Elsevier; Cambridge, UK, 2015; pp. 211-234.
[653] Hellmich, C., Ulm, F.J. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? – Some energy arguments. J. Biomech. 2002, 35, 1199-1212.
[654] Roveri, N., Falini, G., Sidoti, M.C., Tampieri, A., Landi, E., Sandri, M., Parma, B. Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Mater. Sci. Eng. C 2003, 23, 441-446.
[655] Tampieri, A., Celotti, G., Landi, E. From biomimetic apatites to biologically inspired composites. Anal. Bioanal. Chem. 2005, 381, 568-576.
[656] Tampieri, Α., Celotti, G., Landi, E., Sandri, M., Roveri, N., Falini, G. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J. Biomed. Mater. Res. A 2003, 67A, 618-625.
[657] Clarke, K.I., Graves, S.E., Wong, A.T.C., Triffit, J.T., Francis, M.J.O., Czernuszka, J.T. Investigation into the formation and mechanical properties of a bioactive material based on collagen and calcium phosphate.J. Mater. Sci. Mater. Med. 1993, 4, 107-110.
[658] Ten Huisen, K.S., Martin, R.I., Klimkiewicz, M., Brown, P.W. Formation and properties of a synthetic bone composite: hydroxyapatite-collagen. J. Biomed. Mater. Res. 1995, 29, 803-810.
[659] Ishikawa, H., Koshino, T., Takeuchi, R., Saito, T. Effects of collagen gel mixed with hydroxyapatite power on interface between newly formed bone and grafted Achilles tendon in rabbit femoral bone tunnel. Biomaterials 2001, 22, 1689-1694.
[660] ltoh, S., Kikuchi, M., Takakuda, K., Koyama, Y., Matsumoto, H.N., Ichinose, S., Tanaka, J., Kawauchi, T., Shinomiya, K. The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial and its function as a carrier of rhBMP-2. J. Biomed. Mater. Res. 2001, 54, 445-453.
[661] Uskokovic, V., Ignjatovic, N., Petranovic, N. Synthesis and characterization of hydroxyapatite-collagen biocomposite materials. Mater. Sci. Forum 2002, 413, 269-274.
[662] Yoon, B.H., Kim, H.W., Lee, S.H., Bae, C.J., Koh, Y.H., Kong, Y.M., Kim, H.E. Stability and cellular responses to fluorapatite-collagen composites. Biomaterials 2005, 26, 2957-2963.
[663] Wahl, D.A., Czernuszka, J.T. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cell Mater. 2006, 11, 43-56.
[664] Sachlos, E., Gotora, D., Czernuszka, J.T. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 2006, 12, 2479-2487.
[665] Teng, S.H., Lee, E.J., Park, C.S., Choi, W.Y., Shin, D.S., Kim, H.E. Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates. J. Mater. Sci. Mater. Med. 2008, 19, 2453-2461.
[666] Song, J.H., Kim, H.E., Kim, H.W. Collagen-apatite nanocomposite membranes for guided bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83B, 248-257.
[667] Pek, Y.S., Gao, S., Arshad, M.S.M., Leck, K.J., Ying, J.Y. Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials 2008, 29, 4300-4305.
[668] Zhao, H., Huang, C., Jin, H., Cai, J. A novel route for collagen/hydroxyapatite preparation by enzymatic decomposition of urea. J. Compos. Mater. 2010, 44, 2127-2133.
[669] Kozłowska, J., Sionkowska, A. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials. Int. J. Biol. Macromol. 2015, 74, 397-403.
[670] Banglmaier, R.F., Sander, E.A., VandeVord, P.J. Induction and quantification of collagen fiber alignment in a three-dimensional hydroxyapatite–collagen composite scaffold. Acta Biomater. 2015, 17, 26-35.
[671] Banks, E., Nakajima, S., Shapiro, L.C., Tilevitz, O., Alonzo, J.R., Chianelli, R.R. Fibrous apatite grown on modified collagen. Science 1977, 198, 1164-1166.
[672] Hayashi, K., Yabuki, T., Tabuchi, K., Fujii, T. Repair of experimental bone defect with a collagen block containing synthesized apatite. Arch. Orthop. Traum. Surg. 1982, 99, 265-269.
[673] Mittelmeier, H., Nizzard, M. Knochenregeneration mit industriell gefertigtem Collagen Apatit Implantat (“Collapat”). In: Osteogenese und Knochenwachstum, Hackenbroch, M.H., Refior, H, J., Jäger, M.G. (Eds.); Thieme: Stuttgart, Germany, 1982; pp. 194-197.
[674] Serre, C.M., Papillard, M., Chavassieux, P., Boivin, G. In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: an ultrastructural comparison of three types of biomaterials. Biomaterials 1993, 14, 97-106.
[675] Scabbia, A., Trombelli, L. A comparative study on the use of a HA/collagen/chondroitin sulphate biomaterial (Biostite®) and a bovine-derived HA xenograft (Bio-Oss®) in the treatment of deep intraosseous defects. J. Clin. Periodontol. 2004, 31, 348-355.
[676] Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Kubo, T., Akagawa, Y., Uchida, T. Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials 2003, 24, 4913-4920.
[677] Wang, X., Grogan, S.P., Rieser, F., Winkelmann, V., Maquet, V., Berge, M.L. Mainil-Varlet, P. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials 2004, 25, 3681-3688.
[678] Chang, M.C., Ikoma, T., Kikuchi, M., Tanaka, J. The cross-linkage effect of hydroxyapatite/collagen nanocomposites on a self-organization phenomenon. J. Mater. Sci. Mater. Med. 2002, 13, 993-997.
[679] Iijima, M., Moriwaki, Y., Kuboki, Y. Oriented growth of octacalcium phosphate on and inside the collagenous matrix in vitro. Connect. Tissue Res. 1996, 32, 519-524.
[680] Miyamoto, Y., Ishikawa, K., Takechi, M., Toh, T., Yuasa, T., Nagayama, M., Suzuki, K. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials 1998, 19, 707-715.
[681] Iijima, M., Moriwaki, Y., Kuboki, Y. In vitrocrystal growth of octacalcium phosphate on type I collagen fiber. J. Cryst. Growth 1994, 137, 553-560.
[682] Iijima, M., Iijima, K., Moriwaki, Y., Kuboki, Y. Oriented growth of octacalcium phosphate crystals on type I collagen fibrils under physiological conditions. J. Cryst. Growth 1994, 140, 91-99.
[683] Lawson, A.C., Czernuszka, J.T. Collagen – calcium phosphate composites. Proc. Inst. Mech. Eng. H 1998, 212, 413-425.
[684] Du, C., Cui, F.Z., Zhang, W., Feng, Q.L., Zhu, X.D., de Groot, K. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J. Biomed. Mater. Res. 2000, 50, 518-527.
[685] Kamakura, S., Sasaki, K., Honda, Y., Anada, T., Suzuki, O. Octacalcium phosphate combined with collagen orthotopically enhances bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 79B, 210-217.
[686] Kawai, T., Anada, T., Honda, Y., Kamakura, S., Matsui, K., Matsui, A., Sasaki, K., Morimoto, S., Echigo, S, Suzuki, O. Synthetic octacalcium phosphate augments bone regeneration correlated with its content in collagen scaffold. Tissue Eng. A 2009, 15, 23-32.
[687] Masuda, T., Kawai, T., Anada, T., Kamakura, S., Suzuki, O. Quality of regenerated bone enhanced by implantation of octacalcium phosphate-collagen composite. Tissue Eng. C 2010, 16, 471-478.
[688] Kikuchi, M., Ikoma, T., Itoh, S., Matsumoto, H.N., Koyama, Y., Takakuda, K., Shinomiya, K., Tanaka, J. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Compos. Sci. Technol. 2004, 64, 819-825.
[689] Yunoki, S., Ikoma, T., Monkawal, A., Ohtal, K., Tanaka, J. Preparation and characterization of hydroxyapatite/collagen nanocomposite gel. J. Nanosci. Nanotechnol. 2007, 7, 818-821.
[690] Li, X., Chang, J. Preparation of bone-like apatite-collagen nanocomposites by a biomimetic process with phosphorylated collagen. J. Biomed. Mater. Res. A 2008, 85A, 293-300.
[691] Sun, T., Wang, M. Electrochemical deposition of apatite/collagen composite coating on NiTi shape memory alloy and coating properties. Mater. Res. Soc. Symp. Proc. 2010, 1239, 141-146.
[692] Ficai, A., Andronescu, E., Voicu, G., Ghitulica, C., Vasile, B.S., Ficai, D., Trandafir, V. Self-assembled collagen/hydroxyapatite composite materials. Chem. Eng. J. 2010, 160, 794-800.
[693] Jee, S.S., Thula, T.T., Gower, L.B. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight. Acta Biomater. 2010, 6, 3676-3686.
[694] Kane, R.J., Weiss-Bilka, H.E., Meagher, M.J., Liu, Y., Gargac, J.A., Niebur, G.L., Wagner, D.R., Roeder, R.K. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater. 2015, 17, 16-25.
[695] Andronescu, E., Ficai, M., Voicu, G., Ficai, D., Maganu, M., Ficai, A. Synthesis and characterization of collagen/hydroxyapatite: magnetite composite material for bone cancer treatment. J. Mater. Sci. Mater. Med. 2010, 21, 2237-2242.
[696] Ficai, M., Andronescu, E., Ficai, D., Voicu, G., Ficai, A. Synthesis and characterization of COLL-PVA/HA hybrid materials with stratified morphology. Colloid SurfaceB 2010, 81, 614-619.
[697] Inzana, J.A., Olvera, D., Fuller, S.M., Kelly, J.P., Graeve, O.A., Schwarz, E.M., Kates, S.L., Awad, H.A. 3D printing of composite calcium phosphate and collagen scaffolds forbone regeneration. Biomaterials 2014, 35, 4026-4034.
[698] Tamimi, F., Kumarasami, B., Doillon, C., Gbureck, U., Nihouannen, D.L., Cabarcos, E.L., Barralet, J.E. Brushite-collagen composites for bone regeneration. Acta Biomater. 2008, 4, 1315-1321.
[699] Mai, R., Reinstorf, A., Pilling, E., Hlawitschka, M., Jung, R., Gelinsky, M., Schneider, M., Loukota, R., Pompe, W., Eckelt, U., Stadlinger, B. Histologic study of incorporation and resorption of a bone cement-collagen composite: an in vivo study in the minipig. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 105, e9-e14.
[700] Moreau, J.L., Weir, M.D., Xu, H.H.K. Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties. J. Biomed. Mater. Res. A 2009, 91A, 605-613.
[701] Liu, X., Wang, X.M., Chen, Z., Cui, F.Z., Liu, H.Y., Mao, K., Wang, Y. Injectable bone cement based on mineralized collagen. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 72-79.
[702] Otsuka, M., Nakagawa, H., Ito, A., Higuchi, W.I. Effect of geometrical structure on drug release rate of a three-dimensionally perforated porous apatite/collagen composite cement. J. Pharm. Sci. 2010, 99, 286-292.
[703] Cui, F.Z., Li, Y., Ge, J. Self-assembly of mineralized collagen composites. Mater. Sci. Eng. R 2007, 57, 1-27.
[704] Hirota, K., Nishihara, K., Tanaka, H. Pressure sintering of apatite-collagen composite. Biomed. Mater. Eng. 1993, 3, 147-151.
[705] Zahn, D., Hochrein, O., Kawska, A., Brickmann, J., Kniep, R. Towards an atomistic understanding of apatite-collagen biomaterials: linking molecular simulation studies of complex-, crystal- and composite-formation to experimental findings. J. Mater. Sci. 2007, 42, 8966-8973.
[706] Silva, C.C., Pinheiro, A.G., Figueiro, S.D., Goes, J.C., Sasaki, J.M., Miranda, M.A.R., Sombra, A.S.B. Piezoelectric properties of collagen-nanocrystalline hydroxyapatite composites. J. Mater. Sci. 2002, 37, 2061-2070.
[707] Yunoki, S., Ikoma, T., Tsuchiya, A., Monkawa, A., Ohta, K., Sotome, S., Shinomiya, K., Tanaka, J. Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 80B, 166-173.
[708] Keeney, M., Collin, E., Pandit, A. Multi-channelled collagen-calcium phosphate scaffolds: their physical properties and human cell response. Tissue Eng. C 2009, 15, 265-273.
[709] Chapman, M.W., Bucholz, R., Cornell, C. Treatment of acute fractures with a collagen-calcium phosphate graft material: a randomized clinical trial. J. Bone Joint Surg. (Am.) 1997, 79A, 495-502.
[710] Rodrigues, C.V.M., Serricella, P., Linhares, A.B.R., Guerdes, R.M., Borojevic, R., Rossi, M.A., Duarte, M.E.L., Farina, M. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 2003, 24, 4987-4997.
[711] Miura, K.-I., Anada, T., Honda, Y., Shiwaku, Y., Kawai, T., Echigo, S., Takahashi, T., Suzuki, O. Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite. Appl. Surf. Sci. 2013, 282, 138-145.
[712] Kawai, T., Echigo, S., Matsui, K., Tanuma, Y., Takahashi, T., Suzuki, O., Kamakura, S. First clinical application of octacalcium phosphate collagen composite in human bone defect. Tissue Eng. A 2014, 20, 1336-1341.
[713] Lickorish, D., Ramshaw, J.A.M., Werkmeister, J.A., Glattauer, V., Howlett, C.R. Development of a collagen-hydroxyapatite composite biomaterial via biomimetic process. J. Biomed. Mater. Res. A 2004, 68A, 19-27.
[714] Sionkowska, A., Kozłowska, J. Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. Int. J. Biol. Macromol. 2010, 47, 483-487.
[715] Hsu, F.Y., Chueh, S.C., Wang, J.Y. Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials 1999, 20, 1931-1936.
[716] Wu, T.J., Huang, H.H., Lan, C.W., Lin, C.H., Hsu, F.Y., Wang, Y.J. Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials 2004, 25, 651-658.
[717] Wei, Q., Lu, J., Wang, Q., Fan, H., Zhang, X. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates. Nanotechnology 2015, 26, 115605.
[718] Liao, S.S., Watari, F., Uo, M., Ohkawa, S., Tamura, K., Wang, W., Cui, F.Z. The preparation and characteristics of a carbonated hydroxyapatite/collagen composite at room temperature. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 74B, 817-821.
[719] Yokoyama, A., Gelinsky, M., Kawasaki, T., Kohgo, T., König, U., Pompe, W., Watari, F. Biomimetic porous scaffolds with high elasticity made from mineralized collagen – an animal study. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 75B, 464-472.
[720] Zou, C., Weng, W., Deng, X.J., Cheng, K., Liu, X., Du, P., Shen, G., Han, G. Preparation and characterization of porous β-tricalcium phosphate/collagen composites with an integrated structure. Biomaterials 2005, 26, 5276-5284.
[721] Martins, V.C.A., Goissis, G. Nonstoichiometric hydroxyapatite-anionic collagen composite as a support for the double sustained release of gentamicin and norfloxacin/ciprofloxacin. Artif. Organs 2000, 24, 224-230.
[722] Gotterbarm, T., Richter, W., Jung, M., Berardi-Vilei, S., Mainil-Varlet, P., Yamashita, T., Breusch, S.J. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials 2006, 27, 3387-3395.
[723] Martins, V.C., Goissis, G., Ribeiro, A.C., Marcantonio, E., Jr., Bet, M.R. The controlled release of antibiotic by hydroxyapatite: anionic collagen composites. Artif. Organs 1998, 22, 215-221.
[724] Jayaraman, M., Subramanian, M.V. Preparation and characterization of two new composites: collagen-brushite and collagen-octacalcium phosphate. Medical Sci. Monitor 2002, 8, BR481-BR487.
[725] Matsui, K., Matsui, A., Handa, T., Kawai, T., Suzuki, O., Kamakura, S., Echigo, S. Bone regeneration by octacalcium phosphate collagen composites in a dog alveolar cleft model. Int. J. Oral Maxillofac. Surg.2010, 39, 1218-1225.
[726] Iibuchi, S., Matsui, K., Kawai, T., Sasaki, K., Suzuki, O., Kamakura, S., Echigo, S. Octacalcium phosphate (OCP) collagen composites enhance bone healing in a dog tooth extraction socket model. Int. J. Oral Maxillofac. Surg. 2010, 39, 161-168.
[727] Xia, Z., Wei, M. Biomimetic fabrication of collagen-apatite scaffolds for bone tissue regeneration. J. Biomater. Tissue Eng. 2013, 3, 369-384.
[728] Ikeda, H., Yamaza, T., Yoshinari, M., Ohsaki, Y., Ayukawa, Y., Kido, M.A., Inoue, T., Shimono, M., Koyano, K., Tanaka, T. Ultrastructural and immunoelectron microscopic studies of the peri-implant epithelium-implant (Ti-6Al-4V) interface of rat maxilla. J. Periodontol. 2000, 71, 961-973.
[729] Uchida, M., Oyane, A., Kim, H.M., Kokubo, T., Ito, A. Biomimetic coating of laminin-apatite composite on titanium metal and its excellent cell-adhesive properties. Adv. Mater. 2004, 16, 1071-1074.
[730] Oyane, A., Uchida, M., Ito, A. Laminin-apatite composite coating to enhance cell adhesion to ethylene-vinyl alcohol copolymer. J. Biomed. Mater. Res. A 2005, 72A, 168-174.
[731] Oyane, A., Uchida, M., Onuma, K., Ito, A. Spontaneous growth of a laminin-apatite nano-composite in a metastable calcium phosphate solution. Biomaterials 2006, 27, 167-175.
[732] Oyane, A., Tsurushima, H., Ito, A. Highly efficient gene transfer system using a laminin-DNA-apatite composite layer. J. Gene Med. 2010, 12, 194-206.
[733] Oyane, A., Wang, X., Sogo, Y., Ito, A., Tsurushima, H. Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomater. 2012, 8, 2034-2046.
[734] Yaylaoglu, M.B., Korkusuz, P., Ors, U., Korkusuz, F., Hasirci, V. Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release. Biomaterials 1999, 20, 711-719.
[735] Kim, H.W., Knowles, J.C., Kim, H.E. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 74B, 686-698.
[736] Hillig, W.B., Choi, Y., Murtha, S., Natravali, N., Ajayan, P. An open-pored gelatin/hydroxyapatite composite as a potential bone substitute. J. Mater. Sci. Mater. Med. 2008, 19, 11-17.
[737] Chang, M.C., Douglas, W.H., Tanaka, J. Organic-inorganic interaction and the growth mechanism of hydroxyapatite crystals in gelatin matrices between 37 and 80°C. J. Mater. Sci. Mater. Med. 2006, 17, 387-396.
[738] Chang, M.C., Douglas, W.H. Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker. J. Mater. Sci. Mater. Med. 2007, 18, 2045-2051.
[739] Liu, X., Smith, L.A., Hu, J., Ma, P.X. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 2009, 30, 2252-2258.
[740] Lin, H.R., Yeh, Y.J. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization and in vitro studies. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71B, 52-65.
[741] Turco, G., Marsich, E., Bellomo, F., Semeraro, S., Donati, I., Brun, F., Grandolfo, M., Accardo, A., Paoletti, S. Alginate/hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromolecules 2009, 10, 1575-1583.
[742] Chae, T., Yang, H., Leung, V., Ko, F., Troczynski, T. Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J. Mater. Sci. Mater. Med. 2013, 24, 1885-1894.
[743] Cuozzo, R.C., da Leão, M.H.M.R., de Gobbo, L.A., da Rocha, D.N., Ayad, N.M.E., Trindade, W., Costa, A.M., da Silva, M.H.P. Zinc alginate-hydroxyapatite composite microspheres for bone repair. Ceram. Int. 2014, 40, 11369-11375.
[744] Li, S., Kan, B., Zhao, K., Ren, T., Lin, B., Wei, J., Chen, T. Preparation of tricalcium phosphate-calcium alginate composite flat sheet membranes and their application for protein release. Polym. Compos. 2015, 36, 1899-1906.
[745] Won, J.E., El-Fiqi, A., Jegal, S.H., Han, C.M., Lee, E.J., Knowles, J.C., Kim, H.W. Gelatin-apatite bone mimetic co-precipitates incorporated within biopolymer matrix to improve mechanical and biological properties useful for hard tissue repair.J. Biomater. Appl. 2014, 28, 1213-1225.
[746] Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K., Monma, H., Tanaka, J. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res. 2001, 55, 20-27.
[747] Zhang, Y., Ni, M., Zhang, M.Q., Ratner, B. Calcium phosphate – chitosan composite scaffolds for bone tissue engineering. Tissue Eng. 2003, 9, 337-345.
[748] Tang, X.J., Gui, L., Lü, X.Y. Hard tissue compatibility of natural hydroxyapatite/chitosan composite. Biomed. Mater. 2008, 3, 044115.
[749] Zhang, Y., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B., Lim, C.T. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008, 29, 4314-4322.
[750] Cai, X., Tong, H., Shen, X., Chen, W., Yan, J., Hu, J. Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater. 2010, 5, 2693-2703.
[751] Ge, H., Zhao, B., Lai, Y., Hu, X., Zhang, D., Hu, K. From crabshell to chitosan-hydroxyapatite composite material via a biomorphic mineralization synthesis method. J. Mater. Sci. Mater. Med. 2010, 21, 1781-1787.
[752] Onoki, T., Nakahira, A., Tago, T., Hasegawa, Y., Kuno, T. Novel low temperature processing techniques for apatite ceramics and chitosanpolymer composite bulk materials and its mechanical properties. Appl. Surf. Sci. 2012, 262, 263-266.
[753] Zugravu, M.V., Smith, R.A., Reves, B.T., Jennings, J.A., Cooper, J.O., Haggard, W.O., Bumgardner, J.D. Physical properties and in vitro evaluation of collagen-chitosan-calcium phosphate microparticle-based scaffolds for bone tissue regeneration.J. Biomater. Appl. 2013, 28, 566-579.
[754] Fernández, T., Olave, G., Valencia, C.H., Arce, S., Quinn, J.M.W., Thouas, G.A., Chen, Q.Z. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation. Tissue Eng. A 2014, 20, 1948-1960.
[755] Tang, S., Tian, B., Guo, Y.J., Zhu, Z.A., Guo, Y.P. Chitosan/carbonated hydroxyl-apatite composite coatings: fabrication, structure and biocompatibility. Surf. Coat. Technol. 2014, 251, 210-216.
[756] Kucharska, M., Walenko, K., Lewandowska-Szumieł, M., Brynk, T., Jaroszewicz, J., Ciach, T. Chitosan and composite microsphere-based scaffold for bone tissue engineering: evaluation of tricalcium phosphate content influence on physical and biological properties. J. Mater. Sci. Mater. Med. 2015, 26, 143 (12 pages).
[757] Park, K.H., Kim, S.J., Hwang, M.J., Song, H.J., Park, Y.J. Biomimetic fabrication of calcium phosphate/chitosan nanohybrid composite in modified simulated body fluids. Express Polym. Lett. 2017, 11, 14-20.
[758] Wan, A.C.A., Khor, E., Hastings, G.W. Preparation of a chitin-apatite composite by in situ precipitation onto porous chitin scaffolds. J. Biomed. Mater. Res. 1998, 41, 541-548.
[759] Wan, A.C.A., Khor, E., Hastings, G.W. Hydroxyapatite modified chitin as potential hard tissue substitute material. J. Biomed. Mater. Res. 1997, 38, 235-241.
[760] Geçer, A., Yldz, N., Erol, M., Çalml, A. Synthesis of chitin calcium phosphate composite in different growth media. Polym. Composite 2008, 29, 84-91.
[761] Dong, H., Ye, J.D., Wang, X.P., Yang, J.J. Preparation of calcium phosphate cement tissue engineering scaffold reinforced with chitin fiber. J. Inorg. Mater. 2007, 22, 1007-1010.
[762] Silva, S.S., Duarte, A.R.C., Oliveira, J.M., Mano, J.F., Reis, R.L. Alternative methodologyfor chitin–hydroxyapatitecomposites using ionicliquids and supercriticalfluid technology. J. Bioact. Compat. Polym. 2013, 28, 481-491.
[763] Wang, J., Sun, Q.Z., Gao, J., Liu, D.M., Meng, X.C., Li, M.Q. Preparation and properties on silk fibers reinforced hydroxyapatite/chitosan composites. Adv. Mater. Res. 2010, 105-106, 557-560.
[764] Zhang, Y., Reddy, V.J., Wong, S.Y., Li, X., Su, B., Ramakrishna, S., Lim, C.T. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Eng. A 2010, 16, 1949-1960.
[765] Kousalya, G.N., Gandhi, R.M., Sundaram, S.C., Meenakshi, S. Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(III). Carbohydr. Polym. 2010, 82, 594-599.
[766] Sundaram, C.S., Viswanathan, N., Meenakshi, S. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite. Bioresour. Technol. 2008, 99, 8226-8230.
[767] Sundaram, C.S., Viswanathan, N., Meenakshi, S. Fluoride sorption by nano-hydroxyapatite/chitin composite. J. Hazard. Mater. 2009, 172, 147-151.
[768] Wen, H.B., de Wijn, J.R., van Blitterswijk, C.A., de Groot, K. Incorporation of bovine serum albumin in calcium phosphate coating on titanium. J. Biomed. Mater. Res. 1999, 46, 245-252.
[769] Liu, T.Y., Chen, S.Y., Liu, D.M., Liou, S.C. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J. Control. Release 2005, 107, 112-121.
[770] Liu, Y., Hunziker, E., Randall, N., de Groot, K., Layrolle, P. Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate. Biomaterials 2003, 24, 65-70.
[771] Dorozhkin, S.V., Dorozhkina, E.I. The influence of bovine serum albumin on the crystallization of calcium phosphates from a revised simulated body fluid. Colloid Surface A 2003, 215, 191-199.
[772] Fu, H.H., Hu, Y.H., McNelis, T., Hollinger, J.O. A calcium phosphate-based gene delivery system. J. Biomed. Mater. Res. A 2005, 74A, 40-48.
[773] Bisht, S., Bhakta, G., Mitra, S., Maitra, A. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int. J. Pharm. 2005, 288, 157-168.
[774] Kakizawa, Y., Miyata, K., Furukawa, S., Kataoka, K. Size-controlled formation of a calcium phosphate-based organic-inorganic hybrid vector for gene delivery using poly(ethylene glycol)-block-poly(aspartic acid). Adv. Mater. 2004, 16, 699-702.
[775] Singh, R., Saxena, A., Mozumdar, S. Calcium phosphate – DNA nanocomposites: morphological studies and their bile duct infusion for liver-directed gene therapy. Int. J. Appl. Ceram. Technol. 2008, 5, 1-10.
[776] Oyane, A., Araki, H., Sogo, Y., Ito, A., Tsurushima, H. Coprecipitation of DNA and calcium phosphateusing an infusion fluid mixture. Key Eng. Mater. 2013, 529-530, 465-470.
[777] Sporysh, I., Shynkaruk, E., Lysko, O., Shynkaruk, A., Dubok, V., Buzaneva, E., Ritter, U., Scharff, P. Biomimetic hydroxyapatite nanocrystals in composites with C60 and Au-DNA nanoparticles: IR-spectral study. Mater. Sci. Eng. B 2010, 169, 128-133.
[778] Taguchi, T., Kishida, A., Akashi, M. Hydroxyapatite formation on/in poly(vinyl alcohol) hydrogel matrices using a novel alternate soaking process. Chem. Lett. 1998, 8, 711-712.
[779] Tachaboonyakiat, W., Serizawa, T., Akashi, M. Hydroxyapatite formation on/in biodegradable chitosan hydrogels by an alternate soaking process. Polym. J. 2001, 33, 177-181.
[780] Schnepp, Z.A.C., Gonzalez-McQuire, R., Mann, S. Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels. Adv. Mater. 2006, 18, 1869-1872.
[781] Patel, M., Patel, K.J., Caccamese, J.F., Coletti, D.P., Sauk, J.J., Fisher, J.P. Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering. J. Biomed. Mater. Res. A 2010, 94A, 408-418.
[782] Bigi, A., Boanini, E., Gazzano, M., Kojdecki, M.A., Rubini, K. Microstructural investigation of hydroxyapatite-polyelectrolyte composites. J. Mater. Chem. 2004, 14, 274-279.
[783] Bigi, A., Boanini, E., Gazzano, M., Rubini, K., Torricelli, P. Nanocrystalline hydroxyapatite-polyaspartate composites. Biomed. Mater. Eng. 2004, 14, 573-579.
[784] Boanini, E., Fini, M., Gazzano, M., Bigi, A. Hydroxyapatite nanocrystals modified with acidic amino acids. Eur. J. Inorg. Chem. 2006, 4821-4826.
[785] Boanini, E., Torricelli, P., Gazzano, M., Giardino, R., Bigi, A. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials 2006, 27, 4428-4433.
[786] Ikawa, N., Kimura, T., Oumi, Y., Sano, T. Amino acid containing amorphous calcium phosphates and the rapid transformation into apatite. J. Mater. Chem. 2009, 19, 4906-4913.
[787] Sánchez-Salcedo, S., Nieto, A., Vallet-Regi, M. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem. Eng. J. 2005, 137, 62-71.
[788] Román, J., Cabañas, M.V., Peña, J., Doadrio, J.C., Vallet-Regi, M. An optimized β-tricalcium phosphate and agarose scaffold fabrication technique. J. Biomed. Mater. Res. A 2008, 84A, 99-107.
[789] Alcaide, M., Serrano, M.C., Pagani, R., Sánchez-Salcedo, S., Nieto, A., Vallet-Regí, M., Portolés, M.T. L929 fibroblast and SAOS-2 osteoblast response to hydroxyapatite-βTCP/agarose biomaterial. J. Biomed. Mater. Res. A 2009, 89A, 539-549.
[790] Abiraman, S., Varma, H., Umashankar, P., John, A. Fibrin sealant as an osteoinductive protein in a mouse model. Biomaterials 2002, 23, 3023-3031.
[791] Wittkampf, A. Fibrin sealant as sealant for hydroxyapatite granules. J. Craniomaxillofac. Surg. 1989, 17, 179-181.
[792] d’Arc, M.B., Daculsi, G. Micro macroporous biphasic ceramics and fibrin sealant as a mouldable material for bone reconstruction in chronic otitis media surgery: a 15 years experience. J. Mater. Sci. Mater. Med. 2003, 14, 229-233.
[793] le Nihouannen, D., Guehennec, L.L., Rouillon, T., Pilet, P., Bilban, M., Layrolle, P., Daculsi, G. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials 2006, 27, 2716-2722.
[794] le Nihouannen D., Saffarzadeh A., Aguado E., Goyenvalle E., Gauthier O., Moreau F., Pilet P., Spaethe R., Daculsi, G., Layrolle, P. Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites. J. Mater. Sci. Mater. Med. 2007, 18, 225-235.
[795] le Nihouannen, D., Goyenvalle, E., Aguado, E., Pilet, P., Bilban, M., Daculsi, G., Layrolle, P. Hybrid composites of calcium phosphate granules, fibrin glue, and bone marrow for skeletal repair. J. Biomed. Mater. Res. A 2007, 81A, 399-408.
[796] Yoh, R., Matsumoto, T., Sasaki, J.I., Sohmura, T. Biomimetic fabrication of fibrin/apatite composite material. J. Biomed. Mater. Res. A 2008, 87A, 222-228.
[797] Cui, G., Li, J., Lei, W., Bi, L., Tang, P., Liang, Y., Tao, S., Wang, Y. The mechanical and biological properties of an injectable calcium phosphate cement-fibrin glue composite for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 92B, 377-385.
[798] Boanini, E., Torricelli, P., Gazzano, M., Giardino, R., Bigi, A. Alendronate-hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials 2008, 29, 790-796.
[799] Wang, L., Nemoto, R., Senna, M. Microstructure and chemical states of hydroxyapatite/silk fibroin nanocomposites synthesized via a wet-mechanochemical route. J. Nanopart. Res. 2002, 4, 535-540.
[800] Nemoto, R., Wang, L., Ikoma, T., Tanaka, J., Senna, M. Preferential alignment of hydroxyapatite crystallites in nanocomposites with chemically disintegrated silk fibroin. J. Nanopart. Res. 2004, 6, 259-265.
[801] Wang, L., Li, C.Z., Senna, M. High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin. J. Nanopart. Res. 2007, 9, 919-929.
[802] Li, L., Wei, K.M., Lin, F., Kong, X.D., Yao, J.M. Effect of silicon on the formation of silk fibroin/calcium phosphate composite. J. Mater. Sci. Mater. Med. 2008, 19, 577-582.
[803] Fan, C., Li, J., Xu, G., He, H., Ye, X., Chen, Y., Sheng, X., Fu, J., He, D. Facile fabrication of nano-hydroxyapatite/silk fibroin composite via a simplified coprecipitation route. J. Mater. Sci. 2010, 45, 5814-5819.
[804] Liu, H., Xu, G.W., Wang, Y.F., Zhao, H.S., Xiong, S., Wu, Y., Heng, B.C., An, C.R., Zhu, G.H., Xie, D.H. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 2015, 49, 103-112.
[805] Salama, A., Neumann, M., Günter, C., Taubert, A. Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials. Beilstein J. Nanotechnol. 2014, 5, 1553-1568.
[806] Wang, L., Li, C.Z. Preparation and physicochemical properties of a novel hydroxyapatite/chitosan-silk fibroin composite. Carbohydr. Polym. 2007, 68, 740-745.
[807] Oliveira, J.M., Costa, S.A., Leonor, I.B., Malafaya, P.B., Mano, J.F., Reis, R.L. Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative “autocatalytic” electroless coprecipitation route.J. Biomed. Mater. Res. A 2009, 88, 470-480.
[808] Sogo, Y., Ito, A., Matsuno, T., Oyane, A., Tamazawa, G., Satoh, T., Yamazaki, A., Uchimura, E., Ohno, T. Fibronectin-calcium phosphate composite layer on hydroxyapatite to enhance adhesion., cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro. Biomed. Mater. 2007, 2, 116-123.
[809] Rhee, S.H., Suetsugu, Y., Tanaka, J. Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials 2001, 22, 2843-2847.
[810] Cross, K.J., Huq, N.L., Palamara, J.E., Perich, J.W., Reynolds, E.C. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J. Biol. Chem. 2005, 280, 15362-15369.
[811] Dimopoulou, M., Ritzoulis, C., Papastergiadis, E.S., Panayiotou, C. Composite materials based on okra hydrocolloids and hydroxyapatite. Food Hydrocolloid 2014, 42, 348-354.
[812] Nakata, R., Tachibana, A., Tanabe, T. Preparation of keratin hydrogel/ hydroxyapatite composite and its evaluation as a controlled drug release carrier. Mater. Sci. Eng. C 2014, 41, 59-64.
[813] Li, C., Born, A.K., Schweizer, T., Zenobi-Wong, M., Cerruti, M., Mezzenga, R. Amyloid-hydroxyapatite bone biomimetic composites. Adv. Mater. 2014, 26, 3207-3212.
[814] Kolanthai, E., Colon, V.S.D., Sindu, P.A., Chandra, V.S., Karthikeyan, K.R., Babu, M.S., Sundaram, S.M., Palanichamy, M., Kalkura, S.N. Effect of solvent; enhancing the wettability and engineering the porous structure of a calcium phosphate/agarose composite for drug delivery. RSC Adv. 2015, 5, 18301-18311.
[815] Jung, J.Y., Hong, Y.J., Choi, Y.S., Jeong, S., Lee, W.K. A new method for the preparation of bioactive calcium phosphate films hybridized with 1α,25-dihydroxyvitamin D3. J. Mater. Sci. Mater. Med. 2010, 20, 2441-2453.
[816] Killion, J.A., Geever, L.M., Devine, D.M., Higginbotham, C.L. Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration.J. Biomater. Appl. 2014, 28, 1274-1283.
[817] Shchukin, D.G., Sukhorukov, G.B., Möhwald, H. Biomimetic fabrication of nanoengineered hydroxyapatite/polyelectrolyte composite shell. Chem. Mater. 2003, 15, 3947-3950.
[818] Jacoveila, P.F. Use of calcium hydroxylapatite (Radiesse®) for facial augmentation. Clin. Interv. Aging 2008, 3, 161-174.
[819] Lizzul, P.F., Narurkar, V.A. The role of calcium hydroxylapatite (Radiesse®) in nonsurgical aesthetic rejuvenation. J. Drugs Dermatol. 2010, 9, 446-450.
[820] Klesing, J., Chernousova, S., Kovtun, A., Neumann, S., Ruiz, L., Gonzalez-Calbet, J.M., Vallet-Regi, M., Heumann, R., Epple, M. An injectable paste of calcium phosphate nanorods, functionalized with nucleic acids, for cell transfection and gene silencing. J. Mater. Chem. 2010, 20, 6144-6148.
[821] Thai, V.V., Lee, B.T. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid. J. Mater. Sci. Mater. Med. 2010, 21, 1867-1874.
[822] Low, K.L., Tan, S.H., Zein, S.H.S., Roether, J.A., Mouriño, V., Boccaccini, A.R. Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 273-286.
[823] D’Este, M., Eglin, D. Hydrogels in calcium phosphate moldable and injectable bone substitutes: sticky excipients or advanced 3-D carriers?Acta Biomater. 2013, 9, 5421-5430.
[824] Weiss, P., Gauthier, O., Bouler, J.M., Grimandi, G., Daculsi, G. Injectable bone substitute using a hydrophilic polymer. Bone 1999, 25, Suppl. 2, 67S-70S.
[825] Daculsi, G., Weiss, P., Bouler, J.M., Gauthier, O., Millot, F., Aguado, E. Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone 1999, 25, Suppl. 2, 59S-61S.
[826] Turczyn, R., Weiss, P., Lapkowski, M., Daculsi, G. In situ self-hardening bioactive composite for bone and dental surgery. J. Biomater. Sci. Polym. Edn. 2000, 11, 217-223.
[827] Bennett, S., Connolly, K., Lee, D.R., Jiang, Y., Buck, D., Hollinger, J.O., Gruskin, E.A. Initial biocompatibility studies of a novel degradable polymeric bone substitute that hardens in situ. Bone 1996, 19, 101S-107S.
[828] Bongio, M., van den Beucken, J.J., Nejadnik, M.R., Leeuwenburgh, S.C., Kinard, L.A., Kasper, F.K., Mikos, A.G., Jansen, J.A. Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. Eur. Cell. Mater. 2011,22, 359-376.
[829] Bongio, M., van den Beucken, J.J., Nejadnik, M.R., Birgani, Z.T., Habibovic, P., Kinard, L.A., Kasper, F.K., Mikos, A.G., Leeuwenburgh, S.C., Jansen, J.A. Subcutaneous tissue response and osteogenic performance of calcium phosphate nanoparticle-enriched hydrogels in the tibial medullary cavity of guinea pigs. Acta Biomater. 2013, 9, 5464-5474.
[830] Chernousova, S., Klesing, J., Soklakova, N., Epple, M. A genetically active nano-calcium phosphate paste forbone substitution, encoding the formation of BMP-7and VEGF-A. RSC Adv. 2013, 3, 11155-11161.
[831] Yu, B., Zhang, Y., Li, X., Wang, Q., Ouyang, Y., Xia, Y., Lin, B., Li, S., Fan, Y., Chen, Y. The use of injectable chitosan/nanohydroxyapatite/collagen composites with bone marrow mesenchymal stem cells to promote ectopic bone formation in vivo. J. Nanomater. 2013, 2013, art. no. 506593.
[832] Bodakhe, S., Verma, S., Garkhal, K., Samal, S.K., Sharma, S.S., Kumar, N. Injectable photocrosslinkable nanocomposite based on poly(glycerol sebacate) fumarate and hydroxyapatite: development, biocompatibility and bone regeneration in a rat calvarial bone defect model. Nanomedicine 2013, 8, 1777-1795.
[833] Lin, G., Cosimbescu, L., Karin, N.J., Tarasevich, B.J. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed. Mater. 2012, 7, 024107.
[834] Nejadnik, M.R., Yang, X., Bongio, M., Alghamdi, H.S., van den Beucken, J.J.J.P., Huysmans, M.C., Jansen, J.A., Hilborn, J., Ossipov, D., Leeuwenburgh, S.C.G. Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomaterials 2014, 35, 6918-6929.
[835] Munarin, F., Petrini, P., Gentilini, R., Pillai, R.S., Dirè, S., Tanzi, M.C., Sglavo, V.M. Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites. Int. J. Biol. Macromol. 2015, 72, 199-209.
[836] Daculsi, G., Rohanizadeh, R., Weiss, P., Bouler, J.M. Crystal polymer interaction with new injectable bone substitute: SEM and HrTEM study. J. Biomed. Mater. Res. 2000, 50, 1-7.
[837] Grimande, G., Weiss, P., Millot, F., Daculsi, G. In vitro evaluation of a new injectable calcium phosphate material. J. Biomed. Mater. Res. 1998, 39, 660-666.
[838] Weiss, P., Lapkowski, M., LeGeros, R.Z., Bouler, J.M., Jean, A., Daculsi, G. FTIR spectroscopic study of an organic/mineral composite for bone and dental substitute materials. J. Mater. Sci. Mater. Med. 1997, 8, 621-629.
[839] Weiss, P., Bohic, S., Lapkowski, M., Daculsi, G. Application of FTIR microspectroscopy to the study of an injectable composite for bone and dental surgery. J. Biomed. Mater. Res. 1998, 41, 167-170.
[840] Schmitt, M., Weiss, P., Bourges, X., del Valle, G.A., Daculsi, G. Crystallization at the polymer/calcium-phosphate interface in a sterilized injectable bone substitute IBS. Biomaterials 2002, 23, 2789-2794.
[841] Gauthier, O., Müller, R., von Stechow, D., Lamy, B., Weiss, P., Bouler, J.M., Aguado, E., Daculsi, G. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 2005, 26, 5444-5453.
[842] Weiss, P., Layrolle, P., Clergeau, L.P., Enckel, B., Pilet, P., Amouriq, Y., Daculsi, G., Giumelli, B. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 2007, 28, 3295-3305.
[843] Fatimi, A., Tassin, J.F., Axelos, M.A.V., Weiss, P. The stability mechanisms of an injectable calcium phosphate ceramic suspension. J. Mater. Sci. Mater. Med. 2010, 21, 1799-1809.
[844] Trojani, C., Boukhechba, F., Scimeca, J.C., Vandenbos, F., Michiels, J.F., Daculsi, G., Boileau, P., Weiss, P., Carle, G.F., Rochet, N. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 2006, 27, 3256-3264.
[845] Zhang, S.M., Lü, G. Clinical application of compound injectable bone substitutes in bone injury repair. J. Clin. Rehabil. Tissue Eng. Res. 2009, 13, 10117-10120.
[846] Daculsi, G., Uzel, P.A., Bourgeois, N., le François, T., Rouvillain, J.L., Bourges, X., Baroth, S. New injectable bone substitute using reversible thermosensitive hydrogel and BCP granules: in vivo rabbit experiments. Key Eng. Mater. 2009, 396-398, 457-460.
[847] Iooss, P., le Ray, A.M., Grimandi, G., Daculsi, G., Merle, C. A new injectable bone substitute combining poly(ε-caprolactone) microparticles with biphasic calcium phosphate granules. Biomaterials 2001, 22, 2785-2794.
[848] Bohner, M. Design of ceramic-based cements and putties for bone graft substitution. Eur. Cell Mater. 2010, 20, 1-12.
[849] Evis, Z., Ergun, C., Doremus, R.H. Hydroxylapatite-zirconia composites: thermal stability of phases and sinterability as related to the CaO-ZrO2 phase diagram. J. Mater. Sci. 2005, 40, 1127-1134.
[850] Rao, R.R., Kannan, T.S. Synthesis and sintering of hydroxyapatite-zirconia composites. Mater. Sci. Eng. C 2002, 20, 187-193.
[851] Mansur, C., Pope, M., Pascucci, M.R., Shivkumar, S. Zirconia-calcium phosphate composites for bone replacement. Ceram. Int. 1998, 24, 77-79.
[852] Kim, H.W., Kim, H.E., Salih, V., Knowles, J.C. Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. J. Biomed. Mater. Res. A 2004, 68A, 522-530.
[853] Milella E., Cosentino F., Licciulli A., Massaro C. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials 2001, 22, 1425-1431.
[854] Goller, G., Demirkiran, H., Oktar, F.N., Demirkesen, E. Processing and characterization of Bioglass reinforced hydroxyapatite composites. Ceram. Int. 2003, 29, 721-724.
[855] Tancred, D.C., Carr, A.J., McCormack, B.A. The sintering and mechanical behaviour of hydroxyapatite with bioglass additions. J. Mater. Sci. Mater. Med. 2001, 12, 81-93.
[856] Lopes, M.A., Silva, R.F., Monteiro, F.J., Santos, J.D. Microstructural dependence of Young’s moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications. Biomaterials 2000, 21, 749-754.
[857] Juang, H.Y., Hon, M.H. Fabrication and mechanical properties of hydroxyapatite-alumina composites. Mater. Sci. Eng. C 1994, 2, 77-81.
[858] Li, J., Forbreg, S., Hermansson, L. Evaluation of the mechanical properties of hot isotatically pressed titania and titania-calcium phosphate composites. Biomaterials 1991, 12, 438-440.
[859] Noma, T., Shoji, N., Wada, S., Suzuki, T. Preparation of spherical Al2O3 particle dispersed hydroxyapatite ceramics J. Ceram. Soc. Jpn. 1993, 101, 923-927.
[860] Gautier, S., Champion, E., Bernache-Assollant, D. Toughening characterization in alumina platelet-hydroxyapatite matrix composites. J. Mater. Sci. Mater. Med. 1999, 10, 533-540.
[861] Fang, Y., Roy, D.M., Cheng, J., Roy. R., Agrawal, D.K. Microwave sintering of hydroxyapatite-based composites. Ceram. Trans. 1993, 36, 397-407.
[862] Park, K., Vasilosa, T. Microstructure and mechanical properties of silicon carbide whisker/calcium phosphate composites produced by hot pressing. Mater. Lett. 1997, 32, 229-233.
[863] Jin, H.B., Oktar, F.N., Dorozhkin, S., Agathopoulos, S. Sintering behavior and properties of reinforced hydroxyapatite/TCP biphasic bioceramics with ZnO-whiskers. J. Compos. Mater. 2011,45, 1435-1445.
[864] de With, G., Corbijn, A.T. Metal fibre reinforced hydroxyapatite ceramics. J. Mater. Sci. 1989, 24, 341l-3415.
[865] Ruys, A.J., Simpson, S.A., Sorrell, C.C. Thixotropic casting of fibre-reinforced ceramic matrix composites. J. Mater. Sci. Lett. 1994, 13, 1323-1325.
[866] Miao, X., Ruys, A.J., Milthorpe, B.K. Hydroxyapatite-316L fibre composites prepared by vibration assisted slip casting. J. Mater. Sci. 2001, 36, 3323-3332.
[867] Kim, H.M., Chae, W.P., Chang, K.W., Chun, S., Kim, S., Jeong, Y., Kang, I.K. Composite nanofiber mats consisting of hydroxyapatite and titania for biomedical applications. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 380-387.
[868] Hirakura, S., Kobayashi, T., Ono, S., Oaki, Y., Imai, H. Fibrous nanocrystals of hydroxyapatite loaded with TiO2 nanoparticles for the capture and photocatalytic decomposition of specific proteins. Colloid Surface B 2010, 79, 131-135.
[869] Wu, J.M., Yeh, T.S. Sintering of hydroxylapatite-zirconia composite materials. J. Mater. Sci. 1988, 23, 3771-3777.
[870] Li, J., Liao, H., Hermansson, L. Sintering of partially-stabilized zirconia and partially-stabilized zirconia-hydroxyapatite composites by hot isostatic pressing and pressureless sintering. Biomaterials 1996, 17, 1787-1790.
[871] Takagi, M., Mochida, M., Uchida, N., Saito, K., Uematsu, K. Filter cake forming and hot isostatic pressing for TZP-dispersed hydroxyapatite composite. J. Mater. Sci. Mater. Med. 1992, 3, 199-203.
[872] Shen, Z., Adolfsson, E., Nygren, M., Gao, L., Kawaoka, H., Niihara, K. Dense hydroxyapatite-zirconia ceramic composites with high strength for biological applications. Adv. Mater. 2001, 13, 214-216.
[873] Kumar, B.R., Prakash, K.H., Cheang, P., Khor, K.A. Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders. Acta Mater. 2005, 53, 2327-2335.
[874] Nagarajan, V.S., Rao, K.J. Structural, mechanical and biocompatibility studies of hydroxyapatite-derived composites toughened by zirconia addition. J. Mater. Chem. 1993, 3, 43-51.
[875] Evis, Z., Doremus, R.H. Hot-pressed hydroxylapatite/monoclinic zirconia composites with improved mechanical properties. J. Mater. Sci. 2007, 42, 2426-2431.
[876] Erkmen, Z.E., Genç, Y., Oktar, F.N. Microstructural and mechanical properties of hydroxyapatite-zirconia composites. J. Am. Ceram. Soc. 2007, 90, 2885-2892.
[877] Rapacz-Kmita, A., Slosarczyk, A., Paszkiewicz, Z. Mechanical properties of HAp-ZrO2 composites. J. Eur. Ceram. Soc. 2006, 26, 1481-1488.
[878] Sung, Y.M., Shin, Y.K., Ryu, J.J. Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications. Nanotechnology 2007, 18, 065602 (6 pages).
[879] Quan, R., Yang, D., Wu, X., Wang, H., Miao, X. Li, W. In vitro and in vivo biocompatibility of graded hydroxyapatite-zirconia composite bioceramic. J. Mater. Sci. Mater. Med. 2008, 19, 183-187.
[880] Khalil, K.A., Kim, S.W., Kim, H.Y. Consolidation and mechanical properties of nanostructured hydroxyapatite-(ZrO2 + 3 mol% Y2O3) bioceramics by high-frequency induction heat sintering. Mater. Sci. Eng. A 2007, 456, 368-372.
[881] Wang, L.L., Wang, X.F., Jiang, H.T., Yu, C.L. Preparation of porous hydroxyapatite-zirconia composite scaffolds by combination of gel-casting and polymer sponge methods. Adv. Mater. Res. 2010, 105-106, 616-619.
[882] Li, J., Fartash, B., Hermansson, L. Hydroxyapatite-alumina composites and bone-bonding. Biomaterials 1995, 16, 417-422.
[883] Adolfsson, E., Hermansson, L. Phase stability aspects of various apatite-aluminium oxide composites. J. Mater. Sci. 2000, 35, 5719-5723.
[884] Jun, Y.K., Kim, W.H., Kweon, O.K., Hong, S.H. The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants. Biomaterials 2003, 24, 3731-3739.
[885] Viswanath, B., Ravishankar, N. Interfacial reactions in hydroxyapatite/alumina nanocomposites. Scripta Mater. 2006, 55, 863-866.
[886] Epure, L.M., Dimitrievska, S., Merhi, Y., Yahia, L.H. The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: morphological, chemical and cytotoxic evaluation. J. Biomed. Mater. Res. A 2007, 83A, 1009-1023.
[887] Evis, Z., Doremus, R.H. A study of phase stability and mechanical properties of hydroxylapatite-nanosize α-alumina composites. Mater. Sci. Eng. C 2007, 27, 421-425.
[888] Lu, Y.P., Li, M.S., Li, S.T., Wang, Z.G., Zhu, R.F. Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 2004, 25, 4393-4403.
[889] Lee, S.H., Kim, H.W., Lee, E.J., Li, L.H., Kim, H.E. Hydroxyapatite-TiO2 hybrid coating on Ti implants. J. Biomater. Appl. 2006, 20, 195-208.
[890] Boyd, A.R., Duffy, H., McCann, R., Meenan, B.J. Sputter deposition of calcium phosphate/titanium dioxide hybrid thin films. Mater. Sci. Eng. C 2008, 28, 228-236.
[891] Fidancevska, E., Ruseska, G., Bossert, J., Linc, Y.M., Boccaccini, A.R. Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater. Chem. Phys. 2007, 103, 95-100.
[892] Pushpakanth, S., Srinivasan, B., Sreedhar, B., Sastry, T.P. An in situ approach to prepare nanorods of titania-hydroxyapatite (TiO2-HAp) nanocomposite by microwave hydrothermal technique. Mater. Chem. Phys. 2008, 107, 492-498.
[893] Nath, S., Tripathi, R., Basu, B. Understanding phase stability, microstructure development and biocompatibility in calcium phosphate-titania composites, synthesized from hydroxyapatite and titanium powder mix. Mater. Sci. Eng. C 2009, 29, 97-107.
[894] Ün, S., Durucan, C. Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 574-583.
[895] Nathanael, A.J., Mangalaraj, D., Ponpandian, N. Controlled growth and investigations on the morphology and mechanical properties of hydroxyapatite/titania nanocomposite thin films. Compos. Sci. Technol. 2010, 70, 1645-1651.
[896] Ebrahimi-Kahrizsangi, R., Nasiri-Tabrizi, B., Chami, A. Synthesis and characterization of fluorapatite-titania (FAp-TiO2) nanocomposite via mechanochemical process. Solid State Sci. 2010, 12, 1645-1651.
[897] Sakka, S., Bouaziz, J., Ben Ayed, F. Sintering and mechanical properties of the alumina-tricalcium phosphate-titania composites. Mater. Sci. Eng. C 2014, 40, 92-101.
[898] Lee, B.T., Lee, C.W., Gain, A.K., Song, H.Y. Microstructures and material properties of fibrous Ap/Al2O3-ZrO2 composites fabricated by multi-pass extrusion process. J. Eur. Ceram. Soc. 2007, 27, 157-163.
[899] Oktar, F.N., Agathopoulos, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y., Salman. S. Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3 and ZrO2. J. Mater. Sci. Mater. Med. 2007, 18, 2137-2143.
[900] Gunduz. O., Erkan. E/M., Daglilar. S., Salman. S., Agathopoulos. S., Oktar. F.N. Composites of bovine hydroxyapatite (BHA) and ZnO. J. Mater. Sci. 2008, 43, 2536-2540.
[901] Ajeesh, M., Francis, B.F., Annie, J., Varma, P.R.H. Nano iron oxide-hydroxyapatite composite ceramics with enhanced radiopacity. J. Mater. Sci. Mater. Med. 2010, 21, 1427-1434.
[902] Yang, Z.P., Gong, X.Y., Zhang, C.J. Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications. Chem. Eng. J. 2010, 165, 117-121.
[903] Liu, Y., Zhong, H., Li, L., Zhang, C. Temperature dependence of magnetic property and photocatalytic activity of Fe3O4/hydroxyapatite nanoparticles. Mater. Res. Bull. 2010, 45, 2036-2039.
[904] Gu, L., He, X., Wu, Z. Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery. Mater. Res. Bull. 2014, 59, 65-68.
[905] Dong, L., Zhu, Z., Qiu, Y., Zhao, J. Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite. Front. Environ. Sci. Eng. 2016, 10, 28-36.
[906] Lopes, M.A., Monterio, F.J., Santos, J.D. Glass-reinforced hydroxyapatite composites: fracture toughness and hardness dependence on microstructural characteristics. Biomaterials 1999, 20, 2085-2090.
[907] Ragel, C.V., Vallet-Regi, M., Rodríguez-Lorenzo, L.M. Preparation and in vitro bioactivity of hydroxyapatite/sol-gel glass biphasic material. Biomaterials 2002, 23, 1865-1872.
[908] Li, X.W., Yasuda, H.Y., Umakoshi, Y. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200ºC: preparation, microstructures and in vitro bone-like layer growth. J. Mater. Sci. Mater. Med. 2006, 17, 573-581.
[909] Padilla, S., Sánchez-Salcedo, S., Vallet-Regi, M. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method. J. Biomed. Mater. Res. A 2005, 75A, 63-72.
[910] Padilla, S., Román, J., Sánchez-Salcedo, S., Vallet-Regi, M. Hydroxyapatite/SiO2-CaO-P2O5 glass materials: in vitro bioactivity and biocompatibility. Acta Biomater. 2006, 2, 331-342.
[911] Sych, E.E., Pinchuk, N.D., Ivanchenko, L.A. Effect of sintering temperature on the properties of biogenic hydroxyapatite-glass composites. Powder Metallurgy Metal Ceram. 2010, 49, 153-158.
[912] Marovic, D., Tarle, Z., Hiller, K.A., Müller, R., Rosentritt, M., Skrtic, D., Schmalz, G. Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers. Dent. Mater. 2014, 30, 1052-1060.
[913] Bellucci, D., Sola, A., Lusvarghi, L., Cannillo, V. Hydroxyapatite-tricalcium phosphate-bioactive glass ternary composites. Ceram. Int. 2014, 40, 3805-3808.
[914] Bellucci, D., Sola, A., Anesi, A., Salvatori, R., Chiarini, L., Cannillo, V. Bioactive glass/hydroxyapatite composites: mechanical properties andbiological evaluation. Mater. Sci. Eng. C 2015, 51, 196-205.
[915] Yazdanpanah, Z., Bahrololoom, M.E., Hashemi, B. Evaluating morphology and mechanical properties of glass-reinforced natural hydroxyapatite composites. J. Mech. Behav. Biomed. Mater. 2015, 41, 36-42.
[916] Kokubo, T., Shigematsu, M., Nagashima, Y., Tashiro, M., Nakamura, T., Yamamuro, T., Higashi, S. Apatite- and wollastonite-containing glass ceramics for prosthetic applications. Bull. Inst. Chem. Res. Kyoto Univ. 1982, 60, 260-268.
[917] Kokubo, T., Ito, S., Shigematsu, M., Sakka, S., Yamamuro, T. Fatigue and life-time of bioactive glass-ceramic A-W containing apatite and wollastonite. J. Mater. Sci. 1987, 22, 4067-4070.
[918] Nishio, K., Neo, M., Akiyama, H., Okada, Y., Kokubo, T., Nakamura, T. Effects of apatite and wollastonite containing glass-ceramic powder and two types of alumina powder in composites on osteoblastic differentiation of bone marrow cells. J. Biomed. Mater. Res. 2001, 55, 164-176.
[919] Encinas-Romero, M.A., Aguayo-Salinas, S., Valenzuela-García, J.L., Payán, S.R., Castillón-Barraza, F.F. Mechanical and bioactive behavior of hydroxyapatite-wollastonite sintered composites. Int. J. Appl. Ceram. Technol. 2010, 7, 164-177.
[920] Ha, N.R., Yang, Z.X., Hwang, K.H., Kim, T.S., Lee, J.K. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement. J. Nanosci. Nanotechnol. 2010, 10, 3459-3462.
[921] Nath, S., Biswas, K., Wang, K., Bordia, R.K., Basu, B. Sintering, phase stability, and properties of calcium phosphate-mullite composites. J. Am. Ceram. Soc. 2010, 93, 1639-1649.
[922] Nath, S., Ummethala, R., Basu, B. Fretting wear behavior of calcium phosphate-mullite composites in dry and albumin-containing simulated body fluid conditions. J. Mater. Sci. Mater. Med. 2010, 21, 1151-1161.
[923] Nath, S., Dubey, A.K., Basu, B. Mechanical properties of novel calcium phosphate-mullite biocomposites.J. Biomater. Appl. 2012, 27, 67-78.
[924] Nath, S., Kalmodia, S., Basu, B.In vitro biocompatibility of novel biphasic calcium phosphate-mullite composites.J. Biomater. Appl. 2013, 27, 497-509.
[925] Chaki, T.K., Wang, P.E. Densification and strengthening of silver-reinforced hydroxyapatite-matrix composite prepared by sintering. J. Mater. Sci. Mater. Med. 1994, 5, 533-542.
[926] Zhang, X., Gubbels, G.H.M., Terpstra, R.A., Metselaar, R. Toughening of calcium hydroxyapatite with silver particles. J. Mater. Sci. 1997, 32, 235-243.
[927] Chu, C., Lin, P., Dong, Y., Xue, X., Zhu, J., Yin, Z. Fabrication and characterization of hydroxyapatite reinforced with 20 vol. % Ti particles for use as hard tissue replacement. J. Mater. Sci. Mater. Med. 2002, 13, 985-992.
[928] Ning, C.Q., Zhou, Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials 2002, 23, 2909-2915.
[929] Chu, C., Xue, X., Zhu, J., Yin, Z. Mechanical and biological properties of hydroxyapatite reinforced with 40 vol. % titanium particles for use as hard tissue replacement. J. Mater. Sci. Mater. Med. 2004, 15, 665-670.
[930] Karanjai, M., Kumarb, M.B.V., Sundaresan, R., Basu, B., Mohan, R.T.R., Kashyap, B.P. Fretting wear study on Ti-Ca-P biocomposite in dry and simulated body fluid. Mater. Sci. Eng. A 2008, 475, 299-307.
[931] Chu, C., Xue, X., Zhu, J., Yin, Z. Fabrication and characterization of titanium-matrix composite with 20 vol. % hydroxyapatite for use as heavy load-bearing hard tissue replacement. J. Mater. Sci. Mater. Med. 2006, 17, 245-251.
[932] Miranda, M., Fernández, A., Díaz, M., Esteban-Tejeda, L., López-Esteban, S., Malpartida, F., Torrecillas, R., Moya, J.S. Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials. Int. J. Mater. Res. 2010, 101, 122-127.
[933] Younesi, M., Bahrololoom, M.E. Optimizations of wear resistance and toughness of hydroxyapatite nickel free stainless steel new bio-composites for using in total joint replacement. Mater. Des. 2010, 31, 234-243.
[934] Murakoshi, Y., Kikuchi, K., Katoh, M., Matsuzaki, K. Fabrication and property of degradable magnesium-calcium alloy composites with hydroxyapatite. IFMBE Proc. 2010, 31, 1226-1229.
[935] Razavi, M., Fathi, M.H., Meratian, M. Fabrication and characterization of magnesium-fluorapatite nanocomposite for biomedical applications. Mater. Character. 2010, 61, 1363-1370.
[936] Kumar, A., Biswas, K., Basu, B.On the toughness enhancement in hydroxyapatite-based composites. Acta Mater. 2013, 61, 5198-5215.
[937] Huang, Y., Liu, D.B., Xia, M., Anguilano, L. Characterization of an Mg-2Zn-1Ca 1β-TCP composite fabricated byhigh shear solidification and ECAE. Mater. Sci. Forum 2013, 765, 813-817.
[938] Sun, J., Chen, M., Cao, G., Bi, Y., Liu, D., Wei, J. The effect of nano-hydroxyapatiteon the microstructure and propertiesof Mg–3Zn–0.5Zr alloy. J. Compos. Mater. 2014, 48, 825-834.
[939] Chang, Q., Ru, H.Q., Chen, D.L., Zhang, C.P., Yang, J.L., Hu, S.L. Interfacial reactions in Ti–Fe particles reinforced hydroxyapatite matrix composites. Mater. Lett. 2014, 128, 245-247.
[940] Sunil, B.R., Kumar, T.S.S., Chakkingal, U., Nandakumar, V., Doble, M. Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior. Mater. Sci. Eng. C 2014, 39, 315-324.
[941] Buyong, S.A., Jamaludin, S.B., Malek, R.A. Effect of beta tricalcium phosphate (β-TCP) on properties of Mg-Zn composites. Key Eng. Mater. 2014, 594-595, 203-206.
[942] Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J., Ramli, M.I. Material processing of hydroxyapatite and titanium alloy (HA/Ti)composite as implant materials using powder metallurgy: a review. Mater. Des. 2014, 55, 165-175.
[943] Wakily, H., Dabbagh, A., Abdullah, H., Abdul Halim, N.F., Abu Kasim, N.H. Improved thermal and mechanical properties in hydroxyapatite – titanium composites by incorporating silica-coated titanium. Mater. Lett. 2015, 143, 322-325.
[944] Damien, C.J., Parsons, J.R., Benedict, J.J., Weisman, D.S. Investigation of a hydroxyapatite and calcium sulfate composite supplemented with an osteoinductive factor. J. Biomed. Mater. Res. 1990, 24, 639-654.
[945] Rauschmann, M.A., Wichelhaus, T.A., Stirnal, V., Dingeldein, E., Zichner, L., Schnettler, R., Alt, V. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials 2005, 26, 2677-2684.
[946] Urban, R.M., Turner, T.M., Hall, D.J., Inoue, N., Gitelis, S. Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clin. Orthop. Relat. Res. 2007, 459, 110-117.
[947] Rauschmann, M., Vogl, T., Verheyden, A., Pflugmacher, R., Werba, T., Schmidt, S., Hierholzer, J. Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (Cerament™ SpineSupport) in vertebral compression fractures due to osteoporosis. Eur. Spine J. 2010, 19, 887-892.
[948] Nilsson, M., Zheng, M.H., Tägil, M. The composite of hydroxyapatite and calcium sulphate: a review of preclinical evaluation and clinical applications. Expert Rev. Med. Dev. 2013, 10, 675-684.
[949] Du, M.K., Kuang, Z.D., Ji, H.R., Mao, K.Y. Enhanced degradation and osteogenesis of β-tricalcium phosphate/calcium sulfate composite bioceramics: the effects of phase ratio. J. Biomater. Tissue Eng. 2014, 4, 389-398.
[950] Kumar, G.S., Girija, E.K., Thamizhavel, A., Yokogawa, Y., Kalkura, S.N. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications. J. Colloid Interf. Sci. 2010, 349, 56-62.
[951] 91. Smirnov, V.V., Goldberg, M.A., Shvorneva, L.I., Fadeeva, I.V., Shibaeva, T.V., Barinov, S.M. Synthesis of composite biomaterials in the hydroxyapatite-calcite system. Doklady Chem. 2010, 432, 151-154.
[952] Gittings, J.P., Bowena, C.R., Turner, I.G., Baxter, F., Chaudhuri, J. Characterisation of ferroelectric-calcium phosphate composites and ceramics. J. Eur. Ceram. Soc. 2007, 27, 4187-4190.
[953] Watanabe, Y., Ikoma, T., Suetsugu, Y., Yamada, H., Tamura, K., Komatsu, Y., Tanaka, J., Moriyoshi, Y. The densification of zeolite/apatite composites using a pulse electric current sintering method: a long-term assurance material for the disposal of radioactive waste. J. Eur. Ceram. Soc. 2006, 26, 481-486.
[954] Lahiri, D., Singh, V., Benaduce, A.P., Seal, S., Kos, L., Agarwal, A. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. J. Mech. Behav. Biomed. Mater. 2011, 4, 44-56.
[955] Nathanael, A.J., Yuvakkumar, R., Hong, S.I., Oh, T.H. Novel zirconium nitride and hydroxyapatite nanocomposite coating: detailed analysis and functional properties. ACS Appl. Mater. Interf. 2014, 6, 9850-9857.
[956] Liu, Y., Huang, J., Li, H. Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J. Mater. Chem. B 2013, 1, 1826-1834.
[957] Agathopoulos, S., Tulyaganov, D.U., Marques, P.A.A.P., Ferro, M.C., Fernandes, M.H.V., Correia, R.N. The fluorapatite-anorthite system in biomedicine. Biomaterials 2003, 24, 1317-1331.
[958] Khor, K.A., Gu, Y.W., Pan, D., Cheang, P. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Biomaterials 2004, 25, 4009-4017.
[959] Gu, Y.W., Khor, K.A., Pan, D., Cheang, P. Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials 2004, 25, 3177-3185.
[960] Zhang, Y., Chen, L., Zeng, J., Zhou, K., Zhang, D. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Mater. Sci. Eng. C 2014, 39, 143-149.
[961] Kalmodia, S., Goenka, S., Laha, T., Lahiri, D., Basu, B., Balani, K. Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatite-aluminum oxide-carbon nanotube composite. Mater. Sci. Eng. C 2010, 30, 1162-1169.
[962] Best, S.M., Porter, A.E., Thian, E.S., Huang, J. Bioceramics: past, present and for the future. J. Eur. Ceram. Soc. 2008, 28, 1319-1327.
[963] de Aza, P.N., Guitián, F., de Aza, S. Bioeutectic: a new ceramic material for human bone replacement. Biomaterials 1997, 18, 1285-1291.
[964] Huang, X., Jiang, D., Tan, S. Apatite formation on the surface of wollastonite/tricalcium phosphate composite immersed in simulated body fluid. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69B, 70-72.
[965] Zhang, F., Chang, J., Lin, K., Lu, J. Preparation, mechanical properties and in vitro degradability of wollastonite/tricalcium phosphate macroporous scaffolds from nanocomposite powders. J. Mater. Sci. Mater. Med. 2008, 19, 167-173.
[966] Juhasz, J.A., Best, S.M., Kawashita, M., Miyata, N., Kokubo, T., Nakamura, T., Bonfield, W. Bonding strength of the apatite layer formed on glass-ceramic apatite-wollastonite-polyethylene composites. J. Biomed. Mater. Res. A 2003, 67A, 952-959.
[967] Juhasz, J.A., Best, S.M., Bonfield, W., Kawashita, M., Miyata, N., Kokubo, T., Nakamura, T. Apatite-forming ability of glass-ceramic apatite-wollastonite – polyethylene composites: effect of filler content. J. Mater. Sci. Mater. Med. 2003, 14, 489-495.
[968] Juhasz, J.A., Best, S.M., Brooks, R., Kawashita, M., Miyata, N., Kokubo, T., Nakamura, T., Bonfield, W. Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size. Biomaterials 2004, 25, 949-955.
[969] Rea, S.M., Brooks, R.A., Best, S.M., Kokubo, T., Bonfield, W. Proliferation and differentiation of osteoblast-like cells on apatite-wollastonite/polyethylene composites. Biomaterials 2004, 25, 4503-4512.
[970] Zhao, S., Zhou, Z., Wu, J., Wang, S., Guo, X., Zhang, Q. Preparation and characterization of anovel hydroxyapatite-wollastonite/silkfibroin composite. J. Compos. Mater. 2012, 46, 1571-1581.
[971] Greish, Y.E., Brown, P.W. Characterization of wollastonite-reinforced HAp-Ca polycarboxylate composites. J. Biomed. Mater. Res. 2001, 55, 618-628. Erratum in: J. Biomed. Mater. Res. 2001, 56, 459.
[972] Greish, Y.E., Brown, P.W. Characterization of bioactive glass-reinforced HAP-polymer composites. J. Biomed. Mater. Res. 2000, 52, 687-694.
[973] Radev, L., Hristov, V., Samuneva, B., Ivanova, D. Organic/inorganic bioactive materials. Part II: in vitro bioactivity of collagen-calcium phosphate silicate/wollastonite hybrids. Central Eur. J. Chem. 2009, 7, 711-720.
[974] Radev, L., Hristov, V., Fernandes, M.H.V., Salvado, I.M.M. Organic/inorganic bioactive materials part IV: in vitro assessment of bioactivity of gelatin-calcium phosphate silicate/wollastonite hybrids. Central Eur. J. Chem. 2010, 8, 278-284.
[975] Kangasniemi, I., de Groot, K., Wolke, J., Andersson, O., Luklinska, Z., Becht, J.G.M., Lakkisto, M., Yli-Urpo, A. The stability of hydroxyapatite in an optimized bioactive glass matrix at sintering temperatures. J. Mater. Sci. Mater. Med. 1991, 2, 133-137.
[976] Kangasniemi, I.M.O., de Groot, K., Becht, J.G.M., Yli-Urpo, A. Preparation of dense hydroxylapatite or rhenanite containing bioactive glass composites. J. Biomed. Mater. Res. 1992, 26, 663-674.
[977] Maruno, S., Ban, S., Wang, Y.F., Iwata, H., Itoh, H. Properties of functionally gradient composite consisting of hydroxyapatite containing glass coated titanium and characters for bioactive implant. J. Ceram. Soc. Jpn. 1992, 100, 362-367.
[978] Bellucci, D., Sola, A., Cannillo, V. Hydroxyapatite and tricalcium phosphate composites withbioactive glass as second phase: state of the art and current applications. J. Biomed. Mater. Res.A 2016, 104A, 1030-1056.
[979] White, A.A., Best, S.M., Kinloch, I.A. Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int. J. Appl. Ceram. Technol. 2007, 4, 1-13.
[980] Zhao, L.P., Gao, L. Novel in situ synthesis of MWNT-hydroxyapatite composites. Carbon 2004, 42, 423-460.
[981] Wei, Q., Yang, X.P., Chen, G.Q., Tang, J.T., Deng, X.L. The ultrasonic assisted synthesis of nano-hydroxyapatite and MWNT/hydroxyapatite composites. New Carbon Mater. 2005, 20, 164-170.
[982] Bai, Y., Neupane, M.P., Park, I.S., Lee, M.H., Bae, T.S., Watari, F., Uo, M. Electrophoretic deposition of carbon nanotubes-hydroxyapatite nanocomposites on titanium substrate. Mater. Sci. Eng. C 2010, 30, 1043-1049.
[983] Shin, U.S., Yoon, I.K., Lee, G.S., Jang, W.C., Knowles, J.C., Kim, H.W. Carbon nanotubes in nanocomposites and hybrids withhydroxyapatite for bone replacements. J. Tissue Eng. 2011, 2011, 674287,(10 pages).
[984] Lahiri, D., Ghosh, S., Agarwal, A. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Mater. Sci. Eng. C 2012, 32, 1727-1758.
[985] Kobayashi, S., Kawai, W. Development of carbon nanofiber reinforced hydroxyapatite with enhanced mechanical properties. Composites A 2007, 38, 114-123.
[986] Gunawan, Sopyan, I., Nurfaezah, S., ‘Ammar, M. Development of triphasic calcium phosphate–carbonnanotubes(HA/TCP-CNT) composite: a preliminary study. Key Eng. Mater. 2013, 531-532, 258-261.
[987] Balani, K., Anderson, R., Laha, T., Andara, M., Tercero, J., Crumpler, E., Agarwal, A. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 2007, 28, 618-624.
[988] Chen, Y., Gan, C.H., Zhang, T.H., Yu, G., Bai, P., Kaplan, A. Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings. Appl. Phys. Lett. 2005, 86, 251905 (3 pages).
[989] Chen, Y., Zhang, T.H., Gan, C.H., Yu, G. Wear studies of hydroxyapatite composite coating reinforced by carbon nanotubes. Carbon 2007, 45, 998-1004.
[990] Chen, Y., Zhang, Y.Q., Zhang, T.H., Gan, C.H., Zheng, C.Y., Yu, G. Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying. Carbon 2006, 44, 37-45.
[991] Xu, J.L., Khor, K.A., Sui, J.J., Chen, W.N. Preparation and characterization of a novel hydroxyapatite/carbon nanotubes composite and its interaction with osteoblast-like cells. Mater. Sci. Eng. C 2009, 29, 44-49.
[992] Mukherjee, S., Kundu, B., Sen, S., Chanda, A. Improved properties of hydroxyapatite-carbon nanotube biocomposite: mechanical, in vitro bioactivity and biological studies. Ceram. Int. 2014, 40, 5635-5643.
[993] Hooshmand, T., Abrishamchian, A., Najafi, F., Mohammadi, M., Najafi, H., Tahriri, M. Development of sol-gel-derived multi-wallcarbon nanotube/hydroxyapatitenanocomposite powders for bonesubstitution. J. Compos. Mater. 2014, 48, 483-489.
[994] Lee, H.H., Shin, U.S., Won, J.E., Kim, H.W. Preparation of hydroxyapatite-carbon nanotube composite nanopowders. Mater. Lett. 2010, 65, 208-211.
[995] White, A.A., Kinloch, I.A., Windle, A.H., Best, S.M. Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites. J. Royal Soc. Interf. 2010, 7, Suppl. 5, S529-S539.
[996] Ding, Y., Liu, J., Jin, X., Lu, H., Shen, G., Yu, R. Poly-L-lysine/hydroxyapatite/carbon nanotube hybrid nanocomposite applied for piezoelectric immunoassay of carbohydrate antigen 19-9. Analyst 2008, 133, 184-190.
[997] Zhao, H.Y., Xu, X.X., Zhang, J.X., Zheng, W., Zheng, Y.F. Carbon nanotube-hydroxyapatite-hemoglobin nanocomposites with high bioelectrocatalytic activity. Bioelectrochemistry 2010, 78, 124-129.
[998] Slosarcyk, A., Klisch, M., Blazewicz, M., Piekarczyk, J., Stobierski, L., Rapacz-Kmita, A. Hot pressed hydroxyapatite-carbon fibre composites. J. Eur. Ceram. Soc. 2000, 20, 1397-1402.
[999] Dorner-Reisel, A., Berroth, K., Neubauer, R., Nestler, K., Marx, G., Scislo, M., Müller, E., Slosarcyk, A. Unreinforced and carbon fibre reinforced hydroxyapatite: resistance against microabrasion. J. Eur. Ceram. Soc. 2004, 24, 2131-2139.
[1000] Fu, T., Zhao, J.L., Wei, J.H., Han, Y., Xu, K.W. Preparation of carbon fiber fabric reinforced hydroxyapatite/epoxy composite by RTM processing. J. Mater. Sci. 2004, 39, 1411-1413.
[1001] Pecheva, E., Pramatarova, L., Hikov, T., Fingarova, D., Tanaka, Y., Sakamoto, H., Doi, H., Tsutsumi, Y., Hanawa, T. Apatite-nanodiamond composite as a functional coating of stainless steel. Surf. Interf. Analysis 2010, 42, 475-480.
[1002] Liu, Y., Dang, Z., Wang, Y., Huang, J., Li, H. Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon 2014, 67, 250-259.
[1003] Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Moghaddam, M.R.N., Alias, Y. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 2014, 69, 32-45.
[1004] Zhang, L., Zhang, X.G., Chen, Y., Su, J.N., Liu, W.W., Zhang, T.H., Qi, F., Wang, Y.G. Interfacial stress transfer in a graphene nanosheet toughened hydroxyapatite composite. Appl. Phys. Lett. 2014, 105, 161908.
[1005] Azhari, A., Toyserkani, E., Villain, C. Additive manufacturing of graphene-hydroxyapatite nanocomposite structures. Int. J. Appl. Ceram. Technol. 2015, 12, 8-17.
[1006] Janković, A., Eraković, S., Mitrić, M., Matić, I.Z., Juranić, Z.D., Tsui, G.C.P., Tang, C.Y., Mišković-Stanković, V., Rhee, K.Y., Park, S.J. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J. Alloy Compd. 2015, 624, 148-157.
[1007] Klebert, S., Balazsi, C., Balazsi, K., Bodis, E., Fazekas, P., Keszler, A.M., Szepvolgyi, J., Karoly, Z. Spark plasma sintering of graphene reinforced hydroxyapatite composites. Ceram. Int. 2015, 41, 3647-3652.
[1008] Djordjevic, A., Ignjatovic, N., Seke, M., Jovic, D., Uskokovic, D., Rakocevic, Z. Synthesis and characterization of hydroxyapatite/fullerenol nanocomposites. J. Nanosci. Nanotechnol. 2015, 15, 1538-1542.
[1009] Yoshimura, M. Phase stability of zirconia. Am. Ceram. Soc. Bull. 1988, 67, 1950-1955.
[1010] Thompson, I., Rawlings, R.D. Mechanical behaviour of zirconia and zirconia-toughened alumina in a simulated body environment. Biomaterials 1990, 11, 505-508.
[1011] Egorov, A., Smirnov, V., Shvorneva, L., Kutsev, S., Barinov, S. High-temperaturehydroxyapatite-titanium interaction. Inorg. Mater. 2010, 46, 168-171.
[1012] You, C., Bi, Y., Chen, M.F., Sun, Y., Liu, D.B. Effect of the addition of nano-β-TCP on the microstructure of Mg-Zn-Zralloy. Adv. Mater. Res. 2012, 535-537, 259-263.
[1013] Monma, H. Tricalcium phosphate ceramics complexed with hydroxyapatite. J. Ceram. Soc. Jpn. 1987, 96, 60-64.
[1014] Farzadi, A., Solati-Hashjin, M., Bakhshi, F., Aminian, A. Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram. Int. 2011, 37, 65-71.
[1015] Wu, C.C., Huang, S.T., Tseng, T.W., Rao, Q.L., Lin, H.C. FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. J. Mol. Struct. 2010, 979, 72-76.
[1016] Suchanek, W., Yashima, M., Kakihana, M., Yoshimura, M. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers. Biomaterials 1996, 17, 1715-1723.
[1017] Suchanek, W., Yashima, M., Kakihana, M., Yoshimura, M. Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution. J. Am. Ceram. Soc. 1997, 80, 2805-2813.
[1018] Kaito, T., Mukai, Y., Nishikawa, M., Ando, W., Yoshikawa, H., Myoui, A. Dual hydroxyapatite composite with porous and solid parts: Experimental study using canine lumbar interbody fusion model. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 78B, 378-384.
[1019] Ramay, H.R., Zhang, M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 2004, 21, 5171-5180.
[1020] Kobayashi, S., Murakoshi, T. Characterization of mechanical properties and bioactivity of hydroxyapatite/β-tricalcium phosphate composites. Adv. Compos. Mater. 2014, 23, 163-177.
[1021] Matsumoto, K., Tsuru, K., Kawachi, G., Maruta, M., Matsuya, S., Takahashi, I., Ishikawa, K. Reinforcement of carbonate apatite bone substitutes with carbonate apatite by Ca salt introduction. J. Ceram. Soc. Jpn. 2010, 118, 521-524.
[1022] Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., Franzese, S. Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials 2001, 22, 1365-1370.
[1023] Werner, J., Linner-Krcmar, B., Friess, W., Greil, P. Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure. Biomaterials 2002, 23, 4285-4294.
[1024] Hsu, Y.H., Turner, I.G., Miles, A.W. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J. Mater. Sci. Mater. Med. 2007, 18, 2251-2256.
[1025] Macchetta, A., Turner, I.G., Bowen, C.R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 2009, 5, 1319-1327.
[1026] Watari, F., Yokoyama, A., Saso, F., Uo, M., Kawasaki, T. Fabrication and properties of functionally graded dental implant. Composites B 1997, 28B, 5-11.
[1027] Watari, F., Yokoyama, A., Omori, M., Hirai, T. Kondo, H., Uo, M., Kawasaki, T. Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos. Sci. Technol. 2004, 64, 893-908.
[1028] Chu C., Zhu J., Yin Z., Wang S. Hydroxyapatite-Ti functionally graded biomaterial fabricated by powder metallurgy. Mater. Sci. Eng. A 1999, 271, 95-100.
[1029] Chu, C., Zhu, J., Yin, Z., Lin, P. Structure optimization and properties of hydroxyapatite-Ti symmetrical functionally graded biomaterial. Mater. Sci. Eng. A 2001, 316, 205-210.
[1030] Chu, C., Zhu, J., Yin, Z., Lin, P. Optimal design and fabrication of hydroxyapatite-Ti asymmetrical functionally graded biomaterial. Mater. Sci. Eng. A 2003, 348, 244-250.
[1031] Bai, X., More, K., Rouleau, C.M., Rabiei, A. Functionally graded hydroxyapatite coatings doped with antibacterial components. Acta Biomater. 2010, 6, 2264-2273.
[1032] 1032. Inagaki, M., Yokogawa, Y., Kameyama, T. Effects of plasma gas composition on bond strength of hydroxyapatite/titanium composite coatings prepared by rf-plasma spraying. J. Eur. Ceram. Soc. 2006, 26, 495-499.
[1033] Pei, X., Wang, J., Wan, Q., Kang, L., Xiao, M., Bao, H. Functionally graded carbon nanotubes/hydroxyapatite composite coating by laser cladding. Surf. Coat. Technol. 2011, 205, 4380-4387.
[1034] Boanini, E., Torricelli, P., Sima, F., Axente, E., Fini, M., Mihailescu, I.N., Bigi, A. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses. J. Colloid Interf. Sci. 2015, 448, 1-7.
[1035] Liu, C., Han, Z., Czernuszka, J.T. Gradient collagen/nanohydroxyapatite composite scaffold: development and characterization. Acta Biomater. 2009, 5, 661-669.
[1036] Jamuna-Thevi, K., Saarani, N.N., Kadir, M.R.A., Hermawan, H. Triple-layered PLGA/nanoapatite/lauric acid graded compositemembrane for periodontal guided bone regeneration. Mater. Sci. Eng. C 2014,43, 253-263.
[1037] Erisken, C., Kalyon, D.M., Wang, H. Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 2008, 29, 4065-4073.
[1038] Nindhia, T.G.T., Koyoshi, Y., Kaneko, A., Sawada, H., Ohta, M., Hirai, S., Uo, M. Hydroxyapatite-silk functionally graded material by pulse electric current sintering. Trends Biomater. Artif. Organs 2008, 22, 25-29.
[1039] Ban, S., Hasegawa, J., Maruno, S. Fabrication and properties of functionally gradient bioactive composites comprising hydroxyapatite containing glass coated titanium. Mater. Sci. Forum 1999, 308-311, 350-355.
[1040] Stojanovic, D., Jokic, B., Veljovic, D., Petrovic, R., Uskokovic, P.S., Janackovic, D. Bioactive glass-apatite composite coating for titanium implant synthesized by electrophoretic deposition. J. Eur. Ceram. Soc. 2007, 27, 1595-1599.
[1041] Wong, L.H., Tio, B., Miao, X. Functionally graded tricalcium phosphate/fluoroapatite composites. Mater. Sci. Eng. C 2002, 20, 111-115.
[1042] Afzal, M.A.F., Kesarwani, P., Reddy, K.M., Kalmodia, S., Basu, B., Balani, K. Functionally graded hydroxyapatite-alumina-zirconia biocomposite: synergy of toughness and biocompatibility. Mater. Sci. Eng. C 2012, 32, 1164-1173.
[1043] Okazaki, M., Miake, Y., Tohda, H., Yanagisawa, T., Matsumoto, T., Takahashi, J. Functionally graded fluoridated apatites. Biomaterials 1999, 20, 1421-1426.
[1044] Okazaki, M., Takahashi, J. Synthesis of functionally graded CO3 apatite as surface biodegradable crystals. Biomaterials 1999, 20, 1073-1078.
[1045] 1045. Peltola, T., Patsi, M., Rahiala, H., Kangasniemi, I., Yli-Urpo, A. Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. J. Biomed. Mater. Res. 1998, 41, 504-510.
[1046] 1046. Heilmann, F., Standard, O.C., Müller, F, A., Hoffman, M. Development of graded hydroxyapatite/CaCO3 composite structures for bone ingrowth. J. Mater. Sci. Mater. Med. 2007, 18, 1817-1824.
[1047] Katti, K.S. Biomaterials in total joint replacement. Colloid Surface B 2004, 39, 133-142.
[1048] Cavalcanti, A., Shirinzadeh, B., Zhang, M., Kretly, L.C. Nanorobot hardware architecture for medical defense. Sensors 2008, 8, 2932-2958.
[1049] Zhang, H., Xu, J.J., Chen, H.Y. Electrochemically deposited 2D nanowalls of calcium phosphate-PDDA on a glassy carbon electrode and their applications in biosensing. J. Phys. Chem. C 2007, 111, 16564-16570.
[1050] 1050. Ding, Y., Liu, J., Wang, H., Shen, G., Yu, R. A piezoelectric immunosensor for the detection of α-fetoprotein using an interface of gold/hydroxyapatite hybrid nanomaterial. Biomaterials 2007, 28, 2147-2154.
[1051] Ding, Y., Liu, J., Jin, X., Shen, G., Yu, R. A novel piezoelectric immunosensor for CA125 using a hydroxyapatite/chitosan nanocomposite-based biomolecular immobilization method. Aust. J. Chem. 2008, 61, 500-505.
[1052] López, M.S.P., Tamimi, F., López-Cabarcos, E., López-Ruiz, B. Highly sensitive amperometric biosensor based on a biocompatible calcium phosphate cement. Biosens. Bioelectron. 2009, 24, 2574-2579.
[1053] Wang, B., Zhang, J.J., Pan, Z.Y., Tao, X.Q., Wang, H.S. A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film. Biosens. Bioelectron. 2009, 24, 1141-1145.
[1054] Lu, L., Zhang, L., Zhang, X., Huan, S., Shen, G., Yu, R. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds. Anal. Chim. Acta 2010, 665, 146-151.
[1055] Gao, F., Gao, N., Nishitani, A., Tanaka, H. Rod-like hydroxyapatite and Nafion nanocomposite as an electrochemicalmatrix for simultaneous and sensitive detection of Hg2+, Cu2+, Pb2+and Cd2+. J. Electroanal. Chem. 2016, 775, 212-218.
[1056] Huixia, L., Yong, L., Lanlan, L., Yanni, T., Qing, Z., Kun, L. Development of ammonia sensors by using conductive polymer/hydroxyapatite composite materials. Mater. Sci. Eng. C 2016, 59, 438-444.
[1057] Wypych, G. Handbook of fillers, 3rd Ed., ChemTec Publishing: New York, USA, 2009; 800 pp.
[1058] Almora-Barrios, N., de Leeuw, N.H. A density functional theory study of the interaction of collagen peptides with hydroxyapatite surfaces. Langmuir 2010, 26, 14535-14542.
[1059] Zhang, H.P., Lu, X., Leng, Y., Fang, L., Qu, S., Feng, B., Weng, J., Wang, J. Molecular dynamics simulations on the interaction betweenpolymers and hydroxyapatite with and without coupling agents. Acta Biomater. 2009, 5, 1169-1181.
[1060] Rhee, S.H., Lee, J.D., Tanaka, J. Nucleation of hydroxyapatite crystal through chemical interaction with collagen. J. Am. Ceram. Soc. 2000, 83, 2890-2892.
[1061] Lin, X., Li, X., Fan, H., Wen, X., Lu, J., Zhang, X. In situ synthesis of bone-like apatite/collagen nano-composite at low temperature. Mater. Lett. 2004, 58, 3569-3572.
[1062] Zhang, W., Liao, S.S., Cui, F.Z. Hierarchical self-assembly of nanofibrils in mineralized collagen. Chem. Mater. 2003, 15, 3221-3226.
[1063] Liu, Q., de Wijn, J.R., van Blitterswijk, C.A. Covalent bonding of PMMA, PBMA and poly(HEMA) to hydroxyapatite particles. J. Biomed. Mater. Res. 1998, 40, 257-263.
[1064] Li, J., Chen, Y.P., Yin, Y., Yao, F., Yao, K. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 2007, 28, 781-790.
[1065] Zhou, S., Zheng, X., Yu, X., Wang, J., Weng, J., Li, X., Feng, B., Yin, M. Hydrogen bonding interaction of poly(D, L-lactide)/hydroxyapatite nanocomposites. Chem. Mater. 2007, 19, 247-253.
[1066] Ficai, A., Andronescu, E., Ghitulica, C., Voicu, G., Trandafir, V., Manzu, D., Ficai, M., Pall, S. Colagen/hydroxyapatite interactions in composite biomaterials. Materiale Plastice 2009, 46, 11-15.
[1067] Li, J., Dou, Y., Yang, J., Yin, Y., Zhang, H., Yao, F., Wang, H., Yao, K. Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. Mater. Sci. Eng. C 2009, 29, 1207-1215.
[1068] Danilchenko, S.N., Kalinkevich, O.V., Kuznetsov, V.N., Kalinkevich, A.N., Kalinichenko, T.G., Poddubny, I.N., Starikov, V.V., Sklyar, A.M., Sukhodub, L.F. Thermal transformations of the mineral component of composite biomaterials based on chitosan and apatite. Crystal Res. Technol. 2010, 45, 685-691.
[1069] Popescu, L.M., Rusti, C.F., Piticescu, R.M., Buruiana, T., Valero, T., Kintzios, S. Synthesis and characterization of acidpolyurethane–hydroxyapatite compositesfor biomedical applications. J. Compos. Mater. 2013, 47, 603-612.
[1070] Boanini, E., Gazzano, M., Rubini, K., Bigi, A. Composite nanocrystals provide new insight on alendronate interaction with hydroxyapatite structure. Adv. Mater. 2007, 19, 2499-2502.
[1071] Nastasović, A.B., Ignjatović, N.L., Uskoković, D.P., Marković, D.D., Ekmeščić, B.M., Maksin, D.D., Onjia, A.E. Determination of thermodynamic interactions of poly(L-lactide)and biphasic calcium phosphate/poly(L-lactide) compositeby inverse gas chromatography at infinite dilution. J. Mater. Sci. 2014, 49, 5076-5086.
[1072] Tsuchiya, K., Yoshioka, T., Ikoma, T., Tanaka, J. Chemical interaction between hydroxyapatite and organic molecules in biomaterials. Ceram. Trans. 2010, 210, 531-535.
[1073] Grossman, R.F. Coupling agents. In: Polymer modifiers and additives, Lutz, J.T., Jr., Grossman, R.F. (Eds.); CRC Press: Boca Raton, FL, USA, 2000; pp. 95-106.
[1074] Chang, M.C., Ikoma, T., Kikuchi, M., Tanaka, J. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutataldehyde as a crosslinkage agent. J. Mater. Sci. Lett. 2001, 20, 1199-1201.
[1075] Sousa, R.A., Reis, R.L., Cunha, A.M., Bevis, M.J. Coupling of HDPE/hydroxyapatite composites by silane-based methodologies. J. Mater. Sci. Mater. Med. 2003, 14, 475-487.
[1076] Dupraz, A.M.P., de Wijn, J.R., van der Meer, S.A.T., Goedemoed, J.H. Biocompatibility screening of silane-treated hydroxyapatite powders for use as filler in resorbable composites. J. Mater. Sci. Mater. Med. 1996, 7, 731-738.
[1077] Dupraz, A.M.P., de Wijn, J.R., van der Meer, S.A.T., de Groot, K. Characterization of silane-treated hydroxyapatite powders reinforced for use as filler in biodegradable composites. J. Biomed. Mater. Res. 1996, 30, 231-238.
[1078] Liao, J.G., Wang, X.J., Zuo, Y., Zhang, L., Wen, J.Q., Li, Y. Surface modification of nano-hydroxyapatite with silane agent. J. Inorg. Mater. 2008, 23, 145-149.
[1079] Rakmae S, Ruksakulpiwat Y, Sutapun W, Suppakarn N. Effect of silane coupling agent treated bovine bone based carbonated hydroxyapatite on in vitro degradation behavior and bioactivity of PLA composites. Mater. Sci. Eng. C 2012, 32, 1428-1436.
[1080] Marcomini, A.L., Rego, B.T., Bretas, R.E.S. Improvement of the short- and long-term mechanical properties of injection-molded poly(etheretherketone) and hydroxyapatite nanocomposites. J. Appl. Polym. Sci. 2017, 134, Article number 44476.
[1081] Misra, D.N. Adsorption of zirconyl salts and their acids on hydroxyapatite: use of salts as coupling agents to dental polymer composites. J. Dent. Res. 1985, 12, 1405-1408.
[1082] Carmen, A., Rosestela, P., Arquimedes, K., Gema, G., Nohemy, D., Yanixia, S., Luís, B.J. Characterization of HDPE/HA composites treated with titanate and zirconate coupling agents. Macromol. Symp. 2007, 247, 190-198.
[1083] Chow, W.S., Tham, W.L., Ishak, Z.A.M. Improvement of microstructure andproperties of poly(methyl methacrylate)/hydroxyapatite composites treated withzirconate coupling agent. J. Thermoplast. Compos. Mater. 2012, 25, 165-180.
[1084] Tham, W.L., Chow, W.S., Ishak, Z.A.M. Effects of titanate coupling agent on themechanical, thermal, and morphologicalproperties of poly(methyl methacrylate)/hydroxyapatite denture base composites. J. Compos. Mater. 2011, 45, 2335-2345.
[1085] Shen, D., Fang, L., Chen, X., Tang, Y. Structure and properties of polyacrylicacid modified hydroxyapatite/liquidcrystal polymer composite. J. Reinfor. Plast. Comp. 2011, 30, 1155-1163.
[1086] Liu, Q., de Wijn, J.R., van Blitterswijk, C.A. A study on the grafting reaction of isocyanates with hydroxyapatite particles. J. Biomed. Mater. Res. 1998, 40, 358-364.
[1087] Tanaka, H., Yasukawa, A., Kandori, K., Ishikawa, T. Surface modification of calcium hydroxyapatite with hexyl and decyl phosphates. Colloid Surface A 1997, 125, 53-62.
[1088] Tanaka, H., Watanabe, T., Chikazawa, M., Kandori, K., Ishikawa, T. TPD, FTIR, and molecular adsorption studies of calcium hydroxyapatite surface modified with hexanoic and decanoic acids J. Colloid Interf. Sci. 1999, 214, 31-37.
[1089] Borum-Nicholas, L., Wilson, O.C., Jr. Surface modification of hydroxyapatite. Part I. Dodecyl alcohol. Biomaterials 2003, 24, 3671-3679.
[1090] Borum, L., Wilson, O.C., Jr. Surface modification of hydroxyapatite. Part II. Silica. Biomaterials 2003, 24, 3681-3688.
[1091] Li, Y., Weng, W. Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors. J. Mater. Sci. Mater. Med. 2008, 19, 19-25.
[1092] Lee, S.C., Choi, H.W., Lee, H.J., Kim, K.J., Chang, J.H., Kim, S.Y., Choi, J., Oh, K.S., Jeong, Y.K. In-situ synthesis of reactive hydroxyapatite nano-crystals for a novel approach of surface grafting polymerization. J. Mater. Chem. 2007, 17, 174-180.
[1093] Sánchez-Salcedo, S., Colilla, M., Izquierdo-Barba, I., Vallet-Regi, M. Design and preparation of biocompatible zwitterionichydroxyapatite. J. Mater. Chem. B 2013, 1, 1595-1606.
[1094] Morita, S., Furuya, K., Ishihara, K., Nakabayashi, N. Performance of adhesive bone cement containing hydroxyapatite particles. Biomaterials 1998, 19, 1601-1606.
[1095] Shinzato, S., Nakamura, T., Tamura, J., Kokubo, T., Kitamura, Y. Bioactive bone cement: effects of phosphoric ester monomer on mechanical properties and oste-oconductivity. J. Biomed. Mater. Res. 2001, 56, 571-577.
[1096] Dorozhkin, S.V. Is there a chemical interaction between calcium phosphates and hydroxypropylmethylcellulose (HPMC) in organic/inorganic composites? J. Biomed. Mater. Res. 2001, 54, 247-255.
[1097] Omori, M., Okubo, A., Otsubo, M., Hashida, T., Tohji, K. Consolidation of multi-walled carbon nanotube and hydroxyapatite coating by the spark plasma system (SPS). Key Eng. Mater. 2004, 254-256, 395-398.
[1098] Zhao, B., Hu, H., Mandal, S.K., Haddon, R.C. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 2005, 17, 3235-3241.
[1099] Aminzare, M., Eskandari, A., Baroonian, M.H., Berenov, A., Hesabi, Z.R., Taheri, M., Sadrnezhaad, S.K. Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceram. Int. 2013, 39, 2197-2206.
[1100] Kasuga, T., Yoshida, M., Ikushima, A.J., Tuchiya, M., Kusakari, H. Bioactivity of zirconia-toughened glass-ceramics. J. Am. Ceram. Soc. 1992, 75, 1884-1888.
[1101] Ehrenfried, L.M., Patel, M.H., Cameron, R.E. The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). J. Mater. Sci. Mater. Med.2008, 19, 459-466.
[1102] Ehrenfried, L.M., Farrar, D., Cameron, R.E. Degradation properties of co-continuous calcium-phosphate-polyester composites. Biomacromolecules 2009, 10, 1976-1985.
[1103] Pan, J., Han, X., Niu, W., Cameron, R.E.A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials 2011, 32, 2248-2255.
[1104] Barrett, C.E., Cameron, R.E.X-ray microtomographic analysis of α-tricalcium phosphate-poly(lactic-co-glycolic) acid nanocomposite degradation. Polymer 2014, 55, 4041-4049.
[1105] Heidemann, W., Jeschkeit, S., Ruffieux, K., Fischer, J.H., Wagner, M., Krüger, G., Wintermantel, E., Gerlach, K.L. Degradation of poly(D, L)lactide implants with or without addition of calciumphosphates in vivo. Biomaterials 2001, 22, 2371-2381.
[1106] Adamus, A., Jozwiakowska, J., Wach, R.A., Suarez-Sandoval, D., Ruffieux, K. Rosiak, J.M.In vitro degradation of β-tricalcium phosphate reinforced poly(L-lactic acid). Mater. Sci. Forum 2012, 714, 283-290.
[1107] Ahola, N., Veiranto, M., Rich, J., Efimov, A., Hannula, M., Seppälä, J., Kellomäki, M. Hydrolytic degradation of composites of poly(L-lactide-co-ɛ-caprolactone) 70/30 and β-tricalcium phosphate. J. Biomater. Appl. 2013, 28, 529-543.
[1108] Dorozhkin, S.V. Inorganic chemistry of the dissolution phenomenon: the dissolution mechanism of calcium apatites at the atomic (ionic) level. Comments Inorg. Chem. 1999, 20, 285-299.
[1109] Dorozhkin, S.V. Dissolution mechanism of calcium apatites in acids: a review of literature. World J. Methodol. 2012, 2, 1-17.
[1110] Furukawa, T., Matsusue, Y., Yasunaga, T., Shikinami, Y., Okuno, M., Nakamura, T. Biodegradation behavior of ultra-high strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. Biomaterials 2000, 21, 889-898.
[1111] Furukawa, T., Matsusue, Y., Yasunaga, T., Nakagawa, Y., Okada, Y., Shikinami, Y., Okuno, M., Nakamura, T. Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. J. Biomed. Mater. Res. 2000, 50, 410-419.
[1112] Yasunaga, T., Matsusue, Y., Furukawa, T., Shikinami, Y., Okuno, M., Nakamura, T. Bonding behaviour of ultrahigh strength unsintered hydroxyapatite particles/ poly(L-lactide) composites to surface of tibial cortex in rabbits. J. Biomed. Mater. Res. 1999, 47, 412-419.
[1113] Marques, A.P., Reis, R.L., Hunt, J.A. In vitro evaluation of the biocompatibility of novel starch based polymeric and composite material. Biomaterials 2002, 6, 1471-1478.
[1114] Mendes, S.C., Bovell, Y.P., Reis, R.L., Cunha, A.M., de Bruijn, J.D., van Blitterswijk, C.A. Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery. Biomaterials 2001, 22, 2057-2064.
[1115] Habraken, W.J.E.M., Liao, H.B., Zhang. Z., Wolke, J.G.C., Grijpma, D.W., Mikos, A.G., Feijen, J., Jansen, J.A. In vivo degradation of calcium phosphate cement incorporated into biodegradable microspheres. Acta Biomater. 2010, 6, 2200-2211.
[1116] Ngiam, M., Liao, S., Patil, A.J., Cheng, Z., Chan, C.K., Ramakrishna, S. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone 2009, 45, 4-16.
[1117] Hasegawa, S., Ishii, S., Tamura, J., Furukawa, T., Neo, M., Matsusue, Y., Shikinami, Y., Okuno, M., Nakamura, T. A 5–7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures. Biomaterials 2006, 27, 1327-1332.
[1118] Bongio, M., van den Beucken, J.J.J.P., Leeuwenburgh, S.C.G., Jansen, J.A. Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’. J. Mater. Chem. 2010, 20, 8747-8759.
[1119] Meyers, M.A., Lin, A.Y.M., Seki, Y., Chen, P.Y., Kad, B.K., Bodde, S. Structural biological composites: an overview. JOM 2006, 58, 36-43.
[1120] Polo-Corrales, L., Latorre-Esteves, M., Ramirez-Vick, J.E. Scaffold design for bone regeneration.J. Nanosci. Nanotechnol. 2014, 14, 15-56.
[1121] Uskoković, V. When 1 + 1 > 2: Nanostructured composites for hard tissueengineering applications. Mater. Sci. Eng. C 2015, 57, 434-451.
Part II
[1] Brinker, M.R., O’Connor, D.P. The incidence of fractures and dislocations referred for orthopaedic services in a capitated population. J. Bone Joint Surg. Am. 2004, 86A, 290-297.
[2] Smith, Z.A., Fessler, R.G. Paradigm changes in spine surgery – evolution of minimally invasive techniques. Nat. Rev. Neurol. 2012, 8, 443-450.
[3] Glimcher, M.J. Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev. Mineral. Geochem. 2006, 64, 223-282.
[4] Bohner, M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 2000, 31, Suppl. 4, S-D37-S-D47.
[5] Bohner, M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur. Spine J. 2001, 10, S114-S121.
[6] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016; 405 pp.
[7] Dorozhkin, S.V. Calcium orthophosphates (CaPO4): occurrence and properties. Prog. Biomater. 2016, 5, 9-70.
[8] Dorozhkin, S.V. Calcium orthophosphates and human beings. A historical perspective from the 1770s until 1940. Biomatter 2012, 2, 53-70.
[9] Dorozhkin, S.V. A detailed history of calcium orthophosphates from 1770-s till 1950. Mater. Sci. Eng. C 2013, 33, 3085-3110.
[10] Kingery, W.D. II. Cold setting properties. J. Am. Ceram. Soc. 1950, 33, 242-246.
[11] Driskell, T.D., Heller, A.L., Koenigs, J.F. Dental treatments. US Patent No. 3913229. October 21, 1975.
[12] Monma, H., Kanazawa, T. The hydration of α-tricalcium phosphate. J. Ceram. Soc. Jpn. 1976, 84, 209-213.
[13] LeGeros, R.Z., Chohayeb, A., Shulman, A. Apatitic calcium phosphates: possible dental restorative materials. J. Dent. Res. 1982, 61, Spec. Iss., 343.
[14] Brown, W.E., Chow, L.C. A new calcium phosphate setting cement. J. Dent. Res. 1983, 62, Spec. Iss., 672.
[15] Brown, W.E., Chow, L.C. A new calcium phosphate water-setting cement. In: Cements Research Progress, Brown, P.W., Ed., American Ceramic Society: Westerville, OH, USA, 1986; pp. 351-379.
[16] Brown, W.E., Chow, L.C. Dental restorative cement pastes. US Patent No. 4518430. May 21, 1985.
[17] Gruninger, S.E., Siew, C., Chow, L.C., O’Young, A., Tsao, N.K., Brown, W.E. Evaluation of the biocompatibility of a new calcium phosphate setting cement. J. Dent. Res. 1984, 63, Spec. Iss., 200.
[18] Cheng, H.C., Chu, K.T., Teng, N.C., Tsai, H.L., Ou, K.L., Ou, S.F. The effect of pH value on phase transformation of calcium phosphate cement. Int. J. Appl. Ceram. Technol. 2014, 11, 364-370.
[19] Driessens, F.C.M., Planell, J.A., Gil, F.J. Calcium phosphate bone cements. In: Encyclopedic Handbook of Biomaterials and Bioengineering, Part B, Applications, Wise, D.L., Trantolo, D.J., Altobelli. D.E., Yaszemski, M.J., Gresser, J.D., Schwarz, E.R. Eds., Marcel Dekker, New York, USA, 1995; Vol. 2, pp. 855-877.
[20] Tofighi, A. Calcium phosphate bone cement (CPBC): development, commercialization and future challenges. Key Eng. Mater. 2012, 493-494, 349-354.
[21] Schumache, M., Henß, A., Rohnke, M., Gelinsky, M. A novel and easy-to-prepare strontium (II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater. 2013, 9, 7536-7544.
[22] Bolarinwa, A., Gbureck, U., Purnell, P., Bold, M., Grover, L.M. Cement casting of calcium pyrophosphate based bioceramics. Adv. Appl. Ceram. 2010, 109, 291-295.
[23] Grover, L.M., Wright, A.J., Gbureck, U., Bolarinwa, A., Song, J., Liu, Y., Farrar, D.F., Howling, G., Rose, J., Barralet, J.E. The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation. Biomaterials 2013, 34, 6631-6637.
[24] Schmitz, J.P., Hollinger, J.O., Milan, S.B. Reconstruction of bone using calcium phosphate bone cements: a critical review. J. Oral Maxillofac. Surg. 1999, 57, 1122-1126.
[25] Espanol, M., Perez, R.A., Montufar, E.B., Marichal, C., Sacco, A., Ginebra, M.P. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater. 2009, 5, 2752-2762.
[26] Cardoso, H.A.I., Motisuke, M., Zavaglia, C.A.C. The influence of three additives on the setting reaction kinetics and mechanical strength evolution of α-tricalcium phosphate cements. Key Eng. Mater. 2012, 493-494, 397-402.
[27] Vieira, R.S., Coelho, W.T., Thürmer, M.B., Fernandes, J.M., Santos, L.A. Evaluation of α-tricalcium phosphate cement obtainedat different temperatures. Mater. Sci. Forum2012, 727-728, 1187-1192.
[28] Varma, N.P., Garai, S., Sinha, A. Synthesis of injectable and cohesive nano hydroxyapatite scaffolds. J. Mater. Sci. Mater. Med. 2012, 23, 913-919.
[29] Rabiee, S.M. Development of hydroxyapatite bone cement for controlled drug release via tetracycline hydrochloride. Bull. Mater. Sci. 2013, 36, 171-174.
[30] Matsuya, S., Maruta, M., Tsuru, K., Ishikawa, K. Preparation of carbonate apatite cement based on α-TCP. Key Eng. Mater. 2013, 529-530, 197-201.
[31] Cahyanto, A., Maruta, M., Tsuru, K., Matsuya, S., Ishikawa, K. Basic properties of carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous. Key Eng. Mater. 2013, 529-530, 192-196.
[32] Boroujeni, N.M., Zhou, H., Luchini, T.J.F., Bhaduri, S.B. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications. Mater. Sci. Eng. C 2013, 33, 4323-4330.
[33] Chen, S.Y., Ou, S.F., Teng, N.C., Kung, C.M., Tsai, H.L., Chu, K.T., Ou, K.L. Phase transformation on bone cement: monocalcium phosphate monohydrate into calcium-deficient hydroxyapatite during setting. Ceram. Int. 2013, 39, 2451-2455.
[34] Cahyanto, A., Maruta, M., Tsuru, K., Matsuya, S., Ishikawa, K. Basic properties of carbonate apatite cement consisting ofvaterite and dicalcium phosphate anhydrous. Key Eng. Mater. 2013, 529-530,192-196.
[35] Sariibrahimoglu, K., Wolke, J.G.C., Leeuwenburgh, S.C.G., Jansen, J.A. Characterization of α/β-TCP based injectable calcium phosphatecement as a potential bone substitute. Key Eng. Mater. 2013, 529-530,157-160.
[36] Sariibrahimoglu, K., Wolke, J.G.C., Leeuwenburgh, S.C.G., Yubao, L., Jansen, J.A. Injectable biphasic calciumphosphate cements as a potential bone substitute. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102B, 415-422.
[37] Cahyanto, A., Maruta, M., Tsuru, K., Matsuya, S., Ishikawa, K. Fabrication of bone cement that fully transforms to carbonate apatite. Dent. Mater. J. 2015, 34, 394-401.
[38] Gallinetti, S., Canal, C., Ginebra, M.P. Development and characterization of biphasic hydroxyapatite/β-TCP cements. J. Am. Ceram. Soc. 2014, 97, 1065-1073.
[39] Zhou, H., Luchini, T.J., Agarwal, A.K., Goel, V.K., Bhaduri, S.B. Development of monetite–nanosilica bone cement: a preliminary study.J. Biomed. Mater. Res. B Appl. Biomater. 2014,102B, 1620-1626.
[40] Irbe, Z., Loca, D., Bistrova, I., Berzina-Cimdina, L. Calcium phosphate bone cements reinforced with biodegradablepolymer fibres for drug delivery. Key Eng. Mater. 2014, 604, 184-187.
[41] Chen, C.K., Ju, C.P., Lin, J.H.C. Setting solution concentration effect on properties of a TTCP/DCPA-derived calcium phosphate cement. J. Mater. Sci. Mater. Med. 2012, 23, 2109-2114.
[42] Bajpai, P., Fuchs, C., McCullum, D. Development of tricalcium orthophosphate ceramic cement. In: Quantitative characterization and performance of porous implants for hard tissue applications. Lemons, J., Ed., ASTM STP 953. Am. Soc. Test. Mater.: Philadelphia, 1987; pp. 377-388.
[43] Bohner, M., Lemaître, J., Ring, T.A. Effects of sulfate, pyrophosphate and citrate ions on the physiochemical properties of cements made of β-tricalcium phosphate – phosphoric acid – water mixtures. J. Am. Ceram. Soc. 1996, 79, 1427-1434.
[44] Bohner, M., van Landuyt, P., Merkle, H.P., Lemaître, J. Composition effects on the pH of a hydraulic calcium orthophosphate cement. J. Mater. Sci. Mater. Med. 1997, 8, 675-681.
[45] Desai, T.R.; Bhaduri, S.B.; Tas, A.C. A self-setting, monetite (CaHPO4) cement for skeletal repair. In: Advances in Bioceramics and Biocomposites II, Ceramic Engineering and Science Proceedings. Wereszczak, A.; Lara-Curzio, E.; Mizuno, M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Vol. 27, Iss. 6, pp. 61-69.
[46] Grover, L.M., Hofmann M.P., Gbureck, U., Kumarasami B., Barralet, J.E. Frozen delivery of brushite calcium phosphate cements. Acta Biomater. 2008, 4, 1916-1923.
[47] Komlev, V.S., Fadeeva, I.V., Barinov, S.M., Rau, J.V., Fosca, M., Gurin, A.N., Gurin, N.A. Phase development during setting and hardening of a bone cement based on α-tricalcium and octacalcium phosphates. J. Biomater. Appl. 2012, 26, 1051-1068.
[48] Tonoli, M.S., Beppu, M.M. In situ X-ray diffraction study of phase development during hardening of β-tricalcium phosphate bone cements with chitosan. Key Eng. Mater. 2014, 587, 109-114.
[49] Otsuka, Y., Takeuchi, M., Otsuka, M., Ben-Nissan, B., Grossin, D., Tanaka, H. Effect of carbon dioxide on self-setting apatite cement formationfrom tetracalcium phosphate and dicalcium phosphate dihydrate;ATR-IR and chemoinformatics analysis. Colloid Polym. Sci.2015, 293, 2781-2788.
[50] Gbureck, U., Barralet, J.E., Spatz, K., Grover, L.M., Thull, R. Ionic modification of calcium phosphate cement viscosity. Part I: Hypodermic injection and strength improvement of apatite cement. Biomaterials 2004, 25, 2187-2195.
[51] Cama, G., Barberis, F., Capurro, M., di Silvio, L., Deb, S. Tailoring brushite for in situ setting bone cements. Mater. Chem. Phys. 2011, 130, 1139-1145.
[52] Generosi, A., Rau, J.V., Komlev, V.S., Albertini, V.R., Fedotov, A.Y., Barinov, S.M. Anomalous hardening behavior of a calcium phosphate bone cement. J. Phys. Chem. B 2010, 114, 973-979.
[53] Rau, J.V., Generosi, A., Komlev, V.S., Fosca, M., Barinov, S.M., Albertini, V.R. Real-time monitoring of the mechanism of poorly crystalline apatite cement conversion in the presence of chitosan, simulated body fluid and human blood. Dalton Trans. 2010, 21, 11412-11423.
[54] Fosca, M., Komlev, V.S., Fedotov, A.Y., Caminiti, R., Rau, J.V. Structural study of octacalcium phosphate bone cement conversion in vitro. ACS Appl. Mater. Interfaces 2012, 4, 6202-6210.
[55] Smirnov, V.V., Rau, J.V., Generosi, A., Albertini, V.R., Ferro, D., Barinov, S.M. Elucidation of real-time hardening mechanisms of two novel high-strength calcium phosphate bone cements. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93B, 74-83.
[56] Paduraru, G.D., Aelenei, N., Luca, D., Cimpoeşu, N. New brushite cements analysis. Optoelectron. Adv. Mater. Rapid Comm. 2011, 5, 465-468.
[57] Driessens, F.C.M., Boltong, M.G., Khairoun, I., de Maeyer, E.A.P., Ginebra, M.P., Wenz, R., Planell, J.A., Verbeeck, R.M.H. Applied aspects of calcium phosphate bone cement. In: Biomaterials Engineering and Devices: Human Applications, Wise, D.L., Trantolo, D.J., Lewandrowski, K.U., Gresser, J.D., Cattaneo, M.V. Eds., Humana Press: Totowa, NJ, USA, 2000; Vol. 2, pp. 253-260.
[58] Driessens, F.C.M., Planell, J.A., Boltong, M.G., Khairoun, I., Ginebra, M.P. Osteotransductive bone cements. Proc. Inst. Mech. Eng. H: J. Eng. Med. 1998, 212, 427-435.
[59] Frankenburg, E.P., Goldstein, S.A., Bauer, T.W., Harris, S.A., Poser, R.D. Biomechanical and histological evaluation of a calcium phosphate cement. J. Bone Joint Surg. Am. 1998, 80A, 1112-1124.
[60] Frayssinet, P., Gineste, L., Conte, P., Fages, J., Rouquet, N. Short-term implantation effects of a DCPD-based calcium phosphate cement. Biomaterials 1998, 19, 971-977.
[61] Rey, C., Tofighi, A., Mounic, S., Combes, C., Lee, D. Biomimetism and calcium phosphate cements, In: Actualités en Biomatériaux, Mainard, D., Louis, J.P. Eds. Editions Romillat: Paris, France, 2002; Vol. 6, pp. 27-37.
[62] Combes, C., Bareille, R., Rey, C. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction. J. Biomed. Mater. Res. A 2006, 79A, 318-328.
[63] Ikenaga, M., Hardouin, P., Lemaître, J., Andrianjatovo, H., Flautre, B. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics. J. Biomed. Mater. Res. 1998, 40, 139-144.
[64] Ginebra, M.P., Traykova, T., Planell, J.A. Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials 2006, 27, 2171-2177.
[65] Ginebra, M.P., Traykova, T., Planell, J.A. Calcium phosphate cements as bone drug delivery systems: a review. J. Control. Release 2006, 113, 102-110.
[66] Bohner, M. New hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures. Biomaterials 2004, 25, 741-749.
[67] Fernández, E., Vlad, M.D., Gel, M, M., Lopez, J., Torres, R., Cauich, J.V., Bohner, M. Modulation of porosity in apatitic cements by the use of α-tricalcium phosphate – calcium sulphate dihydrate mixtures. Biomaterials 2005, 26, 3395-3404.
[68] Hu, G., Xiao, L., Fu, H., Bi, D., Ma, H., Tong, P. Degradable and bioactive scaffold of calcium phosphate and calcium sulphate from self-setting cement for bone regeneration. J. Porous Mater. 2010, 17, 605-613.
[69] Hu, G., Xiao, L., Fu, H., Bi, D., Ma, H., Tong, P. Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. J. Mater. Sci. Mater. Med. 2010, 21, 627-634.
[70] 70. Nilsson, M., Fernández, E., Sarda, S., Lidgren, L., Planell, J.A. Characterization of a novel calcium phosphate/sulphate bone cement. J. Biomed. Mater. Res. 2002, 61, 600-607.
[71] Vlad, M.D., Şindilar, E.V., Mariñoso, M.L., Poeatǎ, I., Torres, R., López, J., Barracó, M., Fernández, E. Osteogenic biphasic calcium sulphate dihydrate/iron-modified α-tricalcium phosphate bone cement for spinal applications: in vivo study. Acta Biomater. 2010, 6, 607-616.
[72] Ju, C.P., Hung, S.H., Chen, C.K., Chen, W.L., Lee, J.W., Lin, R.M., Chen, W.C., Chern, J.H.L. Immersion-induced changes in structure and properties of a TTCP/DCPA/CSH cement. Mater. Chem. Phys. 2011, 130, 303-308.
[73] Zhou, W., Xue, Y., Ji, X., Yin, G., Zhang, N., Ren, Y. A novel injectable and degradable calcium phosphate/calcium sulfate bone cement. African J. Biotechnol. 2011, 10, 19449-19457.
[74] Lin, J.H.C., Hung, S.H., Chen, W.L., Chen, C.K., Lin, J.L., Ju, C.P. Properties of TTCP/DCPA/CSH cement immersed in Hanks’ solution. J. Med. Biol. Eng. 2012, 32, 201-204.
[75] Zima, A., Paszkiewicz, Z., Siek, D., Czechowska, J., Ślósarczyk, A. Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite. Ceram. Int. 2012, 38, 4935-4942.
[76] Grover, L.M., Gbureck, U., Wright, A.J., Tremaynec, M., Barralet, J.E. Biologically mediated resorption of brushite cement in vitro. Biomaterials 2006, 27, 2178-2185.
[77] Grover, L.M., Gbureck, U., Wright, A.J., Barralet, J.E. Cement formulations in the calcium phosphate H2O – H3PO4 – H4P2O7 system. J. Am. Ceram. Soc. 2005, 88, 3096-3103.
[78] Grover, L.M., Gbureck, U., Young, A.M., Wright, A.J., Barralet, J.E. Temperature dependent setting kinetics and mechanical properties of β-TCP – pyrophosphoric acid bone cement. J. Mater. Chem. 2005, 46, 4955-4962.
[79] Oh, K.S., Jeong, Y.K., Yu, J.P., Chae, S.K., Kim, H.Y., Lee, H.Y., Jeun, S.S. Preparation and in vivo studies of β-TCP based bone cement containing polyphosphate. Key Eng. Mater. 2005, 284-286, 93-96.
[80] Lilley, K.J., Gbureck, U., Wright, A.J., Knowles, J.C., Farrar, D.F., Barralet, J.E. Brushite cements from polyphosphoric acid, calcium phosphate systems. J. Am. Ceram. Soc. 2007, 90, 1892-1898.
[81] Fernández, E., Planell, J.A., Best, S.M. Precipitation of carbonated apatite in the cement system α-Ca3(PO4)2 – Ca(H2PO4)2 – CaCO3. J. Biomed. Mater. Res. 1999, 47, 466-471.
[82] Calafiori, A.R., di Marco, G., Martino, G., Marotta, M. Preparation and characterization of calcium phosphate biomaterials. J. Mater. Sci. Mater. Med. 2007, 18, 2331-2338.
[83] Kon, M., Hirakata, L.M., Miyamoto, Y., Kasahara, H., Asaoka, K. Strengthening of calcium phosphate cement by compounding calcium carbonate whiskers. Dent. Mater. J. 2005, 24, 104-110.
[84] Qu, Y., Yang, Y., Li, J., Chen, Z., Li, J., Tang, K., Man, Y. Preliminary evaluation of a novel strong/osteoinductive calcium phosphate cement.J. Biomater. Appl. 2011, 26, 311-325.
[85] Serraj, S., Michailesco, P., Margerit, J., Bernard, B., Boudeville, P. Study of a hydraulic calcium phosphate cement for dental applications. J. Mater. Sci. Mater. Med. 2002, 13, 125-131.
[86] Nurit, L., Margerit, J., Terol, A., Boudeville, P. pH-metric study of the setting reaction of monocalcium phosphate monohydrate/calcium oxide-based cements. J. Mater. Sci. Mater. Med. 2002, 13, 1007-1014.
[87] Boudeville, P., Serraj, S., Leloup, J.M., Margerit, J., Pauvert, B., Terol, A. Physical properties and self-setting mechanism of calcium phosphate cements from calcium bis-dihydrogenophosphate monohydrate and calcium oxide. J. Mater. Sci. Mater. Med. 1999, 10, 99-109.
[88] Michaïlesco, P., Kouassi, M., Briak, H.E., Armynot, A., Boudeville, P. Antimicrobial activity and tightness of a DCPD – CaO-based hydraulic calcium phosphate cement for root canal filling. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 74B, 760-767.
[89] Briak, H.E., Durand, D., Nurit, J., Munier, S., Pauvert, B., Boudeville, P. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 447-453.
[90] Briak, H.E., Durand, D., Boudeville, P. Study of a hydraulic DCPA/CaO-based cement for dental applications. J. Mater. Sci. Mater. Med.2008, 19, 737-744.
[91] Takagi, S., Chow, L.C., Ishikawa, K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 1998, 19, 1593-1599.
[92] Yang, Q., Troczynski, T., Liu, D.M. Influence of apatite seeds on the synthesis of calcium phosphate cement. Biomaterials 2002, 23, 2751-2760.
[93] Hsu, H.C., Chiu, C.Y., Tuan, W.H., Lee, H.Y. Structural stability of calcium phosphate cement during aging in water. Mater. Sci. Eng. C 2008, 28, 429-433.
[94] Roemhildt, M.L., McGee, T.D., Wagner, S.D. Novel calcium phosphate composite bone cement, strength and bonding properties. J. Mater. Sci. Mater. Med.2003, 14, 137-141.
[95] Roemhildt, M.L., Wagner, S.D., McGee, T.D. Characterization of a novel calcium phosphate composite bone cement: flow, setting, and aging properties. J. Mater. Sci. Mater. Med.2006, 17, 1127-1132.
[96] Wang, X., Ye, J., Wang, Y., Chen, L. Self-setting properties of a β-dicalcium silicate reinforced calcium phosphate cement. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 93-99.
[97] Huan, Z., Chang, J. Novel tricalcium silicate/monocalcium phosphate monohydrate composite bone cement. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 352-359.
[98] Huan, Z., Chang, J. Calcium-phosphate-silicate composite bone cement, self-setting properties and in vitro bioactivity. J. Mater. Sci. Mater. Med.2009, 20, 833-841.
[99] Huan, Z., Chang, J. Novel bioactive composite bone cements based on the β-tricalcium phosphate – monocalcium phosphate monohydrate composite cement system. Acta Biomater. 2009, 5, 1253-1264.
[100] Shen, Q., Sun, J., Wu, J., Liu, C., Chen, F. An in vitro investigation of the mechanical-chemical and biological properties of calcium phosphate/calcium silicate/bismutite cement for dental pulp capping. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94, 141-148.
[101] Morejón-Alonso, L., Ferreira, O.J.B., Carrodeguas, R.G., dos Santos, L.A. Bioactive composite bone cement based on α-tricalcium phosphate/tricalcium silicate. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 94-102.
[102] Zhou, S., Ma, J., Shen, Y., Haapasalo, M., Ruse, N.D., Yang, Q., Troczynski, T. In vitro studies of calcium phosphate silicate bone cements. J. Mater. Sci. Mater. Med. 2013, 24, 355-364.
[103] de Aza, P.N., Zuleta, F., Velasquez, P., Vicente-Salar, N., Reig, J.A.α’H -Dicalcium silicate bone cement doped with tricalcium phosphate: characterization, bioactivity and biocompatibility. J. Mater. Sci. Mater. Med. 2014, 25, 445-452.
[104] Kent, N.W., Hill, R.G., Karpukhina, N.A new way of forming a calcium phosphate cement using bioactive glasses as a reactive precursor. Mater. Lett. 2016, 162, 32-36.
[105] Guo, D., Xu, K., Zhao, X., Han, Y. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 2005, 26, 4073-4083.
[106] 106. Wang, X., Ye, J. Variation of crystal structure of hydroxyapatite in calcium phosphate cement by the substitution of strontium ions. J. Mater. Sci. Mater. Med. 2008, 19, 1183-1186.
[107] Pina, S., Torres, P.M., Goetz-Neunhoeffer, F., Neubauer, J., Ferreira, J.M.F. Newly developed Sr-substituted α-TCP bone cements. Acta Biomater. 2010, 6, 928-935.
[108] Pina, S., Torres, P.M.C., Ferreira, J.M.F. Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements. J. Mater. Sci. Mater. Med. 2010, 21, 431-438.
[109] Wu, F., Su, J.C., Wei, J., Guo, H., Liu, C.S. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration. Biomed. Mater. 2008, 3, 044105 (7 pages).
[110] Wu, F., Wei, J., Guo, H., Chen, F.P., Hong, H., Liu, C.S. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomater. 2008, 4, 1873-1884.
[111] Pina, S., Olhero, S.M., Gheduzzi, S., Miles A.W., Ferreira, J.M.F. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater. 2009, 5, 1233-1240.
[112] Klammert, U., Reuther, T., Blank, M., Reske, I., Barralet, J.E., Grover, L.M., Kübler, A.C., Gbureck, U. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomater. 2010, 6, 1529-1535.
[113] Alkhraisat, M.H., Cabrejos-Azama, J., Rodríguez, C.R., Jerez, L.B., Cabarcos, E.L. Magnesium substitution in brushite cements. Mater. Sci. Eng. C 2013, 33, 475-481.
[114] Jia, J., Zhou, H., Wei, J., Jiang, X., Hua, H., Chen, F., Wei, S., Shin, J.W., Liu, C. Development of magnesium calcium phosphate biocement for bone regeneration. J. Royal Soc. Interf. 2010, 7, 1171-1180.
[115] Lu, J., Wei, J., Yan, Y., Li, H., Jia, J., Wei, S., Guo, H., Xiao, T., Liu, C. Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J. Mater. Sci. Mater. Med. 2011, 22, 607-615.
[116] Pina, S., Vieira, S.I., Rego, P., Torres, P.M.C, da Cruz E. Silva, O.A.B., da Cruz E. Silva, E.F., Ferreira, J.M.F. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. Eur. Cell Mater. 2010, 20, 162-177.
[117] Pina, S., Vieira, S.I., Torres, P.M.C., Goetz-Neunhoeffer, F., Neubauer, J., da Cruz E. Silva, O.A.B., da Cruz E. Silva, E.F., Ferreira, J.M.F. In vitro performance assessment of new brushite-forming Zn- and ZnSr-substituted β-TCP bone cements. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 414-420.
[118] Doi, Y., Shimizu, Y., Moriwaki, Y., Aga, M., Iwanaga, H., Shibutani, T., Yamamoto, K., Iwayama, Y. Development of a new calcium phosphate cement that contains sodium calcium phosphate. Biomaterials 2001, 22, 847-854.
[119] Gbureck, U., Knappe, O., Grover, L.M., Barralet, J.E. Antimicrobial potency of alkali ion substituted calcium phosphate cements. Biomaterials 2005, 26, 6880-6886.
[120] Gbureck, U., Thull, R., Barralet, J.E. Alkali ion substituted calcium phosphate cement formation from mechanically activated reactants. J. Mater. Sci. Mater. Med. 2005, 16, 423-427.
[121] Dombrowski, F., Hoffmann, R., Ploska, U., Marx, H., Berger, G. Investigations on degradable and figuline calcium alkaline phosphate cements with multimodal particle size distribution. Key Eng. Mater. 2012, 493-494, 355-360.
[122] Dombrowski, F., Marx, H., Ploska, U., Nicolaides, D., Stiller, M., Knabe, C., Berger, G. Solubility and ingrowth behaviour of degradable and figuline calcium alkaline phosphate cements. Key Eng. Mater. 2012, 493-494, 387-390.
[123] Tanaka, M., Takemoto, M., Fujibayashi, S., Kawai, T., Tsukanaka, M., Takami, K., Motojima, S., Inoue, H., Nakamura, T., Matsuda, S. Development of a novel calcium phosphate cement composed mainly of calcium sodium phosphate with high osteoconductivity. J. Mater. Sci. Mater. Med. 2014, 25, 1505-1517.
[124] Lilley, J., Gbureck, U., Knowles, J.C., Farrar, D.F., Barralet, J.E. Cement from magnesium substituted hydroxyapatite. J. Mater. Sci. Mater. Med. 2005, 16, 455-460.
[125] Ni, G.X., Lu, W.W., Tang, B., Ngan, A.H.W., Chiu, K.Y., Cheung, K.M.C., Li, Z.Y., Luk, K.D.K. Effect of weight-bearing on bone-bonding behavior of strontium-containing hydroxyapatite bone cement. J. Biomed. Mater. Res. A 2007, 83A, 570-576.
[126] Alkhraisat, M.H., MarinÞo, F.T., Rodriìguez, C.R., Jerez, L.B., Cabarcos, E.L. Combined effect of strontium and pyrophosphate on the properties of brushite cements. Acta Biomater. 2008, 4, 664-670.
[127] Yao, Z.P., Liu, W, G., Ni, G.X. Biology characteristics and clinical application of strontium substituted hydroxyapatite bone cement. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 7151-7154.
[128] Pina, S., Ferreira, J.M.F. Brushite-forming Mg-, Zn- and Sr-substituted bone cements for clinical applications. Materials 2010, 3, 519-535.
[129] Ni, G.X., Lin, J.H., Chiu, P.K.Y., Li, Z.Y., Lu, W.W. Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement. J. Mater. Sci. Mater. Med. 2010, 21, 377-384.
[130] Fadeeva, I.V., Barinov, S.M., Komlev, V.S., Fedotov, D.A., Durisin, J., Medvecky, L. Apatite formation in the reaction-setting mixture of Ca(OH)2 – KH2PO4 system. J. Biomed. Mater. Res. A 2004, 70A, 303-308.
[131] Tas, A.C. Use of vaterite and calcite in forming calcium phosphate cement scaffolds. Ceram. Eng. Sci. Proc. 2008, 28, 135-150.
[132] Boroujeni, N.M., Zhou H., Luchini, T.J.F., Bhaduri, S.B. Development of monetite/phosphorylatedchitosan composite bone cement. J. Biomed. Mater. Res. B Appl. Biomater.2014, 102B, 260-266.
[133] Cahyanto, A., Tsuru, K., Ishikawa, K. Carbonate apatite formation during the setting reaction of apatite cement. Ceram. Eng. Sci. Proc. 2013, 33, 7-10.
[134] Fernández, E., Vlad, M.D., Hamcerencu, M., Darie, A., Torres, R., Lopez, J. Effect of iron on the setting properties of α-TCP bone cements. J. Mater. Sci. 2005, 40, 3677-3682.
[135] Vlad, M.D., del Valle, L.J., Poeata, I., Barracoì, M., Loìpez, J., Torres, R., Fernaìndez, E. Injectable iron-modified apatitic bone cement intended for kyphoplasty, cytocompatibility study. J. Mater. Sci. Mater. Med. 2008, 19, 3575-3583.
[136] http://en.wikipedia.org/wiki/Cement (accessed in December 2016).
[137] Chow, L.C. Next generation calcium phosphate-based biomaterials. Dent. Mater. J. 2009, 28, 1-10.
[138] Ishikawa, K. Bone substitute fabrication based on dissolution-precipitation reactions. Materials 2010, 3, 1138-1155.
[139] Burguera, E.F., Xu, H.H.K., Weir, M.D. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 77B, 126-134.
[140] Burguera, E.F., Guitian, F., Chow, L.C. A water setting tetracalcium phosphate – dicalcium phosphate dihydrate cement. J. Biomed. Mater. Res. A 2004, 71A, 275-282.
[141] Kim, S.Y., Jeon, S.H. Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements. J. Ind. Eng. Chem. 2012, 18, 128-136.
[142] Driessens, F.C.M., Boltong, M.G., Bermudez, O., Planell, J.A. Formulation and setting times of some calcium orthophosphate cements, a pilot study. J. Mater. Sci. Mater. Med. 1993, 4, 503-508.
[143] Chow, L.C., Markovic, M., Takagi, S. Calcium phosphate cements. In: Cements research progress, Struble, L.J., Ed. Chapter 7. American Ceramic Society: Westerville, OH, USA, 1998; pp. 215-238.
[144] Driessens, F.C.M., Boltong, M.G., Bermudez, O., Planell, J.A., Ginebra, M.P., Fernández, E. Effective formulations for the preparation of calcium phosphate bone cements. J. Mater. Sci. Mater. Med. 1994, 5, 164-170.
[145] Kurashina, K., Hirano, M., Kotani, A., Klein, C.P.A.T., de Groot, K. In vivo study of calcium phosphate cements, implantation of an α-tricalcium phosphate/
dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste. Biomaterials 1997, 18, 539-543.
[146] Friedman, C.D., Costantino, P.D., Takagi, S., Chow, L.C. BoneSourceTM hydroxyapatite cement, a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J. Biomed. Mater. Res. 1998, 43, 428-432.
[147] Khairoun, I., Boltong, M.G., Driessens, F.C.M., Planell J.A. Effect of calcium carbonate on the compliance of apatitic calcium phosphate bone cement. Biomaterials 1997, 18, 1535-1539.
[148] Fernández, E., Gil, F.J., Best, S.M., Ginebra, M.P., Driessens, F.C.M., Planell, J.A. Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4 – α-Ca3(PO4)2 system, compressive strength and microstructural development. J. Biomed. Mater. Res. 1998, 41, 560-567.
[149] Fukase, Y., Eanes, E.D., Takagi, S., Chow, L.C., Brown, W.E. Setting reactions and compressive strengths of calcium phosphate cements. J. Dent. Res. 1990, 69, 1852-1856.
[150] Xie, L., Monroe, E.A. Calcium phosphate dental cements. Mat. Res. Soc. Symp. Proc. 1991, 179, 25-39.
[151] Ishikawa, K., Miyamoto, Y., Kon, M., Nagayama, M., Asaoka, K. Non-decay type fast-setting calcium orthophosphate cement composite with sodium alginate. Biomaterials 1995, 16, 527-532.
[152] Xu, H.H.K., Quinn, J.B., Takagi, S., Chow, L.C. Processing and properties of strong and non-rigid calcium phosphate cement. J. Dent. Res. 2002, 81, 219-224.
[153] Lee, Y.K., Lim, B.S., Kim, C.W. Mechanical properties of calcium phosphate based dental filling and regeneration materials. J. Oral Rehabil. 2003, 30, 418-425.
[154] Ginebra, M.P., Fernández, E., de Mayer, E.A.P., Verbeeck, R.M.H., Boltong, M.G., Ginebra, J., Driessens, F.C.M., Planell, J.A. Setting reaction and hardening of an apatitic calcium phosphate cement. J. Dent. Res. 1997, 76, 905-912.
[155] Liu, C., Shen, W., Gu, Y., Hu, L. Mechanism of the hardening process for a hydroxyapatite cement. J. Biomed. Mater. Res. 1997, 35, 75-80.
[156] Driessens, F.C.M., de Mayer, E.A.P., Fernández, E., Boltong, M.G., Berger G., Verbeeck, R.M.H., Ginebra, M.P., Planell, J.A. Amorphous calcium phosphate cements and their transformation into calcium deficient hydroxyapatite. Bioceramics 1996, 9, 231-234.
[157] Lemaître, J. Injectable calcium phosphate hydraulic cements: new developments and potential applications. Inn. Tech. Biol. Med. 1995, 16, 109-120.
[158] Neira, I.S., Kolen’ko, Y.V., Lebedev, O.I., van Tendeloo, G., Gupta, H.S., Matsushita, N., Yoshimura, M., Guitián, F. Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite. Mater. Sci. Eng. C 2009, 29, 2124-2132.
[159] Kawakami, T., Antoh, M., Hasegawa, H., Yamagishi, T., Ito, M., Eda, S. Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite self-hardening paste. Biomaterials 1992, 13, 759-763.
[160] Tañag, M.A., Yano, K., Hosokawa, K. Orbital floor reconstruction using calcium phosphate cement paste: an animal study. Plast. Reconstr. Surg. 2004, 114, 1826-1831.
[161] Hatoko, M., Tada, H., Tanaka, A., Yurugi, S., Niitsuma, K., Iioka, H. The use of calcium phosphate cement paste for the correction of the depressed nose deformity. J. Craniofac. Surg. 2005, 16, 327-331.
[162] Tañag, M.A., Madura, T., Yano, K., Hosokawa, K. Use of calcium phosphate cement paste in orbital volume augmentation. Plast. Reconstr. Surg. 2006, 117, 1186-1193.
[163] Meng, D., Xie, Q.F., Xiao, J.J. Effects of two calcium phosphate cement pastes on osteoblasts during solidification. J. Clin. Rehabilit. Tiss. Eng. Res. 2009, 13, 471-474.
[164] Chen, F., Liu, C., Wei, J., Chen, X., Zhao, Z., Gao, Y. Preparation and characterization of injectable calcium phosphate cement paste modified by polyethylene glycol-6000. Mater. Chem. Phys. 2011, 125, 818-824.
[165] Ishikawa, K., Miyamoto, Y., Takechi, M., Toh, T., Kon, M., Nagayama, M., Asaoka, K. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate. J. Biomed. Mater. Res. 1997, 36, 393-399.
[166] Ishikawa, K., Miyamoto, Y., Takechi, M., Ueyama, Y., Suzuki, K., Nagayama, M., Matsumura, T. Effects of neutral sodium hydrogen phosphate on setting reaction and mechanical strength of hydroxyapatite putty. J. Biomed. Mater. Res. 1999, 44, 322-329.
[167] Momota, Y., Miyamoto, Y., Ishikawa, K., Takechi, M., Yuasa, T., Tatehara, S., Nagayama, M. Effects of neutral sodium hydrogen phosphate on the setting property and hemostatic ability of hydroxyapatite putty as a local hemostatic agent for bone. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69B, 99-103.
[168] Bohner, M. Design of ceramic-based cements and putties for bone graft substitution. Eur. Cell Mater. 2010, 20, 1-12.
[169] Xia, Z., Grover, L.M., Huang, Y., Adamopoulos, I.E., Gbureck, U., Triffitt, J.T., Shelton, R.M., Barralet, J.E. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Biomaterials 2006, 27, 4557-4565.
[170] Khairoun, I., Boltong, M.G., Driessens, F.C.M., Planell, J.A. Limited compliance of some apatitic calcium phosphate bone cements with clinical requirements. J. Mater. Sci. Mater. Med. 1998, 9, 667-671.
[171] Monma, H., Makishima, A., Mitomo, M., Ikegami, T. Hydraulic properties of the tricalcium phosphate – dicalcium phosphate mixture. J. Ceram. Soc. Jpn. 1988, 96, 878-880.
[172] Bermudez, O., Boltong, M.G., Driessens, F.C.M., Planell, J.A. Development of an octacalcium phosphate cement. J. Mater. Sci. Mater. Med. 1994, 5, 144-146.
[173] Sena, M., Yamashita, Y., Nakano, Y., Ohgaki, M., Nakamura, S., Yamashita, K., Takagi, Y. Octacalcium phosphate-based cement as a pulp-capping agent in rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 97, 749-755.
[174] Markovic, M., Chow, L.C. An octacalcium phosphate forming cement. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 257-265.
[175] Dorozhkin, S.V. Calcium orthophosphate cements for biomedical application. J. Mater. Sci. 2008, 43, 3028-3057.
[176] Dorozhkin, S.V. Calcium orthophosphate cements and concretes. Materials 2009, 2, 221-291.
[177] Lacout, J., Mejdoubi, E., Hamad, M. Crystallization mechanisms of calcium orthophosphate cement for biological uses. J. Mater. Sci. Mater. Med. 1996, 7, 371-374.
[178] Song, Y., Feng, Z., Wang, T. In situ study on the curing process of calcium phosphate bone cement. J. Mater. Sci. Mater. Med. 2007, 18, 1185-1193.
[179] Bohner, M. Resorbable biomaterials as bone graft substitutes. Mater. Today 2010, 13, 24-30.
[180] Weiss, D.D., Sachs, M.A., Woodard, C.R. Calcium phosphate bone cements: a comprehensive review. J. Long Term Eff. Med. Implants 2003, 13, 41-47.
[181] Fernández, E., Gil, F.J., Ginebra, M.P., Driessens, F.C.M., Planell, J.A., Best, S.M. Calcium phosphate bone cements for clinical applications. Part I: Solution chemistry. J. Mater. Sci. Mater. Med. 1999, 10, 169-176.
[182] Hatim, Z., Freche, M., Keribech, A., Lacout, J.L. The setting mechanism of a phosphocalcium biological cement. Ann. Chim. Sci. Mat. 1998, 23, 65-68.
[183] Ishikawa, K., Asaoka, K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J. Biomed. Mater. Res. 1995, 29, 1537-1543.
[184] Chow, L.C. Development of self-setting calcium phosphate cements. J. Ceram. Soc. Jpn. 1991, 99, 954-964.
[185] Chow, L.C. Calcium phosphate cements: chemistry, properties and applications. Mat. Res. Soc. Symp. Proc. 2000, 599, 27-37.
[186] Chow, L.C. Calcium phosphate cements. In: Octacalcium Phosphate, Chow, L.C., Eanes, E.D., Eds., Monographs in Oral Science. Karger: Basel, Switzerland, 2001; Vol. 18, pp. 148-163.
[187] Brown, P.W., Fulmer, M.T. Kinetics of hydroxyapatite formation at low temperature. J. Am. Ceram. Soc. 1991, 74, 934-940.
[188] TenHuisen, K.S., Brown, P.W. The formation of hydroxyapatite-ionomer cements at 38°C. J. Dent. Res. 1994, 3, 598-606.
[189] Ishikawa, K., Takagi, S., Chow, L.C., Suzuki, K. Reaction of calcium phosphate cements with different amounts of tetracalcium phosphate and dicalcium phosphate anhydrous. J. Biomed. Mater. Res. 1999, 46, 504-510.
[190] Matsuya, S., Takagi, S., Chow, L.C. Effect of mixing ratio and pH on the reaction between Ca4(PO4)2O and CaHPO4. J. Mater. Sci. Mater. Med. 2000, 11, 305-311.
[191] Burguera, E.F., Guitian, F., Chow, L.C. Effect of the calcium to phosphate ratio of tetracalcium phosphate on the properties of calcium phosphate bone cement. J. Biomed. Mater. Res. A 2008, 85A, 674-683.
[192] Lemaître, J., Mirtchi, A.A., Mortier, A. Calcium phosphate cements for medical use: state of the art and perspectives of development. Silic. Ind. 1987, 9-10, 141-146.
[193] Mirtchi, A.A., Lemaître, J., Terao, N. Calcium phosphate cements: study of the β-tricalcium phosphate – monocalcium phosphate system. Biomaterials 1989, 10, 475-480.
[194] Fernández, E., Gil, F.J., Best, S.M., Ginebra, M.P., Driessens, F.C.M., Planell, J.A. The cement setting reaction in the CaHPO4 – α-Ca3(PO4)2 system: an X-ray diffraction study. J. Biomed. Mater. Res. 1998, 42, 403-406.
[195] Fernández, E., Gil, F.J., Ginebra, M.P., Driessens, F.C.M., Planell, J.A., Best, S.M. Production and characterisation of new calcium phosphate bone cements in the CaHPO4 – α-Ca3(PO4)2 system: pH, workability and setting times. J. Mater. Sci. Mater. Med. 1999, 10, 223-230.
[196] Barralet, J.E., Lilley, K.J., Grover, L.M., Farrar, D.F., Ansell, C., Gbureck, U. Cements from nanocrystalline hydroxyapatite. J. Mater. Sci. Mater. Med. 2004, 15, 407-411.
[197] Lilley, K.J., Gbureck, U., Wright, A.J., Farrar, D.F., Barralet, J.E. Cement from nanocrystalline hydroxyapatite: effect of calcium phosphate ratio. J. Mater. Sci. Mater. Med. 2005, 16, 1185-1190.
[198] Alge, D.L., Cruz, G.S., Goebel, W.S., Chu, T.M.G. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation. Biomed. Mater. 2009, 4, 025016.
[199] Alge, D.L., Goebel, W.S., Chu, T.M.G. In vitro degradation and cytocompatibility of dicalcium phosphate dihydrate cements prepared using the monocalcium phosphate monohydrate/hydroxyapatite system reveals rapid conversion to HA as a key mechanism. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 595-602.
[200] Wang, X., Ye, J., Wang, Y., Wu, X., Bai, B. Control of crystallinity of hydrated products in a calcium phosphate bone cement. J. Biomed. Mater. Res. A 2007, 81A, 781-790.
[201] Hurle, K., Neubauer, J., Bohner, M., Doebelin, N., Goetz-Neunhoeffer, F. Effect of amorphous phases during the hydraulic conversion of α-TCP into calcium-deficient hydroxyapatite. Acta Biomater. 2014, 10, 3931-3941.
[202] Wang, X., Ye, J., Wang, H. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 78B, 259-264.
[203] Tofighi, A., Schaffer, K., Palazzolo, R. Calcium phosphate cement (CPC): a critical development path. Key Eng. Mater. 2008, 361-363, 303-306.
[204] de Maeyer, E.A.P., Verbeeck, R.M.H., Vercruysse, C.W.J. Conversion of octacalcium phosphate in calcium phosphate cements. J. Biomed. Mater. Res. 2000, 52, 95-106.
[205] Nakano, Y., Ohgaki, M., Nakamura, S., Takagi, Y., Yamashita, K. In vitro and in vivo characterization and mechanical properties of α-TCP/OCP settings. Bioceramics 1999, 12, 315-318.
[206] Nakano, Y. Preparation and characterization of porous octacalcium phosphate setting improved by α-tricalcium phosphate additive. J. Dent. Mater. 2000, 19, 65-76.
[207] Wang, X., Ye, J., Wang, Y. Hydration mechanism of a novel PCCP + DCPA cement system. J. Mater. Sci. Mater. Med. 2008, 19, 813-816.
[208] Wang, X., Ye, J. Exothermal behavior during the hydration of the PCCP + DCPA system cement. Mater. Sci. Forum 2009, 610-613, 1255-1258.
[209] He, F., Ye, J. Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Sci. Technol. Adv. Mater. 2013, 14, 045010 (11 pages).
[210] Kim, Y.B., Lee, B.M., Lee, M.C., Noh, I., Lee, S.J., Kim, S.S. Preparation and characterization of calcium phosphate cement of α-tricalcium phosphate-tetracalcium phosphate-dicalcium phosphate system incorporated with poly(γ-glutamic acid). Macromol. Res. 2013, 21, 892-898.
[211] Lopez-Heredia, M.A., Bongio, M., Bohner, M., Cuijpers, V., Winnubst, L.A., van Dijk, N., Wolke, J.G., van den Beucken, J.J., Jansen, J.A. Processing and in vivo evaluation of multiphasic calcium phosphate cements with dual tricalcium phosphate phases. Acta Biomater. 2012, 8, 3500-3508.
[212] Zoulgami, M., Lucas, A., Briard, P., Gaudé, J. A self-setting single-component calcium phosphate cement. Biomaterials 2001, 22, 1933-1937.
[213] Knaack, D., Goad, M.E., Aiolova, M., Rey, C., Tofighi, A., Chakravarthy, P., Lee, D.D. Resorbable calcium phosphate bone substitute. J. Biomed. Mater. Res. 1998, 43, 399-409.
[214] Tofighi, A., Mounic, S., Chakravarthy, P., Rey, C., Lee, D. Setting reactions involved in injectable cements based on amorphous calcium phosphate. Key Eng. Mater. 2001, 192-195, 769-772.
[215] Monma, H., Kanazawa, T. Hydration of α-tricalcium phosphate. J. Ceram. Soc. Jpn. 2000, 108, 575-580.
[216] Fernández, E., Ginebra, M.P., Boltong, M.G., Driessens, F.C.M., Ginebra, J., de Maeyer, E.A.P., Verbeeck, R.M.H., Planell, J.A. Kinetic study of the setting reaction of a calcium phosphate bone cement. J. Biomed. Mater. Res. 1996, 32, 367-374.
[217] Gbureck, U., Barralet, J.E., Radu L., Klinger, H.G., Thull, R. Amorphous α-tricalcium phosphate, preparation and aqueous setting reaction. J. Am. Ceram. Soc. 2004, 87, 1126-1132.
[218] Bohner, M., Malsy, A.K., Camire, C.L., Gbureck, U. Combining particle size distribution and isothermal calorimetry data to determine the reaction kinetics of α-tricalcium phosphate – water mixtures. Acta Biomater. 2006, 2, 343-348.
[219] Brunner, T.J., Grass, R.N., Bohner, M., Stark, W.J. Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J. Mater. Chem. 2007, 38, 4072-4078.
[220] Alves, H.L.R., dos Santos, L.A., Bergmann, C.P. Injectability evaluation of tricalcium phosphate bone cement. J. Mater. Sci. Mater. Med. 2008, 19, 2241-2246.
[221] Jack, V., Buchanan, F.J., Dunne, N.J. Particle attrition of α-tricalcium phosphate, effect on mechanical, handling, and injectability properties of calcium phosphate cements. Proc. Inst. Mech. Eng. H: J. Eng. Med. 2008, 222, 19-28.
[222] Oh, S.A., Lee, G.S., Park, J.H., Kim, H.W. Osteoclastic cell behaviors affected by the α-tricalcium phosphate based bone cements. J. Mater. Sci. Mater. Med. 2010, 21, 3019-3027.
[223] Cardoso, H.A.I., Motisuke, M., Rodas, A.C.D., Higa, O.Z., Zavaglia, C.A.C. pH evolution and cytotoxicity of [alpha]-tricalcium phosphate cement with three different additives. Key Eng. Mater. 2012, 493-494, 403-408.
[224] Zhang, J.T., Tancret, F., Bouler, J.M. Mechanical properties of calcium phosphate cements (CPC) for bone substitution: influence of fabrication and microstructure. Key Eng. Mater. 2012, 493-494, 409-414.
[225] Ishikawa, K., Tsuru, K., Pham, T.K., Maruta, M., Matsuya, S. Fully-interconnected pore forming calcium phosphate cement. Key Eng. Mater. 2012, 493-494, 832-835.
[226] Maazouz, Y., Montufar, E.B., Guillem-Marti, J., Fleps, I., Ohman, C., Persson, C., Ginebra, M.P. Robocasting of biomimetic hydroxyapatitescaffolds using self-setting inks.J. Mater. Chem. B 2014, 2, 5378-5386.
[227] Sugiura, Y., Tsuru, K., Ishikawa, K. Fabrication of carbonate apatite foam based on the setting reaction of α-tricalcium phosphate foam granules. Ceram. Int. 2016, 42, 204-210.
[228] Gbureck, U., Grolms, O., Barralet, J.E., Grover, L.M., Thull, R. Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials 2003, 24, 4123-4131.
[229] Zhou, H., Luchini, T.J., Boroujeni, N.M., Agarwal, A.K., Goel, V.K., Bhaduri, S.B. Development of nanosilica bonded monetite cement from egg shells. Mater. Sci. Eng. C 2015, 50, 45-51.
[230] Gbureck, U., Barralet, J.E., Hofmann, M.P., Thull, R. Nanocrystalline tetracalcium phosphate cement. J. Dent. Res. 2004, 83, 425-428.
[231] Gbureck, U., Barralet, J.E., Hofmann, M.P., Thull, R. Mechanical activation of tetracalcium phosphate. J. Am. Ceram. Soc. 2004, 87, 311-313.
[232] Tsai, C.H., Ju, C.P., Lin, J.H.C. Morphology and mechanical behavior of TTCP-derived calcium phosphate cement subcutaneously implanted in rats. J. Mater. Sci. Mater. Med. 2008, 19, 2407-2415.
[233] Tsai, C.H., Lin, R.M., Ju, C.P., Lin, J.H.C. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 2008, 29, 984-993.
[234] Tsai, C.H., Lin, J.H.C., Ju, C.P. γ-radiation-induced changes in structure and properties of tetracalcium phosphate and its derived calcium phosphate cement. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 80B, 244-252.
[235] Vlad, M.D., Gómez, S., Barracó, M., López, J., Fernández, E. Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements. J. Mater. Sci. Mater. Med. 2012, 23, 2081-2090.
[236] Koshino, T., Kubota, W., Morii, T. Bone formation as a reaction to hydraulic hydroxyapatite thermal decomposition product used as bone cement in rabbits. Biomaterials 1995, 16, 125-128.
[237] Bae, J., Ida, Y., Sekine, K., Kawano, F., Hamada, K. Effects of high-energy ball-milling on injectability and strength of β-tricalcium-phosphate cement.J. Mech. Behav. Biomed. Mater. 2015,47, 77-86.
[238] Chow, L.C., Markovic, M., Frukhtbeyn, S.A., Takagi, S. Hydrolysis of tetracalcium phosphate under a near-constant composition condition – effects of pH and particle size. Biomaterials 2005, 26, 393-401.
[239] TenHuisen, K.S., Brown, P.W. Formation of calcium-deficient hydroxyapatite from α-tricalcium phosphate. Biomaterials 1998, 19, 2209-2217.
[240] Ginebra, M.P., Fernández, E., Driessens, F.C.M., Planell, J.A. Modeling of the hydrolysis of α-TCP. J. Am. Ceram. Soc. 1999, 82, 2808-2812.
[241] Durucan, C., Brown, P.W. α-tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci. Mater. Med. 2000, 11, 365-371.
[242] Durucan, C., Brown, P.W. Kinetic model for α-tricalcium phosphate hydrolysis. J. Am. Ceram. Soc. 2002, 85, 2013-2018.
[243] Fulmer, M.T., Brown, P.W. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite. J. Mater. Sci. Mater. Med. 1998, 9, 197-202.
[244] Ginebra, M.P., Driessens, F.C.M., Planell, J.A. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials 2004, 25, 3453-3462.
[245] Tsuru, K., Ruslin, Maruta, M., Matsuya, S., Ishikawa, K. Effects of the method of apatite seed crystals addition on setting reaction of α-tricalcium phosphate based apatite cement. J. Mater. Sci. Mater. Med. 2015, 26, article number 244, 8pp.
[246] Ginebra, M.P., Canal, C., Espanol, M., Pastorino, D., Montufar, E.B. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 2012, 64, 1090-1110.
[247] Tas, A.C. Porous, biphasic CaCO3-calcium phosphate biomedical cement scaffolds from calcite (CaCO3) powder. Int. J. Appl. Ceram. Technol. 2007, 4, 152-163.
[248] Liu, C., Huang, Y., Chen, J. The physicochemical properties of the solidification of calcium phosphate cement. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69B, 73-78.
[249] Liu, C., Gai, W., Pan, S., Liu, Z. The exothermal behavior in the hydration process of calcium phosphate cement. Biomaterials 2003, 24, 2995-3003.
[250] Charrière, E., Terrazzoni, S., Pittet, C., Mordasini, P., Dutoit, M., Lemaître, J., Zysset, P. Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 2001, 22, 2937-2945.
[251] Morgan, H., Dauskardt, R.H. Notch strength insensitivity of self-setting hydroxyapatite bone cements. J. Mater. Sci. Mater. Med. 2003, 14, 647-653.
[252] von Gonten, A.S., Kelly, J.R., Antonucci, J.M. Load-bearing behavior of a simulated craniofacial structure fabricated from a hydroxyapatite cement and bioresorbable fiber-mesh. J. Mater. Sci. Mater. Med. 2000, 11, 95-100.
[253] Gisep, A., Kugler, S., Wahl, D., Rahn, B. The mechanical characterization of a bone defect model filled with ceramic cements. J. Mater. Sci. Mater. Med. 2004, 15, 1065-1071.
[254] Takagi, S., Chow, L.C., Markovic, M., Friedman, C.D., Costantino, P.D. Morphological and phase characterizations of retrieved calcium phosphate cement implants. J. Biomed. Mater. Res. Appl. Biomater. 2001, 58, 36-41.
[255] Ambard, A.J., Mueninghoff, L. Calcium phosphate cement: review of mechanical and biological properties. J. Prosthodont. 2006, 15, 321-328.
[256] Kenny, S.M., Buggy, M. Bone cements and fillers: a review. J. Mater. Sci. Mater. Med. 2003, 14, 923-938.
[257] Bohner, M., Gbureck, U., Barralet, J.E. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials 2005, 26, 6423-6429.
[258] Lewis, G. Injectable bone cements for use in vertebroplasty and kyphoplasty, state-of-the-art review. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 76B, 456-468.
[259] Takagi, S., Frukhtbeyn, S., Chow, L.C., Sugawara, A., Fujikawa, K., Ogata, H., Hayashi, M., Ogiso, B. In vitro and in vivo characteristics of fluorapatite-forming calcium phosphate cements. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 267-276.
[260] Wei, J., Wang, J., Shan, W., Liu, X., Ma, J., Liu, C., Fang, J., Wei, S. Development of fluorapatite cement for dental enamel defects repair. J. Mater. Sci. Mater. Med. 2011, 22, 1607-1614.
[261] Wei, J., Wang, J., Liu, X., Ma, J., Liu, C., Fang, J., Wei, S. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration. Appl. Surf. Sci. 2011, 257, 7887-7892.
[262] Constantz, B.R., Ison, I.C., Fulmer, M.T., Poser, R.D., Smith, S.T., van Wagoner, M., Ross, J., Goldstein, S.A., Jupiter, J.B., Rosenthal, D.I. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995, 267, 1796-1799.
[263] Bohner, M. Reactivity of calcium phosphate cements. J. Mater. Chem. 2007, 38, 3980-3986.
[264] Bohner, M., Brunner, T.J., Stark, W.J. Controlling the reactivity of calcium phosphate cements. J. Mater. Chem. 2008, 18, 5669-5675.
[265] Yuan, H., Li, Y., de Bruijn, J.D., de Groot, K., Zhang, X. Tissue responses of calcium phosphate cement, a study in dogs. Biomaterials 2000, 21, 1283-1290.
[266] Takechi, M., Miyamoto, Y., Ishikawa, K., Toh, T., Yuasa, T., Nagayama, M., Suzuki, K. Initial histological evaluation of anti-washout type fast-setting calcium phosphate cement following subcutaneous implantation. Biomaterials 1998, 19, 2057-2063.
[267] Fulmer, M.T., Brown, P.W. Effects of Na2HPO4 and NaH2PO4 on hydroxyapatite formation. J. Biomed. Mater. Res. 1993, 27, 1095-1102.
[268] Otsuka, M., Matsuda, Y., Suwa, Y., Fox, J.L., Higuchi, W.I. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement. J. Biomed. Mater. Res. 1995, 29, 25-32.
[269] Liu, C., Shao, H., Chen, F., Zheng, H. Effects of granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials 2003, 24, 4103-4113.
[270] Chen, W.C., Lin, J.H.C., Ju, C.P. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. J. Biomed. Mater. Res. 2003, 64, 664-671.
[271] Fernández, E., Gil, F.J., Ginebra, M.P., Driessens, F.C.M., Planell, J.A., Best, S.M. Calcium phosphate bone cements for clinical applications. Part II: Precipitate formation during setting reactions. J. Mater. Sci. Mater. Med. 1999, 10, 177-183.
[272] Brown, W.E. Crystal growth of bone mineral. Clin. Orthop. Rel. Res. 1966, 44, 205-220.
[273] Tung MS., Brown, W.E. An intermediate state in hydrolysis of amorphous calcium phosphate. Calcif. Tissue Int. 1983, 35, 783-790.
[274] Brown, W.E., Eidelman, N., Tomazic, B.B. Octacalcium phosphate as a precursor in biomineral formation. Adv. Dent. Res. 1987, 1, 306-313.
[275] Constantz, B.R., Barr, B.M., Ison, I.C., Fulmer, M.T., Baker, J., McKinney L.A., Goodman S.B., Gunasekaren, S., Delaney, D.C., Ross, J., Poser, R.D. Histological, chemical and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J. Biomed. Mater. Res. Appl. Biomater. 1998, 43, 451-461.
[276] Tamimi, F., Sheikh, Z., Barralet, J. Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 2012, 8, 474-487.
[277] Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates, Elsevier: Amsterdam, Holland, 1994; 404 pp.
[278] Legrand, A.P., Sfihi, H., Lequeux, N., Lemaître, J. 31P solid-state NMR study of the chemical setting process of a dual-paste injectable brushite cements. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91B, 46-54.
[279] Bohner, M., Merkle, H.P., van Landuyt, P., Trophardy, G., Lemaître, J. Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement. J. Mater. Sci. Mater. Med. 2000, 11, 111-116.
[280] Vereecke, G., Lemaître, J. Calculation of the solubility diagrams in the system Ca(OH)2 – H3PO4 – KOH – HNO3 – CO2 –H2O. J. Cryst. Growth 1990, 104, 820-832.
[281] Klein, C.P., de Groot, K., Driessen, A.A., van der Lubbe, H.B. Interaction of biodegradable β-whitlockite ceramics with bone tissue, an in vivo study. Biomaterials 1985, 6, 189-192.
[282] Liu, C., Shen, W., Chen, J. Solution property of calcium phosphate cement hardening body. Mater. Chem. Phys. 1999, 58, 78-83.
[283] Apelt, D., Theiss, F., El-Warrak, A.O., Zlinszky, K., Bettschart-Wolfisberger, R., Bohner, M., Matter, S., Auer, J.A., von Rechenberg, B. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 2004, 25, 1439-1451.
[284] Barralet, J.E., Grover, L.M., Gbureck, U. Ionic modification of calcium phosphate cement viscosity. Part II: Hypodermic injection and strength improvement of brushite cement. Biomaterials 2004, 25, 2197-2203.
[285] Sarda, S., Fernández, E., Nilsson, M., Balcells, M., Planell, J.A. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J. Biomed. Mater. Res. 2002, 61, 653-659.
[286] Qi, X., Ye, J., Wang, Y. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres. Acta Biomater. 2008, 4, 1837-1845.
[287] Grover, L.M., Knowles, J.C., Fleming, G.J.P., Barralet, J.E. In vitro ageing of brushite calcium phosphate cement. Biomaterials2003, 24, 4133-4141.
[288] Mariño, F.T., Mastio, J., Rueda, C., Blanco, L., Cabarcos, E.L. Increase of the final setting time of brushite cements by using chondroitin 4-sulfate and silica gel. J. Mater. Sci. Mater. Med. 2007, 18, 1195-1201.
[289] Mariño, F.T., Torres, J., Hamdan, M., Rodríguez, C.R., Cabarcos, E.L. Advantages of using glycolic acid as a retardant in a brushite forming cement. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83B, 571-579.
[290] Flautre, B., Delecourt, C., Blary, M., van Landuyt, P., Lemaître, J., Hardouin, P. Volume effect on biological properties of a calcium phosphate hydraulic cement, experimental study on sheep. Bone 1999, 25, S35-S39.
[291] Bohner, M. pH variations of a solution after injecting brushite cements. Key Eng. Mater. 2001, 192-195, 813-816.
[292] Xie, J., Riley, C., Chittur, K. Effect of albumin on brushite transformation to hydroxyapatite. J. Biomed. Mater. Res. 2001, 57, 357-365.
[293] Frayssinet, P., Roudier, M., Lerch, A., Ceolin, J.L., Depres, E., Rouquet, N. Tissue reaction against a self-setting calcium phosphate cement set in bone or outside the organism. J. Mater. Sci. Mater. Med. 2000, 11, 811-815.
[294] Ohura, K., Bohner, M., Hardouin, P., Lemaître, J., Pasquier, G., Flautre, B. Resorption of and bone formation from new β-tricalcium phosphate – monocalcium phosphate cements: an in vivo study. J. Biomed. Mater. Res. 1996, 30, 193-200.
[295] Flautre, B., Maynou, C., Lemaître, J., van Landuyt, P., Hardouin, P. Bone colonization of β-TCP granules incorporated in brushite cements. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 413-417.
[296] Shepard, C.U. On two new minerals, monetite and monite, with a notice of pyroclasite. Am. J. Sci. 1882, 23, 400-405.
[297] Tas, A.C. Monetite (CaHPO4) synthesis in ethanol at room temperature. J. Am. Ceram. Soc. 2009, 92, 2907-2912.
[298] Åberg, J., Engqvist, H. Non-aqueous, hydraulic cement useful for producing hardened cement, as biomaterials composition comprises non-aqueous mixture of Brushite or Monetite-forming calcium phosphate powder composition, and nonaqueous water-miscible liquid. US Patent No. WO2010055483-A2, 2008.
[299] Åberg, J., Brisby, H., Henriksson, H.B., Lindahl, A., Thomsen, P., Engqvist, H. Premixed acidic calcium phosphate cement: characterization of strength and microstructure. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93B, 436-441.
[300] Åberg, J., Unosson, J.E., Engqvist, H. Setting mechanisms of an acidic premixed calcium phosphate cement. Bioceram. Dev Appl. 2013, 3, 070 (6 pages).
[301] Cama, G., Gharibi, B., Sait, M.S., Knowles, J.C., Lagazzo, A., Romeed, S., di Silvio, L., Deb, S. A novel method of forming micro- and macroporous monetite cements. J. Mater. Chem. B 2013, 1, 958-969.
[302] Şahin, E., Çiftçioğlu, M. Monetite promoting effect of NaCl on brushite cement setting kinetics. J. Mater. Chem. B 2013, 1, 2943-2950.
[303] Montazerolghaem, M., Ott, M.K., Engqvist, H., Melhus, H., Rasmusson, A.J. Resorption of monetite calcium phosphate cement by mouse bone marrow derived osteoclasts. Mater. Sci. Eng. C 2015, 52, 212-218.
[304] Irbe, Z., Vecbiškena, L., Bērziņa-Cimdiņa, L. Setting properties of brushite and hydroxyapatite compound cements. Adv. Mater. Res. 2011, 222, 239-242.
[305] Gbureck, U., Dembski, S., Thull, R., Barralet, J.E. Factors influencing calcium phosphate cement shelf-life. Biomaterials 2005, 26, 3691-3697.
[306] Standard test method for time of setting of hydraulic cement paste by Gillmore needles. ASTM C266-89. In: Annual book of ASTM standards, Vol. 04.01: Cement, Lime, Gypsum. American Society for Testing and Materials: Philadelphia, USA, 1993; pp. 189-191.
[307] Standard test method for time of setting of hydraulic cement paste by Vicat needle. ASTM C191-92. In: Annual book of ASTM standards, Vol. 04.01: Cement, Lime, Gypsum. American Society for Testing and Materials: Philadelphia, USA, 1993; pp. 158-160.
[308] Nilsson, M., Carlson, J., Fernández, E., Planell, J.A. Monitoring the setting of calcium-based bone cements using pulse-echo ultrasound. J. Mater. Sci. Mater. Med. 2002, 13, 1135-1141.
[309] Carlson, J., Nilsson, M., Fernández, E., Planell, J.A. An ultrasonic pulse-echo technique for monitoring the setting of CaSO4-based bone cement. Biomaterials 2003, 24, 71-77.
[310] Hofmann, M.P., Nazhat, S.N., Gbureck, U., Barralet, J.E. Real-time monitoring of the setting reaction of brushite-forming cement using isothermal differential scanning calorimetry. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 79B, 360-364.
[311] Martin, R.I., Brown, P.W. The effects of magnesium on hydroxyapatite formation in vitro from CaHPO4 and Ca4(PO4)2O at 37.4ºC. Calcif. Tissue Int. 1997, 60, 538-546.
[312] Brunner, T.J., Bohner, M., Dora, C., Gerber, C., Stark, W.J. Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83B, 400-407.
[313] Gao, W.Y., Wang, Y.W., Dong, L.M., Yu, Z.W. Thermokinetic analysis of the hydration process of calcium phosphate cement. J. Therm. Anal. Calorim. 2006, 85, 785-789.
[314] Bohner, M., Gbureck, U. Thermal reactions of brushite cements. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84B, 375-385.
[315] Hofmann, M.P., Young, A.M., Nazhat, S.N., Gbureck, U., Barralet, J.E. Setting kinetics observation of a brushite cement by FTIR and DSC. Key Eng. Mater. 2006, 309-311, 837-840.
[316] Mohn, D., Doebelin, N., Tadier, S., Bernabei, R.E., Luechinger, N.A., Stark, W.J., Bohner, M. Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. J. Mater. Chem., 2011, 21, 13963-13972.
[317] Liu, C., Huang, Y., Zheng, H. Study of the hydration process of calcium phosphate cement by AC impedance spectroscopy. J. Am. Ceram. Soc. 1999, 82, 1052-1057.
[318] Hofmann, M.P., Young, A.M., Gbureck, U., Nazhat, S.N., Barralet, J.E. FTIR-monitoring of a fast setting brushite bone cement: effect of intermediate phases. J. Mater. Chem. 2006, 16, 3199-3206.
[319] Bimis, A., Karalekas, D., Bouropoulos, N., Mouzakis, D., Zaoutsos, S. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor. J. Mech. Behav. Biomed. Mater. 2016, 60, 195-202.
[320] Hsu, H.C., Tuan, W.H., Lee, H.Y. In-situ observation on the transformation of calcium phosphate cement into hydroxyapatite. Mater. Sci. Eng. C 2009, 29, 950-954.
[321] Rau, J.V., Generosi, A., Smirnov, V.V., Ferro, D., Rossi, A.V., Barinov, S.M. Energy dispersive X-ray diffraction study of phase development during hardening of calcium phosphate bone cements with addition of chitosan. Acta Biomater. 2008, 4, 1089-1094.
[322] Generosi, A., Smirnov, V.V., Rau, J.V., Rossi, A.V., Ferro, D., Barinov, S.M. Phase development in the hardening process of two calcium phosphate bone cements: an energy dispersive X-ray diffraction study. Mater. Res. Bull. 2008, 43, 561-571.
[323] Rau, J.V., Fosca, M., Komlev, V.S. In situ time-resolved energy dispersive X-ray diffraction studies of calcium phosphate based bone cements. Key Eng. Mater. 2013, 541, 115-120.
[324] Ginebra, M.P., Fernández, E., Driessens, F.C.M., Boltong, M.G., Muntasell, J., Font, J., Planell, J.A. The effects of temperature on the behaviour of an apatitic calcium phosphate cement. J. Mater. Sci. Mater. Med. 1995, 6, 857-860.
[325] Baroud, G., Bohner, M., Heini, P., Steffen, T. Injection biomechanics of bone cements used in vertebroplasty. Biomed. Mater. Eng. 2004, 14, 487-504.
[326] Leung, K.S., Siu, W.S., Li, S.F., Qin, L., Cheung, W.H., Tam, K.F., Po, P., Lui, Y. An in vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 78B, 153-160.
[327] Eames, W.B., Monroe, S.D., Roan, J.D., Oneal, S.J. Proportioning and mixing of cements – comparison of working times. Oper. Dent. 1977, 2, 97-104.
[328] Baroud, G., Matsushita, C., Samara, M., Beckman, L., Steffen, T. Influence of oscillatory mixing on the injectability of three acrylic and two calcium phosphate bone cements for vertebroplasty. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 68B, 105-111.
[329] Nomoto, T., Haraguchi, K., Yamaguchi, S., Sugano, N., Nakayama, H., Sekino, T., Niihara, K. Hydrolyses of calcium phosphates-allografts composite in physiological solutions. J. Mater. Sci. Mater. Med. 2006, 17, 379-385.
[330] Oda, M., Takeuchi, A., Lin, X., Matsuya, S., Ishikawa, K. Effects of liquid phase on basic properties of α-tricalcium phosphate-based apatite cement. Dent. Mater. J. 2008, 27, 672-677.
[331] Sarda, S., Fernández, E., Llorens, J., Martinez, S., Nilsson, M., Planell, J.A. Rheological properties of an apatitic bone cement during initial setting. J. Mater. Sci. Mater. Med. 2001, 12, 905-909.
[332] Liu, C., Shao, H., Chen, F., Zheng, H. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials 2006, 27, 5003-5013.
[333] Bohner, M., Baroud, G. Injectability of calcium phosphate pastes. Biomaterials 2005, 26, 1553-1563.
[334] Khairoun, I., Boltong, M.G., Driessens, F.C.M., Planell, J.A. Some factors controlling the injectability of calcium phosphate bone cements. J. Mater. Sci. Mater. Med. 1998, 9, 425-428.
[335] Burguera, E.F., Xu, H.H.K., Sun, L. Injectable calcium phosphate cement: effects of powder-to-liquid ratio and needle size. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84B, 493-502.
[336] Habib, M., Baroud, G., Gitzhofer, F., Bohner, M. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomater. 2008, 4, 1465-1471.
[337] Montufar, E.B., Maazouz, Y., Ginebra, M.P. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomater. 2013, 9, 6188-6198.
[338] Baroud, G., Cayer, E., Bohner, M. Rheological characterization of concentrated aqueous beta-tricalcium phosphate suspensions: the effect of liquid-to-powder ratio, milling time and additives. Acta Biomater. 2005, 1, 357-363.
[339] Ishikawa, K. Effects of spherical tetracalcium phosphate on injectability and basic properties of apatitic cement. Key Eng. Mater. 2003, 240-242, 369-372.
[340] Habib, M., Baroud, G., Gitzhofer, F., Bohner, M. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Part ІІ: Particle separation study. Acta Biomater. 2010, 6, 250-256.
[341] Bohner, M., Doebelin, N., Baroud, G. Theoretical and experimental approach to test the cohesion of calcium phosphate pastes. Eur. Cell Mater. 2006, 12, 26-35.
[342] Miyamoto, Y., Ishikawa, K., Takechi, M., Toh, T., Yuasa, T., Nagayama, M., Suzuki, K. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J. Biomed. Mater. Res. Appl. Biomater. 1999, 48, 36-42.
[343] Bermudez, O., Boltong, M.G., Driessens, F.C.M., Planell, J.A. Compressive strength and diametral tensile strength of some calcium-orthophosphate cements, a pilot study. J. Mater. Sci. Mater. Med. 1993, 4, 389-393.
[344] del Valle, S., Miňo, N., Muňoz, F., González, A., Planell, J.A., Ginebra, M.P. In vivo evaluation of an injectable macroporous calcium phosphate cement. J. Mater. Sci. Mater. Med. 2007, 18, 353-361.
[345] Coelho, W.T., Fernandes, J.M., Vieira, R.S., Thurmer, M.B., Santos, L.A. Effect on mechanical strength of tricalcium phosphate cement byadditions of sodium alginate. Mater. Sci. Forum2012, 727-728, 1181-1186.
[346] Khairoun, I., Driessens, F.C.M., Boltong, M.G., Planell, J.A., Wenz, R. Addition of cohesion promoters to calcium orthophosphate cements. Biomaterials 1999, 20, 393-398.
[347] Alkhraisat, M.H., Rueda, C., Mariño, F.T., Torres, J., Jerez, L.B., Gbureck, U., Cabarcos, E.L. The effect of hyaluronic acid on brushite cement cohesion. Acta Biomater. 2009, 5, 3150-3156.
[348] Alkhraisat, M.H., Rueda, C., Jerez, L.B., Mariño, F.T., Torres, J., Gbureck, U., Cabarcos, E.L. Effect of silica gel on the cohesion, properties and biological performance of brushite cement. Acta Biomater. 2010, 6, 257-265.
[349] An, J., Wolke, J.G.C., Jansen, J.A., Leeuwenburgh, S.C.G. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements. J. Mater. Sci. Mater. Med. 2016, 27, article number 58.
[350] Low, K.L., Tan, S.H., Zein, S.H.S., Roether, J.A., Mouriño, V., Boccaccini, A.R. Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 273-286.
[351] Habib, M., Baroud, G., Galea, L., Bohner, M. Evaluation of the ultrasonication process for injectability of hydraulic calcium phosphate pastes. Acta Biomater. 2012, 8, 1164-1168.
[352] Bigi, A., Bracci, B., Panzavolta, S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials 2004, 25, 2893-2899.
[353] Ishikawa, K., Matsuya, S., Nakagawa, M., Udoh, K., Suzuki, K. Basic properties of apatite cement containing spherical tetracalcium phosphate made with plasma melting method. J. Mater. Sci. Mater. Med. 2004, 15, 13-17.
[354] Wang, X., Ye, J., Wang, Y. Effect of additives on the morphology of the hydrated product and physical properties of a calcium phosphate cement. J. Mater. Sci. Technol. 2008, 24, 285-288.
[355] Barralet, J.E., Hofmann, M., Grover, L.M., Gbureck, U. High strength apatitic cement by modification with α-hydroxy acid salts. Adv. Mater. 2003, 15, 2091-2095.
[356] Barralet, J.E., Duncan, C.O., Dover, M.S., Bassett, D.C., Nishikawa, H., Monaghan, A., Gbureck, U. Cortical bone screw fixation in ionically modified apatite cements. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 73B, 238-243.
[357] Ginebra, M.P., Boltong, M.G., Fernández, E., Planell, J.A., Driessens, F.C.M. Effect of various additives and temperature on some properties of an apatitic calcium phosphate cement. J. Mater. Sci. Mater. Med. 1995, 6, 612-616.
[358] Acarturk, O., Lehmicke, M., Aberman, H., Toms, D., Hollinger, J.O., Fulmer, M.T. Bone healing response to an injectable calcium phosphate cement with enhanced radiopacity. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 86B, 56-62.
[359] Wang, X., Ye, J., Wang, Y. Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement. Acta Biomater. 2007, 3, 757-763.
[360] Chen, F., Liu, C., Mao, Y. Bismuth-doped injectable calcium phosphate cement with improved radiopacity and potent antimicrobial activity for root canal filling. Acta Biomater. 2010, 6, 3199-3207.
[361] Romieu, G., Garric, X., Munier, S., Vert, M., Boudeville, P. Calcium-strontium mixed phosphate as novel injectable and radio-opaque hydraulic cement. Acta Biomater. 2010, 6, 3208-3215.
[362] Åberg, J., Henriksson, H.B., Engqvist, H., Palmquist, A., Brantsing, C., Lindahl, A., Thomsen, P., Brisby, H. Biocompatibility and resorption of a radiopaque premixed calcium phosphate cement. J. Biomed. Mater. Res. A 2012, 100A, 1269-1278.
[363] López, A., Montazerolghaem, M., Ott, M.K., Persson, C. Calcium phosphate cements with strontium halides as radiopacifiers. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102B, 250-259.
[364] Watanabe, M., Tanaka, M., Sakurai, M., Maeda, M. Development of calcium phosphate cement. J. Eur. Ceram. Soc. 2006, 26, 549-552.
[365] Bercier, A., Gonçalves, S., Lignon, O., Fitremann, J. Calcium phosphate bone cements including sugar surfactants: part one – porosity, setting times and compressive strength. Materials 2010, 3, 4695-4709.
[366] Sarda, S., Nilsson, M., Balcells, M., Fernández, E. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J. Biomed. Mater. Res. A 2003, 65A, 215-221.
[367] Friberg, J., Fernández, E., Sarda, S., Nilsson, M., Ginebra, M.P., Martinez, S., Planell, J.A. An experimental approach to the study of the rheology behavior of synthetic bone calcium phosphate cements. Key Eng. Mater. 2001, 192-195, 777-780.
[368] Reinstorf, A., Hempel, U., Olgemöller, F., Domaschke, H., Schneiders, W., Mai, R., Stadlinger, B, Rösen-Wolff, A., Rammelt, S., Gelinsky, M., Pompe W. O-phospho-L-serine modified calcium phosphate cements – material properties, in vitro and in vivo investigations. Mat.-Wiss. u. Werkstofftech. 2006, 37, 491-503.
[369] Lode, A., Reinstorf, A., Bernhardt, A., Wolf-Brandstetter, C., König, U., Gelinsky, M. Heparin modification of calcium phosphate bone cements for VEGF functionalization. J. Biomed. Mater. Res. A 2008, 86A, 749-759.
[370] Mai, R., Lux, R., Proff, P., Lauer, G., Pradel, W., Leonhardt, H., Reinstorf, A., Gelinsky, M., Jung, R., Eckelt, U., Gedrange, T., Stadlinger, B. O-phospho-L-serine: a modulator of bone healing in calcium-phosphate cements. Biomed. Tech. 2008, 53, 229-233.
[371] Vater, C., Lode, A., Bernhardt, A., Reinstorf, A., Nies, B., Gelinsky, M. Modifications of a calcium phosphate cement with biomolecules – influence on nanostructure, material, and biological properties. J. Biomed. Mater. Res. A 2010, 95A, 912-923.
[372] Grover, L.M., Gbureck, U., Farrar, D.F., Barralet, J.E. Adhesion of a novel calcium phosphate cement to cortical bone and several common biomaterials. Key Eng. Mater. 2006, 309-311, 849-852.
[373] Pastorino, D., Canal, C., Ginebra, M.P. Multiple characterization study on porosity and pore structure of calcium phosphate cements. Acta Biomater. 2015,28, 205-214.
[374] Markovic, M., Takagi, S., Chow, L.C. Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Key Eng. Mater. 2001, 192-195, 773-776.
[375] Tajima, S., Kishi, Y., Oda, M., Maruta, M., Matsuya, S., Ishikawa, K. Fabrication of biporous low-crystalline apatite based on mannitol dissolution from apatite cement. Dent. Mater. J. 2006, 25, 616-620.
[376] Xu, H.H.K., Weir, M.D., Burguera, E.F., Fraser, A.M. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials 2006, 27, 4279-4287.
[377] Cama, G., Barberis, F., Botter, R., Cirillo, P., Capurro, M., Quarto, R., Scaglione, S., Finocchio, E., Mussi, V., Valbusa, U. Preparation and properties of macroporous brushite bone cements. Acta Biomater. 2009, 5, 2161-2168.
[378] Vazquez, D., Takagi, S., Frukhtbeyn, S., Chow, L.C. Effects of addition of mannitol crystals on the porosity and dissolution rates of a calcium phosphate cement. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 225-232.
[379] Shimogoryo, R., Eguro, T., Kimura, E., Maruta, M., Matsuya, S., Ishikawa, K. Effects of added mannitol on the setting reaction and mechanical strength of apatite cement. Dent. Mater. J. 2009, 28, 627-633.
[380] Liu, H., Liu, X.Q., Liang, J.S. Basic properties of calcium phosphate cement scaffold. Adv. Mater. Res. 2012, 531, 354-357.
[381] Almirall, A., Larrecq, G., Delgado, J.A., Martínez, S., Planell, J.A., Ginebra, M.P. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 2004, 25, 3671-3680.
[382] Barralet, J.E., Grover, L., Gaunt, T., Wright, A.J., Gibson, I.R. Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials 2002, 23, 3063-3072.
[383] Takagi, S., Chow, L.C. Formation of macropores in calcium phosphate cement implants. J. Mater. Sci. Mater. Med. 2001, 12, 135-139.
[384] Tas, A.C. Preparation of porous apatite granules from calcium phosphate cement. J. Mater. Sci. Mater. Med. 2008, 19, 2231-2239.
[385] Tas, A.C. Preparation of self-setting cement-based micro- and macroporous granules of carbonated apatitic calcium phosphate. Ceram. Eng. Sci. Proc. 2006, 27, 49-60.
[386] Cama, G., Gharibi, B., Knowles, J.C., Romeed, S., di Silvio, L., Deb, S. Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method. J. R. Soc. Interface 2014, 11, 20140727.
[387] Simon, Jr. C.G., Khatri, C.A., Wight, S.A., Wang, F.W. Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres. J. Orthop. Res. 2002, 20, 473-482.
[388] Ruhe, P.Q., Hedberg, E.L., Padron, N.T., Spauwen, P.H.M., Jansen, J.A., Mikos, A.G. Biocompatibility and degradation of poly(D, L-lactic-co-glycolic acid)/calcium phosphate cement composites. J. Biomed. Mater. Res. A 2005, 74A, 533-544.
[389] Habraken, W.J.E.M., Wolke, J.G.C., Mikos, A.G., Jansen, J.A. Injectable PLGA microsphere/calcium phosphate cements, physical properties and degradation characteristics. J. Biomater. Sci. Polym. Ed. 2006, 17, 1057-1074.
[390] Link, D.P., van den Dolder, J., Jurgens, W.J.F.M., Wolke, J.G.C., Jansen, J.A. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Biomaterials 2006, 27, 4941-4947.
[391] Habraken, W.J.E.M., Wolke, J.G.C., Mikos, A.G., Jansen, J.A. PLGA microsphere/calcium phosphate cement composites for tissue engineering, in vitro release and degradation characteristics. J. Biomater. Sci. Polym. Ed. 2008, 19, 1171-1188.
[392] Link, D.P., van den Dolder, J., van den Beucken, J.J.J.P., Cuijpers, V.M., Wolke, J.G.C., Mikos, A.G., Jansen, J.A. Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites. J. Biomed. Mater. Res. A 2008, 87A, 760-769.
[393] Lanao, R.P.F., Leeuwenburgh, S.C., Wolke, J.G., Jansen, J.A. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomater. 2011, 7, 3459-3468.
[394] Lopez-Heredia, M.A., Sariibrahimoglu, K., Yang, W., Bohner, M., Yamashita, D., Kunstar, A., van Apeldoorn, A.A., Bronkhorst, E.M., Lanao, R.P.F., Leeuwenburgh, S.C.G., Itatani, K., Yang, F., Salmon, P., Wolke, J.G.C., Jansen, J.A. Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement. Acta Biomater. 2012, 8, 404-414.
[395] Zhong, M.L., Chen, X.Q., Fan, H.S., Zhang, X.D. Incorporation of salmon calcitonin-loaded poly(lactide-co-glycolide) (PLGA) microspheres into calcium phosphate bone cement and the biocompatibility evaluation in vitro. J. Bioact. Compat. Polym. 2012, 27, 133-147.
[396] van Houdt, C.I.A., Preethanath, R.S., van Oirschot, B.A.J.A., Zwarts, P.H.W., Ulrich, D.J.O., Anil, S., Jansen, J.A., van den Beucken, J.J.J.P. Toward accelerated bone regeneration by altering poly(D, L-lactic-co-glycolic) acid porogen content in calcium phosphate cement. J. Biomed. Mater. Res. A 2016, 104, 483-492.
[397] Fullana, S.G., Ternet, H., Freche, M., Lacout, J.L., Rodriguez, F. Controlled release properties and final macroporosity of a pectin microspheres-calcium phosphate composite bone cement. Acta Biomater. 2010, 6, 2294-2300.
[398] Li, M., Liu, X., Liu, X., Ge, B. Chen, K. Creation of macroporous calcium phosphate cements as bone substitutes by using genipin – crosslinked gelatin microspheres. J. Mater. Sci. Mater. Med.2009, 20, 925-934.
[399] Habraken, W.J.E.M., de Jonge, L.T., Wolke, J.G.C., Yubao, L., Mikos, A.G., Jansen, J.A. Introduction of gelatin microspheres into an injectable calcium phosphate cement. J. Biomed. Mater. Res. A 2008, 87A, 643-655.
[400] Matsumoto, G., Sugita, Y., Kubo, K., Yoshida, W., Ikada, Y., Sobajima, S., Neo, M., Maeda, H., Kinoshita, Y. Gelatin powders accelerate the resorption of calcium phosphate cement and improve healing in the alveolar ridge.J. Biomater. Appl. 2014, 28, 1316-1324.
[401] Tang, P.F., Li, G., Wang, J.F., Zheng, Q.J., Wang, Y. Development, characterization, and validation of porous carbonated hydroxyapatite bone cement. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 886-893.
[402] Wang XP., Ye JD., Li X., Dong H. Production of in-situ macropores in an injectable calcium phosphate cement by introduction of cetyltrimethyl ammonium bromide. J. Mater. Sci. Mater. Med. 2008, 19, 3221-3225.
[403] Habraken, W.J.E.M., Zhang, Z., Wolke, J.G.C., Grijpma, D.W., Mikos, A.G., Feijen, J., Jansen, J.A. Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 2008, 29, 2464-2476.
[404] Xu, H.H.K., Simon, Jr. C.G. Self-hardening calcium phosphate composite scaffold for bone tissue engineering. J. Orthop. Res. 2004, 22, 535-543.
[405] Burguera, E.F., Xu, H.H.K., Takagi, S., Chow, L.C. High early strength calcium phosphate bone cement: effects of dicalcium phosphate dihydrate and absorbable fibers. J. Biomed. Mater. Res. A 2005, 75A, 966-975.
[406] Xu, H.H.K., Quinn, J.B. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials 2002, 23, 193-202.
[407] Gorst, N.J.S., Perrie, Y., Gbureck, U., Hutton, A.L., Hofmann, M.P., Grover, L.M., Barralet, J.E. Effects of fiber reinforcement on the mechanical properties of brushite cement. Acta Biomater. 2006, 2, 95-102.
[408] Zuo, Y., Yang, F., Wolke, J.G.C., Li, Y., Jansen, J.A. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater. 2010, 6, 1238-1247.
[409] Xu, H.H.K., Simon, Jr. C.G. Self-hardening calcium phosphate cement-mesh composite: reinforcement, macropores, and cell response. J. Biomed. Mater. Res. A 2004, 69A, 267-278.
[410] Losee, J.E., Karmacharya, J., Gannon, F.H., Slemp, A.E., Ong, G., Hunenko, O., Gorden, A.D., Bartlett, S.P., Kirschner, R.E. Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement, interaction with bioresorbable mesh. J. Craniofac. Surg. 2003, 14, 117-124.
[411] Xu, H.H.K., Carey, L.E., Simon, Jr. C.G. Premixed macroporous calcium phosphate cement scaffold. J. Mater. Sci. Mater. Med. 2007, 18, 1345-1353.
[412] Vasconcellos, L.A., dos Santos, L.A. Calcium phosphate cement scaffolds with PLGA fibers. Mater. Sci. Eng. C 2013, 33, 1032-1040.
[413] Ginebra, M.P., Espanol, M., Montufar, E.B., Perez, R.A., Mestres, G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater. 2010, 6, 2863-2873.
[414] del Real, R.P., Wolke, J.G.C., Vallet-Regi, M., Jansen, J.A. A new method to produce macropores in calcium phosphate cements. Biomaterials 2002, 23, 3673-3680.
[415] del Real, R.P., Ooms, E., Wolke, J.G.C., Vallet-Regi, M., Jansen, J.A. In vivo bone response to porous calcium phosphate cement. J. Biomed. Mater. Res. A 2003, 65A, 30-36.
[416] Hesaraki, S., Moztarzadeh, F., Sharifi, D. Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J. Biomed. Mater. Res. A 2007, 83A, 80-87.
[417] Hesaraki, S., Zamanian, A., Moztarzadeh, F. The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties, acetic acid versus citric acid. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 86B, 208-216.
[418] Hesaraki, S., Moztarzadeh, F., Solati-Hashjin, M. Phase evaluation of an effervescent-added apatitic calcium phosphate bone cement. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 79B, 203-209.
[419] Ginebra, M.P., Delgado, J.A., Harr, I., Almirall, A., del Valle S., Planell, J.A. Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam. J. Biomed. Mater. Res. A 2007, 80A, 351-361.
[420] Montufar, E.B., Aguirre, A., Gil, C., Engel, E., Traykova, T., Planell, J.A., Ginebra, M.P. Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater. 2010, 6, 876-885.
[421] Montufar, E.B., Traykova, T., Planell, J.A., Ginebra, M.P. Comparison of a low molecular weight and a macromolecular surfactant as foaming agents for injectable self setting hydroxyapatite foams: polysorbate 80 versus gelatin. Mater. Sci. Eng. C 2011, 31, 1498-1504.
[422] de Oliveira R.C., Pereta, N.C., Bertran, C.A., Motisuke, M., de Sousa, E. Study of in vitro degradation of brushite cements scaffolds. J. Mater. Sci. Mater. Med. 2014, 25, 2297-2303.
[423] Pastorino, D., Canal, C., Ginebra, M.P. Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity–drug interaction. Acta Biomater. 2015,12, 250-259.
[424] Zhang, J., Liu, W., Gauthier, O., Sourice, S., Pilet, P., Rethore, G., Khairoun, K., Bouler, J.M., Tancret, F., Weiss, P.A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: syringe-foaming using a viscous hydrophilic polymeric solution. Acta Biomater. 2016,31, 326-338.
[425] Unosson, J.E., Persson, C., Engqvist, H. An evaluation of methods to determine the porosity of calciumphosphate cements. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103B, 62-71.
[426] Andrianjatovo, H., Lemaître, J. Effects of polysaccharides on the cement properties in the monocalcium phosphate/β-tricalcium phosphate system. Innov. Tech. Biol. Med. 1995, 16, 140-147.
[427] Cherng, A., Takagi, S., Chow, L.C. Effects of hydroxypropylmethylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J. Biomed. Mater. Res. 1997, 35, 273-277.
[428] Yokoyama, A., Matsuno, H., Yamamoto, S., Kawasaki, T., Kohgo, T., Uo, M., Watari, F., Nakasu, M. Tissue response to a newly developed calcium phosphate cement containing succinic acid and carboxymethyl-chitin. J. Biomed. Mater. Res. A 2003, 64A, 491-501.
[429] Jyoti, M.A., Thai, V.V., Min, Y.K., Lee, B.T., Song, H.Y. In vitro bioactivity and biocompatibility of calcium phosphate cements using hydroxy-propyl-methyl-cellulose (HPMC). Appl. Surf. Sci. 2010, 257, 1533-1539.
[430] Bigi, A., Torricelli, P., Fini, M., Bracci, B., Panzavolta, S., Sturba, L., Giardino, R. A biomimetic gelatin-calcium phosphate bone cement. Int. J. Artif. Organs 2004, 27, 664-673.
[431] Bigi, A., Panzavolta, S., Sturba, L., Torricelli, P., Fini, M., Giardino, R. Normal and osteopenic bone-derived osteoblast response to a biomimetic gelatin – calcium phosphate bone cement. J. Biomed. Mater. Res. A 2006, 78A, 739-745.
[432] Fujishiro, Y., Takahashi, K., Sato, T. Preparation and compressive strength of α-tricalcium phosphate/gelatin gel composite cement. J. Biomed. Mater. Res. 2001, 54, 525-530.
[433] Bigi, A., Panzavolta, S., Rubini, K. Setting mechanism of a biomimetic bone cement. Chem. Mater. 2004, 16, 3740 -3745.
[434] Panzavolta, S., Torricelli, P., Sturba, L., Bracci, B., Giardino, R., Bigi, A. Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone cements. J. Biomed. Mater. Res. A 2008, 84A, 965-972.
[435] Xu, L.X., Shi, X.T., Wang, Y.P., Shi, Z.L. Performance of calcium phosphate bone cement using chitosan and gelatin as well as citric acid as hardening liquid. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 6381-6384.
[436] Shie, M.Y., Chen, D.C.H., Wang, C.Y., Chiang, T.Y., Ding, S.J. Immersion behavior of gelatin-containing calcium phosphate cement. Acta Biomater. 2008, 4, 646-655.
[437] Majekodunmi, A.O., Deb, S., Nicholson, J.W. Effect of molecular weight and concentration of poly(acrylic acid) on the formation of a polymeric calcium phosphate cement. J. Mater. Sci. Mater. Med. 2003, 14, 747-752.
[438] Majekodunmi, A.O., Deb. S. Poly(acrylic acid) modified calcium phosphate cements, the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid. J. Mater. Sci. Mater. Med. 2007, 18, 1883-1888.
[439] Chen, W.C., Ju, C.P., Wang, J.C., Hung, C.C., Lin J.H.C. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites. Dent. Mater. 2008, 24, 1616-1622.
[440] Komath M, Varma HK. Development of a fully injectable calcium phosphate cement for orthopedic and dental applications. Bull. Mater. Sci. 2003, 26, 415-422.
[441] Bohner, M., Theiss, F., Apelt, D., Hirsiger, W., Houriet, R., Rizzoli, G., Gnos, E., Frei, C., Auer, J.A., von Rechenberg, B. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials 2003, 24, 3463-3474.
[442] Chavez, G.S.C., Alge, D.L., Chu, T.M.G. Additive concentration effects on dicalcium phosphate dihydrate cements prepared using monocalcium phosphate monohydrate and hydroxyapatite. Biomed. Mater. 2011, 6, 065007.
[443] Engstrand, J., Persson, C., Engqvist, H. The effect of composition on mechanical properties of brushite cements. J. Mech. Behav. Biomed. Mater. 2014, 29, 81-90.
[444] Leroux, L., Hatim, Z., Freche, M., Lacout, J.L. Effects of various adjuvants (lactic acid, glycerol and chitosan) on the injectability of a calcium phosphate cement. Bone 1999, 25, S31-S34.
[445] Barralet, J.E., Tremayne, M.J., Lilley, K.J., Gbureck, U. Chemical modification of calcium phosphate cements with α-hydroxy acids and their salts. Chem. Mater. 2005, 17, 1313-1319.
[446] Driessens, F.C.M., Boltong, M.G., de Maeyer, E.A.P., Verbeeck, R.M.H., Wenz, R. Effect of temperature and immersion on the setting of some calcium phosphate cements. J. Mater. Sci. Mater. Med. 2000, 11, 453-457.
[447] Ishikawa, K., Takagi, S., Chow, L.C., Ishikawa, Y. Properties and mechanisms of fast-setting calcium phosphate cements. J. Mater. Sci. Mater. Med. 1995, 6, 528-533.
[448] Miyamoto, Y., Ishikawa, K., Fukao, K., Sawada, M., Nagayama, M., Kon, M., Asaoka, K. In vivo setting behavior of fast-setting calcium phosphate cement. Biomaterials 1995, 16, 855-860.
[449] Kawai, T., Fujisawa, N., Suzuki, I., Ohtsuki, C., Matsushima, Y., Unuma, H. Control of setting behavior of calcium phosphate paste using gelatinized starch. J. Ceram. Soc. Jpn. 2010, 118, 421-424.
[450] Bohner, M., Luginbühl, R., Reber, C., Doebelin, N., Baroud, G., Conforto, E. A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomater. 2009, 5, 3524-3535.
[451] Egli, R.J., Gruenenfelder, S., Doebelin, N., Hofstetter, W., Luginbuehl, R., Bohner, M. Thermal treatments of calcium phosphate biomaterials to tune the physico-chemical properties and modify the in vitro osteoclast response. Adv. Eng. Mater. 2011, 13, B102-B107.
[452] Takechi, M., Miyamoto, Y., Momota, Y., Yuasa, T., Tatehara, S., Nagayama, M., Ishikawa, K. Effects of various sterilization methods on the setting and mechanical properties of apatite cement. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69B, 58-63.
[453] Schneider, G., Blechschmidt, K., Linde, D., Litschko, P., Körbs, T., Beleites, E. Bone regeneration with glass ceramic implants and calcium phosphate cements in a rabbit cranial defect model. J. Mater. Sci. Mater. Med. 2010, 21, 2853-2859.
[454] Johal, H.S., Buckley, R.E., Le, I.L.D., Leighton, R.K. A prospective randomized controlled trial of a bioresorbable calcium phosphate paste (α-BSM) in treatment of displaced intra-articular calcaneal fractures. J. Trauma – Injury, Infect. Crit. Care 2009, 67, 875-882.
[455] Yuasa, T., Miyamoto, Y., Ishikawa, K., Takechi, M., Nagayama, M., Suzuki, K. In vitro resorption of three apatite cements with osteoclasts. J. Biomed. Mater. Res. 2001, 54, 344-350.
[456] Puricelli, E., Corsetti, A., Ponzoni, D., Martins, G.L., Leite, M.G., Santos, L.A. Characterization of bone repair in rat femur after treatment with calcium phosphate cement and autogenous bone graft. Head and Face Medicine 2010, 6, art. no. 10.
[457] Zhaoa, X., Lib, F., Lic, S. Degradation characteristic of strontium-containing calcium phosphate cement in vivo. Adv. Mater. Res. 2010, 105-106, 553-556.
[458] Khairoun, I., Magne, D., Gauthier, O. Bouler, J.M., Aguado, E., Daculsi, G., Weiss, P. In vitro characterization and in vivo properties of a carbonated apatite bone cement. J. Biomed. Mater. Res. 2002, 60, 633-642.
[459] Mao, K., Yang, Y., Li, J., Hao, L., Tang, P., Wang, Z., Wen, N., Du, M., Wang, J., Wang, Y. Investigation of the histology and interfacial bonding between carbonated hydroxyapatite cement and bone. Biomed. Mater. 2009, 4, 045003.
[460] Sanzana, E.S., Navarro, M., Macule, F., Suso, S., Planell, J.A., Ginebra, M.P. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Acta Biomater. 2008, 4, 1924-1933.
[461] Bodde, E.W.H., Cammaert, C.T.R., Wolke, J.G.C., Spauwen, P.H.M., Jansen, J.A. Investigation as to the osteoinductivity of macroporous calcium phosphate cement in goats. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83B, 161-168.
[462] Miyamoto, Y., Ishikawa, K., Takeshi, M., Toh, T., Yoshida, Y., Nagayama, M., Kon, M., Asaoka, K. Tissue response to fast-setting calcium phosphate cement in bone. J. Biomed. Mater. Res. 1997, 37, 457-464.
[463] Young, S., Holde, M., Gunasekaran, S., Poser, R., Constantz, B.R. The correlation of radiographic, MRI and histological evaluations over two years of a carbonated apatite cement in a rabbit model. In: Proceedings of the 44th Annual Meeting, Orthopedic Research Society, New Orleans, USA, March 16-19, 1998; p. 846.
[464] Feng, B., Guolin, M., Yuan, Y., Changshen, L., Zhen, W., Jian, L. Role of macropore size in the mechanical properties and in vitro degradation of porous calcium phosphate cements. Mater. Lett. 2010, 64, 2028-2031.
[465] An, J., Liao, H., Kucko, N.W., Herber, R.P.c, Wolke, J.G.C., van den Beucken, J.J.J.P., Jansen, J.A., Leeuwenburgh, S.C.G. Long-term evaluation of the degradation behavior of three apatite-forming calcium phosphate cements. J. Biomed. Mater. Res. A2016, 104A, 1072-1081.
[466] Kroese-Deutman, H.C., Wolke, J.G.C., Spauwen, P.H, M., Jansen, J.A. Closing capacity of cranial bone defects using porous calcium phosphate cement implants in a rabbit animal model. J. Biomed. Mater. Res. A 2006, 79A, 503-511.
[467] Bourgeois, B., Laboux, O., Obadia, L., Gauthier, O., Betti, E., Aguado, E., Daculsi, G., Bouler, J.M. Calcium-deficient apatite: a first in vivo study concerning bone ingrowth. J. Biomed. Mater. Res. A 2003, 65A, 402-408.
[468] Lu, J., Descamps, M., Dejou, J., Koubi, G., Hardouin, P., Lemaître, J., Proust, J.P. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 408-412.
[469] Wenisch, S., Stahl, J.P., Horas, U., Heiss, C., Kilian, O., Trinkaus, K., Hild, A., Schnettler, R. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts, fine structural microscopy. J. Biomed. Mater. Res. A 2003, 67A, 713-718.
[470] Ajaxon, I., Öhman, C., Persson, C. Long-term in vitro degradation of a high-strength brushite cement in water, PBS, and serum solution. BioMed Res. Int.2015, 2015, article number 575079.
[471] Grossardt, C., Ewald, A., Grover, L.M., Barralet, J.E., Gbureck, U. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells. Tissue Eng. A 2010, 16, 3687-3695.
[472] Ooms, E.M., Wolke, J.G.C., van der Waerden, J.P., Jansen, J.A. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J. Biomed. Mater. Res. 2002, 61, 9-18.
[473] Theiss, F., Apelt, D., Brand, B., Kutter, A., Zlinszky, K., Bohner, M., Matter, S., Frei, C., Auer, J.A., von Rechenberg, B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 2005, 26, 4383-4394.
[474] Heymann, D., Pradal, G., Benahmad, M. Cellular mechanisms of calcium phosphate degradation. Histol. Histopathol. 1999, 14, 871-877.
[475] Kanter, B., Geffers, M., Ignatius, A., Gbureck, U. Control of in vivo mineral bone cement degradation. Acta Biomater. 2014, 10, 3279-3287.
[476] Penel, G., Leroy, N., van Landuyt, P., Flautre, B., Hardouin, P., Lemaître, J., Leroy, G. Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model. Bone1999, 25, Suppl. 2, 81S-84S.
[477] Dorozhkin, S.V. Inorganic chemistry of the dissolution phenomenon, the dissolution mechanism of calcium apatites at the atomic (ionic) level. Comment Inorg. Chem. 1999, 20, 285-299.
[478] Dorozhkin, S.V. Dissolution mechanism of calcium apatites in acids: a review of literature. World J. Methodol. 2012, 2, 1-17.
[479] Alge, D.L., Goebel, W.S., Chu, T.M.G. Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations. Biomed. Mater. 2013, 8, 025010.
[480] Knabe, C., Driessens, F.C.M., Planell, J.A., Gildenhaar, R., Berger, G., Reif, D., Fitzner, R., Radlanski, RJ., Gross, U. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. J. Biomed. Mater. Res. 2000, 52, 498-508.
[481] Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504-1508.
[482] Mostov, K., Werb, Z. Journey across the osteoclast. Science 1997, 276, 219-220.
[483] Rodan, G.A., Martin, T.J. Therapeutic approaches to bone diseases. Science 2000, 289, 1508-1514.
[484] Sugawara, A., Asaoka, K., Ding, S.J. Calcium phosphate-based cements: clinical needs and recent progress. J. Mater. Chem. B 2013, 1, 1081-1089.
[485] Midy, V., Hollande, E., Rey, C., Dard, M., Plouët, J. Adsorption of vascular endothelial growth factor to two different apatitic materials and its release. J. Mater. Sci. Mater. Med. 2001, 12, 293-298.
[486] Hossain, M., Irwin, R., Baumann, M.J., McCabe, L.R. Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces. Biomaterials 2005, 26, 2595-2602.
[487] Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings, a review. J. Biomed. Mater. Res. B Appl. Biomater. 2001, 58, 570-592.
[488] Renault, F., Chabriere, E., Andrieu, JP., Dublet, B., Masson, P., Rochu, D. Tandem purification of two HDL-associated partner proteins in human plasma., paraoxonase (PON1) and phosphate binding protein (HPBP) using hydroxyapatite chromatography. J. Chromatogr. B 2006, 836, 15-21.
[489] Yoshitake, T., Kobayashi, S., Ogawa, T., Okuyama, T. Hydroxyapatite chromatography of guanidine denatured proteins: 1. guanidine containing phosphate buffer system. Chromatography 2006, 27, 19-26.
[490] Ooms, E.M., Egglezos, E.A., Wolke, J.G.C., Jansen, J.A. Soft-tissue response to injectable calcium phosphate cements. Biomaterials 2003, 24, 749-757.
[491] Ooms, E.M., Wolke, J.G.C., van de Heuvel, MT., Jeschke, B., Jansen, J.A. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials 2003, 24, 989-1000.
[492] Kobayashi, N., Ong, K., Villarraga, M., Schwardt, J., Wenz, R., Togawa, D., Fujishiro, T., Turner, A.S., Seim, III H.B., Bauer, T.W. Histological and mechanical evaluation of self-setting calcium phosphate cements in a sheep vertebral bone void model. J. Biomed. Mater. Res. A 2007, 81A, 838-846.
[493] Wen, C.Y., Qin, L., Lee, K.M., Chan, K.M. The use of brushite calcium phosphate cement for enhancement of bone-tendon integration in an anterior cruciate ligament reconstruction rabbit model. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 89B, 466-474.
[494] Musha, Y., Umeda, T., Yoshizawa, S., Shigemitsu, T., Mizutani, K., Itatani, K. Effects of blood on bone cement made of calcium phosphate: problems and advantages. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 92B, 95-101.
[495] Altundal, S., Gross, K.A., Ohman, C., Engqvist, H. Improving the flexural strength test of brushite cement. Key Eng. Mater. 2015, 631, 67-72.
[496] Fernández, E., Ginebra, M.P., Bermudez, O., Boltong, M.G., Driessens, F.C.M., Planell, J.A. Dimensional and thermal behaviour of calcium phosphate cements during setting compared to PMMA bone cements. J. Mater. Sci. Lett.1995, 14, 4-5.
[497] O’Hara, R.M., Orr, J.F., Buchanan, F.J., Wilcox, R.K., Barton, D.C., Dunne, N.J. Development of a bovine collagen-apatitic calcium phosphate cement for potential fracture treatment through vertebroplasty. Acta Biomater. 2012, 8, 4043-4052.
[498] Pittet, C., Lemaître, J. Mechanical characterization of brushite cements: a Mohr circles approach. J. Biomed. Mater. Res. Appl. Biomater. 2000, 53, 769-780.
[499] Andrianjatovo, H., Jose, F., Lemaître, J. Effect of β-TCP granulometry on setting time and strength of calcium orthophosphate hydraulic cements. J. Mater. Sci. Mater. Med. 1996, 7, 34-39.
[500] Ishikawa, K., Takagi, S., Chow, L.C., Ishikawa Y., Eanes, E.D., Asaoka, K. Behavior of a calcium orthophosphate cement in simulated blood plasma in vitro. Dent. Mater. 1994, 10, 26-32.
[501] Driessens, F.C.M. Chemistry and applied aspects of calcium orthophosphate bone cements. In: Concepts and clinical applications of ionic cements, 15th European Conference on Biomaterials. Arcachon, Bordeaux, France. Sept. 8, 1999.
[502] Yamamoto, H., Niwa, S., Hori, M., Hattori, T., Sawai, K., Aoki, S., Hirano, M., Takeuchi, H. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 1998, 19, 1587-1591.
[503] Morgan, E.F., Yetkinler, D.N., Constantz, B.R., Dauskardt, R.H. Mechanical properties of carbonated apatite bone mineral substitute: strength, fracture and fatigue behaviour. J. Mater. Sci. Mater. Med. 1997, 8, 559-570.
[504] Miyazaki, K., Horibe, T., Antonucci, J.M., Takagi, S., Chow, L.C. Polymeric calcium phosphate cements, analysis of reaction products and properties. Dent. Mater. 1993, 9, 41-45.
[505] Miyazaki, K., Horibe, T., Antonucci, J.M., Takagi, S., Chow, L.C. Polymeric calcium phosphate cements: setting reaction modifiers. Dent. Mater. 1993, 9, 46-50.
[506] dos Santos, L.A., de Oliveira, L.C., Rigo, E.C.S., Carrodeguas, R.G., Boschi, A.O., de Arruda, A.C.F. Influence of polymeric additives on the mechanical properties of α-tricalcium phosphate cement. Bone 1999, 25, 99S-102S.
[507] Mickiewicz, R.A., Mayes, A.M., Knaack, D. Polymer – calcium phosphate cement composites for bone substitutes. J. Biomed. Mater. Res. 2002, 61, 581-592.
[508] Fernández, E., Sarda, S., Hamcerencu, M., Vlad, M.D., Gel, M., Valls, S., Torres, R., López, J. High-strength apatitic cement by modification with superplasticizers. Biomaterials 2005, 26, 2289-2296.
[509] Takahashi, T., Yamamoto, M., Ioku, K., Goto, S. Relationship between compressive strength and pore structure of hardened cement pastes. Adv. Cement Res. 1997, 9, 25-30.
[510] Costantino, P.D., Friedman, C.D., Jones, K., Chow, L.C., Sisson, G.A. Experimental hydroxyapatite cement cranioplasty. Plast. Reconstr. Surg. 1992, 90, 174-185.
[511] Chow, L.C., Hirayama, S., Takagi, S., Parry, E. Diametral tensile strength and compressive strength of a calcium phosphate cement, effect of applied pressure. J. Biomed. Mater. Res. Appl. Biomater. 2000, 53, 511-517.
[512] Barralet, J.E., Gaunt, T., Wright, A.J., Gibson I.R., Knowles, J.C. Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 1-9.
[513] Zhang, Y., Xu, H.H.K., Takagi, S., Chow, L.C. In situ hardening hydroxyapatite-based scaffold for bone repair. J. Mater. Sci. Mater. Med. 2006, 17, 437-445.
[514] Geffers, M., Groll, J., Gbureck, U. Reinforcement strategies for load-bearing calciumphosphate biocements. Materials 2015, 8, 2700-2717.
[515] Khairoun, I., LeGeros, R.Z., Daculsi, G., Bouler, J.M., Guicheux, J., Gauthier, O. Macroporous, resorbable and injectable calcium phosphate-based cements (MCPC) for bone repair: augmentation, regeneration and osteoporosis treatment. US patent No. 7351280. April 1, 2008.
[516] Speirs, A.D., Oxland, T.R., Masri, B.A., Poursartip, A., Duncan, C.P. Calcium phosphate cement composites in revision hip arthroplasty. Biomaterials 2005, 26, 7310-7318.
[517] dos Santos, L.A., Carrodeguas, R.G., Boschi, A.O., de Arruda, A.C.F. Fiber-enriched double-setting calcium phosphate bone cement. J. Biomed. Mater. Res. A 2003, 65A, 244-250.
[518] Gbureck, U., Spatz, K., Thull, R. Improvement of mechanical properties of self-setting calcium phosphate bone cements mixed with different metal oxides. Mat.-Wiss. u. Werkstofftech. 2003, 34, 1036-1040.
[519] Zhang, Y., Xu, H.H.K. Effects of synergistic reinforcement and absorbable fiber strength on hydroxyapatite bone cement. J. Biomed. Mater. Res. A 2005, 75A, 832-840.
[520] Buchanan, F., Gallagher, L., Jack, V., Dunne, N. Short-fibre reinforcement of calcium phosphate bone cement. Proc. Inst. Mech. Eng. H: J. Eng. Med. 2007, 221, 203-212.
[521] Guo, H., Wei, J., Song, W., Zhang, S., Yan, Y., Liu, C., Xiao, T. Wollastonite nanofiber-doped self-setting calcium phosphate bioactive cement for bone tissue regeneration. Int. J. Nanomed. 2012, 7, 3613-3624.
[522] Srakaew, N., Rattanachan, S.T. Effect of apatite wollastonite glass ceramic addition on brushite bone cement containing chitosan. Adv. Mater. Res. 2012, 506, 106-109.
[523] Mohammadi, M., Hesaraki, S., Hafezi-Ardakani, M. Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: comparison of nano-titania, nano-silicon carbide and amorphous nano-silica. Ceram. Int. 2014, 40, 8377-8387.
[524] Wu, T.Y., Zhou, Z.B., He, Z.W., Ren, W.P., Yu, X.W., Huang, Y. Reinforcement of a new calcium phosphate cement with RGD-chitosan-fiber. J. Biomed. Mater. Res. A 2014, 102A, 68-75.
[525] Maenz, S., Kunisch, E., Mühlstädt, M., Böhm, A., Kopsch, V., Bossert, J., Kinne, R.W., Jandt, K.D. Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement. J. Mech. Behav. Biomed. Mater. 2014, 39, 328-338.
[526] Motisuke, M., Santos, V.R., Bazanini, N.C., Bertran, C.A. Apatite bone cement reinforced with calcium silicate fibers. J. Mater. Sci. Mater. Med. 2014, 25, 2357-2363.
[527] Maenz, S., Hennig, M., Mühlstädt, M., Kunisch, E., Bungartz, M., Brinkmann, O., Bossert, J., Kinne, R.W., Jandt, K.D. Effects of oxygen plasma treatment on interfacial shear strength and post-peak residual strength of a PLGA fiber-reinforced brushite cement. J. Mech. Behav. Biomed. Mater. 2016, 57, 347-358.
[528] Yu, W., Wang, X., Zhao, J., Tang, Q., Wang, M., Ning, X. Preparation and mechanical properties of reinforced hydroxyapatite bone cement with nano-ZrO2. Ceram. Int. 2015, 41, 10600-10606.
[529] Wang, X., Ye, J., Wang, Y., Chen, L. Reinforcement of calcium phosphate cement by bio-mineralized carbon nanotube. J. Am. Ceram. Soc. 2007, 90, 962-964.
[530] Chew, K.K., Low, K.L., Zein, S.H.S., McPhail, D.S., Gerhardt, L.C., Roether, J.A., Boccaccini, A.R. Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. J. Mech. Behav. Biomed. Mater. 2011, 4, 331-339.
[531] Low, K.L., Tan, S.H., Zein, S.H.S., McPhail, D.S., Boccaccini, A.R. Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. J. Mater. Des. 2011, 32, 3312-3319.
[532] Lin, B., Zhou, H., Leaman, D.W., Goel, V.K., Agarwal. A.K., Bhaduri, S.B. Sustained release of small molecules from carbon nanotube-reinforced monetite calcium phosphate cement. Mater. Sci. Eng. C 2014,43, 92-96.
[533] Vélez, D., Arita, I.H., García-Garduño, M.V., Castaño, V.M. Synthesis and characterization of a hydroxyapatite-zinc oxide-polyacrylic acid concrete. Mater. Lett. 1994, 19, 309-315.
[534] http://en.wikipedia.org/wiki/Concrete (accessed in December 2016).
[535] Tadier, S., Galea, L., Charbonnier, B., Baroud, G., Bohner, M.Phase and size separations occurring during the injection of model pastes composed of β-tricalcium phosphate powder, glass beads and aqueous solutions. Acta Biomater. 2014, 10, 2259-2268.
[536] Dickens-Venz, S.H., Takagi, S., Chow, L.C., Bowen, R.L., Johnston, A.D., Dickens, B. Physical and chemical properties of resin-reinforced calcium phosphate cements. Dent. Mater. 1994, 10, 100-106.
[537] Xu, H.H.K., Eichmiller, F.C., Barndt, P.R. Effects of fiber length and volume fraction on the reinforcement of calcium phosphate cement. J. Mater. Sci. Mater. Med. 2001, 12, 57-65.
[538] Alge, D.L., Bennett, J., Treasure, T., Voytik-Harbin, S., Goebel, W.S., Chu, T.M.G. Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J. Biomed. Mater. Res. A 2012, 100A, 1792-1802.
[539] Takagi, S., Chow, L.C., Hirayama, S., Eichmiller, F.C. Properties of elastomeric calcium phosphate cement-chitosan composites. Dent. Mater.2003, 19, 797-804.
[540] Xu, H.H.K., Quinn, J.B., Takagi, S., Chow, L.C. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 2004, 25, 1029-1037.
[541] Yokoyama, A., Yamamoto, S., Kawasaki, T., Kohgo, T., Nakasu, M. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 2002, 23, 1091-1101.
[542] Xu, H.H.K., Simon Jr., C.G. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 2005, 26, 1337-1348.
[543] Sun, L., Xu, H.H.K., Takagi, S., Chow, L.C. Fast setting calcium phosphate cement – chitosan composite, mechanical properties and dissolution rates. J. Biomater. Appl. 2007, 21, 299-316.
[544] Pan, Z.H., Jiang, P.P., Fan, Q.Y., Ma, B., Cai, H.P. Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 246-252.
[545] Liu, H., Li, H., Cheng, W., Yang, Y., Zhu, M., Zhou, C. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater. 2006, 2, 557-565.
[546] Pan, Z.H., Cai, H.P., Jiang, P.P., Fan, Q.Y. Properties of a calcium phosphate cement synergistically reinforced by chitosan fiber and gelatin. J. Polymer Res. 2006, 13, 323-327.
[547] Weir, M.D., Xu, H.H.K. High-strength, in situ-setting calcium phosphate composite with protein release. J. Biomed. Mater. Res. A 2008, 85A, 388-396.
[548] Lian, Q., Li, D.C., He, J.K., Wang, Z. Mechanical properties and in-vivo performance of calcium phosphate cement – chitosan fibre composite. Proc. Inst. Mech. Eng. H: J. Eng. Med. 2008, 222, 347-353.
[549] Wang, X., Chen, L., Xiang, H., Ye, J. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81B, 410-418.
[550] Tanaka, S., Kishi, T., Shimogoryo, R., Matsuya, S., Ishikawa, K. Biopex acquires anti-washout properties by adding sodium alginate into its liquid phase. Dent. Mater. J. 2003, 22, 301-312.
[551] Sariibrahimoglu, K., Leeuwenburgh, S.C.G., Wolke, J.G.C., Yubao, L., Jansen, J.A. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. J. Biomed. Mater. Res. A 2012, 100A, 712-719.
[552] Lin, J., Zhang, S., Chen, T., Liu, C., Lin, S., Tian, X. Calcium phosphate cement reinforced by polypeptide copolymers. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 76B, 432-439.
[553] Liu, H., Guan, Y., Wei, D., Gao, C., Yang, H., Yang, L. Reinforcement of injectable calcium phosphate cement by gelatinized starches. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 615-625.
[554] Lopez-Heredia, M.A., Pattipeilohy, J., Hsu, S., Grykien, M., van der Weijden, B., Leeuwenburgh, S.C.G., Salmon, P., Wolke, J.G.C., Jansen, J.A. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications. J. Biomed. Mater. Res. A 2013, 101A, 478-490.
[555] Krüger, R., Seitz, J.M., Ewald, A., Bach, F.W., Groll, J. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement. J. Mech. Behav. Biomed. Mater. 2013,20, 36-44.
[556] Miyamoto, Y., Ishikawa, K., Takechi, M., Toh, T., Yuasa, T., Nagayama, M., Suzuki, K. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials 1998, 19, 707-715.
[557] Knepper-Nicolai, B., Reinstorf, A., Hofinger, I., Flade, K., Wenz, R., Pompe, W. Influence of osteocalcin and collagen I on the mechanical and biological properties of Biocement D®. Biomol. Eng. 2002, 19, 227-231.
[558] Hempel, U., Reinstorf, A., Poppe, M., Fischer, U., Gelinsky, M., Pompe, W., Wenzel, K.W. Proliferation and differentiation of osteoblasts on Biocement D® modified with collagen type I and citric acid. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71B, 130-143.
[559] Reinstorf, A., Ruhnow, M., Gelinsky, M., Pompe, W., Hempel, U., Wenzel, K.W., Simon, P. Phosphoserine – a convenient compound for modification of calcium phosphate bone cement collagen composites. J. Mater. Sci. Mater. Med. 2004, 15, 451-455.
[560] Otsuka, M., Kuninaga, T., Otsuka, K., Higuchi, W.I. Effect of nanostructure on biodegradation behaviors of self-setting apatite/collagen composite cements containing vitamin K2 in rats. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 79B, 176-184.
[561] Moreau, J.L., Weir, M.D., Xu, H.H.K. Self-setting collagen – calcium phosphate bone cement: mechanical and cellular properties. J. Biomed. Mater. Res. A 2009, 91A, 605-613.
[562] Otsuka, M., Nakagawa, H., Ito, A., Higuchi, W.I. Effect of geometrical structure on drug release rate of a three-dimensionally perforated porous apatite/collagen composite cement. J. Pharm. Sci. 2010, 99, 286-292.
[563] Dunne, N., O’Gara, R., Buchanan, F., Orr, J. Effect of liquid/powder ratio on the setting, handling and mechanical properties of collagen-apatitic cements. Key Eng. Mater. 2012, 493-494, 415-421.
[564] Perez, R.A., Ginebra, M.P. Injectable collagen/α-tricalcium phosphate cement: collagen-mineral phase interactions and cell response. J. Mater. Sci. Mater. Med. 2013, 24, 381-393.
[565] Palmer, I., Nelson, J., Schatton, W., Dunne, N.J., Buchanan, F.J., Clarke, S.A. Biocompatibility of calcium phosphate bone cement with optimized mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 308-315.
[566] Gbureck, U., Spatz, K., Thull, R., Barralet, J.E. Rheological enhancement of mechanically activated α-tricalcium phosphate cements. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 73B, 1-6.
[567] Canal, C., Ginebra, M.P. Fibre-reinforced calcium phosphate cements: a review. J. Mech. Behav. Biomed. Mater. 2011, 4, 1658-1671.
[568] Xu, H.H.K., Eichmiller, F.C., Giuseppetti, A.A. Reinforcement of a self-setting calcium phosphate cement with different fibers. J. Biomed. Mater. Res. 2000, 52, 107-114.
[569] Xu, H.H.K., Quinn, J.B., Takagi, S., Chow, L.C., Eichmiller, F.C. Strong and macroporous calcium phosphate cement: effects of porosity and fiber reinforcement on mechanical properties. J. Biomed. Mater. Res. 2001, 57, 457-466.
[570] dos Santos, L.A., Carrodeguas, R.G., Boschi, A.O., de Arruda, A.C.F. Dual-setting calcium phosphate cement modified with ammonium polyacrylate. Artif. Organs 2003, 27, 412-418.
[571] Rigo, E.C.S., dos Santos, L.A., Vercik, L.C.O., Carrodeguas, R.G., Boschi, A.O. α-tricalcium phosphate- and tetracalcium phosphate/dicalcium phosphate-based dual setting cements. Lat. Am. Appl. Res. 2007, 37, 267-274.
[572] Barounian, M., Hesaraki, S., Kazemzadeh, A. Development of strong and bioactive calcium phosphate cement as a light-cure organic-inorganic hybrid. J. Mater. Sci. Mater. Med. 2012, 23, 1569-1581.
[573] Christel, T., Kuhlmann, M., Vorndran, E., Groll, J., Gbureck, U. Dual setting α-tricalcium phosphate cements. J. Mater. Sci. Mater. Med. 2013, 24, 573-581.
[574] Geffers, M., Barralet, J.E., Groll, J., Gbureck, U. Dual-setting brushite–silica gel cements. Acta Biomater. 2015,11, 467-476.
[575] Hurle, K., Christel, T., Gbureck, U., Moseke, C., Neubauer, J., Goetz-Neunhoeffer, F. Reaction kinetics of dual setting α-tricalcium phosphate cements. J. Mater. Sci. Mater. Med. 2016, 27, article number 1.
[576] dos Santos, L.A., de Oliveira, L.C., da Silva Rigo, E.C., Carrodéguas, R.G., Boschi, A.O., de Arruda, A.C.F. Fiber reinforced calcium phosphate cement. Artif. Organs 2000, 24, 212-216.
[577] Ogasawara, T., Sawamura, T., Maeda, H., Obata, A., Hirata, H., Kasuga, T. Enhancing the mechanical properties of calcium phosphate cements using short-length polyhydroxyalkanoate fibers. J. Ceram. Soc. Jpn. 2016, 124, 180-183.
[578] Liu, C.S., Chen, C.W., Ducheyne, P. In vitro surface reaction layer formation and dissolution of calcium phosphate cement – bioactive glass composites. Biomed. Mater. 2008, 3, 034111 (11 pages).
[579] Renno, A.C.M., van de Watering, F.C.J., Nejadnik, M.R., Crovace, M.C., Zanotto, E.D., Wolke, J.G.C., Jansen, J.A., van den Beucken, J.J.J.P. Incorporation of bioactive glass in calcium phosphate cement: an evaluation. Acta Biomater. 2013, 9, 5728-5739.
[580] Renno, A.C.M., Nejadnik, M.R., van de Watering, F.C.J., Crovace, M.C., Zanotto, E.D., Hoefnagels, J.P.M., Wolke, J.G.C., Jansen, J.A., van den Beucken, J.J.J.P. Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation. J. Biomed. Mater. Res. A 2013, 101A, 2365-2373.
[581] Yu, L., Li, Y., Zhao, K., Tang, Y., Cheng, Z., Chen, J., Zang, Y., Wu, J., Kong, L., Liu, S., Lei, W., Wu, Z. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS ONE 2013, 8, e62570.
[582] Alge, D.L., Chu, T.M.G. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement. J. Biomed. Mater. Res. A 2010, 94A, 547-555.
[583] Julien, M., Khairoun, I., LeGeros, R.Z., Delplace, S., Pilet, P., Weiss, P., Daculsi, G., Bouler, J.M., Guicheux, J. Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials 2007, 28, 956-965.
[584] Lemaître, J., Munting, E., Mirtchi, A.A. Setting, hardening and resorption of calcium phosphate hydraulic cements. Rev. Stomatol. Chir. Maxillofac. 1992, 93, 163-165.
[585] Müller, F.A., Gbureck, U., Kasuga, T., Mizutani, Y., Barralet, J.E., Lohbauer, U. Whisker-reinforced calcium phosphate cements. J. Am. Ceram. Soc. 2007, 90, 3694-3697.
[586] Nakagawa, A., Matsuya, S., Takeuchi, A., Ishikawa, K. Comparison of the effects of added α- and β-tricalcium phosphate on the basic properties of apatite cement. Dent. Mater. J. 2007, 26, 342-347.
[587] Gu, T., Shi, H., Ye, J. Reinforcement of calcium phosphate cement by incorporating with high-strength β-tricalcium phosphate aggregates. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 350-359.
[588] Zhao, P., Zhao, S., Zhao, T., Ren, X., Wang, F., Chen, X. Hydroxyapatite whisker effect on strength of calcium phosphate bone cement. Adv. Mater. Res. 2012, 534, 30-33.
[589] Chu, B., Xiong, J., Wang, M.B., Li, X.L., She, Z.D. Study on hydroxyapatite fibers with strontium reinforced calcium phosphate cement. Adv. Mater. Res. 2013, 788, 119-126.
[590] Srakaew, N., Rattanachan, S.T. The pH-dependent properties of the biphasic calcium phosphatefor bone cements. J. Biomim. Biomater. Biomed. Eng. 2014, 21, 3-16.
[591] Sarkar, S.K., Lee, B.Y., Padalhin, A.R., Sarker, A., Carpena, N., Kim, B., Paul, K., Choi, H.J., Bae, S.H., Lee, B.T. Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration. J. Biomater. Appl. 2016, 30, 823-837.
[592] Gisep, A., Wieling, R., Bohner, M., Matter, S., Schneider, E., Rahn, B. Resorption patterns of calcium-phosphate cements in bone. J. Biomed. Mater. Res. A 2003, 66A, 532-540.
[593] van den Vreken, N.M.F., Pieters, I.Y., Declercq, H.A., Cornelissen, M.J., Verbeeck, R.M.H. Characterization of calcium phosphate cements modified by addition of amorphous calcium phosphate. Acta Biomater. 2010, 6, 617-625.
[594] Zhou, L., Yan, J.L., Hu, C.J. Degradation of bone repairing composite of calcium polyphosphate fiber, calcium phospate cement and micromorselized bone in vitro. J. Clin. Rehabilit. Tiss. Eng. Res. 2007, 11, 33-36.
[595] Xu, L.X., Shi, X.T., Wang, Y.P., Shi, Z.L. Mechanical effect of calcium polyphosphate fiber on reinforcing calcium phosphate bone cement composites. J. Clin. Rehabilit. Tiss. Eng. Res. 2009, 13, 7474-7476.
[596] Krüger, R., Groll, J. Fiber reinforced calcium phosphate cements – on the way to degradable load bearing bone substitutes? Biomaterials 2012, 33, 5887-5900.
[597] Xu, H.H.K., Quinn, J.B. Whisker-reinforced bioactive composites containing calcium phosphate cement fillers: effects of filler ratio and surface treatments on mechanical properties. J. Biomed. Mater. Res. 2001, 57, 165-174.
[598] Espigares, I., Elvira, C., Mano, J.F., Vázquez, B., san Román, J., Reis, R.L. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials 2002, 23, 1883-1895.
[599] Pek, Y.S., Kurisawa, M., Gao, S., Chung, J.E., Ying, J.Y. The development of a nanocrystalline apatite reinforced crosslinked hyaluronic acid-tyramine composite as an injectable bone cement. Biomaterials 2009, 30, 822-828.
[600] Lopez-Heredia, M.A., Sa, Y., Salmon, P., de Wijn, J.R., Wolke, J.G.C., Jansen, J.A. Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Acta Biomater. 2012, 8, 3120-3127.
[601] Jayasree, R., Kumar, T.S.S. Acrylic cement formulations modified with calcium deficient apatite nanoparticles for orthopaedic applications. J. Compos. Mater. 2015, 49, 2921-2933.
[602] Sa, Y., Yang, F., de Wijn, J.R., Wang, Y., Wolke, J.G.C., Jansen, J.A. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid. Mater. Sci. Eng. C 2016, 61, 190-198.
[603] Baldino, L., Naddeo, F., Cardea, S., Naddeo, A., Reverchon, E. FEM modeling of the reinforcement mechanism of hydroxyapatite in PLLA scaffolds produced by supercritical drying, for tissue engineering applications. J. Mech. Behav. Biomed. Mater. 2015, 51, 225-236.
[604] Claes L., Höllen, I., Ignatius, A. Resorbable bone cements. Orthopäde 1997, 26, 459-462.
[605] Jansen, J.A., de Ruijter, J.E., Schaeken, H.G., van der Waerden, J.P.C., Planell, J.A., Driessens, F.C.M. Evaluation of tricalciumphosphate/hydroxyapatite cement for tooth replacement, an experimental animal study. J. Mater. Sci. Mater. Med. 1995, 6, 653-657.
[606] Larsson. S., Bauer. T.W. Use of injectable calcium phosphate cement for fracture fixation: a review. Clin. Orthop. Rel. Res. 2002, 395, 23-32.
[607] Oshtory, R., Lindsey, D.P., Giori, N.J., Mirza, F.M. Bioabsorbable tricalcium phosphate bone cement strengthens fixation of suture anchors. Clin. Orthop. Rel. Res. 2010, 468, 3406-3412.
[608] Gbureck, U., Knappe, O., Hofmann, N., Barralet, J.E. Antimicrobial properties of nanocrystalline tetracalcium phosphate cements. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83B, 132-137.
[609] Sethuraman, S., Nair, L.S., El-Amin, S., Nguyen, M.T.N., Greish, Y.E., Bender, J.D., Brown, P.W., Allcock, H.R., Laurencin, C.T. Novel low temperature setting nanocrystalline calcium phosphate cements for bone repair: osteoblast cellular response and gene expression studies. J. Biomed. Mater. Res. A 2007, 82A, 884-891.
[610] Link, D.P., van den Dolder, J., Wolke, J.G.C., Jansen, J.A. The cytocompatibility and early osteogenic characteristics of an injectable calcium phosphate cement. Tissue Eng. 2007, 13, 493-500.
[611] Oda, H., Nakamura, K., Matsushita, T., Yamamoto, S., Ishibashi, H., Yamazaki, T., Morimoto, S. Clinical use of a newly developed calcium phosphate cement (XSB-671D). J. Orthop. Sci. 2006, 11, 167-174.
[612] Braun, C., Rahn, B., Fulmer, M.T., Steiner, A., Gisep, A. Intra-articular calcium Phosphate cement, its fate and impact on joint tissues in a rabbit model. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 79B, 151-158.
[613] Krell, K.V., Wefel, J.S. A calcium phosphate cement root canal sealer – scanning electron microscopic analysis. J. Endod. 1984, 10, 571-576.
[614] Krell, K.V., Madison, S. Comparison of apical leakage in teeth obturated with a calcium phosphate cement or Grossman’s cement using lateral condensation. J. Endod. 1985, 8, 336-339.
[615] Costantino, P., Friedman, C., Jones, K., Chow, L.C., Pelzer, H., Sisson, G. Hydroxyapatite cement. I. Basic chemistry and histologic properties. Arch. Otolaryngol. Head Neck Surg. 1991, 117, 379-384.
[616] Hong, Y.C., Wang, J.T., Hong, C.Y., Brown, W.E., Chow, C.Y. The periapical tissue reactions to a calcium phosphate cement in the teeth of monkeys. J. Biomed. Mater. Res. 1991, 25, 485-498.
[617] Sugawara, A., Fujikawa, K., Kusama, K., Nishiyama, M., Murai, S., Takagi, S., Chow, L.C. Histopathologic reaction of calcium phosphate cement for alveolar ridge augmentation. J. Biomed. Mater. Res. 2002, 61, 47-52.
[618] Fujikawa, K., Sugawara, A., Kusama, K., Nishiyama, M., Murai, S., Takagi, S., Chow, L.C. Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement. Dent. Mater. J. 2002, 21, 296-305.
[619] Comuzzi, L., Ooms, E., Jansen, J.A. Injectable calcium phosphate cement as a filler for bone defects around oral implants, an experimental study in goats. Clin. Oral Implants Res. 2002, 13, 304-311.
[620] Shirakata, Y., Oda, S., Kinoshita, A., Kikuchi, S., Tsuchioka, H., Ishikawa, I. Histocompatible healing of periodontal defects after application of injectable calcium phosphate bone cement. A preliminary study in dogs. J. Periodontol. 2002, 73, 1043-1053.
[621] Lee, S.K., Lee, S.K., Lee, S.I., Park, J.H., Jang, J.H., Kim, H.W., Kim, E.C. Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J. Endod. 2010, 36, 1537-1542.
[622] Chaung, H.M., Hong, C.H., Chiang, C.P., Lin, S.K., Kuo, Y.S., Lan, W.H., Hsieh, C.C. Comparison of calcium phosphate cement mixture and pure calcium hydroxide as direct pulp-capping agents. J. Formos Med. Assoc. 1996, 95, 545-550.
[623] Zhang, W., Walboomers, X.F., Jansen, J.A. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-β1. J. Biomed. Mater. Res. A 2008, 85A, 439-444.
[624] Coutinho, V.B., Silva, J.A., Santos, L.A., Fook, M.V.L. Primary implant stability in calcium phosphate cement: clinical, radiographic and histological analysis. Mater. Sci. Forum2012, 727-728, 1131-1135.
[625] Sugawara, A., Chow, L.C., Takagi, S., Chohayeb, H. In vitro evaluation of the sealing ability of a calcium phosphate cement when used as a root canal sealer-filler. J. Endod. 1990, 16, 162-165.
[626] Noetzel, J., Özer, K., Reisshauer, B.H., Anil, A., Rössler, R., Neumann, K., Kielbassa, A.M. Tissue responses to an experimental calcium phosphate cement and mineral trioxide aggregate as materials for furcation perforation repair, a histological study in dogs. Clin. Oral Invest. 2006, 10, 77-83.
[627] Tagaya, M., Goto, H., Iinuma, M., Wakamatsu, N., Tamura Y., Doi, Y. Development of self-setting Te-Cp/α-TCP cement for pulpotomy. Dent. Mater. J. 2005, 24, 555-561.
[628] Arisan, V., Anil, A., Wolke, J.G., Özer, K. The effect of injectable calcium phosphate cement on bone anchorage of titanium implants: an experimental feasibility study in dogs. Int. J. Oral Maxillofac. Surg. 2010, 39, 463-468.
[629] Dorozhkin, S.V. Calcium orthophosphates (CaPO4) and dentistry. Bioceram. Dev. Appl. 2016, 6, 96.
[630] Aral, A., Yalçn, S., Karabuda, Z.C., Anιl, A., Jansen, J.A., Mutlu, Z. Injectable calcium phosphate cement as a graft material for maxillary sinus augmentation: an experimental pilot study. Clin. Oral Implants Res. 2008, 19, 612-617.
[631] Sliindo, M.L., Costantino, P.D., Friedman, C.D., Chow, L.C. Facial skeletal augmentation using hydroxyapatite cement cranioplasty. Arch. Otolaryngol. Head Neck Surg. 1993, 119, 185-190.
[632] Bifano, C.A., Edgin, W.A., Colleton, C., Bifano, S.L., Constantino, P.D. Preliminary evaluation of hydroxyapatite cement as an augmentation device in the edentulous atrophic canine mandible. Oral Surg. 1998, 85, 512-516.
[633] Ciprandi, M.T.O., Primo, B.T., Gassen, H.T., Closs, L.Q., Hernandez, P.A.G., Silva Jr., A.N. Calcium phosphate cement in orbital reconstructions. J. Craniofac. Surg. 2012, 23, 145-148.
[634] Friedman, C.D., Constantino, P.D., Jones, K., Chow, L.C., Pelzer, H., Sisson, G. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch. Otolaryngol. Head Neck Surg. 1991, 117, 385-389.
[635] Sinikovic, B., Kramer, F.J., Swennen, G., Lubbers, H.T., Dempf, R. Reconstruction of orbital wall defects with calcium phosphate cement: clinical and histological findings in a sheep model. Int. J. Oral Maxillofac. Surg. 2007, 36, 54-61.
[636] Smartt, J.M., Karmacharya, J., Gannon, F.H., Ong, G., Jackson, O., Bartlett. S.P., Poser, R.D., Kirschner, R.E. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement: assessment of biocompatibility, osteoconductivity and remodeling capacity. Plast. Reconstr. Surg. 2005, 115, 1642-1650.
[637] Reddi, S.P., Stevens, M.R., Kline, S.N., Villanueva, P. Hydroxyapatite cement in craniofacial trauma surgery, indications and early experience. J. Cran. Maxillofac. Trauma 1999, 5, 7-12.
[638] Friedman, C.D., Costantino, P.D., Synderman, C.H., Chow, L.C., Takagi, S. Reconstruction of the frontal sinus and frontofacial skeleton with hydroxyapatite cement. Arch. Facial Plast. Surg. 2000, 2, 124-129.
[639] Kuemmerle, J.M., Oberle, A., Oechslin, C., Bohner, M., Frei, C., Boecken, I., von Rechenberg, B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty – an experimental study in sheep. J. Cran. Maxillofac. Surg. 2005, 33, 37-44.
[640] Luaces-Rey, R., Garciìa-Rozado, A., Crespo-Escudero, J.L., Seijas, B.P., Arenaz-Buìa, J., Loìpez-Cedruìn, J.L. Use of carbonated calcium phosphate bone cement and resorbable plates for the treatment of frontal sinus fractures: two case reports. J. Plastic Reconstr. Aesthetic Surg. 2009, 62, 272-273.
[641] Tamimi, F., Torres, J., Cabarcos, E.L., Bassett, D.C., Habibovic, P., Luceron, E., Barralet, J.E. Minimally invasive maxillofacial vertical bone augmentation using brushite based cements. Biomaterials 2009, 30, 208-216.
[642] Lee, D.W., Kim, J.Y., Lew, D.H. Use of rapidly hardening hydroxyapatite cement for facial contouring surgery. J. Craniofac. Surg. 2010, 21, 1084-1088.
[643] Singh, K.A., Burstein, F.D., Williams, J.K. Use of hydroxyapatite cement in pediatric craniofacial reconstructive surgery: strategies for avoiding complications. J. Craniofac. Surg. 2010, 21, 1130-1135.
[644] Bambakidis, N.C., Munyon, C., Ko, A., Selman, W.R., Megerian, C.A. A novel method of translabyrinthine cranioplasty using hydroxyapatite cement and titanium mesh: a technical report. Skull Base 2010, 20, 157-161.
[645] Abe, T., Anan, M., Kamida, T., Fujiki, M. Surgical technique for anterior skull base reconstruction using hydroxyapatite cement and titanium mesh. Acta Neurochirur. 2009, 151, 1337-1338.
[646] Sanada, Y., Fujinaka, T., Yoshimine, T., Kato, A. Optimal reconstruction of the bony defect after frontotemporal craniotomy with hydroxyapatite cement. J. Clin. Neurosci. 2011, 18, 280-282.
[647] Araki, K., Tomifuji, M., Suzuki, H., Shiotani, A. Vocal fold injection with calcium phosphate cement (BIOPEX). Jpn. J. Logoped. Phoniatr. 2012, 53, 187-193.
[648] Chung, S.B., Nam, D.H., NamPark, K., Kim, J.H., Kong, D.S. Injectable hydroxyapatite cement patch as an on-lay graft for the sellar reconstructions following endoscopic endonasal approach. Acta Neurochir. 2012, 154, 659-664.
[649] Benson, A.G., Djalilian, H.R. Complications of hydroxyapatite bone cement reconstruction of retrosigmoid craniotomy: two cases. Ear Nose Throat J. 2009, 88, E1-E4.
[650] Wong, R.K., Gandolfi, B.M., St-Hilaire, H., Wise, M.W., Moses, M. Complications of hydroxyapatite bone cement in secondary pediatric craniofacial reconstruction. J. Craniofac. Surg. 2011, 22, 247-251.
[651] Liverneaux, P. Osteoporotic distal radius curettage-filling with an injectable calcium phosphate cement. A cadaveric study. Eur. J. Orthop. Surg. Traumatol. 2005, 15, 1-6.
[652] Liverneaux, P., Vernet, P., Robert, C., Diacono, P. Cement pinning of osteoporotic distal radius fractures with an injectable calcium phosphate bone substitute, report of 6 cases. Eur. J. Orthop. Surg. Traumatol. 2006, 16, 10-16.
[653] Thordarson, D., Hedman, T., Yetkinler, D., Eskander, E., Lawrence, T., Poser, R. Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J. Bone Joint Surg. Am. 1999, 81A, 239-246.
[654] Stankewich, C.J., Swiontkowski, M.F., Tencer, A.F., Yetkinler, D.N., Poser, R.D. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement. J. Orthop. Res. 1996, 14, 786-793.
[655] Goodman, S., Bauer, T., Carter, D., Casteleyn, P.P., Goldstein, S.A., Kyle, R.F., Larsson, S., Stankewich, C.J., Swiontkowski, M.F., Tencer, A.F., Yetkinler, D.N., Poser, R.D. Norian SRS® cement augmentation in hip fracture treatment. Clin. Orthop. Rel. Res. 1998, 348, 42-50.
[656] Bai, B., Jazrawi, L., Kummer, F., Spivak, J. The use of an injectable, biodegradable calcium orthophosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 1999, 24, 1521-1526.
[657] Ryf, C., Goldhahn, S., Radziejowski, M., Blauth, M., Hanson, B. A new injectable brushite cement: first results in distal radius and proximal tibia fractures. Eur. J. Trauma Emerg. Surg. 2009, 35, 389-396.
[658] Horstmann, W.G., Verheyen, C.C.P.M., Leemans, R. An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury 2003, 34, 141-144.
[659] Simpson, D., Keating, J.F. Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury 2004, 35, 913-918.
[660] Welch, R.D., Zhang, H., Bronson, D.G. Experimental tibial plateau fractures augmented with calcium phosphate cement or autologous bone graft. J. Bone Joint Surg. Am. 2003, 85A, 222-231.
[661] Keating, J.F., Hajducka, C.L., Harper, J. Minimal internal fixation and calcium-phosphate cement in the treatment of fractures of the tibial plateau. J. Bone Joint Surg. Br. 2003, 85B, 68-73.
[662] Yin, X., Li, J., Xu, J., Huang, Z., Rong, K., Fan, C. Clinical assessment of calcium phosphate cement to treat tibial plateau fractures. J. Biomater. Appl. 2013, 28, 199-206.
[663] Moore, D., Maitra, R., Farjo, L., Graziano, G., Goldstein, S. Restoration of pedicle screw fixation with an in situ setting calcium orthophosphate cement. Spine 1997, 22, 1696-1705.
[664] Cho, W., Wu, C., Erkan, S., Kang, M.M., Mehbod, A.A., Transfeldt, E.E. The effect on the pullout strength by the timing of pedicle screw insertion after calcium phosphate cement injection. J. Spinal Disord. Tech. 2011, 24, 116-120.
[665] Mermelstein, L.E., McLain, R.F., Yerby, S.A. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. Spine 1998, 23, 664-671.
[666] Mermelstein, L.E., Chow, L.C., Friedman, C., Crisco, J. The reinforcement of cancellous bone screws with calcium orthophosphate cement. J. Orthop. Trauma 1996, 10, 15-20.
[667] Stadelmann, V.A., Bretton, E., Terrier, A., Procter, P., Pioletti, D.P. Calcium phosphate cement augmentation of cancellous bone screws can compensate for the absence of cortical fixation. J. Biomech. 2010, 43, 2869-2874.
[668] Daculsi, G., Durand, M., Hauger, O., Seris, E., Borget, P., LeGeros, R., le Huec, J.C. Self hardening macroporous biphasic calcium phosphate bone void filler for bone reconstruction; animal study and human data. Key Eng. Mater. 2012, 493-494, 709-713.
[669] Liverneaux, P., Khallouk, R. Calcium phosphate cement in wrist arthrodesis: three cases. J. Orthop. Sci. 2006, 11, 289-293.
[670] Ooms, E.M., Wolke, J.G.C., van der Waerden, J.P.C.M., Jansen, J.A. Use of injectable calcium phosphate cement for the fixation of titanium implants: an experimental study in goats. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 66B, 447-456.
[671] Strauss, E.J., Pahk, B., Kummer, F.J., Egol, K. Calcium phosphate cement augmentation of the femoral neck defect created after dynamic hip screw removal. J. Orthop. Trauma 2007, 21, 295-300.
[672] Schildhauer, T.A., Bennett, A.P., Wright, T.M., Lane, J.M., O’Leary, P.F. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: biomechanical evaluation of a minimally invasive technique. J. Orthop. Res. 1999, 17, 67-72.
[673] Jansen, J.A., Ooms, E., Verdonschot, N., Wolke, J.G.C. Injectable calcium phosphate cement for bone repair and implant fixation. Orthop. Clin. North Am. 2005, 36, 89-95.
[674] Maestretti, G., Cremer, C., Otten, P., Jakob, R.P. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur. Spine J. 2007, 16, 601-610.
[675] van der Stok, J., Weinans, H., Kops, N., Siebelt, M., Patka, P., van Lieshout, E.M. Properties of commonly used calcium phosphate cements in trauma and orthopaedic surgery. Injury 2013, 44, 1368-1374.
[676] Hisatome, T., Yasunaga, Y., Ikuta, Y., Fujimoto, Y. Effects on articular cartilage of subchondral replacement with polymethylmethacrylate and calcium phosphate cement. J. Biomed. Mater. Res. 2002, 59, 490-498.
[677] Lim, T.H., Brebach, G.T., Renner, S.M., Kim, W.J., Kim, J.G., Lee, R.E., Andersson, G.B., An, H.S. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine 2002, 27, 1297-1302.
[678] Belkoff, S.M., Mathis, J.M., Jasper, L.E., Deramond, H. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine 2001, 26, 1542-1546.
[679] Heini, P.F., Berlemann, U., Kaufmann, M., Lippuner, K., Fankhauser, C., van Landuyt, P. Augmentation of mechanical properties in osteoporotic vertebral bones – a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur. Spine J. 2001, 10, 164-171.
[680] Tomita, S., Kin, A., Yazu, M., Abe, M. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J. Orthop. Sci. 2003, 8, 192-197.
[681] Libicher, M., Hillmeier, J., Liegibel, U., Sommer, U., Pyerin, W., Vetter, M., Meinzer, H.P., Grafe, I., Meeder, P., Nöldge, G., Nawroth, P., Kasperk, C. Osseous integration of calcium phosphate in osteoporotic vertebral fractures after kyphoplasty: initial results from a clinical and experimental pilot study. Osteoporos. Int. 2006, 17, 1208-1215.
[682] Khanna, A.J., Lee, S., Villarraga, M., Gimbel, J., Steffey, D., Schwardt, J. Biomechanical evaluation of kyphoplasty with calcium phosphate cement in a 2-functional spinal unit vertebral compression fracture model. Spine J. 2008, 8, 770-777.
[683] Zhu, X.S., Zhang, Z.M., Mao, H.Q., Geng, D.C., Wang, G.L., Gan, M.F., Yang, H.L. Biomechanics of calcium phosphate cement in vertebroplasty. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 8071-8074.
[684] Nakano, M., Hirano, N., Zukawa, M., Suzuki, K., Hirose, J., Kimura, T., Kawaguchi, Y. Vertebroplasty using calcium phosphate cement for osteoporotic vertebral fractures: Study of outcomes at a minimum follow-up of two years. Asian Spine J. 2012, 6, 34-42.
[685] Otsuka, M., Matsuda, Y., Suwa, Y., Fox, J.L., Higuchi, W.I. A novel skeletal drug-delivery system using a self-setting calcium orthophosphate cement. 3. Physicochemical properties and drug-release rate of bovine insulin and bovine albumin. J. Pharm. Sci. 1994, 83, 255-258.
[686] Bohner, M., Lemaître, J., van Landuyt, P., Zambelli, P., Merkle, H.P., Gander, B. Gentamicin-loaded hydraulic calcium orthophosphate bone cement as antibiotic delivery system. J. Pharm. Sci. 1997, 86, 565-572.
[687] Kisanuki, O., Yajima, H., Umeda, T., Takakura, Y. Experimental study of calcium phosphate cement impregnated with dideoxy-kanamycin B. J. Orthop. Sci. 2007, 12, 281-288.
[688] McNally, A., Sly, K., Lin, S., Bourges, X., Daculsi, G. Release of antibiotics from macroporous injectable calcium phosphate cement. Key Eng. Mater. 2008, 361-363, 359-362.
[689] Hofmann, M.P., Mohammed, A.R., Perrie, Y., Gbureck, U., Barralet, J.E. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta Biomater. 2009, 5, 43-49.
[690] Tamimi, F., Torres, J., Bettini, R., Ruggera, F., Rueda, C., Loìpez-Ponce, M., Cabarcos, E.L. Doxycycline sustained release from brushite cements for the treatment of periodontal diseases. J. Biomed. Mater. Res. A 2008, 85A, 707-714.
[691] Young, A.M., Ng, P.Y.J., Gbureck, U., Nazhat, S.N., Barralet, J.E., Hofmann, M.P. Characterization of chlorhexidine-releasing, fast-setting, brushite bone cements. Acta Biomater. 2008, 4, 1081-1088.
[692] Hesaraki, S., Nemati, R. Cephalexin-loaded injectable macroporous calcium phosphate bone cement. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 89B, 342-352.
[693] van Staden, A.D., Dicks, L.M.T. Calcium orthophosphate-based bone cements (CPCs): applications, antibiotic release and alternatives to antibiotics. J. Appl. Biomater. Funct. Mater. 2012, 1, 2-11.
[694] Canal, C., Pastorino, D., Mestres, G., Schuler, P., Ginebra, M.P. Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements. Acta Biomater. 2013, 9, 8403-8412.
[695] Vorndran, E., Geffers, M., Ewald, A., Lemm, M., Nies, B., Gbureck, U. Ready-to-use injectable calcium phosphate bone cement paste as drug carrier. Acta Biomater. 2013, 9, 9558-9567.
[696] Mestres, G., Kugiejko, K., Pastorino, D., Unosson, J., Öhman, C., Karlsson, O.M., Ginebra, M.P., Persson, C. Changes in the drug release pattern of fresh and set simvastatin-loaded brushite cement. Mater. Sci. Eng. C 2016, 58, 88-96.
[697] Cabrejos-Azama, J., Alkhraisat, M.H., Rueda, C., Torres, J., Pintado, C., Blanco, L., López-Cabarcos, E. Magnesium substitution in brushite cements: efficacy of a new biomaterial loaded with vancomycin for the treatment of Staphylococcus aureus infections. Mater. Sci. Eng. C 2016, 61, 72-78.
[698] Noukrati, H., Cazalbou, S., Demnati, I., Rey, C., Barroug, A., Combes, C. Injectability, microstructure and release properties of sodium fusidate-loaded apatitic cement as a local drug-delivery system. Mater. Sci. Eng. C 2016, 59, 177-184.
[699] Sakamoto, Y., Ochiai, H., Ohsugi, I., Inoue, Y., Yoshimura, Y., Kishi, K. Mechanical strength and in vitro antibiotic release profile of antibiotic-loaded calcium phosphate bone cement. J. Craniofac. Surg. 2013, 24, 1447-1450.
[700] Otsuka, M., Matsuda, Y., Suwa, Y., Fox, J.L., Higuchi, W.I. A novel skeletal drug delivery system using a self-setting calcium orthophosphate cement. 5. Drug release behavior from a heterogeneous drug-loaded cement containing an anticancer drug. J. Pharm. Sci. 1994, 83, 1565-1568.
[701] Tahara, Y., Ishii, Y. Apatite cement containing cis-diamminedichloroplatinum implanted in rabbit femur for sustained release of the anticancer drug and bone formation. J. Orthop. Sci. 2001, 6, 556-565.
[702] Tani, T., Okada, K., Takahashi, S., Suzuki, N., Shimada, Y., Itoi, E. Doxorubicin-loaded calcium phosphate cement in the management of bone and soft tissue tumors. In Vivo 2006, 20, 55-60.
[703] Tanzawa, Y., Tsuchiya, H., Shirai, T., Nishida, H., Hayashi, K., Takeuchi, A., Kawahara, M., Tomita, K. Potentiation of the antitumor effect of calcium phosphate cement containing anticancer drug and caffeine on rat osteosarcoma. J. Orthop. Sci. 2011, 16, 77-84.
[704] Otsuka, M., Matsuda, Y., Suwa, Y., Fox, J.L., Higuchi, W.I. A novel skeletal drug delivery system using a self-setting calcium orthophosphate cement. 2. Physicochemical properties and drug release rate of the cement-containing indomethacin. J. Pharm. Sci. 1994, 83, 611-615.
[705] Panzavolta, S., Torricelli, P., Bracci, B., Fini, M., Bigi, A. Alendronate and pamidronate calcium phosphate bone cements, setting properties and in vitro response of osteoblast and osteoclast cells. J. Inorg. Biochem. 2009, 103, 101-106.
[706] le Nihouannen, D., Hacking, SA., Gbureck, U., Komarova, S.V., Barralet, J.E. The use of RANKL-coated brushite cement to stimulate bone remodeling. Biomaterials 2008, 29, 3253-3259.
[707] Li, D.X., Fan, H.S., Zhu, X.D., Tan, Y.F., Xiao, W.Q., Lu, J., Xiao, Y.M., Chen, J.Y., Zhang, X.D. Controllable release of salmon-calcitonin in injectable calcium phosphate cement modified by chitosan oligosaccharide and collagen polypeptide. J. Mater. Sci. Mater. Med. 2007, 18, 2225-2231.
[708] Kamegai, A., Shimamura, N., Naitou, K., Nagahara, K., Kanematsu, N., Mori, M. Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as delivery system. Biomed. Mater. Eng. 1994, 4, 291-307.
[709] Fei, Z., Hu, Y., Wu, D., Wu, H., Lu, R., Bai, J., Song, H. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement.J. Mater. Sci. Mater. Med. 2008, 19, 1109-1116.
[710] Ruheì, P.Q., Kroese-Deutman, H.C., Wolke, J.G.C., Spauwen, P.H.M., Jansen, J.A. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 2004, 25, 2123-2132.
[711] Bodde, E.W.H., Boerman, O.C., Russel, F.G.M., Mikos, A.G., Spauwen, P.H.M., Jansen, J.A. The kinetic and biological activity of different loaded rhBMP-2 calcium phosphate cement implants in rats. J. Biomed. Mater. Res. A 2008, 87A, 780-791.
[712] Perrier, M., Lu, Y., Nemke, B., Kobayashi, H., Peterson, A., Markel, M. Acceleration of second and fourth metatarsal fracture healing with recombinant human bone morphogenetic protein-2/calcium phosphate cement in horses. Vet. Surg. 2008, 37, 648-655.
[713] Lopez-Heredia, M.A., Kamphuis, B. G.J., Thüne, P.C., Öner, C.F., Jansen, J.A., Walboomers, F.X. An injectable calcium phosphate cement for the local delivery of paclitaxel to bone. Biomaterials 2011, 32, 5411-5416.
[714] Schnitzler, V., Fayon, F., Despas, C., Khairoun, I., Mellier, C., Rouillon, T., Massiot, D., Walcarius, A., Janvier, P., Gauthier, O., Montavon, G., Bouler, J.M., Bujoli, B. Investigation of alendronate-doped apatitic cements as a potential technology for the prevention of osteoporotic hip fractures: critical influence of the drug introduction mode on the in vitro cement properties. Acta Biomater. 2011, 7, 759-770.
[715] Irbe, Z., Loca, D., Vempere, D., Berzina-Cimdina, L. Controlled release of local anesthetic from calcium phosphate bone cements. Mater. Sci. Eng. C 2012, 32, 1690-1694.
[716] Thein-Han, W., Liu, J., Xu, H.H.K. Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent. Mater. 2012, 28, 1059-1070.
[717] Otsuka, M., Hamada, H., Otsuka, K., Ohshima, H. Dissolution medium responsive simvastatin release from biodegradable apatite cements drug delivery system, –the therapeutically effect and their histology in osteoporosis rats. Key Eng. Mater. 2012, 493-494, 684-688.
[718] Ko, C.L., Chen, W.C., Chen, J.C., Wang, Y.H., Shih, C.J., Tyan, Y.C., Hung, C.C., Wang, J.C. Properties of osteoconductive biomaterials: calcium phosphate cement with different ratios of platelet-rich plasma as identifiers. Mater. Sci. Eng. C 2013, 33, 3537-3544.
[719] Forouzandeh, A., Hesaraki, S., Zamanian, A. The releasing behavior and in vitro osteoinductive evaluations of dexamethasone-loaded porous calcium phosphate cements. Ceram. Int. 2014, 40, 1081-1091.
[720] Perez, R.A., Kim, T.H., Kim, M., Jang, J.H., Ginebra, M.P., Kim, H.W. Calcium phosphate cements loaded with basic fibroblast growth factor: delivery and in vitro cell response. J. Biomed. Mater. Res. A 2013, 101A, 923-931.
[721] Mestres, G., Santos, C.F., Engman, L., Persson, C., Ott, M.K. Scavenging effect of Trolox released from brushite cements. Acta Biomater. 2015, 11, 459-466.
[722] Akkineni, A.R., Luo, Y., Schumacher, M., Nies, B., Lode, A., Gelinsky, M.3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 2015, 27, 264-274.
[723] Meraw, S.J., Reeve, C.M., Lohse, C.M., Sioussat, T.M. Treatment of perimplant defects with combination growth factor cement. J. Periodont. 2000, 71, 8-13.
[724] Liu, H., Zang, X.F., Zhao, Z.P., Wang, J.L., Mi, L. Co-transplantation of exogenous nerve growth factor and calcium phosphate cement composite for repairing rabbit radial bone defects. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 8037-8041.
[725] Qu, X.Y., Jiang, D.M., Li, M., Zhang, D.W., Qin, J.Q., Liu, C.K. Deproteinized osteoarticular allografts integrated with calcium phosphate cement and recombinant human vascular endothelial cell growth factor plus recombinant human bone morphogenetic protein-2, an immunological study. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 8067-8070.
[726] Yu, T., Ye, J., Gao, C., Yu, L., Wang, Y. Synthesis and drug delivery property of calcium phosphate cement with special crystal morphology. J. Am. Ceram. Soc. 2010, 93, 1241-1244.
[727] Stallmann, H.P., de Roo, R., Faber, C., Amerongen, A.V, N., Wuisman, P.I.J.M. In vivo release of the antimicrobial peptide hLFi-11 from calcium phosphate cement. J. Orthop. Res. 2008, 26, 531-538.
[728] Sasaki, T., Ishibashi, Y., Katano, H., Nagumo, A., Toh, S. In vitro elution of vancomycin from calcium phosphate cement. J. Arthroplasty 2005, 20, 1055-1059.
[729] Gbureck, U., Vorndran, E., Muller, F.A., Barralet, J.E. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J. Control. Release 2007, 122, 173-180.
[730] Alkhraisat, M.H., Rueda, C., Cabrejos-Azama, J., Lucas-Aparicio, J., Mariño, F.T., García-Denche, J.T., Jerez, L.B., Gbureck, U., Cabarcos, E.L. Loading and release of doxycycline hyclate from strontium-substituted calcium phosphate cement. Acta Biomater. 2010, 6, 1522-1528.
[731] Blom, E.J., Klein-Nulend, J., Wolke, J.G.C., van Waas, M.A.J., Driessens, F.C.M., Burger, E.H. Transforming growth factor-β1 incorporation in a calcium phosphate bone cement, Material properties and release characteristics. J. Biomed. Mater. Res. 2002, 59, 265-272.
[732] Blom, E.J., Klein-Nulend, J., Yin, L., van Waas, M.A.J., Burger, E.H. Transforming growth factor-β1 incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clin. Oral Implants Res. 2001, 12, 609-616.
[733] Link, D.P., van den Dolder, J., van den Beucken, J.J., Wolke, J.G.C., Mikos, A.G., Jansen, J.A. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1 loaded gelatin microparticles. Biomaterials 2008, 29, 675-682.
[734] Habraken, W.J.E.M., Boerman, O.C., Wolke, J.G.C., Mikos, A.G., Jansen, J.A. In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres. J. Biomed. Mater. Res. A 2009, 91A, 614-622.
[735] Ruhé, P.Q., Boerman, O.C., Russel, F.G.M., Mikos, A.G., Spauwen, P.H.M., Jansen, J.A. In vivorelease of rhBMP-2 loaded porous calcium phosphate cement pretreated with albumin. J. Mater. Sci. Mater. Med. 2006, 17, 919-927.
[736] Naito, K., Obayashi, O., Mogami, A., Itoi, A., Kaneko, K. Fracture of the calcium phosphate bone cement which used to enchondroma of the hand, a case report. Eur.J. Orthop. Surg. Traumatol. 2008, 18, 405-408.
[737] Hemmati, K., Hesaraki, S., Nemati, A. Evaluation of ascorbic acid-loaded calcium phosphate bone cements: physical properties and in vitro release behavior. Ceram. Int. 2014, 40, 3961-3968.
[738] Ito, T., Koyama, Y., Otsuka, M. DNA complex-releasing system by injectable self-setting apatite cement. J. Gene Med. 2012, 14, 251-261.
[739] Blattert, T.R., Delling, G., Weckbach, A. Evaluation of an injectable calcium phosphate cement as an autograft substitute for transpedicular lumbar interbody fusion: a controlled, prospective study in the sheep model. Eur. Spine J. 2003, 12, 216 -223.
[740] Cavalcanti, S.C., Santos, S.C., Pereira, C.L., Mazzonetto, R., de Moraes, M., Moreira, R.W.F. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J. Cran. Maxillofac. Surg. 2008, 36, 354-359.
[741] Sanchez-Sotelo, J., Munuera, L., Madero, R. Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS®. J. Bone Joint Surg. Br. 2000, 82B, 856-863.
[742] Lobenhoffer, P., Gerich, T., Witte, F., Tscherne, H. Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J. Orthop. Trauma 2002, 16, 143-149.
[743] Cassidy, C., Jupiter, J.B., Cohen, M., Delli-Santi, M., Fennell, C., Leinberry, C., Husband, J., Ladd, A., Seitz, W.R., Constantz, B.R. Norian SRS® cement compared with conventional fixation in distal radial fractures, a randomized study. J. Bone Joint Surg. Am. 2003, 85A, 2127-2137.
[744] Schmidt, R., Cakir, B., Mattes, T., Wegener, M., Puhl, W., Richter, M. Cement leakage during vertebroplasty, an underestimated problem? Eur. Spine J. 2005, 14, 466-473.
[745] Vlad, M.D., Torres, R., López, J., Barracó, M., Moreno, J.A., Fernández, E. Does mixing affect the setting of injectable bone cement? An ultrasound study. J. Mater. Sci. Mater. Med. 2007, 18, 347-352.
[746] Krebs, J., Aebli, N., Goss, B.G., Sugiyama, S., Bardyn, T., Boecken, I., Leamy, P.J., Ferguson, S.J. Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 526-532.
[747] Poetker, D.M., Pytynia, K.B., Meyer, G.A., Wackym, P.A. Complication rate of transtemporal hydroxyapatite cement cranioplasties: a case series review of 76 cranioplasties. Otol. Neurotol. 2004, 25, 604-609.
[748] Ridenour, J.S., Poe, D.S., Roberson, D.W. Complications with hydroxyapatite cement in mastoid cavity obliteration. Otolaryngol. Head Neck Surg. 2008, 139, 641-645.
[749] Mizowaki, T., Miyake, S., Yoshimoto, Y., Matsuura, Y., Akiyama, S. Allergy of calcium phosphate cement material following skull reconstruction: a case report. Neurol. Surg. 2013, 41, 323-327.
[750] Gaskin, J.A., Murphy, J., Marshall, A.H. Complications of hydroxyapatite bone cement use in cochlear implantation? Cochlear Implants Int. 2013, 14, 174-177.
[751] Russell, T.A., Leighton, R.K. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J. Bone Joint Surg. Am. 2008, 90A, 2057-2061.
[752] Dickson, K.F., Friedman, J., Buchholz, J.G., Flandry, F.D. The use of BoneSourceTM hydroxyapatite cement for traumatic metaphyseal bone void filling. J. Trauma 2002, 53, 1103-1108.
[753] Jungbluth, P., Hakimi, M., Grassmann, J.P., Schneppendahl, J., Kessner, A., Sager, M., Hakimi, A.R., Becker, J., Windolf, J., Wild, M. The progress of early phase bone healing using porous granules produced from calcium phosphate cement. Eur. J. Med. Res. 2010, 15, 196-203.
[754] Bongio, M., van den Beucken, J.J., Leeuwenburgh, S.C., Jansen, J.A. Preclinical evaluation of injectable bone substitutematerials. J. Tissue Eng. Regen. Med. 2015, 9, 191-209.
[755] Lopez, M.S.P., Tamimi, F., Lopez-Cabarcos, E., Lopez-Ruiz, B. Highly sensitive amperometric biosensor based on a biocompatible calcium phosphate cement. Biosens. Bioelectron. 2009, 24, 2574-2579.
[756] Lopez, M.S.P., Lopez-Ruiz, B. A sensitive glucose biosensor based on brushite, a biocompatible cement. Electroanalysis 2011, 23, 280-286.
[757] Yoshikawa, T., Suwa, Y., Ohgushi, H., Tamai, S., Ichijima, K. Self-setting hydroxyapatite cement as a carrier for bone-forming cells. Biomed. Mater. Eng. 1996, 6, 345-351.
[758] Simon, Jr. C.G., Guthrie, W.F., Wang, F.W. Cell seeding into calcium phosphate cement. J. Biomed. Mater. Res. A 2004, 68A, 628-639.
[759] Xu, H.H.K., Weir, M.D., Simon, Jr. C.G. Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent. Mater. 2008, 24, 1212-1222.
[760] Lemaître, J., Pittet, C., Brendlen, D. Pasty or liquid multiple constituent compositions for injectable calcium phosphate cements. US Patent No. 7407542, May 8, 2008.
[761] Chow, L.C., Takagi, S. Dual-phase cement precursor systems for bone repair. US Patent Application No. 20070092580, April 26, 2007.
[762] Heinemann, S., Rössler, S., Lemm, M., Ruhnow, M., Nies, B. Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid. Acta Biomater. 2013, 9, 6199-6207.
[763] Bohner, M., Tiainen, H., Michel, P., Döbelin, N. Design of an inorganic dual-paste apatite cement using cation exchange.J. Mater. Sci. Mater. Med. 2015, 26, 63.
[764] Takagi, S., Chow, L.C., Hirayama, S., Sugawara, A. Premixed calcium phosphate cement pastes. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 67B, 689-696.
[765] Carey, L.E., Xu, H.H.K., Simon, Jr. C.G., Takagi, S., Chow, L.C. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005, 26, 5002-5014.
[766] Xu, H.H.K., Carey, L.E., Simon, Jr. C.G., Takagi, S., Chow, L.C. Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity. Dent. Mater. 2007, 23, 433-441.
[767] Shimada, Y., Chow, L.C., Takagi, S., Tagami, J. Properties of injectable apatite-forming premixed cements. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 233-241.
[768] Sugawara, A., Fujikawa, K., Hirayama, S., Takagi, S., Chow, L.C. In vivo characteristics of premixed calcium phosphate cements when implanted in subcutaneous tissues and periodontal bone defects. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 277-290.
[769] Rajzer, I., Castaño, O., Engel, E., Planell, J.A. Injectable and fast resorbable calcium phosphate cement for body-setting bone grafts. J. Mater. Sci. Mater. Med. 2010, 21, 2049-2056.
[770] Wu, F., Ngothai, Y., Wei, J., Liu, C., O’Neill, B., Wu, Y. Premixed, injectable PLA-modified calcium deficient apatite biocement (cd-AB) with washout resistance. Colloids Surf. B 2012, 92, 113-120.
[771] Chen, F., Mao, Y., Liu, C. Premixed injectable calcium phosphate cement with excellent suspension stability. J. Mater. Sci. Mater. Med. 2013, 24, 1627-1637.
[772] Irbe, Z., Krieke, G., Salma-Ancane, K., Berzina-Cimdina, L. Fast setting pre-mixed calcium phosphate bone cements based on α-tricalcium phosphate. Key Eng. Mater. 2014, 604,204-207.
[773] Han, B., Ma, P.W., Zhang, L.L., Yin, Y.J., Yao, K.D., Zhang, F.J., Zhang. Y.D., Li, X.L., Nie, W. β-TCP/MCPM-based premixed calcium phosphate cements. Acta Biomater. 2009, 5, 3165-3177.
[774] Chow LC, Takagi S. Premixed self-hardening bone graft pastes. US Patent Application No. 20060263443, November 23, 2006.
[775] Aberg, J., Henriksson, H.B., Engqvist, H., Palmquist, A., Lindahl, A., Thomsen, P., Brisby, H. In vitro and in vivo evaluation of an injectable premixed calcium phosphate cement; cell viability and immunological response from rat. Int. J. Nano Biomater. 2011, 3, 203-221.
[776] Engstrand, J., Åberg, J., Engqvist, H. Influence of water content on hardening and handling of a premixed calcium phosphate cement. Mater. Sci. Eng. C 2013, 33, 527-531.
[777] Åberg, J., Engstrand, J., Engqvist, H. Influence of particle size on hardening and handling of a premixed calcium phosphate cement. J. Mater. Sci. Mater. Med. 2013, 24, 829-835.
[778] Montazerolghaem, M., Ott, M.K. Sustained release of simvastatin from premixed injectable calcium phosphate cement. J. Biomed. Mater. Res. A 2014, 102A, 340-347.
[779] Akashi, A., Matsuya, Y., Unemori, M., Akamine, A. Release profile of antimicrobial agents from α-tricalcium phosphate cement. Biomaterials 2001, 22, 2713-2717.
[780] Ewald, A., Hösel, D., Patel, S., Grover, L.M., Barralet, J.E., Gbureck, U. Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomater. 2011, 7, 4064-4070.
[781] Dorozhkin, S.V. Multiphasic calciumorthophosphate(CaPO4) bioceramicsand theirbiomedicalapplications. Ceram. Int. 2016, 42, 6529-6554.
[782] Bohner, M. Calcium phosphate emulsions: possible applications. Key Eng. Mater. 2001, 192-195, 765-768.
[783] Troczynski, T. A concrete solution. Nat. Mater. 2004, 3, 13-14.
[784] Xu, H.H.K., Takagi, S., Quinn, J.B., Chow, L.C. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J. Biomed. Mater. Res. A 2004, 68A, 725-734.
[785] Ginebra, M.P., Rilliard, A., Fernández, E., Elvira, C., san Roman, J., Planell, J.A. Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug. J. Biomed. Mater. Res. 2001, 57, 113-118.
[786] García-Fernández, L., Halstenberg, S., Unger, R.E., Aguilar, M.R., Kirkpatrick, C.J., san Román, J. Anti-angiogenic activity of heparin-like polysulfonated polymeric drugs in 3D human cell culture. Biomaterials 2010, 31, 7863-7872.
[787] Xu, H.H.K., Burguera, E.F., Carey, L.E. Strong, macroporous and in situ-setting calcium phosphate cement-layered structures. Biomaterials 2007, 28, 3786-3796.
[788] Andriotis, O., Katsamenis, O.L., Mouzakis, D.E., Bouropoulos, N. Preparation and characterization of bioceramics produced from calcium phosphate cements. Cryst. Res. Technol. 2010, 45, 239-243.
[789] Gbureck, U., Hozel, T., Klammert, U., Wurzler, K., Muller, F.A., Barralet, J.E. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 2007, 17, 3940-3945.
[790] Habibovic, P., Gbureck, U., Doillon, C.J., Bassett, D.C., van Blitterswijk, C.A., Barralet, J.E. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 2008, 29, 944-953.
[791] Lode, A., Meissner, K., Luo, Y., Sonntag, F., Glorius, S., Nies, B., Vater, C., Despang, F., Hanke, T., Gelinsky, M. Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J. Tissue Eng. Regen. Med. 2014, 8, 682-693.
[792] Steffen, T., Stoll, T., Arvinte, T., Schenk, R.K. Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery. Eur. Spine J. 2001, 10, S132-S140.
[793] Guo, H., Su, J., Wei, J., Kong, H., Liu, C. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater. 2009, 5, 268-278.
[794] Guo, H., Wei, J., Kong, H., Liu, C., Pan, K. Biocompatibility and osteogenesis of calcium phosphate cement scaffolds for bone tissue engineering. Adv. Mater. Res. 2008, 47-50, 1383-1386.
[795] Park, J.H., Lee, G.S., Shin, U.S., Kim, H.W. Self-hardening microspheres of calcium phosphate cement with collagen for drug delivery and tissue engineering in bone repair. J. Am. Ceram. Soc. 2011, 94, 351-354.
[796] Moseke, C., Bayer, C., Vorndran, E., Barralet, J.E., Groll, J., Gbureck, U. Low temperature fabrication of spherical brushite granules by cement paste emulsion. J. Mater. Sci. Mater. Med. 2012, 23, 2631-2637.
[797] Weir, M.D., Xu, H.H.K., Simon, Jr. C.G. Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering. J. Biomed. Mater. Res. A 2006, 77A, 487-496.
[798] Xu, J.H., Tan, W.Q., Lin, J. Repair of madibular bone defect by combining calcium phosphate cement with bone morphogenetic protein composite as a bone graft material. Chin. J. Biomed. Eng. 2007, 26, 153-156.
[799] Niikura, T., Tsujimoto, K., Yoshiya, S., Tadokoro, K., Kurosaka, M., Shiba, R. Vancomycin-impregnated calcium phosphate cement for methicillin-resistant staphylococcus aureus femoral osteomyelitis. Orthopedics 2007, 30, 320-321.
[800] Lode, A., Wolf-Brandstetter, C., Reinstorf, A., Bernhardt, A., König, U. Pompe, W., Gelinsky, M. Calcium phosphate bone cements, functionalized with VEGF: release kinetics and biological activity. J. Biomed. Mater. Res. A 2007, 81A, 474-483.
[801] Yoshikawa, M., Toda, T. In vivo estimation of periapical bone reconstruction by chondroitin sulfate in calcium phosphate cement. J. Eur. Ceram. Soc. 2004, 24, 521-531.
[802] Wang, J.L., Mi, L., Hou, G.H., Zheng, Z. Repair of radial defects using calcium phosphate cements/poly lactic-co-glycolic acid materials combined with mesenchymal stem cells in rabbits. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 8001-8005.
[803] Zhao, L., Weir, M.D., Xu, H.H.K. Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering. Biomaterials 2010, 31, 3848-3857.
[804] Ding, T., Yang, H., Maltenfort, M., Xie, R. Silk fibroin added to calcium phosphate cement to prevent severe cardiovascular complications. Case Reports Clin. Pract. Rev. 2010, 16, 23-26.
[805] Panzavolta, S., Torricelli, P., Bracci, B., Fini, M., Bigi, A. Functionalization of biomimetic calcium phosphate bone cements with alendronate. J. Inorg. Biochem. 2010, 104, 1099-1106.
[806] Xu, H.H.K., Zhao, L., Detamore, M.S., Takagi, S., Chow, L.C. Umbilical cord stem cell seeding on fast-resorbable calcium phosphate bone cement. Tiss. Eng. A 2010, 16, 2743-2753.
[807] Li, M., Liu, X., Liu, X., Ge, B. Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: a pilot study. Clin. Orthop. Rel. Res. 2010, 468, 1978-1985.
[808] Weir, M.D., Xu, H.H.K. Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair. Acta Biomater. 2010, 6, 4118-4126.
[809] Chen, W., Zhou, H., Tang, M., Weir, M.D., Bao, C., Xu, H.H.K. Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tiss. Eng. A 2012, 18, 816-827.
[810] Wang, P., Zhao, L., Chen, W., Liu, X., Weir, M.D., Xu, H.H.K. Stem cells and calcium phosphate cement scaffolds for bone regeneration.J. Dent. Res. 2014, 93, 618-625.
[811] Perez, R.A., Shin, S.H., Han, C.M., Kim, H.W. Bone-bioactive injectables based on calcium phosphates for the delivery of drugs and cells in hard tissue engineering: a recent update. Tiss. Eng. Reg. Med. 2015, 12, 1-12.
[812] Zhao, L., Weir, M.D., Xu, H.H.K. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 2010, 31, 6502-6510.
[813] dos Santos, L.A., Carrodéguas, R.G., Rogero, S.O., Higa, O.Z., Boschi, A.O., de Arruda A.C. Alpha-tricalcium phosphate cement: “in vitro” cytotoxicity. Biomaterials 2002, 23, 2035-2042.
[814] Baroud, G., Steffen, T. A new cannula to ease cement injection during vertebroplasty. Eur. Spine J. 2005, 14, 474-479.
[815] Joseph, C., Gardner, D., Jefferson, T., Isaacs, B., Lark, B. Self-healing cementitious materials: a review of recent work. Proc. Inst. Civil Eng. Constr. Mater. 2011, 164, 29-41.
[816] Wu, M., Johannesson, B., Geiker, M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 2012, 28, 571-583.
[817] Mihashi, H., Nishiwaki, T. Development of engineered self-healing and self-repairing concrete – state-of-the-art report. J. Adv. Concrete Technol. 2012, 10, 170-184.
[818] van Tittelboom, K., de Belie, N. Self-healing in cementitious materials – a review. Materials 2013, 6, 2182-2217.
[819] Zhang, J., Liu, W., Schnitzler, V., Tancret, F., Bouler, J.M. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater. 2014, 10, 1035-1049.
[820] Anderson, J.M. The future of biomedical materials. J. Mater. Sci. Mater. Med. 2006, 17, 1025-1028.
Part III
[1] McConnell, D. Apatite: its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. Applied Mineralogy, Vol. 5. Springer-Verlag: Vienna and New York, USA, 1973; 111 pp.
[2] Aoki, H. Science and medical applications of hydroxyapatite. JAAS:Tokyo, Japan, 1991; 245 pp.
[3] Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry, Vol. 18; Elsevier: Amsterdam, Netherlands, 1994; 389 pp.
[4] LeGeros, R.Z. Calcium phosphates in oral biology and medicine. Monographs in Oral Science. Vol. 15. Karger, Basel, 1991, 201 pp.
[5] Dorozhkin, S.V. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford, Singapore, 2012, 850 pp.
[6] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016, 405 pp.
[7] Dorozhkin, S.V. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J. Funct. Biomater. 2015, 6, 708-832.
[8] March, J. March’s advanced organic chemistry: reactions, mechanisms, and structure. 5th Ed. Wiley, New York, 2001; 2083 pp.
[9] Nancollas, G.H. Physicochemistry of demineralization and remineralization. J. Dent. Res. 1974, 53, 297-302.
[10] Wu, M.S., Higuchi, W.I., Fox, J.L., Friedman, M. Kinetics and mechanism of hydroxyapatite crystal dissolution in weak acid buffers using the rotating disk method. J. Dent. Res. 1976, 55, 496-505.
[11] Smith, A.N., Posner, A.M., Quirk, J.P. A model describing the kinetics of dissolution of hydroxyapatite. J. Colloid Interf. Sci. 1977, 62, 475-494.
[12] Okazaki, M., Moriwaki, Y., Aoba, T., Doi, Y., Takahashi, J. Dissolution rate behavior of fluoridated apatite pellets. J. Dent. Res. 1981, 60, 1907-1911.
[13] Crommelin, D.J., Higuchi, W.I., Fox, J.L. Dissolution rate behavior of hydroxyapatite-fluorapatite mixtures. Caries Res. 1983, 17, 289-296.
[14] Nelson, D.G.A., Featherstone, J.D.B., Duncan, J.F., Cutress, T.W. Effect of carbonate and fluoride on the dissolution behaviour of synthetic apatites. Caries Res. 1983, 17, 200-211.
[15] Higuchi, W.I., Cesar, E.Y., Cho, P.W., Fox, J.L. Powder suspension method for critically re-examining the two-site model for hydroxyapatite dissolution kinetics. J. Pharm. Sci. 1984, 73, 146-153.
[16] Budz, J.A., LoRe, M., Nancollas, G.H. Hydroxyapatite and carbonated apatite as models for the dissolution behavior of human dental enamel. Adv. Dent. Res. 1987, 1, 314-321.
[17] Wong, L., Cutress, T.W., Duncan, J.F. The influence of incorporated and adsorbed fluoride on the dissolution of powdered and pelletized hydroxyapatite in fluoridated and non-fluoridated acid buffers. J. Dent. Res. 1987, 66, 1735-1741.
[18] Budz, J.A., Nancollas, G.H. The mechanism of dissolution of hydroxyapatite and carbonated apatite in acidic solutions.J. Cryst. Growth 1988, 91, 490-496.
[19] Thomann, J.M., Voegel, J.C., Gramain, P. Kinetics of dissolution of calcium hydroxyapatite powder. III: pH and sample conditioning effects. Calcif. Tiss. Int. 1990, 46, 121-129.
[20] Chin, K.O.A., Nancollas, G.H. Dissolution of fluorapatite. A constant-composition kinetics study. Langmuir 1991, 7, 2175-2179.
[21] Margolis, H.C., Moreno, E.C. Kinetics of hydroxyapatite dissolution in acetic, lactic, and phosphoric acid solutions. Calcif. Tiss. Int. 1992, 50, 137-143.
[22] Paschalis, E.P., Wikiel, K., Nancollas, G.H. Dual constant composition kinetics characterization of apatitic surfaces.J. Biomed. Mater. Res. 1994, 28, 1411-1418.
[23] Calmanovici, C.E., Gilot, B., Laguerie, C. Mechanism and kinetics for the dissolution of apatitic materials in acid solutions. Brazilian J. Chem. Eng. 1997, 14, 95-102.
[24] Mohammadi, Z., Ziaei-Moayyed, A.A., Sheikh-Mehdi, M.A. In vitro dissolution of plasma-sprayed hydroxyapatite coatings with different characteristics: experimental study and modeling. Biomed. Mater. 2008, 3, 015006 (7 pages).
[25] van der Sluis, S., Meszaros, Y., Marchee, W.G.J., Wesselingh, H.A., van Rosmalen, G.M. The digestion of phosphate ore in phosphoric acid. Ind. Eng. Chem. Res. 1987, 26, 2501-2505.
[26] Dobrydnev, S.V., Pochitalkina, S.A., Bogach, V.V., Beskov, V.S. Ionometric study of the kinetics of acid decomposition of fluorapatite. Russ. J. Appl. Chem. 2001, 74, 1627-1630.
[27] Dobrydnev, S.V., Beskov, V.S., Bogach, V.V., Pochitalkina, I.A. Ionometric study of the acid decomposition of phosphate minerals. Theoret. Found. Chem. Eng.2001, 35, 292-297.
[28] Dobrydnev, S.V., Bogach, V.V., Beskov, V.S. Analysis of the mass transfer in acid decomposition of phosphorus-containing raw material. Theoret. Found. Chem. Eng.2003, 37, 601-605.
[29] Dobrydnev, S.V., Bogach, V.V., Kol’tsova, E.M., Beskov, V.S. Effect of the charge of solid particles on the activation energy of acid decomposition of phosphorus-containing raw material. Theoret. Found. Chem. Eng. 2005, 39, 415-418.
[30] Brahim, K., Antar, K., Khattech, I., Jemal, M. Effect of temperature on the attack of fluorapatite by a phosphoric acid solution. Sci. Res. Essay 2008, 3, 035-039.
[31] Zendah, H., Khattech, I., Jemal, M. Thermochemical and kinetic studies of the acid attack of “B” type carbonatefluorapatites at different temperatures (25–55)°C. Thermochim. Acta 2013, 565, 46-51.
[32] Fawzi, M.B., Fox, J.L., Dedhiya, M.G., Higuchi, W.I., Hefferren, J.J. A possible second site for hydroxyapatite dissolution in acidic media.J. Colloid Interf. Sci. 1978, 67, 304-311.
[33] Fox, J.L., Higuchi, W.I., Fawzi, M.B., Wu, M.S. A new two-site model for hydroxyapatite dissolution in acidic media. J. Colloid Interf. Sci. 1978, 67, 312-330.
[34] Griffith, E.N., Katdare, A., Fox, J.L., Higuchi, W.I. Transmission electron microscopic confirmation of the morphological predictions of the two-site model for hydroxyapatite dissolution. J. Colloid Interf. Sci. 1978, 67, 331-335.
[35] Ehrlich, H., Koutsoukos, P.G., Demadis, K.D., Pokrovsky, O.S. Principles of demineralization: modern strategies for the isolation of organic frameworks. Part II. Decalcification. Micron 2009, 40, 169-193.
[36] Chow, L.C. Response to Dr. E.I.F. Pearce’s letter to the Editor. J. Dent. Res. 1988, 67, 1058-1059.
[37] Tomson, M.B., Nancollas, G.H. Mineralization kinetics: a constant composition approach. Science 1978, 200, 1059-1060.
[38] Tang, R., Henneman, Z.J., Nancollas, G.H. Constant composition kinetics study of carbonated apatite dissolution. J. Cryst. Growth 2003, 249, 614-624.
[39] Tang, R., Hass, M., Wu, W., Gulde, S., Nancollas, G.H. Constant composition dissolution of mixed phases. II. Selective dissolution of calcium phosphates. J. Colloid Interf. Sci. 2003, 260, 379-384.
[40] Ebrahimpour, A., Zhang, J., Nancollas, G.H. Dual constant composition method and its application to studies of phase transformation and crystallization of mixed phases. J. Cryst. Growth 1991, 113, 83-91.
[41] Chow, L.C., Markovic, M., Takagi, S. A dual constant-composition titration system as an in vitro resorption model for comparing dissolution rates of calcium phosphate biomaterials.J. Biomed. Mater. Res. B Appl. Biomater. 2003, 65B, 245-251.
[42] Guidry, M.W., Mackenzie, F.T. Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim. Cosmochim. Acta 2003, 67, 2949-2963.
[43] Tang, R., Nancollas, G.H., Orme, C.A. Mechanism of dissolution of sparingly soluble electrolytes. J. Am. Chem. Soc. 2001, 123, 5437-5443.
[44] Tang, R., Wang, L., Orme, C.A., Bonstein, T., Bush, P.J., Nancollas, G.H. Dissolution at the nanoscale: self-preservation of biominerals. Angew. Chem. Int.Ed. 2004, 43, 2697-2701.
[45] Tang, R., Wang, L., Nancollas, G.H. Size-effects in the dissolution of hydroxyapatite: an understanding of biological demineralization. J. Mater. Chem. 2004, 14, 2341-2346.
[46] Tang, R., Orme, C.A., Nancollas, G.H. Dissolution of crystallites: surface energetic control and size effects. ChemPhysChem 2004, 5, 688-696.
[47] Wang, L.J., Tang, R., Bonstein, T., Bush, P., Nancollas, G.H. Enamel demineralization in primary and permanent teeth. J. Dent. Res. 2006, 85, 359-363.
[48] Wang, L.J., Nancollas, G.H. Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 2008, 108, 4628-4669.
[49] Wang, L.J., Nancollas, G.H. Pathways to biomineralization and biodemineralization of calcium phosphates: the thermodynamic and kinetic controls. Dalton Trans. 2009, 2665-2672.
[50] Wang, L.J., Nancollas, G.H. Dynamics of biomineralization and biodemineralization. Met. Ions Life Sci. 2010, 4, 413-456.
[51] Mafeì, S., Manzanares, J.A., Reiss, H., Thomann, J.M., Gramain, P. Model for the dissolution of calcium hydroxyapatite powder. J. Phys. Chem.1992, 96, 861-866.
[52] Gasser, P., Voegel, J.C., Gramain, P. Surface reactions on hydroxyapatite in the presence of fluoride ions. 1. Saturated and congruent conditions. Coll. Surf. A 1993, 74, 275-286.
[53] Thomann, J.M., Voegel, J.C., Gramain, P. Quantitative model for the dissolution of calcium hydroxyapatite with a permselective ionic interface. J. Colloid Interf. Sci.1993, 157, 369-374.
[54] Gasser, P., Haikel, Y., Voegel, J.C., Gramain, P. Surface reactions of hydroxyapatite in the presence of fluoride ions. 2. Effects of calcium and phosphate in saturated solutions. Coll. Surf. A 1994, 88, 157-168.
[55] Schaad, P., Poumier, F., Voegel, J.C., Gramain, P. Analysis of calcium hydroxyapatite dissolution in non-stoichiometric solutions. Coll. Surf. A 1997, 121, 217-228.
[56] Wei, C., Zhu, Y., Yang, F., Li, J., Zhu, Z., Zhu, H. Dissolution and solubility of hydroxylapatite andfluorapatite at 25°C at different pH. Res. J. Chem. Environ. 2013, 17, 57-61.
[57] Pan, H.B., Darvell, B.W. Calcium phosphate solubility: the need for re-evaluation. Cryst. Growth Des. 2009, 9, 639-645.
[58] Christoffersen, J., Christoffersen, M.R., Kjaergaard, N. The kinetics of dissolution of calcium hydroxyapatite in water at constant pH. J. Cryst. Growth1978, 43, 501-511.
[59] Christoffersen, J. Kinetics of dissolution of calcium hydroxypatite. III. Nucleation-controlled dissolution of a polydisperse sample of crystals. J. Cryst. Growth1980, 49, 29-44.
[60] Christoffersen, J. Dissolution of calcium hydroxyapatite. Calcif. Tiss. Int.1981, 33, 557-560.
[61] Christoffersen, J., Christoffersen, M.R. Kinetics of dissolution of calcium hydroxyapatite. V. The acidity constant for the hydrogen phosphate surface complex. J. Cryst. Growth1982, 57, 21-26.
[62] Christoffersen, M.R., Christoffersen, J. Possible mechanisms for the growth of the biomaterial, calcium hydroxyapatite microcrystals. J. Cryst. Growth1992, 121, 617-630.
[63] Christoffersen, J., Christoffersen, M.R., Johansen, T. Kinetics of growth and dissolution of fluorapatite. J. Cryst. Growth1996, 163, 295-303.
[64] Christoffersen, J., Christoffersen, M.R., Johansen, T. Some new aspects of surface nucleation applied to the growth and dissolution of fluorapatite and hydroxyapatite. J. Cryst. Growth1996, 163, 304-310.
[65] Christoffersen, J., Dohrup, J., Christoffersen, M.R. The importance of formation of hydroxyl ions by dissociation of trapped water molecules for growth of calcium hydroxyapatite crystals. J. Cryst. Growth1998, 186, 275-282.
[66] Christoffersen, M.R., Dohrup, J., Christoffersen, J. Kinetics of growth and dissolution of calcium hydroxyapatite in suspensions with variable calcium to phosphate ratio. J. Cryst. Growth1998, 186, 283-290.
[67] Zhang, H., Li, S., Yan, Y. Dissolution behavior of hydroxyapatite powder in hydrothermal solution. Ceram. Int. 2001, 27, 451-454.
[68] Gilmer, G.H., Bennema, P. Simulation of crystal growth with surface diffusion. J. Appl. Phys.1972, 43, 1347-1360.
[69] Onuma, K, Ito, A, Tateishi, T, Kameyama, T. Growth kinetics of hydroxyapatite crystal revealed by atomic force microscopy. J. Cryst. Growth1995, 154, 118-125.
[70] Onuma, K., Ito, A., Tateishi, T. Investigation of a growth unit of hydroxyapatite crystal from the measurements of step kinetics. J. Cryst. Growth1996, 167, 773-776.
[71] Zhu, Y., Zhang, X., Chen, Y., Xie, Q., Lan, J., Qian, M., He, N. A comparative study on the dissolution and solubility of hydroxylapatite and fluorapatite at 25ºC and 45°C. Chem. Geol. 2009, 268, 89-96.
[72] Kukura, M., Bell, L.C., Posner, A.M., Quirk, J.P. Radioisotope determination of the surface concentrations of calcium and phosphorus on hydroxyapatite in aqueous solution. J. Phys. Chem. 1972, 76, 900-904.
[73] Somasundaran, P. Zeta potential of apatite in aqueous solutions and its change during equilibration. J. Colloid Interf. Sci. 1968, 27, 659-666.
[74] Bell, L.C., Posner, A.M., Quirk, J.P. Surface charge characteristics of hydroxyapatite and fluorapatite. Nature 1972, 239, 515-517.
[75] Bell, L.C., Posner, A.M., Quirk, J.P. The point of zero charge of hydroxyapatite and fluorapatite in aqueous solutions. J. Colloid Interf. Sci. 1973, 42, 250-261.
[76] Moreno, E.C., Gregory, T.M., Brown, W.E. Preparation and solubility of hydroxyapatite. J. Res. Natl. Bur. Stand. 1968, 72A, 773-782.
[77] Chuong, R. Experimental study of surface and lattice effects on the solubility of hydroxyapatite. J. Dent. Res. 1973, 52, 911-914.
[78] Smith, A.N., Posner, A.M., Quirk, J.P. Incongruent dissolution and surface complexes of hydroxyapatite. J. Colloid Interf. Sci. 1974, 48, 442-449.
[79] Mika, H., Bell, L.C., Kruger, B.J. The role of surface reactions in the dissolution of stoichiometric hydroxyapatite. Arch. Oral Biol. 1976, 21, 697-701.
[80] Moreno, E.C., Kresak, M., Zahradnik, R.T. Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries. Caries Res. 1977, 11, Suppl. 1, 142-171.
[81] Bell, L.C., Mika, H., Kruger, B.J. Synthetic hydroxyapatite-solubility product and stoichiometry of dissolution. Arch. Oral. Biol. 1978, 23, 329-336.
[82] Ingram, G.S. Chemical events during tooth dissolution. J. Dent. Res. 1999, 69, Spec. Iss., 581-586, discussion 634-636.
[83] Kaufman, H.W., Kleinberg, I. Studies on the incongruent solubility of hydroxyapatite. Calcif. Tiss. Int. 1979, 27, 143-151.
[84] Amrah-Bouali, S., Rey, C., Lebugle, A., Bernache, D. Surface modifications of hydroxyapatite ceramics in aqueous media. Biomaterials 1994, 15, 269-272.
[85] Nordstrom, E.G., Hara, T., Hero, H. Solubility of hydroxyapatite/mica composites. Biomed. Mater. Eng. 1996, 6, 73-78.
[86] Pearce, E.I.F, Guha-Chowdhury, N., Iwami, Y., Cutress, T.W. Stoichiometry of fluoride release from fluorhydroxyapatite during acid dissolution. Caries Res. 1995, 29, 130-136.
[87] Shimabayashi, S., Matsumoto, M. Non-stoichiometric dissolution of hydroxyapatite in the presence of simple salts. Nippon Kagaku Kaishi 1993, 10, 1118-1122.
[88] Brown, P.W., Martin, R.I. An analysis of hydroxyapatite surface layer formation. J. Phys. Chem. B 1999, 103, 1671-1675.
[89] Chaïrat, C., Oelkers, E.H., Schott, J., Lartigue, J.E. Fluorapatite surface composition in aqueous solution deduced from potentiometric, electrokinetic, and solubility measurements, and spectroscopic observations. Geochim. Cosmochim. Acta 2007, 71, 5888-5900.
[90] Bengtsson, Å., Shchukarev, A., Persson, P., Sjöberg, S. A solubility and surface complexation study of a non-stoichiometric hydroxyapatite. Geochim. Cosmochim. Acta 2009, 73, 257-267.
[91] Bengtsson, Å., Shchukarev, A., Persson, P., Sjöberg, S. Phase transformations, ion-exchange, adsorption, and dissolution processes in aquatic fluorapatite systems. Langmuir 2009, 25, 2355-2362.
[92] Bengtsson, Å., Sjöberg, S. Surface complexation and proton-promoted dissolution in aqueous apatite systems. Pure Appl. Chem. 2009, 81, 1569-1584.
[93] Bertazzo, S., Zambuzzi, W.F., Campos, D.D.P., Ogeda, T.L., Ferreira, C.V., Bertran, C.A. Hydroxyapatite surface solubilityand effect on cell adhesion. Coll. Surf. B 2010, 78,177-184.
[94] Feng, M.H., Ngwenya, B.T., Wang, L., Li, W., Olive, V., Ellam, R.M. Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment. Geochim. Cosmochim. Acta 2011, 75, 5785-5796.
[95] Abe, Y., Okazaki, Y., Hiasa, K., Yasuda, K., Nogami, K., Mizumachi, W., Hirata, I. Bioactive surface modification of hydroxyapatite. BioMed Res. Int. 2013, 2013, 626452(9 pages).
[96] Misra, D.N. Interaction of citric or hydrochloric acid with calcium fluorapatite: precipitation of calcium fluoride. J. Colloid Interf. Sci. 1999, 220, 387-391.
[97] Dobrydnev, S.V., Bogach, V.V., Beskov, V.S. Thermodynamic grounds of sulfuric acid dissolution of fluorapatite. Russ. J. Inorg. Chem. 2002, 47, 1063-1066.
[98] Dobrydnev, S.V., Bogach, V.V., Beskov, V.S. Thermodynamics of fluoroapatite dissolution in phosphoric acid. Russ. J. Inorg. Chem. 2002, 47, 1214-1216.
[99] Dobrydnev, S.V., Bogach, V.V., Beskov, V.S. Thermodynamics of fluoroapatite dissolution in nitric acid. Russ. J. Inorg. Chem. 2002, 47,1217-1220.
[100] Harouiya, N., Chaïrat, C., Köhler, S.J., Gout, R., Oelkers, E.H. The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50ºC and pH from 1 to 6. Chem. Geol. 2007, 244, 554-568.
[101] Chaïrat, C., Schott, J., Oelkers, E.H., Lartigue, J.E., Harouiya, N. Kinetics and mechanism of natural fluorapatite dissolution at 25ºC and pH from 3 to 12. Geochim. Cosmochim. Acta 2007, 71, 5901-5912.
[102] Melikhov, I.V., Dorozhkin, S.V., Nikolaev, A.L., Voronina, N.Y. Transition from congruent to incongruent dissolution. Russ. J. Phys. Chem. 1992, 66, 1108-1111.
[103] Tanaka, H, Miyajima, K, Nakagaki, M, Shimabayashi, S. Incongruent dissolution of hydroxyapatite in the presence of phosphoserine. Coll. Polymer Sci. 1991, 269, 161-165.
[104] Park, C., Fenter, P., Zhang, Z., Cheng, L., Sturchio, N.C. Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity. Am. Mineral. 2004, 89, 1647-1654.
[105] Dorozhkin, S.V. Surface reactions of apatite dissolution. J. Colloid Interf. Sci. 1997, 191, 489-497.
[106] Dorozhkin, S.V. Acidic dissolution mechanism of natural fluorapatite. II. Nanolevel of investigations. J. Cryst. Growth 1997, 182, 133-140.
[107] Dorozhkin, S.V. Inorganic chemistry of the dissolution phenomenon: the dissolution mechanism of calcium apatites at the atomic (ionic) level. Comments Inorg. Chem. 1999, 20, 285-299.
[108] Higuchi, W.I., Gray, J.A., Hefferren, J.J., Patel, P.R. Mechanisms of enamel dissolution in acid buffers. J. Dent. Res. 1965, 44, 330-341.
[109] Pearce, E.I.F. On the dissolution of hydroxyapatite in acid solutions. J. Dent. Res. 1988, 67, 1056-1058.
[110] Eanes, E.D., Meyer, J.L. The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif. Tiss. Res. 1977, 23, 259-269.
[111] Lowell, L.C. Dislocation etch pits in apatite. Acta Metall.1958, 6, 775-778.
[112] Jongebloed, W.L., Molenaar, I., Arends, J. Orientation-dependent etchpit penetration and dissolution of fluoroapatite. Caries Res. 1973, 7, 154-165.
[113] Jongebloed, W.L., van den Berg, P.J., Arends, J. The dissolution of single crystals of hydroxyapatite in citric and lactic acids. Calcif. Tiss. Res. 1974, 15, 1-9.
[114] Arends, J., Jongebloed, W.L. Dislocations and dissolution in apatites: theoretical considerations. Caries Res. 1977, 11, 186-188.
[115] Arends, J., Jongebloed, W.L. Ultrastructural studies of synthetic apatite crystals. J. Dent. Res. 1979, 58, Spec. Iss. B, 837-843.
[116] Daculsi, G., Kerebel, B., Kerebel, L.M. Mechanisms of acid dissolution of biological and synthetic apatite crystals at the lattice pattern level. Caries Res. 1979, 13, 277-289.
[117] Daculsi, G., LeGeros, R.Z., Mitre, D. Crystal dissolution of biological and ceramic apatites. Calcif. Tiss. Int. 1989, 49, 95-103.
[118] Melikhov, I.V., Dorozhkin, S.V., Nikolaev, A.L., Kozlovskaya, E.D., Rudin, V.N. Dislocations and the rate of dissolution of solids. Russ. J. Phys. Chem. 1990, 64, 1746-1750.
[119] Dorozhkin, S.V. Chemical etching of natural fluorapatite crystals in acid solutions studied with the scanning electron microscope. Scanning 1995, 17, 355-360.
[120] Dorozhkin, S.V. Acidic dissolution mechanism of natural fluorapatite. I. Milli- and microlevels of investigations. J. Cryst. Growth 1997, 182, 125-132.
[121] Lasaga, A.C., Luttge, A. Variation of crystal dissolution rate based on a dissolution stepwave model. Science 2001, 291, 2400-2404.
[122] Dove, P.M., Han, N., de Yoreo, J.J. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. Proc. Natl. Acad. Sci. USA 2005, 102, 15357-15362.
[123] Kwon, K.Y., Wang, E., Chung, A., Chang, N., Saiz, E., Choe, U.J., Koobatian, M., Lee, S.W. Defect induced asymmetric pit formation on hydroxyapatite. Langmuir 2008, 24, 11063-11066.
[124] Kwon, K.Y., Wang, E., Chung, A., Chang, N., Lee, S.W. Effect of salinity on hydroxyapatite dissolution studied by atomic force microscopy. J. Phys. Chem. C 2009, 113, 3369-3372.
[125] Kwon, K.Y., Wang, E., Chang, N., Lee, S.W. Characterization of the dominant molecular step orientations on hydroxyapatite (100) surfaces. Langmuir 2009, 25, 7205-7208.
[126] Kwon, K.Y., Wang, E., Nofal, M., Lee, S.W. Microscopic study of hydroxyapatite dissolution as affected byfluoride ions. Langmuir 2011, 27, 5335-5339.
[127] Dong, S.S., Hwan, K., Jong, K.L. AFM study on the surface dissolution of hydroxyapatite. Key Eng. Mater. 2007, 336-338, 1553-1555.
[128] Wang, L.J., Lu, J.W., Xu, F.S., Zhang, F.S. Dynamics of crystallization and dissolution of calcium orthophosphates at the near-molecular level. Chin. Sci. Bull. 2011, 56, 713-721.
[129] Dorozhkin, S.V. Process of epitaxial crystal growth for CaSO4·0.5H2O on a surface of dissolving fluorapatite crystals studied by scanning electron microscopy. Scanning 1996, 18, 119-124.
[130] Misra, D.N. Interaction of citric acid with hydroxyapatite: surface exchange of ions and precipitation of calcium citrate. J. Dent. Res. 1996, 75, 1418-1425.
[131] Loìpez-Macipe, A., Goìmez-Morales, J., Rodriìguez-Clemente, R. The role of pH in the adsorption of citrate ions on hydroxyapatite. J. Colloid Interf. Sci. 1998, 200, 114-120.
[132] Misra, D.N. Adsorption from solutions on synthetic hydroxyapatite: nonaqueous vs. aqueous solvents.J. Biomed. Mater. Res.1999, 48, 848-855.
[133] Filgueiras, M.R.T., Mkhonto, D., de Leeuw, N.H. Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces. J. Cryst. Growth 2006, 294, 60-68.
[134] Jiang, W., Pan, H., Cai, Y., Tao, J., Liu, P., Xu, X., Tang, R. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level. Langmuir 2008, 24, 12446-12451.
[135] Yoshida, Y., van Meerbeek, B., Nakayama, Y., Yoshioka, M., Snauwaert, J., Abe, Y., Lambrechts, P., Vanherle, G., Okazaki, M. Adhesion to and decalcification of hydroxyapatite by carboxylic acids. J. Dent. Res. 2001, 80, 1565-1569.
[136] Yoshioka, M., Yoshida, Y., Inoue, S., Lambrechts, P., Vanherle, G., Nomura, Y., Okazaki, M., Shintani, H., van Meerbeek, B. Adhesion/decalcification mechanisms of acid interaction with human hard tissues. J. Biomed. Mater. Res. 2002, 59, 56-62.
[137] Yoshida, Y., van Meerbeek, B., Nakayama, Y., Snauwaert, J., Hellemans, L., Lambrechts, P., Vannerle, G., Wakasa, K. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J. Dent. Res. 2000, 79, 709-714.
[138] Astala, R., Stott, M.J. First-principles study of hydroxyapatite surfaces and water adsorption. Phys. Rev. B 2008, 78, 075427 (11 pages).
[139] Posner, A.S. The structure of bone apatite surfaces. J. Biomed. Mater. Res. 1985, 19, 241-250.
[140] Hochrein, O., Zahn, D. On the molecular mechanisms of the acid-induced dissociation of hydroxy-apatite in water. J. Mol. Model. 2011, 17, 1525-1528.
[141] Jarlbring, M., Gunneriusson, L., Forsling, W. Characterisation of the protolytic properties of synthetic carbonate free fluorapatite.J. Colloid Interf. Sci. 2005, 285, 206-211.
[142] Becker, P. Phosphates and phosphoric acid: raw materials technology and economics of the wet process. 2nd Ed. Fertilizer science and technology series. Marcel Dekker: New York, USA, 1989; 760 pp.
[143] Compton, R.G., Harding, M.S., Pluck, M.R., Atherton, J.H., Brennan, C.M. Mechanism of solid/liquid interfacial reactions. The dissolution of benzoic acid in aqueous solution. J. Phys. Chem.1993, 97, 10416-10420.
[144] Zhang, J., Nancollas, G.H. Unexpected pH dependence of dissolution kinetics of dicalcium phosphate dihydrate. J. Phys. Chem. 1994, 98, 1689-1694.
[145] de Aza, P.N., Guitian, F., Merlos, A., Lora-Tamayo, E., de Aza, S. Bioceramics – simulated body fluid interfaces: pH and its influence of hydroxyapatite formation. J. Mater. Sci. Mater. Med. 1996, 7, 399-402.
[146] Bohner, M., Lemaître, J., Ring, T.A. Kinetics of dissolution of β-tricalcium phosphate. J. Colloid Interf. Sci.1997, 190, 37-48.
[147] Young, R.A. Implications of atomic substitutions and other structural details in apatites. J. Dent. Res.1974, 53, 193-203.
[148] de Leeuw, N.H. Computer simulations of structures and properties of the biomaterial hydroxyapatite. J. Mater. Chem. 2010, 20, 5376-5389.
[149] Pareek, A., Torrelles, X., Angermund, K., Rius, J., Magdans, U., Gies, H. Structure of interfacial water on fluorapatite (100) surface. Langmuir 2008, 24, 2459-2464.
[150] Pan, H., Tao, J., Wu, T., Tang, R. Molecular simulation of water behaviors on crystal faces of hydroxyapatite. Front. Chem. Chin. 2007, 2, 156-163.
[151] Zahn, D., Hochrein, O. Computational study of interfaces between hydroxyapatite and water. Phys. Chem. Chem. Phys. 2003, 5, 4004-4007.
[152] Corno, M., Busco, C., Bolis, V., Tosoni, S., Ugliengo, P. Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study. Langmuir 2009, 25, 2188-2198.
[153] Pareek, A., Torrelles, X., Rius, J., Magdans, U., Gies, H. Role of water in the surface relaxation of the fluorapatite (100) surface by grazing incidence X-ray diffraction. Phys. Rev. B 2007, 75, 035418 (6 pages).
[154] Pan, H., Tao, J., Yu, X., Fu, L., Zhang, J., Zeng, X., Xu, G., Tang, R. Anisotropic demineralization and oriented assembly of hydroxyapatite crystals in enamel: smart structures of biominerals. J. Phys. Chem. B 2008, 112, 7162-7165.
[155] Dorozhkin, S.V. Nanodimensional and nanocrystalline calcium orthophosphates. Int. J. Chem. Mater. Sci. 2013, 1, 105-174.
[156] Probstein, R.F. Physicochemical hydrodynamics: an introduction. 2nd Ed. Wiley, Hoboken, NJ, USA, 2003, 416 pp.
[157] Wu, L., Forsling, W., Schindler, P.W. Surface complexation of calcium minerals in aqueous solution. 1. Surface protonation at fluorapatite-water interfaces.J. Colloid Interf. Sci. 1991, 147, 178-185.
[158] Skartsila, K., Spanos, N. Surface characterization of hydroxyapatite: potentiometric titrations coupled with solubility measurements. J. Colloid Interf. Sci. 2007, 308, 405-412.
[159] Vučinić, D.R., Radulović, D.S., Deušić, S.D. Electrokinetic properties of hydroxyapatite under flotation conditions. J. Colloid Interf. Sci. 2010, 343, 239-245.
[160] Zhang, J., Nancollas, G.H. Kinetics and mechanisms of octacalcium phosphate dissolution at 37ºC. J. Phys. Chem. 1992, 96, 5478-5483.
[161] Doss, S.K. Surface properties of hydroxyapatite: I. The effect of various inorganic ions on the electrophoretic behavior. J. Dent. Res. 1976, 55, 1067-1075.
[162] Dobrydnev, S.V., Bogach, V.V., Beskov, V.S. Influence of surfactants on the rate of decomposition of apatites by mineral acids. Theoret. Found. Chem. Eng.2003, 37, 412-415.
[163] Nielsen, A.E. Transport control in crystal growth from solution. Croat. Chem. Acta 1980, 53, 255-279.
[164] Okazaki, M., Sato, M., Takahashi, J. Space-cutting model of hydroxyapatite. Biomaterials 1995, 16, 45-49.
[165] Iijima, M., Nelson, D.G.A., Pan, Y., Kreinbrink, A.T., Adachi, M., Goto, T., Moriwaki, Y. Fluoride analysis of apatite crystals with a central planar OCP inclusion: Concerning the role of F- ions on apatite/OCP/apatite structure formation. Calcif. Tiss. Int. 1996, 59, 377-384.
[166] Aoba, T. The effect of fluoride on apatite structure and growth. Crit. Rev. Oral Biol. Med. 1997, 8, 136-153.
[167] de Leeuw, N.H. Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride. J. Phys. Chem. B 2004, 108, 1809-1811.
[168] Liu, Y., Sethuraman, G., Wu, W., Nancollas, G.H., Grynpas, M. The crystallization of fluorapatite in the presence of hydroxyapatite seeds and of hydroxyapatite in the presence of fluorapatite seeds. J. Colloid Interf. Sci. 1997, 186, 102-109.
[169] Dickens, B., Schroeder, L.W. Investigation of epitaxy relationships between Ca5(PO4)3OH and other calcium orthophosphates. J. Res. Natl. Bur. Stand. 1980, 85, 347-362.
[170] Kaischew, R. Zur Theorie des Kristallwachstums. Z. Phys. 1936, 102, 684-690.
[171] Nangia, S., Garrison, B.J. Ab initio study of dissolution and precipitation reactions from the edge, kink, and terrace sites of quartz as a function of pH. Mol. Phys. 2009, 107, 831-843.
[172] Kossel, W. Zur Energetik von Oberflächenvorgangen. Ann. Phys. Leipzig 1934, 21, 457-480.