Hydroxyapatite and Other Calcium Orthophosphates: Bioceramics, Coatings and Dental Applications

Sergey V. Dorozhkin
Moscow, Russia

Series: Biomaterials – Properties, Production and Devices
BISAC: SCI007000

Clear

$230.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

As the inorganic constituents of skeletons, dentine and the enamel of teeth in all vertebrates, as well as antlers of male deer, calcium orthophosphates (CaPO4) appear to be the key materials to sustain all life on Earth. Therefore, biologically relevant CaPO4 possess all the necessary features of the biomaterials, such as biocompatibility, bioactivity, bioresorbability, osteoconductivity, osteoinductivity, and appear to be non-toxic, non-inflammatory and non-immunogenic. In this book, the author presents current state-of-the-art applications of CaPO4 as bioceramics, deposits (coatings, films and layers) and in dentistry. Topics discussed include chemical composition and preparation, forming and shaping, sintering and firing for CaPO4-based bioceramics, chemical composition and preparation, pre- and post-deposition treatments for CaPO4-based deposits, followed by the detailed description of their major properties, biomedical applications and in vivo behavior. The detailed description of current CaPO4 applications in dentistry both for dental caries prevention and as various types of dental treatments is given in the last section of this book. (Imprint: Nova)

Preface

PART I. Calcium Orthophosphate (CaPO4)-Based Bioceramics

Chapter 1. Introduction

Chapter 2. General Knowledge and Definitions

Chapter 3. Bioceramics of CaPO4

Chapter 4. The Major Properties

Chapter 5. Biomedical Applications

Chapter 6. Biological Properties and In Vivo Behavior

Chapter 7. Non-Biomedical Applications of CaPO4

Chapter 8. CaPO4 Bioceramics in Tissue Engineering

Chapter 9. Conclusions and Outlook

References

PART II. Calcium Orthophosphate (CaPO4) Deposits: Preparation, Properties and Biomedical Applications

Chapter 10. Introduction

Chapter 11. General Knowledge, Terminology and Definitions

Chapter 12. Brief Knowledge on the Important Pre- and Post-Deposition Treatments

Chapter 13. Deposited CaPO4

Chapter 14. Deposition of Ion-Substituted CaPO4 and CaPO4-Containing Biocomposites

Chapter 15. Conversion-Formed CaPO4 deposits

Chapter 16. Properties

Chapter 17. Biomedical Applications

Chapter 18. Future Directions

Chapter 19. Conclusions

References

PART III. Calcium Orthophosphates (CaPO4) in Dentistry

Chapter 20. Introduction

Chapter 21. General Definitions and Knowledge

Chapter 22. Brief Information on Current Biomedical Applications of CaPO4

Chapter 23. CaPO4 for Dental Caries Prevention and in Dentifrices

Chapter 24. Clinical Applications of CaPO4 in Dentistry

Chapter 25. Tissue Engineering Approaches

Chapter 26. Conclusions

References

Author Contact Information

Index

Part I

[1] Ducheyne, P., Healy, K., Hutmacher, D.E., Grainger, D.W., Kirkpatrick, C.J. (Eds.) Comprehensive biomaterials. Six-volume set. Elsevier, Amsterdam, Netherlands, 2011, 3672 pp.
[2] Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (Eds.) Biomaterials science: an introduction to materials in medicine. 3rd edition. Academic Press, Oxford, UK, 2013, 1573 pp.
[3] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016; 405 pp.
[4] Dorozhkin, S.V. Calcium orthophosphates (CaPO4) and dentistry. Bioceram. Dev. Appl. 2016, 6, 096 (28 pages).
[5] http://www.prweb.com/releases/bone_grafts/standard_bone_allografts/prweb8953883.htm (accessed in December 2016).
[6] Dorozhkin, S.V. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford: Singapore, 2012, 850 pp.
[7] Balazsi, C., Weber, F., Kover, Z., Horvath, E., Nemeth, C. Preparation of calcium-phosphate bioceramics from natural resources. J. Eur. Ceram. Soc. 2007, 27, 1601-1606.
[8] Oktar, F.N. Microstructure and mechanical properties of sintered enamel hydroxyapatite. Ceram. Int. 2007, 33, 1309-1314.
[9] Han, F., Wu, L. Preparing and characterizing natural hydroxyapatite ceramics. Ceram. Int. 2010, 220, 281-285.
[10] Gergely, G., Wéber, F., Lukács, I., Illés, L., Tóth, A.L., Horváth, Z.E., Mihály, J., Balázsi, C. Nano-hydroxyapatite preparation from biogenic raw materials. Cent. Eur. J. Chem. 2010, 8, 375-381.
[11] Mondal, S., Mahata, S., Kundu, S., Mondal, B. Processing of natural resourced hydroxyapatite ceramics from fish scale. Adv. Appl. Ceram. 2010, 109, 234-239.
[12] Lim, K.T., Suh, J.D., Kim, J., Choung, P.H., Chung, J.H. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99B, 399-411.
[13] Seo, D.S., Hwang, K.H., Yoon, S.Y., Lee, J.K. Fabrication of hydroxyapatite bioceramics from the recycling of pig bone. J. Ceram. Proc. Res. 2012, 13, 586-589.
[14] Ho, W.F., Hsu, H.C., Hsu, S.K., Hung, C.W., Wu, S.C. Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram. Int. 2013, 39, 6467-6473.
[15] Piccirillo, C., Dunnill, C.W., Pullar, R.C., Tobaldi, D.M., Labrincha, J.A., Parkin, I.P., Pintado, M.M., Castro, P.M.L. Calcium phosphate-based materials of natural origin showing photocatalytic activity. J. Mater. Chem. A 2013, 1, 6452-6461.
[16] Salma-Ancane, K., Stipniece, L., Irbe, Z. Effect of biogenic and synthetic starting materials on the structure of hydroxyapatite bioceramics. Ceram. Int. 2016, 42, 9504-9510.
[17] Ergun, C., Webster, T.J., Bizios, R., Doremus, R.H. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. J. Biomed. Mater. Res. 2002, 59, 305-311.
[18] Webster, T.J., Ergun, C., Doremus, R.H., Bizios, R. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. J. Biomed. Mater. Res. 2002, 59, 312-317.
[19] Kim, S.R., Lee, J.H., Kim, Y.T., Riu, D.H., Jung, S.J., Lee, Y.J., Chung, S.C., Kim, Y.H. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 2003, 24, 1389-1398.
[20] Landi, E., Celotti, G., Logroscino, G., Tampieri, A. Carbonated hydroxyapatite as bone substitute. J. Eur. Ceram. Soc. 2003, 23, 2931-2937.
[21] Vallet-Regí, M., Arcos, D. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J. Mater. Chem. 2005, 15, 1509-1516.
[22] Gbureck, U., Thull, R., Barralet, J.E. Alkali ion substituted calcium phosphate cement formation from mechanically activated reactants. J. Mater. Sci. Mater. Med. 2005, 16, 423-427.
[23] Gbureck, U., Knappe, O., Grover, L.M., Barralet, J.E. Antimicrobial potency of alkali ion substituted calcium phosphate cements. Biomaterials 2005, 26, 6880-6886.
[24] Reid, J.W., Tuck, L., Sayer, M., Fargo, K., Hendry, J.A. Synthesis and characterization of single-phase silicon substituted α-tricalcium phosphate. Biomaterials 2006, 27, 2916-2925.
[25] Tas, A.C., Bhaduri S.B., Jalota, S. Preparation of Zn-doped β-tricalcium phosphate (β-Ca3(PO4)2) bioceramics. Mater. Sci. Eng. C 2007, 27, 394-401.
[26] Pietak, A.M., Reid, J.W., Stott, M.J., Sayer, M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007, 28, 4023-4032.
[27] Landi, E., Tampieri, A., Celotti, G., Sprio, S., Sandri, M., Logroscino, G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007, 3, 961-969.
[28] Kannan, S., Ventura, J.M.G., Ferreira, J.M.F. Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalcium phosphate mixtures. Ceram. Int. 2007, 33, 1489-1494.
[29] Kannan, S., Rebelo, A., Lemos, A.F., Barba, A., Ferreira, J.M.F. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J. Eur. Ceram. Soc. 2007, 27, 2287-2294.
[30] Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., Ferreira, J.M.F. Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement. J. Am. Ceram. Soc. 2008, 91, 1-12.
[31] Meejoo, S., Pon-On, W., Charnchai, S., Amornsakchai, T. Substitution of iron in preparation of enhanced thermal property and bioactivity of hydroxyapatite. Adv. Mater. Res. 2008, 55-57, 689-692.
[32] Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., Ferreira, J.M.F. Synthesis and structure refinement of zinc-doped β-tricalcium phosphate powders. J. Am. Ceram. Soc. 2009, 92, 1592-1595.
[33] Matsumoto, N., Yoshida, K., Hashimoto, K., Toda, Y. Thermal stability of β-tricalcium phosphate doped with monovalent metal ions. Mater. Res. Bull. 2009, 44, 1889-1894.
[34] Boanini, E., Gazzano, M., Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882-1894.
[35] Habibovic, P., Barralet, J.E. Bioinorganics and biomaterials: bone repair. Acta Biomater. 2011, 7, 3013-3026.
[36] Mellier, C., Fayon, F., Schnitzler, V., Deniard, P., Allix, M., Quillard, S., Massiot, D., Bouler, J.M., Bujoli, B., Janvier, P. Characterization and properties of novel gallium-doped calcium phosphate ceramics. Inorg. Chem. 2011, 50, 8252-8260.
[37] Ansar, E.B., Ajeesh, M., Yokogawa, Y., Wunderlich, W., Varma, H. Synthesis and characterization of iron oxide embedded hydroxyapatite bioceramics. J. Am. Ceram. Soc. 2012, 95, 2695-2699.
[38] Zhang, M., Wu, C., Li, H., Yuen, J., Chang, J., Xiao, Y. Preparation, characterization and in vitro angiogenic capacity of cobalt substituted β-tricalcium phosphate ceramics. J. Mater. Chem. 2012, 22, 21686-21694.
[39] Shepherd, J.H., Shepherd, D.V., Best, S.M. Substituted hydroxyapatites for bone repair. J. Mater. Sci. Mater. Med. 2012, 23, 2335-2347.
[40] Ishikawa, K. Carbonate apatite bone replacement. Key Eng. Mater. 2014, 587, 17-20.
[41] Šupová, M. Substituted hydroxyapatites for biomedical applications: a review. Ceram. Int. 2015, 41, 9203-9231.
[42] Williams, D.F. The Williams dictionary of biomaterials. Liverpool University Press, Liverpool, UK, 1999, 368 pp.
[43] Williams, D.F. On the nature of biomaterials. Biomaterials 2009, 30, 5897-5909.
[44] Bongio, M., van den Beucken, J.J.J.P., Leeuwenburgh, S.C.G., Jansen, J.A. Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’. J. Mater. Chem. 2010, 20, 8747-8759.
[45] Mann, S. (Ed.), Biomimetic materials chemistry. Wiley-VCH, UK, 1996, 400 pp.
[46] Vallet-Regí, M. Bioceramics: where do we come from and which are the future expectations. Key Eng. Mater. 2008, 377, 1-18.
[47] Jandt, K.D. Evolutions, revolutions and trends in biomaterials science – a perspective. Adv. Eng. Mater. 2007, 9, 1035-1050.
[48] Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1-206.
[49] https://en.wikipedia.org/wiki/Ceramic (accessed in December 2016).
[50] Hench, L.L. Bioceramics. J. Am. Ceram. Soc. 1998, 81, 1705-1728.
[51] Hench, L.L., Day, D.E., Höland, W., Rheinberger, V.M. Glass and medicine. Int. J. Appl. Glass Sci. 2010, 1, 104-117.
[52] Pinchuk, N.D., Ivanchenko, L.A. Making calcium phosphate biomaterials. Powder Metall. Metal Ceram. 2003, 42, 357-371.
[53] Heimann, R.B. Materials science of crystalline bioceramics: a review of basic properties and applications. CMU J. 2002, 1, 23-46.
[54] Tomoda, K., Ariizumi, H., Nakaji, T., Makino, K. Hydroxyapatite particles as drug carriers for proteins. Colloid Surf. B 2010, 76, 226-235.
[55] Zamoume, O., Thibault, S., Regnié, G., Mecherri, M.O., Fiallo, M., Sharrock, P. Macroporous calcium phosphate ceramic implants for sustained drug delivery. Mater. Sci. Eng. C 2011, 31, 1352-1356.
[56] Bose, S., Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012, 8, 1401-1421.
[57] Arcos, D., Vallet-Regí, M. Bioceramics for drug delivery. Acta Mater. 2013, 61, 890-911.
[58] Ducheyne, P., Qiu, Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999, 20, 2287-2303.
[59] Dorozhkin, S.V. Calcium orthophosphates and human beings. A historical perspective from the 1770s until 1940. Biomatter 2012, 2, 53-70.
[60] Dorozhkin, S.V. A detailed history of calcium orthophosphates from 1770-s till 1950. Mater. Sci. Eng. C 2013, 33, 3085-3110.
[61] Vallet-Regí, M., González-Calbet, J.M. Calcium phosphates as substitution of bone tissues. Progr. Solid State Chem. 2004, 32, 1-31.
[62] Taş, A.C., Korkusuz, F., Timuçin, M., Akkaş, N. An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J. Mater. Sci. Mater. Med. 1997, 8, 91-96.
[63] Layrolle, P., Ito, A., Tateishi, T. Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J. Am. Ceram. Soc. 1998, 81, 1421-1428.
[64] Engin, N.O., Tas, A.C. Manufacture of macroporous calcium hydroxyapatite bioceramics. J. Eur. Ceram. Soc. 1999, 19, 2569-2572.
[65] Ahn, E.S., Gleason, N.J., Nakahira, A., Ying, J.Y. Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 2001, 1, 149-153.
[66] Khalil, K.A., Kim, S.W., Dharmaraj, N., Kim, K.W., Kim, H.Y. Novel mechanism to improve toughness of the hydroxyapatite bioceramics using high-frequency induction heat sintering. J. Mater. Process. Technol. 2007, 187-188, 417-420.
[67] Laasri, S., Taha, M., Laghzizil, A., Hlil, E.K., Chevalier, J. The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics. Mater. Res. Bull. 2010, 45, 1433-1437.
[68] Kitamura, M., Ohtsuki, C., Ogata, S., Kamitakahara, M., Tanihara, M. Microstructure and bioresorbable properties of α-TCP ceramic porous body fabricated by direct casting method. Mater. Trans. 2004, 45, 983-988.
[69] Kawagoe, D., Ioku, K., Fujimori, H., Goto, S. Transparent β-tricalcium phosphate ceramics prepared by spark plasma sintering. J. Ceram. Soc. Jpn. 2004, 112, 462-463.
[70] Wang, C.X., Zhou, X., Wang, M. Influence of sintering temperatures on hardness and Young’s modulus of tricalcium phosphate bioceramic by nanoindentation technique. Mater. Character. 2004, 52, 301-307.
[71] Ioku, K., Kawachi, G., Nakahara, K., Ishida, E.H., Minagi, H., Okuda, T., Yonezawa, I., Kurosawa, H., Ikeda, T. Porous granules of β-tricalcium phosphate composed of rod-shaped particles. Key Eng. Mater. 2006, 309-311, 1059-1062.
[72] Kamitakahara, M., Ohtsuki, C., Miyazaki, T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J. Biomater. Appl. 2008, 23, 197-212.
[73] Vorndran, E., Klarner, M., Klammert, U., Grover, L.M., Patel, S., Barralet, J.E., Gbureck, U. 3D powder printing of β-tricalcium phosphate ceramics using different strategies. Adv. Eng. Mater. 2008, 10, B67-B71.
[74] Descamps, M., Duhoo, T., Monchau, F., Lu, J., Hardouin, P., Hornez, J.C., Leriche, A. Manufacture of macroporous β-tricalcium phosphate bioceramics. J. Eur. Ceram. Soc. 2008, 28, 149-157.
[75] Liu, Y., Kim, J.H., Young, D., Kim, S., Nishimoto, S.K., Yang, Y. Novel template-casting technique for fabricating β-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J. Biomed. Mater. Res. A 2010, 92A, 997-1006.
[76] Carrodeguas, R.G., de Aza, S. α-tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2011, 7, 3536-3546.
[77] Zhang, Y., Kong, D., Feng, X. Fabrication and properties of porous β-tricalcium phosphate ceramics prepared using a double slip-casting method using slips with different viscosities. Ceram. Int. 2012, 38, 2991-2996.
[78] Kim, I.Y., Wen, J., Ohtsuki, C. Fabrication of α-tricalcium phosphate ceramics through two-step sintering. Key Eng. Mater. 2015, 631, 78-82.
[79] Dorozhkin, S.V. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram. Int. 2016, 42, 6529-6554.
[80] LeGeros, R.Z. Lin, S., Rohanizadeh, R., Mijares, D., LeGeros, J.P. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci. Mater. Med. 2003, 14, 201-209.
[81] Daculsi, G., Laboux, O., Malard, O., Weiss, P. Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mater. Med. 2003, 14, 195-200.
[82] Dorozhkina, E.I., Dorozhkin, S.V. Mechanism of the solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures. Chem. Mater. 2002, 14, 4267-4272.
[83] Daculsi, G. Biphasic calcium phosphate granules concept for injectable and mouldable bone substitute. Adv. Sci. Technol. 2006, 49, 9-13.
[84] Lecomte, A., Gautier, H., Bouler, J.M., Gouyette, A., Pegon, Y., Daculsi, G., Merle, C. Biphasic calcium phosphate: a comparative study of interconnected porosity in two ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84B, 1-6.
[85] Daculsi, G., Baroth, S., LeGeros, R.Z. 20 years of biphasic calcium phosphate bioceramics development and applications. Ceram. Eng. Sci. Proc. 2010, 30, 45-58.
[86] Lukić, M., Stojanović, Z., Škapin, S.D., Maček-Kržmanc, M., Mitrić, M., Marković, S., Uskoković, D. Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. J. Eur. Ceram. Soc. 2011, 31, 19-27.
[87] Descamps, M., Boilet, L., Moreau, G., Tricoteaux, A., Lu, J., Leriche, A., Lardot, V., Cambier, F. Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 2013, 33, 1263-1270.
[88] Chen, Y., Wang, J., Zhu, X.D., Tang, Z.R., Yang, X., Tan, Y.F., Fan, Y.J., Zhang, X.D. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Acta Biomater. 2015, 11, 435-448.
[89] Li, Y., Kong, F., Weng, W. Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 89B, 508-517.
[90] Sureshbabu, S., Komath, M., Varma, H.K. In situ formation of hydroxyapatite –alpha tricalcium phosphate biphasic ceramics with higher strength and bioactivity. J. Am. Ceram. Soc. 2012, 95, 915-924.
[91] Radovanović, Ž., Jokić, B., Veljović, D., Dimitrijević, S., Kojić, V., Petrović, R., Janaćković, D. Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite. Appl. Surf. Sci. 2014, 307, 513-519.
[92] Oishi, M., Ohtsuki, C., Kitamura, M., Kamitakahara, M., Ogata, S., Miyazaki, T., Tanihara, M. Fabrication and chemical durability of porous bodies consisting of biphasic tricalcium phosphates. Phosphorus Res. Bull. 2004, 17, 95-100.
[93] Kamitakahara, M., Ohtsuki, C., Oishi, M., Ogata, S., Miyazaki, T., Tanihara, M. Preparation of porous biphasic tricalcium phosphate and its in vivo behavior. Key Eng. Mater. 2005, 284-286, 281-284.
[94] Wang, R., Weng, W., Deng, X., Cheng, K., Liu, X., Du, P., Shen, G., Han, G. Dissolution behavior of submicron biphasic tricalcium phosphate powders. Key Eng. Mater. 2006, 309-311, 223-226.
[95] Li, Y., Weng, W., Tam, K.C. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomater. 2007, 3, 251-254.
[96] Zou, C., Cheng, K., Weng, W., Song, C., Du, P., Shen, G., Han, G. Characterization and dissolution–reprecipitation behavior of biphasic tricalcium phosphate powders. J. Alloys Compd. 2011, 509, 6852-6858.
[97] Xie, L., Yu, H., Deng, Y., Yang, W., Liao, L., Long, Q. Preparation and in vitro degradation study of the porous dual alpha/beta-tricalcium phosphate bioceramics. Mater. Res. Inn. 2016, 20, 530-537.
[98] Albuquerque, J.S.V., Nogueira, R.E.F.Q., da Silva, T.D.P., Lima, D.O., da Silva, M.H.P. Porous triphasic calcium phosphate bioceramics. Key Eng. Mater. 2004, 254-256, 1021-1024.
[99] Mendonça, F., Lourom, L.H.L., de Campos, J.B., da Silva, M.H.P. Porous biphasic and triphasic bioceramics scaffolds produced by gelcasting. Key Eng. Mater. 2008, 361-363, 27-30.
[100] Vani, R., Girija, E.K., Elayaraja, K., Parthiban, P.S., Kesavamoorthy, R., Narayana Kalkura, S. Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. J. Mater. Sci. Mater. Med. 2009, 20, Suppl. 1, S43-S48.

[101] Ahn, M.K., Moon, Y.W., Koh, Y.H., Kim, H.E. Production of highly porous triphasic calcium phosphate scaffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique. Ceram. Int. 2013, 39, 5879-5885.
[102] Dorozhkin, S.V. Self-setting calcium orthophosphate formulations. J. Funct. Biomater. 2013, 4, 209-311.
[103] Tamimi, F., Sheikh, Z., Barralet, J. Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 2012, 8, 474-487.
[104] Drouet, C., Largeot, C., Raimbeaux, G., Estournès, C., Dechambre, G., Combes, C., Rey, C. Bioceramics: spark plasma sintering (SPS) of calcium phosphates. Adv. Sci. Technol. 2006, 49, 45-50.
[105] Ishihara, S., Matsumoto, T., Onoki, T., Sohmura, T., Nakahira, A. New concept bioceramics composed of octacalcium phosphate (OCP) and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater. Sci. Eng. C 2009, 29, 1885-1888.
[106] Barinov, S.M., Komlev, V.S. Osteoinductive ceramic materials for bone tissue restoration: octacalcium phosphate (review). Inorg. Mater. Appl. Res. 2010, 1, 175-181.
[107] Moseke, C., Gbureck, U. Tetracalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2010, 6, 3815-3823.
[108] Morimoto, S., Anada, T., Honda, Y., Suzuki, O. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically. Biomed. Mater. 2012, 7, 045020.
[109] Tamimi, F., Nihouannen, D.L., Eimar, H., Sheikh, Z., Komarova, S., Barralet, J. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: brushite vs. monetite. Acta Biomater. 2012, 8, 3161-3169.
[110] Suzuki, O. Octacalcium phosphate (OCP)-based bone substitute materials. Jpn. Dent. Sci. Rev. 2013, 49, 58-71.
[111] Suzuki, O., Anada, T. Octacalcium phosphate: a potential scaffold material for controlling activity of bone-related cells in vitro. Mater. Sci. Forum 2014, 783-786, 1366-1371.
[112] Komlev, V.S., Barinov, S.M., Bozo, I.I., Deev, R.V., Eremin, I.I., Fedotov, A.Y., Gurin, A.N., Khromova, N.V., Kopnin, P.B., Kuvshinova, E.A., Mamonov, V.E., Rybko, V.A., Sergeeva, N.S., Teterina, A.Y., Zorin, V.L. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior. ACS Appl. Mater. Interf. 2014, 6, 16610-16620.
[113] LeGeros, R.Z. Calcium phosphates in oral biology and medicine. Monographs in oral science. Vol. 15. Karger, Basel, Switzerland, 1991, 201 pp.
[114] Narasaraju, T.S.B., Phebe, D.E. Some physico-chemical aspects of hydroxylapatite. J. Mater. Sci. 1996, 31, 1-21.
[115] Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry. Vol. 18. Elsevier, Amsterdam, Netherlands, 1994, 389 pp.
[116] Brown, P.W., Constantz B. (Eds.) Hydroxyapatite and related materials. CRC Press, Boca Raton, FL, USA, 1994, 343 pp.
[117] Amjad, Z. (Ed.) Calcium phosphates in biological and industrial systems. Kluwer Academic Publishers, Boston, MA, USA, 1997, 529 pp.
[118] da Silva, R.V., Bertran, C.A., Kawachi, E.Y., Camilli, J.A. Repair of cranial bone defects with calcium phosphate ceramic implant or autogenous bone graft. J. Craniofac. Surg. 2007, 18, 281-286.
[119] Okanoue, Y., Ikeuchi, M., Takemasa, R., Tani, T., Matsumoto, T., Sakamoto, M., Nakasu, M. Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates. Arch. Orthop. Trauma Surg. 2012, 132, 1603-1610.
[120] Draenert, M., Draenert, A., Draenert, K. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics. Microsc. Res. Tech. 2013, 76, 370-380.
[121] Okuda, T., Ioku, K., Yonezawa, I., Minagi, H., Gonda, Y., Kawachi, G., Kamitakahara, M., Shibata, Y., Murayama, H., Kurosawa, H., Ikeda, T. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials 2008, 29, 2719-2728.
[122] Daculsi, G., Bouler, J.M., LeGeros, R.Z. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int. Rev. Cytol. 1997, 172, 129-191.
[123] Zhu, X.D., Zhang, H.J., Fan, H.S., Li, W., Zhang, X.D. Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater. 2010, 6, 1536-1541.
[124] Bohner, M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 2000, 31, Suppl. 4, D37-D47.
[125] Ahato, I. Reverse engineering the ceramic art of algae. Science 1999, 286, 1059-1061.
[126] Popişter, F., Popescu, D., Hurgoiu, D. A new method for using reverse engineering in case of ceramic tiles. Qual. Access Success 2012, 13, Suppl. 5, 409-412.
[127] Yang, S., Leong, K.F., Du, Z., Chua, C.K. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 2002, 8, 1-11.
[128] Yeong, W.Y., Chua, C.K., Leong, K.F., Chandrasekaran, M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004, 22, 643-652.
[129] Ortona, A., D’Angelo, C., Gianella, S., Gaia, D. Cellular ceramics produced by rapid prototyping and replication. Mater. Lett. 2012, 80, 95-98.
[130] Eufinger, H., Wehniöller, M., Machtens, E., Heuser, L., Harders, A., Kruse, D. Reconstruction of craniofacial bone defects with individual alloplastic implants based on CAD/CAM-manipulated CT-data. J. Cranio Maxillofac. Surg. 1995, 23, 175-181.
[131] Klein, M., Glatzer, C. Individual CAD/CAM fabricated glass-bioceramic implants in reconstructive surgery of the bony orbital floor. Plastic Reconstruct. Surg. 2006, 117, 565-570.
[132] Yin, L., Song, X.F., Song, Y.L., Huang, T., Li, J. An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry. Int. J. Machine Tools Manufact. 2006, 46, 1013-1026.
[133] Li, J., Hsu, Y., Luo, E., Khadka, A., Hu, J. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthetic Plast. Surg. 2011, 35, 636-640.
[134] Ciocca, L., Donati, D., Fantini, M., Landi, E., Piattelli, A., Iezzi, G., Tampieri, A., Spadari, A., Romagnoli, N., Scotti, R. CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results. J. Biomater. Appl. 2013, 28, 207-218.
[135] Yardimci, M.A., Guceri, S.I., Danforth, S.C. Process modeling for fused deposition of ceramics. Ceram. Eng. Sci. Proc. 1996, 17, 78-82.
[136] Bellini, A., Shor, L., Guceri, S.I. New developments in fused deposition modeling of ceramics. Rapid Prototyping J. 2005, 11, 214-220.
[137] Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M., Cheang, P., Abu Bakar, M.S., Cha, S.W. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 2003, 24, 3115-3123.
[138] Wiria, F.E., Leong, K.F., Chua, C.K., Liu, Y. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 2007, 3, 1-12.
[139] Xiao, K., Dalgarno, K.W., Wood, D.J., Goodridge, R.D., Ohtsuki, C. Indirect selective laser sintering of apatite-wollostonite glass-ceramic. Proc. Inst. Mech. Eng. H 2008, 222, 1107-1114.
[140] Zhou, W.Y., Lee, S.H., Wang, M., Cheung, W.L., Ip, W.Y. Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J. Mater. Sci. Mater. Med. 2008, 19, 2535-2540.
[141] Shuai, C.J., Li, P.J., Feng, P., Lu, H.B., Peng, S.P., Liu, J.L. Analysis of transient temperature distribution during the selective laser sintering of β-tricalcium phosphate. Laser Eng. 2013, 26, 71-80.
[142] Shuai, C., Zhuang, J., Hu, H., Peng, S., Liu, D., Liu, J. In vitro bioactivity and degradability of β-tricalcium phosphate porous scaffold fabricated via selective laser sintering. Biotechnol. Appl. Biochem. 2013, 60, 266-273.
[143] Shuai, C., Zhuang, J., Peng, S., Wen, X. Inhibition of phase transformation from β- to α-tricalcium phosphate with addition of poly (L-lactic acid) in selective laser sintering. Rapid Prototyping J. 2014, 20, 369-376.
[144] Lusquiños, F., Pou, J., Boutinguiza, M., Quintero, F., Soto, R., León, B., Pérez-Amor, M. Main characteristics of calcium phosphate coatings obtained by laser cladding. Appl. Surf. Sci. 2005, 247, 486-492.
[145] Wang, D.G., Chen, C.Z., Ma, J., Zhang, G. In situ synthesis of hydroxyapatite coating by laser cladding. Colloid Surf. B 2008, 66, 155-162.
[146] Comesaña, R., Lusquiños, F., del Val, J., Malot, T., López-Álvarez, M., Riveiro, A., Quintero, F., Boutinguiza, M., Aubry, P., de Carlos, A., Pou, J. Calcium phosphate grafts produced by rapid prototyping based on laser cladding. J. Eur. Ceram. Soc. 2011, 31, 29-41.
[147] Lv, X., Lin, X., Hu, J., Gao, B., Huang, W. Phase evolution in calcium phosphate coatings obtained by in situ laser cladding. Mater. Sci. Eng. C 2012, 32, 872-877.
[148] Leukers, B., Gülkan, H., Irsen, S.H., Milz, S., Tille, C., Schieker, M., Seitz, H. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci. Mater. Med. 2005, 16, 1121-1124.
[149] Gbureck, U., Hölzel, T., Klammert, U., Würzler, K., Müller, F.A., Barralet, J.E. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 2007, 17, 3940-3945.
[150] Gbureck, U., Hölzel, T., Doillon, C.J., Müller, F.A., Barralet, J.E. Direct printing of bioceramic implants with spatially localized angiogenic factors. Adv. Mater. 2007, 19, 795-800.
[151] Khalyfa, A., Vogt, S., Weisser, J., Grimm, G., Rechtenbach, A., Meyer, W., Schnabelrauch, M. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J. Mater. Sci. Mater. Med. 2007, 18, 909-916.
[152] Habibovic, P., Gbureck, U., Doillon, C.J., Bassett, D.C., van Blitterswijk, C.A., Barralet, J.E. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 2008, 29, 944-953.
[153] Fierz, F.C., Beckmann, F., Huser, M., Irsen, S.H., Leukers, B., Witte, F., Degistirici, O., Andronache, A., Thie, M., Müller, B. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials 2008, 29, 3799-3806.
[154] Seitz, H., Deisinger, U., Leukers, B., Detsch, R., Ziegler, G. Different calcium phosphate granules for 3-D printing of bone tissue engineering scaffolds. Adv. Eng. Mater. 2009, 11, B41-B46.
[155] Suwanprateeb, J., Sanngam, R., Panyathanmaporn, T. Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique. Mater. Sci. Eng. C 2010, 30, 610-617.
[156] Butscher, A., Bohner, M., Roth, C., Ernstberger, A., Heuberger, R., Doebelin, N., von Rohr, R.P., Müller, R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater. 2012, 8, 373-385.
[157] Butscher, A., Bohner, M., Doebelin, N., Galea, L., Loeffel, O., Müller, R. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomater. 2013, 9, 5369-5378.
[158] Butscher, A., Bohner, M., Doebelin, N., Hofmann, S., Müller, R. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater. 2013, 9, 9149-9158.
[159] Tarafder, S., Davies, N.M., Bandyopadhyay, A., Bose, S. 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater. Sci. 2013, 1, 1250-1259.
[160] Maazouz, Y., Montufar, E.B., Guillem-Marti, J., Fleps, I., Öhman, C., Persson, C., Ginebra, M.P. Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J. Mater. Chem. B 2014, 2, 5378-5386.
[161] Akkineni, A.R., Luo, Y., Schumacher, M., Nies, B., Lode, A., Gelinsky, M. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 2015, 27, 264-274.
[162] Trombetta, R., Inzana, J.A., Schwarz, E.M., Kates, S.L., Awad, H.A. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 2017, 45, 23-44.
[163] Porter, N.L., Pilliar, R.M., Grynpas, M.D. Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics. J. Biomed. Mater. Res. 2001, 56, 504-515.
[164] Leong, K.F., Cheah, C.M., Chua, C.K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003, 24, 2363-2378.
[165] Calvert, J.W., Brenner, K.A., Mooney, M.P., Kumta, P., Weiss, L.E. Cellular fusion of hydroxyapatite layers: solid freeform fabrication of synthetic bone grafts. Riv. Ital. Chir. Plast. 2004, 36, 145-150.
[166] Jongpaiboonkit, L., Lin, C.Y., Krebsbach, P.H., Hollister, S.J., Halloran, J.W. Mechanical behavior of complex 3D calcium phosphate cement scaffolds fabricated by indirect solid freeform fabrication in vivo. Key Eng. Mater. 2006, 309-311, 957-960.
[167] Dellinger, J.G., Cesarano, J., 3rd, Jamison. R.D. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J. Biomed. Mater. Res. A 2007, 82A, 383-394.
[168] Shanjani, Y., de Croos, J.N.A., Pilliar, R.M., Kandel, R.A., Toyserkani, E. Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93B, 510-519.
[169] Kim, J., Lim, D., Kim, Y.H., Koh, Y.H., Lee, M.H., Han, I., Lee, S.J., Yoo, O.S., Kim, H.S., Park, J.C. A comparative study of the physical and mechanical properties of porous hydroxyapatite scaffolds fabricated by solid freeform fabrication and polymer replication method. Int. J. Precision Eng. Manuf. 2011, 12, 695-701.
[170] Shanjani, Y., Hu, Y., Toyserkani, E., Grynpas, M., Kandel, R.A., Pilliar, R.M. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101B, 972-980.
[171] Kwon, B.J., Kim, J., Kim, Y.H., Lee, M.H., Baek, H.S., Lee, D.H., Kim, H.L., Seo, H.J., Lee, M.H., Kwon, S.Y., Koo, M.A., Park, J.C. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Artif. Organs 2013, 37, 663-670.
[172] Li, X., Li, D., Lu, B., Wang, C. Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and indirect stereolithography techniques. J. Porous Mater. 2008, 15, 667-671.
[173] Maeda, C., Tasaki, S., Kirihara, S. Accurate fabrication of hydroxyapatite bone models with porous scaffold structures by using stereolithography. IOP Conf. Ser. Mater. Sci. Eng. 2011, 18, 072017.
[174] Bian, W., Li, D., Lian, Q., Li, X., Zhang, W., Wang, K., Jin, Z. Fabrication of a bio-inspired beta-tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyping J. 2012, 18, 68-80.
[175] Ronca, A., Ambrosio, L., Grijpma, D.W. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater. 2013, 9, 5989-5996.
[176] Saber-Samandari, S., Gross, K.A. The use of thermal printing to control the properties of calcium phosphate deposits. Biomaterials 2010, 31, 6386-6393.
[177] de Meira, C.R., Gomes, D.T., Braga, F.J.C., de Moraes Purquerio, B., Fortulan, C.A. Direct manufacture of hydroxyapatite scaffolds using blue laser. Mater. Sci. Forum 2015, 805, 128-133.
[178] Narayan, R.J., Jin, C., Doraiswamy, A., Mihailescu, I.N., Jelinek, M., Ovsianikov, A., Chichkov, B., Chrisey, D.B. Laser processing of advanced bioceramics. Adv. Eng. Mater. 2005, 7, 1083-1098.
[179] Nather, A. (Ed.), Bone grafts and bone substitutes: basic science and clinical applications. World Scientific, Singapore, 2005, 592 pp.
[180] Bártolo, P., Bidanda, B. (Eds.), Bio-materials and prototyping applications in medicine. Springer, New York, USA, 2008, 216 pp.
[181] Kokubo, T. (Ed.), Bioceramics and their clinical applications. Woodhead Publishing, Abington, Cambridge, UK, 2008, 784 pp.
[182] Narayan, R. (Ed.), Biomedical materials. Springer, New York, USA, 2009, 566 pp.
[183] Raksujarit, A., Pengpat, K., Rujijanagul, G., Tunkasiri, T. Processing and properties of nanoporous hydroxyapatite ceramics. Mater. Des. 2010, 31, 1658-1660.
[184] Park, J. Bioceramics: properties, characterizations, and applications. Springer, New York, USA, 2008, 364 pp.
[185] Rodriìguez-Lorenzo, L.M., Vallet-Regiì, M., Ferreira, J.M.F. Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials 2001, 22, 583-588.
[186] Miranda, P., Pajares, A., Saiz, E., Tomsia, A.P., Guiberteau, F. Mechanical behaviour under uniaxial compression of robocast calcium phosphate scaffolds. Eur. Cells Mater. 2007, 14, Suppl. 1, 79.
[187] Nazarpak, M.H., Solati-Hashjin, M., Moztarzadeh, F. Preparation of hydroxyapatite ceramics for biomedical applications. J. Ceram. Process. Res. 2009, 10, 54-57.
[188] Uematsu, K., Takagi, M., Honda, T., Uchida, N., Saito, K. Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake. J. Am. Ceram. Soc. 1989, 72, 1476-1478.
[189] Itoh, H., Wakisaka, Y., Ohnuma, Y., Kuboki, Y. A new porous hydroxyapatite ceramic prepared by cold isostatic pressing and sintering synthesized flaky powder. Dent. Mater. 1994, 13, 25-35.
[190] Takikawa, K., Akao, M. Fabrication of transparent hydroxyapatite and application to bone marrow derived cell/hydroxyapatite interaction observation in-vivo. J. Mater. Sci. Mater. Med. 1996, 7, 439-445.
[191] Gautier, H., Merle, C., Auget, J.L., Daculsi, G. Isostatic compression, a new process for incorporating vancomycin into biphasic calcium phosphate: comparison with a classical method. Biomaterials 2000, 21, 243-249.
[192] Tadic, D., Epple, M. Mechanically stable implants of synthetic bone mineral by cold isostatic pressing. Biomaterials 2003, 24, 4565-4571.
[193] Onoki, T., Hashida, T. New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique. Surf. Coat. Technol. 2006, 200, 6801-6807.
[194] Ergun, C. Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing. Ceram. Int. 2011, 37, 935-942.
[195] Ehsani, N., Ruys, A.J., Sorrell, C.C. Hot isostatic pressing (HIPing) of fecralloy-reinforced hydroxyapatite. J. Biomimet. Biomater. Tissue Eng. 2013, 17, 87-102.
[196] Irsen, S.H., Leukers, B., Höckling, Chr., Tille, C., Seitz, H. Bioceramic granulates for use in 3D printing: process engineering aspects. Materwiss. Werksttech. 2006, 37, 533-537.
[197] Hsu, Y.H., Turner, I.G., Miles, A.W. Fabrication and mechanical testing of porous calcium phosphate bioceramic granules. J. Mater. Sci. Mater. Med. 2007, 18, 1931-1937.
[198] Zyman, Z.Z., Glushko, V., Dedukh, N., Malyshkina, S., Ashukina, N. Porous calcium phosphate ceramic granules and their behaviour in differently loaded areas of skeleton. J. Mater. Sci. Mater. Med. 2008, 19, 2197-2205.
[199] Viana, M., Désiré, A., Chevalier, E., Champion, E., Chotard, R., Chulia, D. Interest of high shear wet granulation to produce drug loaded porous calcium phosphate pellets for bone filling. Key Eng. Mater. 2009, 396-398, 535-538.
[200] Chevalier, E., Viana, M., Cazalbou, S., Chulia, D. Comparison of low-shear and high-shear granulation processes: effect on implantable calcium phosphate granule properties. Drug Dev. Ind. Pharm. 2009, 35, 1255-1263.
[201] Lakevics, V., Locs, J., Loca, D., Stepanova, V., Berzina-Cimdina, L., Pelss, J. Bioceramic hydroxyapatite granules for purification of biotechnological products. Adv. Mater. Res. 2011, 284-286, 1764-1769.
[202] Camargo, N.H.A., Franczak, P.F., Gemelli, E., da Costa, B.D., de Moraes, A.N. Characterization of three calcium phosphate microporous granulated bioceramics. Adv. Mater. Res. 2014, 936, 687-694.
[203] Reikerås, O., Johansson, C.B., Sundfeldt, M. Bone ingrowths to press-fit and loose-fit implants: comparisons between titanium and hydroxyapatite. J. Long-Term Eff. Med. Implant. 2006, 16, 157-164.
[204] Rao, R.R., Kannan, T.S. Dispersion and slip casting of hydroxyapatite. J. Am. Ceram. Soc. 2001, 84, 1710-1716.
[205] Sakka, Y., Takahashi, K., Matsuda, N., Suzuki, T.S. Effect of milling treatment on texture development of hydroxyapatite ceramics by slip casting in high magnetic field. Mater. Trans. 2007, 48, 2861-2866.
[206] Zhang, Y., Yokogawa, Y., Feng, X., Tao, Y., Li, Y. Preparation and properties of bimodal porous apatite ceramics through slip casting using different hydroxyapatite powders. Ceram. Int. 2010, 36, 107-113.
[207] Zhang, Y., Kong, D., Yokogawa, Y., Feng, X., Tao, Y., Qiu, T. Fabrication of porous hydroxyapatite ceramic scaffolds with high flexural strength through the double slip-casting method using fine powders. J. Am. Ceram. Soc. 2012, 95, 147-152.
[208] Hagio, T., Yamauchi, K., Kohama, T., Matsuzaki, T., Iwai, K. Beta tricalcium phosphate ceramics with controlled crystal orientation fabricated by application of external magnetic field during the slip casting process. Mater. Sci. Eng. C 2013, 33, 2967-2970.
[209] Marçal, R.L.S.B., da Rocha, D.N., da Silva, M.H.P. Slip casting used as a forming technique for hydroxyapatite processing. Key Eng. Mater. 2017, 720, 219-222.
[210] Sepulveda, P., Ortega, F.S., Innocentini, M.D.M., Pandolfelli, V.C. Properties of highly porous hydroxyapatite obtained by the gel casting of foams. J. Am. Ceram. Soc. 2000, 83, 3021-3024.
[211] Padilla, S., Vallet-Regiì, M., Ginebra, M.P., Gil, F.J. Processing and mechanical properties of hydroxyapatite pieces obtained by the gel-casting method. J. Eur. Ceram. Soc. 2005, 25, 375-383.
[212] Woesz, A., Rumpler, M., Stampfl, J., Varga, F., Fratzl-Zelman, N., Roschger, P., Klaushofer, K., Fratzl, P. Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gel casting. Mater. Sci. Eng. C 2005, 25, 181-186.
[213] Saìnchez-Salcedo, S., Werner, J., Vallet-Regiì, M. Hierarchical pore structure of calcium phosphate scaffolds by a combination of gel-casting and multiple tape-casting methods. Acta Biomater. 2008, 4, 913-922.
[214] Chen, B., Zhang, T., Zhang, J., Lin, Q., Jiang, D. Microstructure and mechanical properties of hydroxyapatite obtained by gel-casting process. Ceram. Int. 2008, 34, 359-364.
[215] Marcassoli, P., Cabrini, M., Tirillò, J., Bartuli, C., Palmero, P., Montanaro, L. Mechanical characterization of hydroxiapatite micro/macro-porous ceramics obtained by means of innovative gel-casting process. Key Eng. Mater. 2010, 417-418, 565-568.
[216] Kim, T.W., Ryu, S.C., Kim, B.K., Yoon, S.Y., Park, H.C. Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metal Mater. Int. 2014, 20, 135-140.
[217] Asif, A., Nazir, R., Riaz, T., Ashraf, N., Zahid, S., Shahid, R., Ur-Rehman, A., Chaudhry, A.A., Ur Rehman, I. Influence of processing parameters and solid concentration on microstructural properties of gel-casted porous hydroxyapatite. J. Porous Mater. 2014, 21, 31-37.
[218] Dash, S.R., Sarkar, R., Bhattacharyya, S. Gel casting of hydroxyapatite with naphthalene as pore former. Ceram. Int. 2015, 41, 3775-3790.
[219] Fomin, A.S., Barinov, S.M., Ievlev, V.M., Smirnov, V.V., Mikhailov, B.P., Belonogov, E.K., Drozdova, N.A. Nanocrystalline hydroxyapatite ceramics produced by low-temperature sintering after high-pressure treatment. Dokl. Chem. 2008, 418, 22-25.
[220] Zhang, J., Yin, H.M., Hsiao, B.S., Zhong, G.J., Li, Z.M. Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching. J. Mater. Sci. 2014, 49, 1648-1658.
[221] Kankawa, Y., Kaneko, Y., Saitou, K. Injection molding of highly-purified hydroxylapatite and TCP utilizing solid phase reaction method. J. Ceram. Soc. Jpn. 1991, 99, 438-442.
[222] Cihlář, J., Trunec, M. Injection moulded hydroxyapatite ceramics. Biomaterials 1996, 17, 1905-1911.
[223] Jewad, R., Bentham, C., Hancock, B., Bonfield, W., Best, S.M. Dispersant selection for aqueous medium pressure injection moulding of anhydrous dicalcium phosphate. J. Eur. Ceram. Soc. 2008, 28, 547-553.
[224] Kwon, S.H., Jun, Y.K., Hong, S.H., Lee, I.S., Kim, H.E., Won, Y.Y. Calcium phosphate bioceramics with various porosities and dissolution rates. J. Am. Ceram. Soc. 2002, 85, 3129-3131.
[225] Fooki, A.C.B.M., Aparecida, A.H., Fideles, T.B., Costa, R.C., Fook, M.V.L. Porous hydroxyapatite scaffolds by polymer sponge method. Key Eng. Mater. 2009, 396-398, 703-706.
[226] Sopyan, I., Kaur, J. Preparation and characterization of porous hydroxyapatite through polymeric sponge method. Ceram. Int. 2009, 35, 3161-3168.
[227] Bellucci, D., Cannillo, V., Sola, A. Shell scaffolds: a new approach towards high strength bioceramic scaffolds for bone regeneration. Mater. Lett. 2010, 64, 203-206.
[228] Cunningham, E., Dunne, N., Walker, G., Maggs, C., Wilcox, R., Buchanan, F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J. Mater. Sci. Mater. Med. 2010, 21, 2255-2261.
[229] Sung, J.H., Shin, K.H., Koh, Y.H., Choi, W.Y., Jin, Y., Kim, H.E. Preparation of the reticulated hydroxyapatite ceramics using carbon-coated polymeric sponge with elongated pores as a novel template. Ceram. Int. 2011, 37, 2591-2596.
[230] Mishima, F.D., Louro, L.H.L., Moura, F.N., Gobbo, L.A., da Silva, M.H.P. Hydroxyapatite scaffolds produced by hydrothermal deposition of monetite on polyurethane sponges substrates. Key Eng. Mater. 2012, 493-494, 820-825.
[231] Hannickel, A., da Silva, M.H.P. Novel bioceramic scaffolds for regenerative medicine. Bioceram. Dev. Appl. 2015, 5, 1000082.
[232] Das, S., Kumar, S., Doloi, B., Bhattacharyya, B. Experimental studies of ultrasonic machining on hydroxyapatite bio-ceramics. Int. J. Adv. Manuf. Tech. 2016, 86, 829-839.
[233] Velayudhan, S., Ramesh, P., Sunny, M.C., Varma, H.K. Extrusion of hydroxyapatite to clinically significant shapes. Mater. Lett. 2000, 46, 142-146.
[234] Yang, H.Y., Thompson, I., Yang, S.F., Chi, X.P., Evans, J.R.G., Cook, R.J. Dissolution characteristics of extrusion freeformed hydroxyapatite – tricalcium phosphate scaffolds. J. Mater. Sci. Mater. Med. 2008, 19, 3345-3353.
[235] Yang, S., Yang, H., Chi, X., Evans, J.R.G., Thompson, I., Cook, R.J., Robinson, P. Rapid prototyping of ceramic lattices for hard tissue scaffolds. Mater. Des. 2008, 29, 1802-1809.
[236] Yang, H.Y., Chi, X.P., Yang, S., Evans, J.R.G. Mechanical strength of extrusion freeformed calcium phosphate filaments. J. Mater. Sci. Mater. Med. 2010, 21, 1503-1510.
[237] Cortez, P.P., Atayde, L.M., Silva, M.A., da Silva, P.A., Fernandes, M.H., Afonso, A., Lopes, M.A., Maurício, A.C., Santos, J.D. Characterization and preliminary in vivo evaluation of a novel modified hydroxyapatite produced by extrusion and spheronization techniques. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99B, 170-179.
[238] Lim, S., Chun, S., Yang, D., Kim, S. Comparison study of porous calcium phosphate blocks prepared by piston and screw type extruders for bone scaffold. Tissue Eng. Regen. Med. 2012, 9, 51-55.
[239] Blake, D.M., Tomovic, S., Jyung, R.W. Extrusion of hydroxyapatite ossicular prosthesis. Ear Nose Throat J. 2013, 92, 490-494.
[240] Muthutantri, A.I., Huang, J., Edirisinghe, M.J., Bretcanu, O., Boccaccini, A.R. Dipping and electrospraying for the preparation of hydroxyapatite foams for bone tissue engineering. Biomed. Mater. 2008, 3, 25009 (14 pages).
[241] Roncari, E., Galassi, C., Pinasco, P. Tape casting of porous hydroxyapatite ceramics. J. Mater. Sci. Lett. 2000, 19, 33-35.
[242] Tian, T., Jiang, D., Zhang, J., Lin, Q. Aqueous tape casting process for hydroxyapatite. J. Eur. Ceram. Soc. 2007, 27, 2671-2677.
[243] Tanimoto, Y., Shibata, Y., Murakami, A., Miyazaki, T., Nishiyama, N. Effect of varying HAP/TCP ratios in tape-cast biphasic calcium phosphate ceramics on responcce in vitro. J. Hard Tiss. Biol. 2009, 18, 71-76.
[244] Tanimoto, Y., Teshima, M., Nishiyama, N., Yamaguchi, M., Hirayama, S., Shibata, Y., Miyazaki, T. Tape-cast and sintered β-tricalcium phosphate laminates for biomedical applications: effect of milled Al2O3 fiber additives on microstructural and mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 2261-2268.
[245] Khamkasem, C., Chaijaruwanich, A. Effect of binder/plasticizer ratios in aqueous-based tape casting on mechanical properties of bovine hydroxyapatite tape. Ferroelectrics 2013, 455, 129-135.
[246] Suzuki, S., Itoh, K., Ohgaki, M., Ohtani, M., Ozawa, M. Preparation of sintered filter for ion exchange by a doctor blade method with aqueous slurries of needlelike hydroxyapatite. Ceram. Int. 1999, 25, 287-291.
[247] Nishikawa, H., Hatanaka, R., Kusunoki, M., Hayami, T., Hontsu, S. Preparation of freestanding hydroxyapatite membranes excellent biocompatibility and flexibility. Appl. Phys. Express 2008, 1, 088001.
[248] Padilla, S., Roman, J., Vallet-Regí, M. Synthesis of porous hydroxyapatites by combination of gel casting and foams burn out methods. J. Mater. Sci. Mater. Med. 2002, 13, 1193-1197.
[249] Yang, T.Y., Lee, J.M., Yoon, S.Y., Park, H.C. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. J. Mater. Sci. Mater. Med. 2010, 21, 1495-1502.
[250] Baradararan, S., Hamdi, M., Metselaar, I.H. Biphasic calcium phosphate (BCP) macroporous scaffold with different ratios of HA/β-TCP by combination of gel casting and polymer sponge methods. Adv. Appl. Ceram. 2012, 111, 367-373.
[251] Inoue, K., Sassa, K., Yokogawa, Y., Sakka, Y., Okido, M., Asai, S. Control of crystal orientation of hydroxyapatite by imposition of a high magnetic field. Mater. Trans. 2003, 44, 1133-1137.
[252] Iwai, K., Akiyama, J., Tanase, T., Asai, S. Alignment of HAp crystal using a sample rotation in a static magnetic field. Mater. Sci. Forum 2007, 539-543, Part 1, 716-719.
[253] Iwai, K., Akiyama, J., Asai, S. Structure control of hydroxyapatite using a magnetic field. Mater. Sci. Forum 2007, 561-565, Part 2, 1565-1568.
[254] Sakka, Y., Takahashi, K., Suzuki, T.S., Ito, S., Matsuda, N. Texture development of hydroxyapatite ceramics by colloidal processing in a high magnetic field followed by sintering. Mater. Sci. Eng. A 2008, 475, 27-33.
[255] Fleck, N.A. On the cold compaction of powders. J. Mech. Phys. Solids 1995, 43, 1409-1431.
[256] Kang, J., Hadfield, M. Parameter optimization by Taguchi methods for finishing advanced ceramic balls using a novel eccentric lapping machine. Proc. Inst. Mech. Eng. B 2001, 215, 69-78.
[257] Kulkarni, S.S., Yong, Y., Rys, M.J., Lei, S. Machining assessment of nano-crystalline hydroxyapatite bio-ceramic. J. Manuf. Processes 2013, 15, 666-672.
[258] Kurella, A., Dahotre, N.B. Surface modification for bioimplants: the role of laser surface engineering. J. Biomater. Appl. 2005, 20, 5-50.
[259] Oktar, F.N., Genc, Y., Goller, G., Erkmen, E.Z., Ozyegin, L.S., Toykan, D., Demirkiran, H., Haybat, H. Sintering of synthetic hydroxyapatite compacts. Key Eng. Mater. 2004, 264-268, 2087-2090.
[260] Georgiou, G., Knowles, J.C., Barralet, J.E. Dynamic shrinkage behavior of hydroxyapatite and glass-reinforced hydroxyapatites. J. Mater. Sci. 2004, 39, 2205-2208.
[261] Fellah, B.H., Layrolle, P. Sol-gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity. Acta Biomater. 2009, 5, 735-742.
[262] Dudek, A., Kolan, C. Assessments of shrinkage degree in bioceramic sinters HA+ZrO2. Diffusion and Defect Data B: Solid State Phenomena 2010, 165, 25-30.
[263] Ben Ayed, F., Bouaziz, J., Bouzouita, K. Pressureless sintering of fluorapatite under oxygen atmosphere. J. Eur. Ceram. Soc. 2000, 20, 1069-1076.
[264] He, Z., Ma, J., Wang, C. Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics. Biomaterials 2005, 26, 1613-1621.
[265] Rahaman, M.N. Sintering of ceramics. CRC Press, Boca Raton, FL, USA, 2007, 388 pp.
[266] Monroe, E.A., Votava, W., Bass, D.B., McMullen, J. New calcium phosphate ceramic material for bone and tooth implants. J. Dent. Res. 1971, 50, 860-861.
[267] Landi, E., Tampieri, A., Celotti, G., Sprio, S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 2000, 20, 2377-2387.
[268] Chen, S., Wang, W., Kono, H., Sassa, K., Asai, S. Abnormal grain growth of hydroxyapatite ceramic sintered in a high magnetic field. J. Cryst. Growth 2010, 312, 323-326.
[269] Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., Milthorpe, B.K. Sintering effect on the strength of hydroxyapatite. Biomaterials 1995, 16, 409-415.
[270] van Landuyt, P., Li, F., Keustermans, J.P., Streydio, J.M., Delannay, F., Munting, E. The influence of high sintering temperatures on the mechanical properties of hydroxylapatite. J. Mater. Sci. Mater. Med. 1995, 6, 8-13.
[271] Pramanik, S., Agarwal, A.K., Rai, K.N., Garg, A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 2007, 33, 419-426.
[272] Haberko, K., Bućko, M.M., Brzezińska-Miecznik, J., Haberko, M., Mozgawa, W., Panz, T., Pyda, A., Zarebski, J. Natural hydroxyapatite – its behaviour during heat treatment. J. Eur. Ceram. Soc. 2006, 26, 537-542.
[273] Haberko, K., Bućko, M.M., Mozgawa, W., Pyda, A., Brzezińska-Miecznik, J., Carpentier, J. Behaviour of bone origin hydroxyapatite at elevated temperatures and in O2 and CO2 atmospheres. Ceram. Int. 2009, 35, 2537-2540.
[274] Janus, A.M., Faryna, M., Haberko, K., Rakowska, A., Panz, T. Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. Mikrochim. Acta 2008, 161, 349-353.
[275] Bahrololoom, M.E., Javidi, M., Javadpour, S., Ma, J. Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash. J. Ceram. Process. Res. 2009, 10, 129-138.
[276] Mostafa, N.Y. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater. Chem. Phys. 2005, 94, 333-341.
[277] Suchanek, W., Yashima, M., Kakihana, M., Yoshimura, M. Hydroxyapatite ceramics with selected sintering additives. Biomaterials 1997, 18, 923-933.
[278] Kalita, S.J., Bose, S., Bandyopadhyay, A., Hosick, H.L. Oxide based sintering additives for HAp ceramics. Ceram. Trans. 2003, 147, 63-72.
[279] Kalita, S.J., Bose, S., Hosick, H.L., Bandyopadhyay, A. CaO–P2O5–Na2O-based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials 2004, 25, 2331-2339.
[280] Safronova, T.V., Putlyaev, V.I., Shekhirev, M.A., Tretyakov, Y.D., Kuznetsov, A.V., Belyakov, A.V. Densification additives for hydroxyapatite ceramics. J. Eur. Ceram. Soc. 2009, 29, 1925-1932.
[281] Muralithran, G., Ramesh, S. Effects of sintering temperature on the properties of hydroxyapatite. Ceram. Int. 2000, 26, 221-230.
[282] Eskandari, A., Aminzare, M., Hassani, H., Barounian, H., Hesaraki, S., Sadrnezhaad, S.K. Densification behavior and mechanical properties of biomimetic apatite nanocrystals. Curr. Nanosci. 2011, 7, 776-780.
[283] Ramesh, S., Tolouei, R., Tan, C.Y., Aw, K.L., Yeo, W.H., Sopyan, I., Teng, W.D. Sintering of hydroxyapatite ceramic produced by wet chemical method. Adv. Mater. Res. 2011, 264-265, 1856-1861.
[284] Ou, S.F., Chiou, S.Y., Ou, K.L. Phase transformation on hydroxyapatite decomposition. Ceram. Int. 2013, 39, 3809-3816.
[285] Bernache-Assollant, D., Ababou, A., Champion, E., Heughebaert, M. Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth. J. Eur. Ceram. Soc. 2003, 23, 229-241.
[286] Ramesh, S., Tan, C.Y., Bhaduri, S.B., Teng, W.D., Sopyan I. Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J. Mater. Process. Technol. 2008, 206, 221-230.
[287] Wang, J., Shaw, L.L. Grain-size dependence of the hardness of submicrometer and nanometer hydroxyapatite. J. Am. Ceram. Soc. 2010, 93, 601-604.
[288] Kobayashi, S., Kawai, W., Wakayama, S. The effect of pressure during sintering on the strength and the fracture toughness of hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 2006, 17, 1089-1093.
[289] Chen, I.W., Wang, X.H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000, 404, 168-170.
[290] Mazaheri, M., Haghighatzadeh, M., Zahedi, A.M., Sadrnezhaad, S.K. Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics. J. Alloys Compd. 2009, 471, 180-184.
[291] Lin, K., Chen, L., Chang, J. Fabrication of dense hydroxyapatite nanobioceramics with enhanced mechanical properties via two-step sintering process. Int. J. Appl. Ceram. Technol. 2012, 9, 479-485.
[292] Panyata, S., Eitssayeam, S., Rujijanagul, G., Tunkasiri, T., Pengpat, K. Property development of hydroxyapatite ceramics by two-step sintering. Adv. Mater. Res. 2012, 506, 190-193.
[293] Esnaashary, M., Fathi, M., Ahmadian, M. The effect of the two-step sintering process on consolidation of fluoridated hydroxyapatite and its mechanical properties and bioactivity. Int. J. Appl. Ceram. Technol. 2014, 11, 47-56.
[294] Feng, P., Niu, M., Gao, C., Peng, S., Shuai, C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci. Report 2014, 4, 5599.
[295] Halouani, R., Bernache-Assolant, D., Champion, E., Ababou, A. Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 1994, 5, 563-568.
[296] Kasuga, T., Ota, Y., Tsuji, K., Abe, Y. Preparation of high-strength calcium phosphate ceramics with low modulus of elasticity containing β-Ca(PO3)2 fibers. J. Am. Ceram. Soc. 1996, 79, 1821-1824.
[297] Suchanek, W.L., Yoshimura, M. Preparation of fibrous, porous hydroxyapatite ceramics from hydroxyapatite whiskers. J. Am. Ceram. Soc. 1998, 81, 765-767.
[298] Kim, Y., Kim, S.R., Song, H., Yoon, H. Preparation of porous hydroxyapatite/TCP composite block using a hydrothermal hot pressing method. Mater. Sci. Forum 2005, 486-487, 117-120.
[299] Li, J.G., Hashida, T. In situ formation of hydroxyapatite-whisker ceramics by hydrothermal hot-pressing method. J. Am. Ceram. Soc. 2006, 89, 3544-3546.
[300] Li, J.G., Hashida, T. Preparation of hydroxyapatite ceramics by hydrothermal hot-pressing method at 300°C. J. Mater. Sci. 2007, 42, 5013-5019.
[301] Petrakova, N.V., Lysenkov, A.S., Ashmarin, A.A., Egorov, A.A., Fedotov, A.Y., Shvorneva, L.I., Komlev, V.S., Barinov, S.M. Effect of hot pressing temperature on the microstructure and strength of hydroxyapatite ceramic. Inorg. Mater. Appl. Res. 2013, 4, 362-367.
[302] Nakahira, A., Murakami, T., Onoki, T., Hashida, T., Hosoi, K. Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering. J. Am. Ceram. Soc. 2005, 88, 1334-1336.
[303] Auger, M.A., Savoini, B., Muñoz, A., Leguey, T., Monge, M.A., Pareja, R., Victoria, J. Mechanical characteristics of porous hydroxyapatite/oxide composites produced by post-sintering hot isostatic pressing. Ceram. Int. 2009, 35, 2373-2380.
[304] Silva, C.C., Graça, M.P.F., Sombra, A.S.B., Valente, M.A. Structural and electrical study of calcium phosphate obtained by a microwave radiation assisted procedure. Phys. Rev. B Condens. Matter 2009, 404, 1503-1508.
[305] Chanda, A., Dasgupta, S., Bose, S., Bandyopadhyay, A. Microwave sintering of calcium phosphate ceramics. Mater. Sci. Eng. C 2009, 29, 1144-1149.
[306] Veljović, D., Zalite, I., Palcevskis, E., Smiciklas, I., Petrović, R., Janaćković, D. Microwave sintering of fine grained HAP and HAP/TCP bioceramics. Ceram. Int. 2010, 36, 595-603.
[307] Kalita, S.J., Verma, S. Nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization. Mater. Sci. Eng. C 2010, 30, 295-303.
[308] Veljović, D., Palcevskis, E., Dindune, A., Putić, S., Balać, I., Petrović, R., Janaćković, D. Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing. J. Mater. Sci. 2010, 45, 3175-3183.
[309] Wu, Q., Zhang, X., Wu, B., Huang, W. Effects of microwave sintering on the properties of porous hydroxyapatite scaffolds. Ceram. Int. 2013, 39, 2389-2395.
[310] Tarafder, S., Balla, V.K., Davies, N.M., Bandyopadhyay, A., Bose, S. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 2013, 7, 631-641.
[311] Thuault, A., Savary, E., Hornez, J.C., Moreau, G., Descamps, M., Marinel, S., Leriche, A. Improvement of the hydroxyapatite mechanical properties by direct microwave sintering in single mode cavity. J. Eur. Ceram. Soc. 2014, 34, 1865-1871.
[312] Tovstonoh, H., Sych, O., Skorokhod, V. Effect of microwave sintering temperature on structure and properties of bioceramics based on biogenic hydroxyapatite. Funct. Mater. 2014, 21, 487-491.
[313] Tarafder, S., Dernell, W.S., Bandyopadhyay, A., Bose, S. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103B, 679-690.
[314] Nakamura, T., Fukuhara, T., Izui, H. Mechanical properties of hydroxyapatites sintered by spark plasma sintering. Ceram. Trans. 2006, 194, 265-272.
[315] Zhang, F., Lin, K., Chang, J., Lu, J., Ning, C. Spark plasma sintering of macroporous calcium phosphate scaffolds from nanocrystalline powders. J. Eur. Ceram. Soc. 2008, 28, 539-545.
[316] Grossin, D., Rollin-Martinet, S., Estournès, C., Rossignol, F., Champion, E., Combes, C., Rey, C., Geoffroy, C., Drouet, C. Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects. Acta Biomater. 2010, 6, 577-585.
[317] Chesnaud, A., Bogicevic, C., Karolak, F., EstourneÌs, C., Dezanneau, G. Preparation of transparent oxyapatite ceramics by combined use of freeze-drying and spark-plasma sintering. Chem. Comm. 2007, 1550-1552.
[318] Eriksson, M., Liu, Y., Hu, J., Gao, L., Nygren, M., Shen, Z. Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. J. Eur. Ceram. Soc. 2011, 31, 1533-1540.
[319] Liu, Y., Shen, Z. Dehydroxylation of hydroxyapatite in dense bulk ceramics sintered by spark plasma sintering. J. Eur. Ceram. Soc. 2012, 32, 2691-2696.
[320] Yoshida, H., Kim, B.N., Son, H.W., Han, Y.H., Kim, S. Superplastic deformation of transparent hydroxyapatite. Scripta Mater. 2013, 69, 155-158.
[321] Kim, B.N., Prajatelistia, E., Han, Y.H., Son, H.W., Sakka, Y., Kim, S. Transparent hydroxyapatite ceramics consolidated by spark plasma sintering. Scripta Mater. 2013, 69, 366-369.
[322] Yun, J., Son, H., Prajatelistia, E., Han, Y.H., Kim, S., Kim, B.N. Characterisation of transparent hydroxyapatite nanoceramics prepared by spark plasma sintering. Adv. Appl. Ceram. 2014, 113, 67-72.
[323] Li, Z., Khor, K.A. Transparent hydroxyapatite obtained through spark plasma sintering: optical and mechanical properties. Key Eng. Mater. 2015, 631, 51-56.
[324] Yanagisawa, K., Kim, J.H., Sakata, C., Onda, A., Sasabe, E., Yamamoto, T., Matamoros-Veloza, Z., Rendón-Angeles, J.C. Hydrothermal sintering under mild temperature conditions: preparation of calcium-deficient hydroxyapatite compacts. Z. Naturforsch. B 2010, 65, 1038-1044.
[325] Hosoi, K., Hashida, T., Takahashi, H., Yamasaki, N., Korenaga, T. New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method. J. Am. Ceram. Soc. 1996, 79, 2771-2774.
[326] Gross, K.A., Berndt C.C. Biomedical application of apatites. In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Vol. 48. Hughes, J.M., Kohn, M., Rakovan, J. Eds., Mineralogical Society of America, Washington, D.C., USA, 2002, pp. 631-672.
[327] Champion, E. Sintering of calcium phosphate bioceramics. Acta Biomater. 2013, 9, 5855-5875.
[328] Evans, J.R.G. Seventy ways to make ceramics. J. Eur. Ceram. Soc. 2008, 28, 1421-1432.
[329] Hench, L.L., Polak, J.M. Third-generation biomedical materials. Science 2002, 295, 1014-1017.
[330] Black, J. Biological performance of materials: fundamentals of biocompatibility. Fourth Ed. CRC Press, Boca Raton, FL, USA, 2005, 520 pp.
[331] Carter, C.B., Norton, M.G. Ceramic materials: science and engineering. 2nd ed. Springer, New York, USA, 2013, 766 pp.
[332] Benaqqa, C., Chevalier, J., Saädaoui, M., Fantozzi, G. Slow crack growth behaviour of hydroxyapatite ceramics. Biomaterials 2005, 26, 6106-6112.
[333] Pecqueux, F., Tancret, F., Payraudeau, N., Bouler, J. M. Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: modelling and experiment. J. Eur. Ceram. Soc. 2010, 30, 819-829.
[334] Ramesh, S., Tan, C.Y., Sopyan, I., Hamdi, M., Teng, W.D. Consolidation of nanocrystalline hydroxyapatite powder. Sci. Technol. Adv. Mater. 2007, 8, 124-130.
[335] Wagoner Johnson, A.J., Herschler, B.A. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011, 7, 16-30.
[336] Suchanek, W.L., Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94-117.
[337] Fan, X., Case, E.D., Ren, F., Shu, Y., Baumann, M.J. Part I: Porosity dependence of the Weibull modulus for hydroxyapatite and other brittle materials. J. Mech. Behav. Biomed. Mater. 2012, 8, 21-36.
[338] Fan, X., Case, E.D., Gheorghita, I., Baumann, M.J. Weibull modulus and fracture strength of highly porous hydroxyapatite. J. Mech. Behav. Biomed. Mater. 2013, 20, 283-295.
[339] Cordell, J., Vogl, M., Johnson, A. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds. J. Mech. Behav. Biomed. Mater. 2009, 2, 560-570.
[340] Suzuki, S., Sakamura, M., Ichiyanagi, M., Ozawa, M. Internal friction of hydroxyapatite and fluorapatite. Ceram. Int. 2004, 30, 625-627.
[341] Suzuki, S., Takahiro, K., Ozawa, M. Internal friction and dynamic modulus of polycrystalline ceramics prepared from stoichiometric and Ca-deficient hydroxyapatites. Mater. Sci. Eng. B 1998, 55, 68-70.
[342] Bouler, J.M., Trecant, M., Delecrin, J., Royer, J., Passuti, N., Daculsi, G. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength. J. Biomed. Mater. Res. 1996, 32, 603-609.
[343] Tancret, F., Bouler, J.M., Chamousset, J., Minois, L.M. Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 2006, 26, 3647-3656.
[344] le Huec, J.C., Schaeverbeke, T., Clement, D., Faber, J., le Rebeller, A. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 1995, 16, 113-118.
[345] Hsu, Y.H., Turner, I.G., Miles, A.W. Mechanical properties of three different compositions of calcium phosphate bioceramic following immersion in Ringer’s solution and distilled water. J. Mater. Sci. Mater. Med. 2009, 20, 2367-2374.
[346] Torgalkar, A.M. Resonance frequency technique to determine elastic modulus of hydroxyapatite. J. Biomed. Mater. Res. 1979, 13, 907-920.
[347] Gilmore, R.S., Katz, J.L. Elastic properties of apatites. J. Mater. Sci. 1982, 17, 1131-1141.
[348] Fan, X., Case, E.D., Ren, F., Shu, Y., Baumann, M.J. Part II: fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials. J. Mech. Behav. Biomed. Mater. 2012, 8, 99-110.
[349] de Aza, P.N., de Aza, A.H., de Aza, S. Crystalline bioceramic materials. Bol. Soc. Esp. Ceram. V. 2005, 44, 135-145.
[350] Fritsch, A., Dormieux, L., Hellmich, C., Sanahuja, J. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. J. Biomed. Mater. Res. A 2009, 88A, 149-161.
[351] Ching, W.Y., Rulis, P., Misra, A. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater. 2009, 5, 3067-3075.
[352] Fritsch, A., Hellmich, C., Dormieux, L. The role of disc-type crystal shape for micromechanical predictions of elasticity and strength of hydroxyapatite biomaterials. Philos. Trans. R. Soc. Lond. A 2010, 368, 1913-1935.
[353] Menéndez-Proupin, E., Cervantes-Rodríguez, S., Osorio-Pulgar, R., Franco-Cisterna, M., Camacho-Montes, H., Fuentes, M.E. Computer simulation of elastic constants of hydroxyapatite and fluorapatite. J. Mech. Behav. Biomed. Mater. 2011, 4, 1011-1120.
[354] Sun, J.P., Song, Y., Wen, G.W., Wang, Y., Yang, R. Softening of hydroxyapatite by vacancies: a first principles investigation. Mater. Sci. Eng. C 2013, 33, 1109-1115.
[355] Sha, M.C., Li, Z., Bradt, R.C. Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. J. Appl. Phys. 1994, 75, 7784-7787.
[356] Wakai, F., Kodama, Y., Sakaguchi, S., Nonami, T. Superplasticity of hot isostatically pressed hydroxyapatite. J. Am. Ceram. Soc. 1990, 73, 457-460.
[357] Tago, K., Itatani, K., Suzuki, T.S., Sakka, Y., Koda, S. Densification and superplasticity of hydroxyapatite ceramics. J. Ceram. Soc. Jpn. 2005, 113, 669-673.
[358] Burger, E.L., Patel, V. Calcium phosphates as bone graft extenders. Orthopedics 2007, 30, 939-942.
[359] Rodriguez-Lorenzo, L.M., Vallet-Regí, M., Ferreira, J.M.F., Ginebra, M.P., Aparicio, C., Planell, J. A hydroxyapatite ceramic bodies with tailored mechanical properties for different applications. J. Biomed. Mater. Res. 2002, 60, 159-166.
[360] Song, J., Liu, Y., Zhang, Y., Jiao, L. Mechanical properties of hydroxyapatite ceramics sintered from powders with different morphologies. Mater. Sci. Eng. A 2011, 528, 5421-5427.
[361] Dorozhkin, S.V. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J. Funct. Biomater. 2015, 6, 708-832.
[362] Bouslama, N., Ben Ayed, F., Bouaziz, J. Sintering and mechanical properties of tricalcium phosphate – fluorapatite composites. Ceram. Int. 2009, 35, 1909-1917.
[363] Suchanek, W., Yashima, M., Kakihana, M., Yoshimura, M. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers. Biomaterials 1996, 17, 1715-1723.
[364] Suchanek, W., Yashima, M., Kakihana, M., Yoshimura, M. Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution. J. Am. Ceram. Soc. 1997, 80, 2805-2813.
[365] Simsek, D., Ciftcioglu, R., Guden, M., Ciftcioglu, M., Harsa, S. Mechanical properties of hydroxyapatite composites reinforced with hydroxyapatite whiskers. Key Eng. Mater. 2004, 264-268, 1985-1988.
[366] Bose, S., Banerjee, A., Dasgupta, S., Bandyopadhyay, A. Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites. J. Am. Ceram. Soc. 2009, 92, 323-330.
[367] Lie-Feng, L., Xiao-Yi, H., Cai, Y.X., Weng, J. Reinforcing of porous hydroxyapatite ceramics with hydroxyapatite fibres for enhanced bone tissue engineering. J. Biomim. Biomater. Tissue Eng. 2011, 1314, 67-73.
[368] Shiota, T., Shibata, M., Yasuda, K., Matsuo, Y. Influence of β-tricalcium phosphate dispersion on mechanical properties of hydroxyapatite ceramics. J. Ceram. Soc. Jpn. 2009, 116, 1002-1005.
[369] Shuai, C., Feng, P., Nie, Y., Hu, H., Liu, J., Peng, S. Nano-hydroxyapatite improves the properties of β-tricalcium phosphate bone scaffolds. Int. J. Appl. Ceram. Technol. 2013, 10, 1003-1013.
[370] Dorozhkin, S.V., Ajaal, T. Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings. Proc. Inst. Mech. Eng. Η 2009, 223, 459-470.
[371] Dorozhkin, S.V., Ajaal, T. Strengthening of dense bioceramic samples using bioresorbable polymers – a statistical approach. J. Biomim. Biomater. Tissue Eng. 2009, 4, 27-39.
[372] Dressler, M., Dombrowski, F., Simon, U., Börnstein, J., Hodoroaba, V.D., Feigl, M., Grunow, S., Gildenhaar, R., Neumann, M. Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics. J. Eur. Ceram. Soc. 2011, 31, 523-529.
[373] Martinez-Vazquez, F.J., Perera, F.H., Miranda, P., Pajares, A., Guiberteau, F. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 2010, 6, 4361-4368.
[374] Fedotov, A.Y., Bakunova, N.V., Komlev, V.S., Barinov, S.M. High-porous calcium phosphate bioceramics reinforced by chitosan infiltration. Dokl. Chem. 2011, 439, 233-236.
[375] Martínez-Vázquez, F.J., Pajares, A., Guiberteau, F., Miranda, P. Effect of polymer infiltration on the flexural behavior of β-tricalcium phosphate robocast scaffolds. Materials 2014, 7, 4001-4018.
[376] He, L.H., Standard, O.C., Huang, T.T., Latella, B.A., Swain, M.V. Mechanical behaviour of porous hydroxyapatite. Acta Biomater. 2008, 4, 577-586.
[377] Yamashita, K., Owada, H., Umegaki, T., Kanazawa, T., Futagamu, T. Ionic conduction in apatite solid solutions. Solid State Ionics 1988, 28-30, 660-663.
[378] Nagai, M., Nishino, T. Surface conduction of porous hydroxyapatite ceramics at elevated temperatures. Solid State Ionics 1988, 28-30, 1456-1461.
[379] Valdes, J.J.P., Rodriguez, A.V., Carrio, J.G. Dielectric properties and structure of hydroxyapatite ceramics sintered by different conditions. J. Mater. Res. 1995, 10, 2174-2177.
[380] Fanovich, M.A., Castro, M.S., Lopez, J.M.P. Analysis of the microstructural evolution in hydroxyapatite ceramics by electrical characterisation. Ceram. Int. 1999, 25, 517-522.
[381] Bensaoud, A., Bouhaouss, A., Ferhat, M. Electrical properties in compressed poorly crystalline apatite. J. Solid State Electrochem. 2001, 5, 362-365.
[382] Mahabole, M.P., Aiyer, R.C., Ramakrishna, C.V., Sreedhar, B., Khairnar, R.S. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 2005, 28, 535-545.
[383] Tanaka, Y., Takata, S., Shimoe, K., Nakamura, M., Nagai, A., Toyama, T., Yamashita, K. Conduction properties of non-stoichiometric hydroxyapatite whiskers for biomedical use. J. Ceram. Soc. Jpn. 2008, 116, 815-821.
[384] Tanaka, Y., Nakamura, M., Nagai, A., Toyama, T., Yamashita, K. Ionic conduction mechanism in Ca-deficient hydroxyapatite whiskers. Mater. Sci. Eng. B 2009, 161, 115-119.
[385] Wang, W., Itoh, S., Yamamoto, N., Okawa, A., Nagai, A., Yamashita, K. Electrical polarization of β-tricalcium phosphate ceramics. J. Am. Ceram. Soc. 2010, 93, 2175-2177.
[386] Mahabole, M.P., Mene, R.U., Khairnar, R.S. Gas sensing and dielectric studies on cobalt doped hydroxyapatite thick films. Adv. Mater. Lett. 2013, 4, 46-52.
[387] Horiuchi, N., Nakaguki, S., Wada, N., Nozaki, K., Nakamura, M., Nagai, A, Katayama, K., Yamashita, K. Polarization-induced surface charges in hydroxyapatite ceramics. J. Appl. Phys. 2014, 116, 014902.
[388] Tofail, S.A.M., Gandhi, A.A., Gregor, M., Bauer, J. Electrical properties of hydroxyapatite. Pure Appl. Chem. 2015, 87, 221-229.
[389] Kaygili, O., Keser, S., Ates, T., Kirbag, S., Yakuphanoglu, F. Dielectric properties of calcium phosphate ceramics. Medziagotyra 2016, 22, 65-69.

[390] Suresh, M.B., Biswas, P., Mahender, V., Johnson, R. Comparative evaluation of electrical conductivity of hydroxyapatite ceramics densified through ramp and hold, spark plasma and post sinter hot isostatic pressing routes. Mater. Sci. Eng. C 2017, 70, 364-370.
[391] Gandhi, A.A., Wojtas, M., Lang, S.B., Kholkin, A.L., Tofail, S.A.M. Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 2014, 97, 2867-2872.
[392] Bystrov, V.S. Piezoelectricity in the ordered monoclinic hydroxyapatite. Ferroelectrics 2015, 475, 148-153.
[393] Nakamura, S., Takeda, H., Yamashita, K. Proton transport polarization and depolarization of hydroxyapatite ceramics. J. Appl. Phys. 2001, 89, 5386-5392.
[394] Gittings, J.P., Bowen, C.R., Turner, I.G., Baxter, F.R., Chaudhuri, J.B. Polarisation behaviour of calcium phosphate based ceramics. Mater. Sci. Forum 2008, 587-588, 91-95.
[395] Itoh, S., Nakamura, S., Kobayashi, T., Shinomiya, K., Yamashita, K., Itoh, S. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcif. Tissue Int. 2006, 78, 133-142.
[396] Iwasaki, T., Tanaka, Y., Nakamura, M., Nagai, A., Hashimoto, K., Toda, Y., Katayama, K., Yamashita, K. Rate of bonelike apatite formation accelerated on polarized porous hydroxyapatite. J. Am. Ceram. Soc. 2008, 91, 3943-3949.
[397] Itoh, S., Nakamura, S., Kobayashi, T., Shinomiya, K., Yamashita, K. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization. Biomaterials 2006, 27, 5572-5579.
[398] Kobayashi, T., Itoh, S., Nakamura, S., Nakamura, M., Shinomiya, K., Yamashita, K. Enhanced bone bonding of hydroxyapatite-coated titanium implants by electrical polarization. J. Biomed. Mater. Res. A 2007, 82A, 145-151.
[399] Bodhak S., Bose S., Bandyopadhyay A. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater. 2009, 5, 2178-2188.
[400] Sagawa, H., Itoh, S., Wang, W., Yamashita, K. Enhanced bone bonding of the hydroxyapatite/β-tricalcium phosphate composite by electrical polarization in rabbit long bone. Artif. Organs 2010, 34, 491-497.
[401] Ohba, S., Wang, W., Itoh, S., Nagai, A., Yamashita, K. Enhanced effects of new bone formation by an electrically polarized hydroxyapatite microgranule/platelet-rich plasma composite gel. Key Eng. Mater. 2013, 529-530, 82-87.
[402] Yamashita, K., Oikawa, N., Umegaki, T. Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chem. Mater. 1996, 8, 2697-2700.
[403] Teng, N.C., Nakamura, S., Takagi, Y., Yamashita, Y., Ohgaki, M., Yamashita, K. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite. J. Dent. Res. 2001, 80, 1925-1929.
[404] Kobayashi, T., Nakamura, S., Yamashita, K. Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. J. Biomed. Mater. Res. 2001, 57, 477-484.
[405] Park, Y.J., Hwang, K.S., Song, J.E., Ong, J.L., Rawls, H.R. Growth of calcium phosphate on poling treated ferroelectric BaTiO3 ceramics. Biomaterials 2002, 23, 3859-3864.
[406] Hwang, K.S., Song, J.E., Jo, J.W., Yang, H.S., Park, Y.J., Ong, J.L., Rawls, H.R. Effect of poling conditions on growth of calcium phosphate crystal in ferroelectric BaTiO3 ceramics. J. Mater. Sci. Mater. Med. 2002, 13, 133-138.
[407] Yamashita, K. Enhanced bioactivity of electrically poled hydroxyapatita ceramics and coatings. Mater. Sci. Forum 2003, 426-432, 3237-3242.
[408] Nakamura, S., Kobayashi, T., Yamashita, K. Highly orientated calcification in newly formed bones on negatively charged hydroxyapatite electrets. Key Eng. Mater. 2005, 284-286, 897-900.
[409] Kato, R., Nakamura, S., Katayama, K., Yamashita, K. Electrical polarization of plasma-spray-hydroxyapatite coatings for improvement of osteoconduction of implants. J. Biomed. Mater. Res. A 2005, 74A, 652-658.
[410] Nakamura, S., Kobayashi, T., Nakamura, M., Itoh, S., Yamashita, K. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/β-tricalcium phosphate ceramics. J. Biomed. Mater. Res. A 2010, 92A, 267-275.
[411] Tarafder, S., Bodhak, S., Bandyopadhyay, A., Bose, S. Effect of electrical polarization and composition of biphasic calcium phosphates on early stage osteoblast interactions. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97B, 306-314.
[412] Ohba, S., Wang, W., Itoh, S., Takagi, Y., Nagai, A., Yamashita, K. Acceleration of new bone formation by an electrically polarized hydroxyapatite microgranule/platelet-rich plasma composite. Acta Biomater. 2012, 8, 2778-2787.
[413] Tarafder, S., Banerjee, S., Bandyopadhyay, A., Bose, S. Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 2010, 26, 16625-16629.
[414] Itoh, S., Nakamura, S., Nakamura, M., Shinomiya, K., Yamashita, K. Enhanced bone regeneration by electrical polarization of hydroxyapatite. Artif. Organs 2006, 30, 863-869.
[415] Nakamura, M., Nagai, A., Ohashi, N., Tanaka, Y., Sekilima, Y., Nakamura, S. Regulation of osteoblast-like cell behaviors on hydroxyapatite by electrical polarization. Key Eng. Mater. 2008, 361-363, 1055-1058.
[416] Nakamura, M., Nagai, A., Tanaka, Y., Sekilima, Y., Yamashita, K. Polarized hydroxyapatite promotes spread and motility of osteoblastic cells. J. Biomed. Mater. Res. A 2010, 92A, 783-790.
[417] Nakamura, M., Nagai, A., Yamashita, K. Surface electric fields of apatite electret promote osteoblastic responses. Key Eng. Mater. 2013, 529-530, 357-360.
[418] Nakamura, S., Kobayashi, T., Yamashita, K. Extended bioactivity in the proximity of hydroxyapatite ceramic surfaces induced by polarization charges. J. Biomed. Mater. Res. 2002, 61, 593-599.
[419] Wang, W., Itoh, S., Tanaka, Y., Nagai, A., Yamashita, K. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization. Acta Biomater. 2009, 5, 3132-3140.
[420] Cartmell, S.H., Thurstan, S., Gittings, J.P., Griffiths, S., Bowen, C.R., Turner, I.G. Polarization of porous hydroxyapatite scaffolds: influence on osteoblast cell proliferation and extracellular matrix production. J. Biomed. Mater. Res. A 2014, 102A, 1047-1052.
[421] Nakamura, M., Kobayashi, A., Nozaki, K., Horiuchi, N., Nagai, A., Yamashita, K. Improvement of osteoblast adhesion through polarization of plasma-sprayed hydroxyapatite coatings on metal. J. Med. Biol. Eng. 2014, 34, 44-48.
[422] Nagai, A., Tanaka, K., Tanaka, Y., Nakamura, M., Hashimoto, K., Yamashita, K. Electric polarization and mechanism of B-type carbonated apatite ceramics. J. Biomed. Mater. Res. A 2011, 99A, 116-124.
[423] Nakamura, M., Niwa, K., Nakamura, S., Sekijima, Y., Yamashita, K. Interaction of a blood coagulation factor on electrically polarized hydroxyapatite surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 29-36.
[424] Nagai, M., Shibuya, Y., Nishino, T., Saeki, T., Owada, H., Yamashita, K., Umegaki, T. Electrical conductivity of calcium phosphate ceramics with various Ca/P ratios. J. Mater. Sci. 1991, 26, 2949-2953.
[425] Laghzizil, A., Elherch, N., Bouhaouss, A., Lorente, G., Coradin, T., Livage, J. Electrical behavior of hydroxyapatites M10(PO4)6(OH)2 (M = Ca, Pb, Ba). Mater. Res. Bull. 2001, 36, 953-962.
[426] Louati, B., Guidara, K., Gargouri, M. Dielectric and ac ionic conductivity investigations in the monetite. J. Alloys Compd. 2009, 472, 347-351.
[427] Gittings, J.P., Bowen, C.R., Dent, A.C., Turner, I.G., Baxter, F.R., Chaudhuri, J.B. Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomater. 2009, 5, 743-754.
[428] Tofail, S.A.M., Baldisserri, C., Haverty, D., McMonagle, J.B., Erhart, J. Pyroelectric surface charge in hydroxyapatite ceramics. J. Appl. Phys. 2009, 106, 106104.
[429] Ioku, K. Tailored bioceramics of calcium phosphates for regenerative medicine. J. Ceram. Soc. Jpn. 2010, 118, 775-783.
[430] Fang, Y., Agrawal, D.K., Roy, D.M., Roy, R. Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering. Mater. Lett. 1995, 23, 147-151.
[431] Varma, H., Vijayan, S.P., Babu, S.S. Transparent hydroxyapatite ceramics through gel-casting and low-temperature sintering. J. Am. Ceram. Soc. 2002, 85, 493-495.
[432] Watanabe, Y., Ikoma, T., Monkawa, A., Suetsugu, Y., Yamada, H., Tanaka, J., Moriyoshi, Y. Fabrication of transparent hydroxyapatite sintered body with high crystal orientation by pulse electric current sintering. J. Am. Ceram. Soc. 2005, 88, 243-245.
[433] Kotobuki, N., Ioku, K., Kawagoe, D., Fujimori, H., Goto, S., Ohgushi, H. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials 2005, 26, 779-785.
[434] John, A., Varma, H.K., Vijayan, S., Bernhardt, A., Lode, A., Vogel, A., Burmeister, B., Hanke, T., Domaschke, H., Gelinsky, M. In vitro investigations of bone remodeling on a transparent hydroxyapatite ceramic. Biomed. Mater. 2009, 4, 015007 (9 pages).
[435] Wang, J., Shaw, L.L. Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering. Scripta Mater. 2010, 63, 593-596.
[436] Tan, N., Kou, Z., Ding, Y., Leng, Y., Liu, C., He, D. Novel substantial reductions in sintering temperatures for preparation of transparent hydroxyapatite bioceramics under ultrahigh pressure. Scripta Mater. 2011, 65, 819-822.
[437] Boilet, L., Descamps, M., Rguiti, E., Tricoteaux, A., Lu, J., Petit, F., Lardot, V., Cambier, F., Leriche, A. Processing and properties of transparent hydroxyapatite and β tricalcium phosphate obtained by HIP process. Ceram. Int. 2013, 39, 283-288.
[438] Han, Y.H., Kim, B.N., Yoshida, H., Yun, J., Son, H.W., Lee, J., Kim, S. Spark plasma sintered superplastic deformed transparent ultrafine hydroxyapatite nanoceramics. Adv. Appl. Ceram. 2016, 115, 174-184.
[439] Kobune, M., Mineshige, A., Fujii, S., Iida, H. Preparation of translucent hydroxyapatite ceramics by HIP and their physical properties. J. Ceram. Soc. Jpn. 1997, 105, 210-213.
[440] Barralet, J.E., Fleming, G.J.P., Campion, C., Harris, J.J., Wright, A.J. Formation of translucent hydroxyapatite ceramics by sintering in carbon dioxide atmospheres. J. Mater. Sci. 2003, 38, 3979-3993.
[441] Chaudhry, A.A., Yan, H., Gong, K., Inam, F., Viola, G., Reece, M.J., Goodall, J.B.M., ur Rehman, I., McNeil-Watson, F.K., Corbett, J.C.W., Knowles, J.C, Darr, J.A. High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater. 2011, 7, 791-799.
[442] Tancred, D.C., McCormack, B.A., Carr, A.J. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials 1998, 19, 2303-2311.
[443] Miao, X., Sun, D. Graded/gradient porous biomaterials. Materials 2010, 3, 26-47.
[444] Schliephake, H., Neukam, F.W., Klosa, D. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study. Int. J. Oral Maxillofac. Surg. 1991, 20, 53-58.
[445] Otsuki, B., Takemoto, M., Fujibayashi, S., Neo, M., Kokubo, T., Nakamura, T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 2006, 27, 5892-5900.
[446] Hing, K.A., Best, S.M., Bonfield, W. Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 1999, 10, 135-145.
[447] Lu, J.X., Flautre, B., Anselme, K., Hardouin, P., Gallur, A., Descamps, M., Thierry, B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J. Mater. Sci. Mater. Med. 1999, 10, 111-120.
[448] Karageorgiou, V., Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474-5491.
[449] Jones, A.C., Arns, C.H., Sheppard, A.P., Hutmacher, D.W., Milthorpe, B.K., Knackstedt, M.A. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 2007, 28, 2491-2504.
[450] Tamai, N., Myoui, A., Kudawara, I., Ueda, T., Yoshikawa, H. Novel fully interconnected porous hydroxyapatite ceramic in surgical treatment of benign bone tumor. J. Orthop. Sci. 2010, 15, 560-568.
[451] Sakane, M., Tsukanishi, T., Funayama, T., Kobayashi, M., Ochiai, N. Unidirectional porous β-tricalcium phosphate bone substitute: examination of balance between new bone formation and absorption. Key Eng. Mater. 2012, 493-494, 132-134.
[452] Panzavolta, S., Torricelli, P., Amadori, S., Parrilli, A., Rubini, K., Della Bella, E., Fini, M., Bigi, A. 3D interconnected porous biomimetic scaffolds: in vitro cell response. J. Biomed. Mater. Res. A 2013, 101A, 3560-3570.
[453] Jin, L., Feng, Z.Q., Wang, T., Ren, Z., Ma, S., Wu, J., Sun, D. A novel fluffy hydroxylapatite fiber scaffold with deep interconnected pores designed for three-dimensional cell culture. J. Mater. Chem. B 2014, 2, 129-136.
[454] Flautre, B., Descamps, M., Delecourt, C., Blary, M.C., Hardouin, P. Porous HA ceramic for bone replacement: role of the pores and interconnections – experimental study in the rabbits. J. Mater. Sci. Mater. Med. 2001, 12, 679-682.
[455] Tamai, N., Myoui, A., Tomita, T., Nakase, T., Tanaka, J., Ochi, T., Yoshikawa, H. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed. Mater. Res. 2002, 59, 110-117.
[456] Mastrogiacomo, M., Scaglione, S., Martinetti, R., Dolcini, L., Beltrame, F., Cancedda, R., Quarto, R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 2006, 27, 3230-3237.
[457] Okamoto, M., Dohi, Y., Ohgushi, H., Shimaoka, H., Ikeuchi, M., Matsushima, A., Yonemasu, K., Hosoi, H. Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J. Mater. Sci. Mater. Med. 2006, 17, 327-336.
[458] Zhang, L., Hanagata, N., Maeda, M., Minowa, T., Ikoma, T., Fan, H., Zhang, X. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells. Sci. Technol. Adv. Mater. 2009, 10, 025003 (9 pages).
[459] Li, X., Liu, H., Niu, X., Fan, Y., Feng, Q., Cui, F.Z., Watari, F. Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97B, 10-19.
[460] Hong, M.H., Kim, S.M., Han, M.H., Kim, Y.H., Lee, Y.K., Oh, D.S. Evaluation of microstructure effect of the porous spherical β-tricalcium phosphate granules on cellular responses. Ceram. Int. 2014, 40, 6095-6102.
[461] de Godoy, R.F., Hutchens, S., Campion, C., Blunn, G. Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells. J. Mater. Sci. Mater. Med. 2015, 26, 54 (12 pages).
[462] Omae, H., Mochizuki, Y., Yokoya, S., Adachi, N., Ochi, M. Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics. J. Biomed. Mater. Res. A 2006, 79A, 329-337.
[463] Yoshikawa, H., Tamai, N., Murase, T., Myoui, A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J. R. Soc. Interface 2009, 6, S341-S348.
[464] Ribeiro, G.B.M., Trommer, R.M., dos Santos, L.A., Bergmann, C.P. Novel method to produce β-TCP scaffolds. Mater. Lett. 2011, 65, 275-277.
[465] Silva, T.S.N., Primo, B.T., Silva Jr., A.N., Machado, D.C., Viezzer, C., Santos, L.A. Use of calcium phosphate cement scaffolds for bone tissue engineering: in vitro study. Acta Cir. Bras. 2011, 26, 7-11.
[466] de Moraes MacHado, J.L., Giehl, I.C., Nardi, N.B., dos Santos, L.A. Evaluation of scaffolds based on α-tricalcium phosphate cements for tissue engineering applications. IEEE Trans. Biomed. Eng. 2011, 58, 1814-1819.
[467] Li, S.H., de Wijn, J.R., Layrolle, P., de Groot, K. Novel method to manufacture porous hydroxyapatite by dual-phase mixing. J. Am. Ceram. Soc. 2003, 86, 65-72.
[468] de Oliveira, J.F., de Aguiar, P.F., Rossi, A.M., Soares, G.D.A. Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. Artif. Organs 2003, 27, 406-411.
[469] Swain, S.K., Bhattacharyya, S. Preparation of high strength macroporous hydroxyapatite scaffold. Mater. Sci. Eng. C 2013, 33, 67-71.
[470] Maeda, H., Kasuga, T., Nogami, M., Kagami, H., Hata, K., Ueda, M. Preparation of bonelike apatite composite sponge. Key Eng. Mater. 2004, 254-256, 497-500.
[471] le Ray, A.M., Gautier, H., Bouler, J.M., Weiss, P., Merle, C. A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure. Ceram. Int. 2010, 36, 93-101.
[472] Li, S.H., de Wijn J.R., Layrolle, P., de Groot, K. Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 2002, 61, 109-120.
[473] Hesaraki, S., Sharifi, D. Investigation of an effervescent additive as porogenic agent for bone cement macroporosity. Biomed. Mater. Eng. 2007, 17, 29-38.
[474] Hesaraki, S., Moztarzadeh, F., Sharifi, D. Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J. Biomed. Mater. Res. A 2007, 83A, 80-87.
[475] Pal, K., Pal, S. Development of porous hydroxyapatite scaffolds. Mater. Manuf. Process. 2006, 21, 325-328.
[476] Tas, A.C. Preparation of porous apatite granules from calcium phosphate cement. J. Mater. Sci. Mater. Med. 2008, 19, 2231-2239.
[477] Yao, X., Tan, S., Jiang, D. Improving the properties of porous hydroxyapatite ceramics by fabricating methods. J. Mater. Sci. 2005, 40, 4939-4942.
[478] Song, H.Y., Youn, M.H., Kim, Y.H., Min, Y.K., Yang, H.M., Lee, B.T. Fabrication of porous β-TCP bone graft substitutes using PMMA powder and their biocompatibility study. Korean J. Mater. Res. 2007, 17, 318-322.
[479] Youn, M.H., Paul, R.K., Song, H.Y., Lee, B.T. Fabrication of porous structure of BCP sintered bodies using microwave assisted synthesized HAp nano powder. Mater. Sci. Forum 2007, 534-536, 49-52.
[480] Almirall, A., Larrecq, G., Delgado, J.A., Martínez, S., Ginebra, M.P., Planell, J.A. Fabrication of low temperature hydroxyapatite foams. Key Eng. Mater. 2004, 254-256, 1001-1004.
[481] Almirall, A., Larrecq, G., Delgado, J.A., Martínez, S., Planell, J.A., Ginebra, M.P. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 2004, 25, 3671-3680.
[482] Huang, X., Miao, X. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. J. Biomater. Appl. 2007, 21, 351-374.
[483] Strnadova, M., Protivinsky, J., Strnad, J., Vejsicka, Z. Preparation of porous synthetic nanostructured HA scaffold. Key Eng. Mater. 2008, 361-363, 211-214.
[484] Li, B., Chen, X., Guo, B., Wang, X., Fan, H., Zhang, X. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater. 2009, 5, 134-143.
[485] Cheng, Z., Zhao, K., Wu, Z.P. Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceram. Int. 2015, 41, 8599-8604.
[486] Takagi, S., Chow, L.C. Formation of macropores in calcium phosphate cement implants. J. Biomed. Mater. Res. 2001, 12, 135-139.
[487] Walsh, D., Tanaka, J. Preparation of a bone-like apatite foam cement. J. Mater. Sci. Mater. Med. 2001, 12, 339-344.
[488] Tadic, D., Beckmann, F., Schwarz, K., Epple, M. A novel method to produce hydroxylapatite objects with interconnecting porosity that avoids sintering. Biomaterials 2004, 25, 3335-3340.
[489] Komlev, V.S., Barinov, S.M. Porous hydroxyapatite ceramics of bi-modal pore size distribution. J. Mater. Sci. Mater. Med. 2002, 13, 295-299.
[490] Sepulveda, P., Binner, J.G., Rogero, S.O., Higa, O.Z., Bressiani, J.C. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation. J. Biomed. Mater. Res. 2000, 50, 27-34.
[491] Hsu, Y.H., Turner, I.G., Miles, A.W. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. J. Mater. Sci. Mater. Med. 2007, 18, 2319-2329.
[492] Zhang, H.G., Zhu, Q. Preparation of porous hydroxyapatite with interconnected pore architecture. J. Mater. Sci. Mater. Med. 2007, 18, 1825-1829.
[493] Chevalier, E., Chulia, D., Pouget, C., Viana, M. Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J. Pharm. Sci. 2008, 97, 1135-1154.
[494] Tang, Y.J., Tang, Y.F., Lv, C.T., Zhou, Z.H. Preparation of uniform porous hydroxyapatite biomaterials by a new method. Appl. Surf. Sci. 2008, 254, 5359-5362.
[495] Abdulqader, S.T., Rahman, I.A., Ismail, H., Ponnuraj Kannan, T., Mahmood, Z. A simple pathway in preparation of controlled porosity of biphasic calcium phosphate scaffold for dentin regeneration. Ceram. Int. 2013, 39, 2375-2381.
[496] Stares, S.L., Fredel, M.C., Greil, P., Travitzky, N. Paper-derived hydroxyapatite. Ceram. Int. 2013, 39, 7179-7183.
[497] Wen, F.H., Wang, F., Gai, Y., Wang, M.T., Lai, Q.H. Preparation of mesoporous hydroxylapatite ceramics using polystyrene microspheres as template. Appl. Mech. Mater. 2013, 389, 194-198.
[498] Guda, T., Appleford, M., Oh, S., Ong, J.L. A cellular perspective to bioceramic scaffolds for bone tissue engineering: the state of the art. Curr. Top. Med. Chem. 2008, 8, 290-299.
[499] Habraken, W.J.E.M., Wolke, J.G.C., Jansen, J.A. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 2007, 59, 234-248.
[500] Tian, J., Tian, J. Preparation of porous hydroxyapatite. J. Mater. Sci. 2001, 36, 3061-3066.
[501] Swain, S.K., Bhattacharyya, S., Sarkar, D. Preparation of porous scaffold from hydroxyapatite powders. Mater. Sci. Eng. C 2011, 31, 1240-1244.
[502] Zhao, K., Tang, Y.F., Qin, Y.S., Luo, D.F. Polymer template fabrication of porous hydroxyapatite scaffolds with interconnected spherical pores. J. Eur. Ceram. Soc. 2011, 31, 225-229.
[503] Sung, J.H., Shin, K.H., Moon, Y.W., Koh, Y.H., Choi, W.Y., Kim, H.E. Production of porous calcium phosphate (CaP) ceramics with highly elongated pores using carbon-coated polymeric templates. Ceram. Int. 2012, 38, 93-97.
[504] Oha, D.S., Kim, Y.H., Ganbat, D., Han, M.H., Lim, P., Back, J.H., Lee, F.Y., Tawfeek, H. Bone marrow absorption and retention properties of engineered scaffolds with micro-channels and nano-pores for tissue engineering: a proof of concept. Ceram. Int. 2013, 39, 8401-8410.
[505] Deville, S., Saiz, E., Tomsia, A.P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 5480-5489.
[506] Lee, E.J., Koh, Y.H., Yoon, B.H., Kim, H.E., Kim, H.W. Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Mater. Lett. 2007, 61, 2270-2273.
[507] Fu, Q., Rahaman, M.N., Dogan, F., Bal, B.S. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 86B, 125-135.
[508] Impens, S., Schelstraete, R., Luyten, J., Mullens, S., Thijs, I., van Humbeeck, J., Schrooten, J. Production and characterisation of porous calcium phosphate structures with controllable hydroxyapatite/β-tricalcium phosphate ratios. Adv. Appl. Ceram. 2009, 108, 494-500.
[509] Macchetta, A., Turner, I.G., Bowen, C.R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 2009, 5, 1319-1327.
[510] Potoczek, M., Zima, A., Paszkiewicz, Z., Ślósarczyk, A. Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose. Ceram. Int. 2009, 35, 2249-2254.
[511] Zuo, K.H., Zeng, Y.P., Jiang, D. Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Mater. Sci. Eng. C 2010, 30, 283-287.
[512] Soon, Y.M., Shin, K.H., Koh, Y.H., Lee, J.H., Choi, W.Y., Kim, H.E. Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure. J. Eur. Ceram. Soc. 2011, 31, 13-18.
[513] Hesaraki, S. Freeze-casted nanostructured apatite scaffold obtained from low temperature biomineralization of reactive calcium phosphates. Key Eng. Mater. 2014, 587, 21-26.
[514] Ng, S., Guo, J., Ma, J., Loo, S.C.J. Synthesis of high surface area mesostructured calcium phosphate particles. Acta Biomater. 2010, 6, 3772-3781.
[515] Walsh, D., Hopwood, J.D., Mann, S. Crystal tectonics: construction of reticulated calcium phosphate frameworks in bicontinuous reverse microemulsions. Science 1994, 264, 1576-1578.
[516] Walsh, D., Mann, S. Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions. Chem. Mater. 1996, 8, 1944-1953.
[517] Zhao, K., Tang, Y.F., Qin, Y.S., Wei, J.Q. Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceram. Int. 2011, 37, 635-639.
[518] Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., Button, T.W. Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Mater. 2011, 64, 426-429.
[519] Flauder, S., Gbureck, U., Muller, F.A. TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. Key Eng. Mater. 2013, 529-530, 129-132.
[520] Zhang, Y., Zhou, K., Bao, Y., Zhang, D. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Mater. Sci. Eng. C 2013, 33, 340-346.
[521] White, E., Shors, E.C. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent. Clin. North Am. 1986, 30, 49-67.
[522] Aizawa, M., Howell, S.F., Itatani, K., Yokogawa, Y., Nishizawa, K., Toriyama, M., Kameyama, T. Fabrication of porous ceramics with well-controlled open pores by sintering of fibrous hydroxyapatite particles. J. Ceram. Soc. Jpn. 2000, 108, 249-253.
[523] Nakahira, A., Tamai, M., Sakamoto, K., Yamaguchi, S. Sintering and microstructure of porous hydroxyapatite. J. Ceram. Soc. Jpn. 2000, 108, 99-104.
[524] Rodriguez-Lorenzo, L.M., Vallet-Regí, M., Ferreira, J.M.F. Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation. J. Biomed. Mater. Res. 2002, 60, 232-240.
[525] Charriere, E., Lemaitre, J., Zysset, P. Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties. Biomaterials 2003, 24, 809-817.
[526] Eichenseer, C., Will, J., Rampf, M., Wend, S., Greil, P. Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang). J. Mater. Sci. Mater. Med. 2010, 21, 131-137.
[527] Zhou, L., Wang, D., Huang, W., Yao, A., Kamitakahara, M., Ioku, K. Preparation and characterization of periodic porous frame of hydroxyapatite. J. Ceram. Soc. Jpn. 2009, 117, 521-524.
[528] Kawata, M., Uchida, H., Itatani, K., Okada, I., Koda, S., Aizawa, M. Development of porous ceramics with well-controlled porosities and pore sizes from apatite fibers and their evaluations. J. Mater. Sci. Mater. Med. 2004, 15, 817-823.
[529] Koh, Y.H., Kim, H.W., Kim, H.E., Halloran, J.W. Fabrication of macrochannelled-hydroxyapatite bioceramic by a coextrusion process. J. Am. Ceram. Soc. 2002, 85, 2578-2580.
[530] Kitamura, M., Ohtsuki, C., Ogata, S.I., Kamitakahara, M., Tanihara, M., Miyazaki, T. Mesoporous calcium phosphate via post-treatment of α-TCP. J. Am. Ceram. Soc. 2005, 88, 822-826.
[531] Walsh, D., Boanini, E., Tanaka, J., Mann, S. Synthesis of tri-calcium phosphate sponges by interfacial deposition and thermal transformation of self-supporting calcium phosphate films. J. Mater. Chem. 2005, 15, 1043-1048.
[532] Gonzalez-McQuire, R., Green, D., Walsh, D., Hall, S., Chane-Ching, J.Y., Oreffo, R.O.C., Mann, S. Fabrication of hydroxyapatite sponges by dextran sulphate/amino acid templating. Biomaterials 2005, 26, 6652-6656.
[533] Xu, S., Li, D., Lu, B., Tang, Y., Wang, C., Wang, Z. Fabrication of a calcium phosphate scaffold with a three dimensional channel network and its application to perfusion culture of stem cells. Rapid Prototyping J. 2007, 13, 99-106.
[534] Saiz, E., Gremillard, L., Menendez, G., Miranda, P., Gryn, K., Tomsia, A.P. Preparation of porous hydroxyapatite scaffolds. Mater. Sci. Eng. C 2007, 27, 546-550.
[535] Kamitakahara, M., Ohtsuki, C., Kawachi, G., Wang, D., Ioku, K. Preparation of hydroxyapatite porous ceramics with different porous structures using a hydrothermal treatment with different aqueous solutions. J. Ceram. Soc. Jpn. 2008, 116, 6-9.
[536] Peña, J., Román, J., Cabañas, M.V., Vallet-Regí, M. An alternative technique to shape scaffolds with hierarchical porosity at physiological temperature. Acta Biomater. 2010, 6, 1288-1296.
[537] Nakamura, S., Nakahira, A. Synthesis and evaluation of porous hydroxyapatite prepared by hydrothermal treatment and subsequent sintering method. J. Ceram. Soc. Jpn. 2008, 116, 42-45.
[538] Zhang, J., Fujiwara, M., Xu, Q., Zhu, Y., Iwasa, M., Jiang, D. Synthesis of mesoporous calcium phosphate using hybrid templates. Micropor. Mesopor. Mater. 2008, 111, 411-416.
[539] Song, H.Y., Islam, S., Lee, B.T. A novel method to fabricate unidirectional porous hydroxyapatite body using ethanol bubbles in a viscous slurry. J. Am. Ceram. Soc. 2008, 91, 3125-3127.
[540] Kawachi, G., Misumi, H., Fujimori, H., Goto, S., Ohtsuki, C., Kamitakahara, M., Ioku, K. Fabrication of porous blocks of calcium phosphate through hydrothermal processing under glycine coexistence. J. Ceram. Soc. Jpn. 2010, 118, 559-563.
[541] Sakamoto, M., Nakasu, M., Matsumoto, T., Okihana, H. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J. Biomed. Mater. Res. A 2007, 82A, 238-242.
[542] Sakamoto, M. Development and evaluation of superporous hydroxyapatite ceramics with triple pore structure as bone tissue scaffold. J. Ceram. Soc. Jpn. 2010, 118, 753-757.
[543] Sakamoto, M., Matsumoto, T. Development and evaluation of superporous ceramics bone tissue scaffold materials with triple pore structure a) hydroxyapatite, b) beta-tricalcium phosphate. In: Bone regeneration. Tal, H. (Ed.). InTech Europe, Rijeka, Croatia, 2012, pp. 301-320.
[544] Deisinger, U. Generating porous ceramic scaffolds: processing and properties. Key Eng. Mater. 2010, 441, 155-179.
[545] Ishikawa, K., Tsuru, K., Pham, T.K., Maruta, M., Matsuya, S. Fully-interconnected pore forming calcium phosphate cement. Key Eng. Mater. 2012, 493-494, 832-835.
[546] Yoon, H.J., Kim, U.C., Kim, J.H., Koh, Y.H., Choi, W.Y., Kim, H.E. Fabrication and characterization of highly porous calcium phosphate (CaP) ceramics by freezing foamed aqueous CaP suspensions. J. Ceram. Soc. Jpn. 2011, 119, 573-576.
[547] Ahn, M.K., Shin, K.H., Moon, Y.W., Koh, Y.H., Choi, W.Y., Kim, H.E. Highly porous biphasic calcium phosphate (BCP) ceramics with large interconnected pores by freezing vigorously foamed BCP suspensions under reduced pressure. J. Am. Ceram. Soc. 2011, 94, 4154-4156.
[548] Ji, L., Jell, G., Dong, Y., Jones, J.R., Stevens, M.M. Template synthesis of ordered macroporous hydroxyapatite bioceramics. Chem. Commun. 2011, 47, 9048-9050.
[549] Wang, X.Y., Han, Y.C., Li, S.P. Preparation and characterization of calcium phosphate crystals by precursor thermolysis method. Key Eng. Mater. 2012, 493-494, 191-194.
[550] Schlosser, M., Kleebe, H.J. Vapor transport sintering of porous calcium phosphate ceramics. J. Am. Ceram. Soc. 2012, 95, 1581-1587.
[551] Tanaka, T., Yoshioka, T., Ikoma, T., Kuwayama, T., Higaki, T., Tanaka, M. Fabrication of three different types of porous carbonate-substituted apatite ceramics for artificial bone. Key Eng. Mater. 2013, 529-530, 143-146.
[552] Zheng, W., Liu, G., Yan, C., Xiao, Y., Miao, X.G. Strong and bioactive tri-calcium phosphate scaffolds with tube-like macropores. J. Biomim. Biomater. Tissue Eng. 2014, 19, 65-75.
[553] Tsuru, K., Nikaido, T., Munar, M.L., Maruta, M., Matsuya, S., Nakamura, S., Ishikawa, K. Synthesis of carbonate apatite foam using β-TCP foams as precursors. Key Eng. Mater. 2014, 587, 52-55.
[554] Chen, Z.C., Zhang, X.L., Zhou, K., Cai, H., Liu, C.Q. Novel fabrication of hierarchically porous hydroxyapatite scaffolds with refined porosity and suitable strength. Adv. Appl. Ceram. 2015, 114, 183-187.
[555] Swain, S.K., Bhattacharyya, S., Sarkar, D. Fabrication of porous hydroxyapatite scaffold via polyethylene glycol-polyvinyl alcohol hydrogel state. Mater. Res. Bull. 2015, 64, 257-261.
[556] Charbonnier, B., Laurent, C., Marchat, D. Porous hydroxyapatite bioceramics produced by impregnation of 3D-printed wax mold: slurry feature optimization. J. Eur. Ceram. Soc. 2016, 36, 4269-4279.
[557] Roy, D.M., Linnehan, S.K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974, 247, 220-222.
[558] Zhang, X., Vecchio, K.S. Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front. Mater. Sci. 2013, 7, 103-117.
[559] Yang, Y., Yao, Q., Pu, X., Hou, Z., Zhang, Q. Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chem. Eng. J. 2011, 173, 837-845.
[560] Thanh, T.N.X., Maruta, M., Tsuru, K., Matsuya, S., Ishikawa, K. Three - dimensional porous carbonate apatite with sufficient mechanical strength as a bone substitute material. Adv. Mater. Res. 2014, 891-892, 1559-1564.
[561] Moroni, L., de Wijn, J.R., van Blitterswijk, C.A. Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polymer Edn. 2008, 19, 543-572.
[562] Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J. Processing routes to macroporous ceramics: a review. J. Am. Ceram. Soc. 2006, 89, 1771-1789.
[563] Hing, K., Annaz, B., Saeed, S., Revell, P., Buckland, T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J. Mater. Sci. Mater. Med. 2005, 16, 467-475.
[564] Wang, Z., Sakakibara, T., Sudo, A., Kasai, Y. Porosity of β-tricalcium phosphate affects the results of lumbar posterolateral fusion. J. Spinal Disord. Tech. 2013, 26, E40-E45.
[565] Lan Levengood, S.K., Polak, S.J., Wheeler, M.B., Maki, A.J., Clark, S.G., Jamison, R.D., Wagoner Johnson, A.J. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 2010, 31, 3552-3563.
[566] Ruksudjarit, A., Pengpat, K., Rujijanagul, G., Tunkasiri, T. The fabrication of nanoporous hydroxyapatite ceramics. Adv. Mater. Res. 2008, 47-50, 797-800.
[567] Murugan, R., Ramakrishna, S., Rao, K.P. Nanoporous hydroxy-carbonate apatite scaffold made of natural bone. Mater. Lett. 2006, 60, 2844-2847.
[568] Li, Y., Tjandra, W., Tam, K.C. Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates. Mater. Res. Bull. 2008, 43, 2318-2326.
[569] El Asri, S., Laghzizil, A., Saoiabi, A., Alaoui, A., El Abassi, K., M’hamdi, R., Coradin, T. A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock. Colloid Surf. A 2009, 350, 73-78.
[570] Ramli, R.A., Adnan, R., Bakar, M.A., Masudi, S.M. Synthesis and characterisation of pure nanoporous hydroxyapatite. J. Phys. Sci. 2011, 22, 25-37.
[571] LeGeros, R.Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 2008, 108, 4742-4753.
[572] Prokopiev, O., Sevostianov, I. Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater. Sci. Eng. A 2006, 431, 218-227.
[573] Daculsi, G., Jegoux F., Layrolle, P. The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue engineering. In: Advanced Biomaterials: Fundamentals, Processing and Applications. Basu, B., Katti, D.S., Kumar, A. Eds. American Ceramic Society, Wiley, Hoboken, NJ, USA, 2009, 768 pp.
[574] Shipman, P., Foster, G., Schoeninger, M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci. 1984, 11, 307-325.
[575] Rice, R.W. Porosity of ceramics. Marcel Dekker, New York, NY, USA, 1998, 560 pp.
[576] Wang, H., Zhai, L., Li, Y., Shi, T. Preparation of irregular mesoporous hydroxyapatite. Mater. Res. Bull. 2008, 43, 1607-1614.
[577] Fan, J., Lei, J., Yu, C., Tu, B., Zhao, D. Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Mater. Chem. Phys. 2007, 103, 489-493.
[578] Sopyan, I., Mel, M., Ramesh, S., Khalid, K.A. Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater. 2007, 8, 116-123.
[579] Hsu, Y.H., Turner, I.G., Miles, A.W. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J. Mater. Sci. Mater. Med. 2007, 18, 2251-2256.
[580] Abdurrahim, T., Sopyan, I. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications. Recent Pat. Biomed. Eng. 2008, 1, 213-229.
[581] Munch, E., Franco, J., Deville, S., Hunger, P., Saiz, E., Tomsia, A.P. Porous ceramic scaffolds with complex architectures. JOM 2008, 60, 54-59.
[582] Ohji, T., Fukushima, M. Macro-porous ceramics: processing and properties. Int. Mater. Rev. 2012, 57, 115-131.
[583] Naqshbandi, A.R., Sopyan, I., Gunawan. Development of porous calcium phosphate bioceramics for bone implant applications: a review. Rec. Pat. Mater. Sci. 2013, 6, 238-252.
[584] Yan, X., Yu, C., Zhou, X., Tang, J., Zhao, D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl. 2004, 43, 5980-5984.
[585] Izquierdo-Barba, I., Ruiz-González, L., Doadrio, J.C., González-Calbet, J.M., Vallet-Regí, M. Tissue regeneration: a new property of mesoporous materials. Solid State Sci. 2005, 7, 983-989.
[586] Cosijns, A., Vervaet, C., Luyten, J., Mullens, S., Siepmann, F., van Hoorebeke, L., Masschaele, B., Cnudde, V., Remon, J.P. Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharm. Biopharm. 2007, 67, 498-506.
[587] Uchida, A., Shinto, Y., Araki, N., Ono, K. Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J. Orthop. Res. 1992, 10, 440-445.
[588] Shinto, Y., Uchida, A., Korkusuz, F., Araki, N., Ono, K. Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J. Bone. Joint. Surg. Br. 1992, 74, 600-604.
[589] Martin, R.B., Chapman, M.W., Sharkey, N.A., Zissimos, S.L., Bay, B., Shors, E.C. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation. Biomaterials 1993, 14, 341-348.
[590] Kazakia, G.J., Nauman, E.A., Ebenstein, D.M., Halloran, B.P., Keaveny, T.M. Effects of in vitro bone formation on the mechanical properties of a trabeculated hydroxyapatite bone substitute. J. Biomed. Mater. Res. A 2006, 77A, 688-699.
[591] Hing, K.A., Best, S.M., Tanner, K.E., Bonfield, W., Revell, P.A. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J. Biomed. Mater. Res. A 2004, 68A, 187-200.
[592] Vuola, J., Taurio, R., Goransson, H., Asko-Seljavaara, S. Compressive strength of calcium carbonate and hydroxyapatite implants after bone marrow induced osteogenesis. Biomaterials 1998, 19, 223-227.
[593] von Doernberg, M.C., von Rechenberg, B., Bohner, M., Grünenfelder, S., van Lenthe, G.H., Müller, R., Gasser, B., Mathys, R., Baroud, G., Auer, J. In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 2006, 27, 5186-5198.
[594] Mygind, T., Stiehler, M., Baatrup, A., Li, H., Zou, X., Flyvbjerg, A., Kassem, M., Bunger, C. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 2007, 28, 1036-1047.
[595] Mankani, M.H., Afghani, S., Franco, J., Launey, M., Marshall, S., Marshall, G.W., Nissenson, R., Lee, J., Tomsia, A.P., Saiz, E. Lamellar spacing in cuboid hydroxyapatite scaffolds regulates bone formation by human bone marrow stromal cells. Tissue Eng. A 2011, 17, 1615-1623.
[596] Chan, O., Coathup, M.J., Nesbitt, A., Ho, C.Y., Hing, K.A., Buckland, T., Campion, C., Blunn, G.W. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater. 2012, 8, 2788-2794.
[597] Holmes, R.E. Bone regeneration within a coralline hydroxyapatite implant. Plast. Reconstr. Surg. 1979, 63, 626-633.
[598] Tsuruga, E., Takita, H., Wakisaka, Y., Kuboki, Y. Pore size of porous hydoxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 1997, 121, 317-324.
[599] LeGeros, R.Z., LeGeros, J.P. Calcium phosphate bioceramics: past, present, future. Key Eng. Mater. 2003, 240-242, 3-10.
[600] Woodard, J.R., Hilldore, A.J., Lan, S.K., Park, C.J., Morgan, A. W., Eurell, J.A.C., Clark, S.G., Wheeler, M.B., Jamison, R.D., Wagoner, J.A.J. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 2007, 28, 45-54.
[601] Levitt, G.E., Crayton, P.H., Monroe, E.A., Condrate, R.A. Forming methods for apatite prosthesis. J. Biomed. Mater. Res. 1969, 3, 683-685.
[602] Easwer, H.V., Rajeev, A., Varma, H.K., Vijayan, S., Bhattacharya, R.N. Cosmetic and radiological outcome following the use of synthetic hydroxyapatite porous-dense bilayer burr-hole buttons. Acta Neurochir. 2007, 149, 481-485.
[603] Kashimura, H., Ogasawara, K., Kubo, Y., Yoshida, K., Sugawara, A., Ogawa, A. A newly designed hydroxyapatite ceramic burr-hole button. Vasc. Health Risk Manag. 2010, 6, 105-108.
[604] Jordan, D.R., Gilberg, S., Bawazeer, A. Coralline hydroxyapatite orbital implant (Bio-Eye): experience with 158 patients. Ophthal. Plast. Reconstr. Surg. 2004, 20, 69-74.
[605] Liao, H.F., Xiao, W., Chen, Q.J. Ophthalmic applications of hydroxyapatite and its polymer composites. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 8905-8908.
[606] Yoon, J.S., Lew, H., Kim, S.J., Lee, S.Y. Exposure rate of hydroxyapatite orbital implants. A 15-year experience of 802 cases. Ophthalmology 2008, 115, 566-572.
[607] Chai, G.R., Chen, M. Clinical effect of hydroxyapatite orbital implantation. Int. J. Ophthal. 2010, 10, 999-1000.

[608] Tabatabaee, Z., Mazloumi, M., Rajabi, T.M., Khalilzadeh, O., Kassaee, A., Moghimi, S., Eftekhar, H., Goldberg, R.A. Comparison of the exposure rate of wrapped hydroxyapatite (Bio-Eye) versus unwrapped porous polyethylene (Medpor) orbital implants in enucleated patients. Ophthal. Plast. Reconstr. Surg. 2011, 27, 114-118.
[609] Ma, X.Z., Bi, H.S., Zhang, X. Effect of hydroxyapatite orbital implant for plastic surgery of eye in 52 cases. Int. Eye Sci. 2012, 12, 988-990.
[610] Wang, L. Simple fixation of hydroxyapatite artificial eye mount of auto sclera. Int. Eye Sci. 2012, 12, 1394-1395.
[611] Kundu, B., Sanyal, D., Basu, D. Physiological and elastic properties of highly porous hydroxyapatite potential for integrated eye implants: effects of SIRC and L-929 cell lines. Ceram. Int. 2013, 39, 2651-2664.
[612] Baino, F., Vitale-Brovarone, C. Bioceramics in ophthalmology. Acta Biomater. 2014, 10, 3372-3397.
[613] Wehrs, R.E. Hearing results with incus and incus stapes prostheses of hydroxylapatite. Laryngoscope 1991, 101, 555-556.
[614] Smith, J., Gardner, E., Dornhoffer, J.L. Hearing results with a hydroxylapatite/titanium bell partial ossicular replacement prosthesis. Laryngoscope 2002, 112, 1796-1799.
[615] Doi, T., Hosoda, Y., Kaneko, T., Munemoto, Y., Kaneko, A., Komeda, M., Furukawa, M., Kuriyama, H., Kitajiri, M., Tomoda, K., Yamashita, T. Hearing results for ossicular reconstruction using a cartilage-connecting hydroxyapatite prosthesis with a spearhead. Otol. Neurotol. 2007, 28, 1041-1044.
[616] Thalgott, J.S., Fritts, K., Giuffre, J.M., Timlin, M. Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine 1999, 24, 1295-1299.
[617] Mashoof, A.A., Siddiqui, S.A., Otero, M., Tucci, J.J. Supplementation of autogenous bone graft with coralline hydroxyapatite in posterior spine fusion for idiopathic adolescent scoliosis. Orthopedics 2002, 25, 1073-1076.
[618] Minamide, A., Yoshida, M., Kawakami, M., Yamasaki, S., Kojima, H., Hashizume, H., Boden, S.D. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine 2005, 30, 1134-1138.
[619] Liu, W.Y., Mo, J.W., Gao, H., Liu, H.L., Wang, M.Y., He, C.L., Tang, W., Ye, Y.J. Nano-hydroxyapatite artificial bone serves as a spacer for fusion with the cervical spine after bone grafting. Chin. J. Tissue Eng. Res. 2012, 16, 5327-5330.
[620] Silva, R.V., Camilli, J.A., Bertran, C.A., Moreira, N.H. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int. J. Oral Maxillofac. Surg. 2005, 34, 178-184.
[621] Damron, T.A. Use of 3D β-tricalcium phosphate (Vitoss®) scaffolds in repairing bone defects. Nanomedicine 2007, 2, 763-775.
[622] Busso, M., Karlsberg, P.L. Cheek augmentation and rejuvenation using injectable calcium hydroxylapatite (Radiesse®). Cosmet. Dermatol. 2006, 19, 583-588.
[623] Bass, L.S., Smith, S., Busso, M., McClaren, M. Calcium hydroxylapatite (Radiesse) for treatment of nasolabial folds: long-term safety and efficacy results. Aesthetic Surg. J. 2010, 30, 235-238.
[624] Low, K.L., Tan, S.H., Zein, S.H.S., Roether, J.A., Mouriño, V., Boccaccini, A.R. Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 273-286.
[625] Daculsi, G., Uzel, A.P., Weiss, P., Goyenvalle, E., Aguado, E. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J. Mater. Sci. Mater. Med. 2010, 21, 855-861.
[626] Suzuki, K., Anada, T., Honda, Y., Kishimoto, K.N., Miyatake, N., Hosaka, M., Imaizumi, H., Itoi, E., Suzuki, O. Cortical bone tissue response of injectable octacalcium phosphate-hyaluronic acid complexes. Key Eng. Mater. 2013, 529-530, 296-299.
[627] Pastorino, D., Canal, C., Ginebra, M.P. Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity-drug interaction. Acta Biomater. 2015, 12, 250-259.
[628] Miramond, T., Aguado, E., Goyenvalle, E., Borget, P., Baroth, S., Daculsi, G. In vivo comparative study of two injectable/moldable calcium phosphate bioceramics. Key Eng. Mater. 2013, 529-530, 291-295.
[629] Bohner, M., Baroud, G. Injectability of calcium phosphate pastes. Biomaterials 2005, 26, 1553-1563.
[630] Laschke, M.W., Witt, K., Pohlemann, T., Menger, M.D. Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 494-505.
[631] Lopez-Heredia, M.A., Barnewitz, D., Genzel, A., Stiller, M., Peters, F., Huebner, W.D., Stang, B., Kuhr, A., Knabe, C. In vivo osteogenesis assessment of a tricalcium phosphate paste and a tricalcium phosphate foam bone grafting materials. Key Eng. Mater. 2015, 631, 426-429.
[632] Torres, P.M.C., Gouveia, S., Olhero, S., Kaushal, A., Ferreira, J.M.F. Injectability of calcium phosphate pastes: effects of particle size and state of aggregation of β-tricalcium phosphate powders. Acta Biomater. 2015, 21, 204-216.
[633] Salinas, A.J., Esbrit, P., Vallet-Regí, M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci. 2013, 1, 40-51.
[634] ISO 13175-3:2012 Implants for surgery – Calcium phosphates – Part 3: Hydroxyapatite and beta-tricalcium phosphate bone substitutes. https://www.iso. org/obp/ui/#iso:std:iso:13175:-3:ed-1:v1:en.
[635] Chow, L.C. Next generation calcium phosphate-based biomaterials. Dent. Mater. J. 2009, 28, 1-10.
[636] Victor, S.P., Kumar, T.S.S. Processing and properties of injectable porous apatitic cements. J. Ceram. Soc. Jpn. 2008, 116, 105-107.
[637] Hesaraki, S., Nemati, R., Nosoudi, N. Preparation and characterisation of porous calcium phosphate bone cement as antibiotic carrier. Adv. Appl. Ceram. 2009, 108, 231-240.
[638] Stulajterova, R., Medvecky, L., Giretova, M., Sopcak, T. Structural and phase characterization of bioceramics prepared from tetracalcium phosphate–monetite cement and in vitro osteoblast response. J. Mater. Sci. Mater. Med. 2015, 26, 1-9.
[639] Bohner, M. Resorbable biomaterials as bone graft substitutes. Mater. Today 2010, 13, 24-30.
[640] Paital, S.R., Dahotre, N.B. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater. Sci. Eng. R 2009, 66, 1-70.
[641] León, B., Jansen, J.A. (Eds.), Thin calcium phosphate coatings for medical implants. Springer, New York, USA, 2009, 326 pp.
[642] Dorozhkin, S.V. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Eng. C 2015, 55, 272-326.
[643] Kon, M., Ishikawa, K., Miyamoto, Y., Asaoka, K. Development of calcium phosphate based functional gradient bioceramics. Biomaterials 1995, 16, 709-714.
[644] Wong, L.H., Tio, B., Miao, X. Functionally graded tricalcium phosphate/fluoroapatite composites. Mater. Sci. Eng. C 2002, 20, 111-115.
[645] Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., Franzese, S. Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials 2001, 22, 1365-1370.
[646] Lu, W.W., Zhao, F., Luk, K.D.K., Yin, Y.J., Cheung, K.M.C., Cheng, G.X., Yao, K.D., Leong, J.C.Y. Controllable porosity hydroxyapatite ceramics as spine cage: fabrication and properties evaluation. J. Mater. Sci. Mater. Med. 2003, 14, 1039-1046.
[647] Werner, J., Linner-Krcmar, B., Friess, W., Greil, P. Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure. Biomaterials 2002, 23, 4285-4294.
[648] Rodriguez-Lorenzo, L.M., Ferreira, J.M.F. Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems. Mater. Res. Bull. 2004, 39, 83-91.
[649] Watanabe, T., Fukuhara, T., Izui, H., Fukase, Y., Okano, M. Properties of HAp/β-TCP functionally graded material by spark plasma sintering. Trans. Jpn. Soc. Mech. Eng. A 2009, 75, 612-618.
[650] Bai, X., Sandukas, S., Appleford, M.R., Ong, J.L., Rabiei, A. Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomater. 2009, 5, 3563-3572.
[651] Roy, M., Balla, V.K., Bandyopadhyay, A., Bose, S. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma. Acta Biomater. 2011, 7, 866-873.
[652] Tamura, A., Asaoka, T., Furukawa, K., Ushida, T., Tateishi, T. Application of α-TCP/HAp functionally graded porous beads for bone regenerative scaffold. Adv. Sci. Technol. 2013, 86, 63-69.
[653] Gasik, M., Keski-Honkola, A., Bilotsky, Y., Friman, M. Development and optimisation of hydroxyapatite-β-TCP functionally gradated biomaterial. J. Mech. Behav. Biomed. Mater. 2014, 30, 266-273.
[654] Zhou, C., Deng, C., Chen, X., Zhao, X., Chen, Y., Fan, Y., Zhang, X. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2015, 48, 1-11.
[655] Marković, S., Lukić, M.J., Škapin, S.D., Stojanović, B., Uskoković, D. Designing, fabrication and characterization of nanostructured functionally graded HAp/BCP ceramics. Ceram. Int. 2015, 41, 2654-2667.
[656] Dubok, V.A. Bioceramics – yesterday, today, tomorrow. Powder Metall. Met. Ceram. 2000, 39, 381-394.
[657] Heness, G., Ben-Nissan, B. Innovative bioceramics. Mater. Forum 2004, 27, 104-114.
[658] Ohtsuki, C., Kamitakahara, M., Miyazaki, T. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J. R. Soc. Interface 2009, 6, S349-S360.
[659] Greenspan, D.C. Bioactive ceramic implant materials. Curr. Opin. Solid State Mater. Sci. 1999, 4, 389-393.
[660] Blokhuis, T.J., Termaat, M.F., den Boer, F.C., Patka, P., Bakker, F.C., Haarman, H.J.T.M. Properties of calcium phosphate ceramics in relation to their in vivo behavior. J. Trauma 2000, 48, 179-189.
[661] Kim, H.M. Bioactive ceramics: challenges and perspectives. J. Ceram. Soc. Jpn. 2001, 109, S49-S57.
[662] Seeley, Z., Bandyopadhyay, A., Bose, S. Tricalcium phosphate based resorbable ceramics: influence of NaF and CaO addition. Mater. Sci. Eng. C 2008, 28, 11-17.
[663] Descamps, M., Richart, O., Hardouin, P., Hornez. J.C., Leriche A. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural. Ceram. Int. 2008, 34, 1131-1137.
[664] Cushnie, E.K., Khan, Y.M., Laurencin, C.T. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies. J. Biomed. Mater. Res. A 2008, 84A, 54-62.
[665] Hench, L.L., Thompson, I. Twenty-first century challenges for biomaterials. J. R. Soc. Interface 2010, 7, S379-S391.
[666] Nagase, M., Baker, D.G., Schumacher, H.R. Prolonged inflammatory reactions induced by artificial ceramics in the rat pouch model. J. Rheumatol. 1988, 15, 1334-1338.
[667] Rooney, T., Berman, S., Indersano, A.T. Evaluation of porous block hydroxylapatite for augmentation of alveolar ridges. J. Oral Maxillofac. Surg. 1988, 46, 15-18.
[668] Prudhommeaux, F., Schiltz, C., Lioté, F., Hina, A., Champy, R., Bucki, B., Ortiz-Bravo, E., Meunier, A., Rey, C., Bardin, T. Variation in the inflammatory properties of basic calcium phosphate crystals according to crystal type. Arthritis Rheum. 1996, 39, 1319-1326.
[669] Ghanaati, S., Barbeck, M., Orth, C., Willershausen, I., Thimm, B.W., Hoffmann, C., Rasic, A., Sader, R.A., Unger, R.E., Peters, F., Kirkpatrick, C.J. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater. 2010, 6, 4476-4487.
[670] Lin, K., Yuan, W., Wang, L., Lu, J., Chen, L., Wang, Z., Chang, J. Evaluation of host inflammatory responses of β-tricalcium phosphate bioceramics caused by calcium pyrophosphate impurity using a subcutaneous model. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99B, 350-358.
[671] Velard, F., Braux, J., Amedee, J., Laquerriere, P. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater. 2013, 9, 4956-4963.
[672] Rydén, L., Molnar, D., Esposito, M., Johansson, A., Suska, F., Palmquist, A., Thomsen, P. Early inflammatory response in soft tissues induced by thin calcium phosphates. J. Biomed. Mater. Res. A 2013, 101A, 2712-2717.
[673] Chatterjea, A., van der Stok, J., Danoux, C.B., Yuan, H., Habibovic, P., van Blitterswijk, C.A., Weinans, H., de Boer, J. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in a critical size cortical bone defects. J. Biomed. Mater. Res. A 2014, 102A, 1399-1407.
[674] Friesenbichler, J., Maurer-Ertl, W., Sadoghi, P., Pirker-Fruehauf, U., Bodo, K., Leithner, A. Adverse reactions of artificial bone graft substitutes: lessons learned from using tricalcium phosphate geneX®. Clin. Orthop. Relat. Res. 2014, 472, 976-982.
[675] Chang, T.Y., Pan, S.C., Huang, Y.H., Hsueh, Y.Y. Blindness after calcium hydroxylapatite injection at nose. J. Plast. Reconstr. Aesthet. Surg. 2014, 67, 1755-1757.
[676] Jacovella, P.F., Peiretti, C.B., Cunille, D., Salzamendi, M., Schechtel, S.A. Long-lasting results with hydroxylapatite (Radiesse) facial filler. Plast. Reconstr. Surg. 2006, 118, 15S-21S.
[677] Ghanaati, S., Barbeck, M., Detsch, R., Deisinger, U., Hilbig, U., Rausch, V., Sader, R., Unger, R.E., Ziegler, G., Kirkpatrick, C.J. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomed. Mater. 2012, 7, 015005.
[678] Draenert, K., Draenert, M., Erler, M., Draenert, A., Draenert, Y. How bone forms in large cancellous defects: critical analysis based on experimental work and literature. Injury 2011, 42, Suppl. 2, S47-S55.
[679] Albrektsson, T., Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine. J. 2001, 10, S96-S101.
[680] Yuan, H., Kurashina, K., de Bruijn, D.J., Li, Y., de Groot, K., Zhang, X. A preliminary study of osteoinduction of two kinds of calcium phosphate bioceramics. Biomaterials 1999, 20, 1799-1806.
[681] Yuan, H.P., de Bruijn, J.D., Li, Y.B., Feng, J.Q., Yang, Z.J., de Groot, K., Zhang, X.D. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP. J. Mater. Sci. Mater. Med. 2001, 12, 7-13.
[682] Barrere, F., van der Valk, C.M., Dalmeijer, R.A., Meijer, G., van Blitterswijk, C.A., de Groot, K., Layrolle, P. Osteogenecity of octacalcium phosphate coatings applied on porous titanium. J. Biomed. Mater. Res. A 2003, 66A, 779-788.
[683] Habibovic, P., van der Valk, C. M., van Blitterswijk, C. A., de Groot, K., Meijer, G. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials. J. Mater. Sci. Mater. Med. 2004, 15, 373-380.
[684] Ripamonti, U., Richter, P.W., Nilen, R.W., Renton, L. The induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non human primate Papio ursinus. J. Cell. Mol. Med. 2008, 12, 2609-2621.
[685] Cheng, L., Ye, F., Yang, R., Lu, X., Shi, Y., Li, L., Fan, H., Bu, H. Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 2010, 6, 1569-1574.
[686] Yuan, H., Fernandes, H., Habibovic, P., de Boer J., Barradas, A.M.C., de Ruiter, A., Walsh, W.R., van Blitterswijk, C.A., de Bruijn, J.D. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. USA 2010, 107, 13614-13619.
[687] Yao, J.F., Li, X.Y., Wang, A.J., Liang, R., Bao, C.Y., Chen, Z.Q. Osteoinductive calcium phosphate ceramics for in vivo construction of tissue engineered bone in adipose tissue. J. Clin. Rehabil. Tissue Eng. Res. 2011, 15, 2109-2112.
[688] Barradas, A.M., Yuan, H., van der Stok, J., le Quang, B., Fernandes, H., Chaterjea, A., Hogenes, M.C., Shultz, K., Donahue, L.R., van Blitterswijk, C., de Boer, J. The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice. Biomaterials 2012, 33, 5696-5705.
[689] Li, B., Liao, X., Zheng, L., Zhu, X., Wang, Z., Fan, H., Zhang, X. Effect of nanostructure on osteoinduction of porous biphasic calcium phosphate ceramics. Acta Biomater. 2012, 8, 3794-3804.
[690] Cheng, L., Shi, Y., Ye, F., Bu, H. Osteoinduction of calcium phosphate biomaterials in small animals. Mater. Sci. Eng. C 2013, 33, 1254-1260.
[691] Song, G., Habibovic, P., Bao, C., Hu, J., van Blitterswijk, C.A., Yuan, H., Chen, W., Xu, H.H.K. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials 2013, 34, 2167-2176.
[692] He, P., Sahoo, S., Ng, K.S., Chen, K., Toh, S.L., Goh, J.C.H. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. J. Biomed. Mater. Res. A 2013, 101A, 555-566.
[693] Davison, N.L., Gamblin, A.L., Layrolle, P., Yuan, H., de Bruijn, J.D., Barrère-de Groot, F. Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate. Biomaterials 2014, 35, 5088-5097.
[694] Huang, Y., He, J., Gan, L., Liu, X., Wu, Y., Wu, F., Gu, Z.W. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study. Biomed. Mater. 2014, 9, 065007.
[695] Lü, X., Wang, J., Li, B., Zhang, Z., Zhao, L. Gene expression profile study on osteoinductive effect of natural hydroxyapatite. J. Biomed. Mater. Res. A 2014, 102A, 2833-2841.
[696] Wang, J., Chen, Y., Zhu, X., Yuan, T., Tan, Y., Fan, Y., Zhang, X. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. J. Biomed. Mater. Res. A 2014, 102A, 4234-4243.
[697] Hongmin, L., Wei, Z., Xingrong, Y., Jing, W., Wenxin, G., Jihong, C., Xin, X., Fulin, C. Osteoinductive nanohydroxyapatite bone substitute prepared via in situ hydrothermal transformation of cuttlefish bone. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103B, 816-824.
[698] Wang, L., Barbieri, D., Zhou, H., de Bruijn, J.D., Bao, C., Yuan, H. Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. J. Biomed. Mater. Res. A 2015, 103A, 1919-1929.
[699] Cheng, L., Wang, T., Zhu, J., Cai, P. Osteoinduction of calcium phosphate ceramics in four kinds of animals for 1 year: dog, rabbit, rat, and mouse. Transplant. Proc. 2016, 48, 1309-1314.
[700] Habibovic, P., Li, J., van der Valk, C. M., Meijer, G., Layrolle, P., van Blitterswijk, C. A., de Groot, K. Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials 2005, 26, 23-36.
[701] Habibovic, P., Yuan, H., van der Valk, C.M., Meijer, G., van Blitterswijk, C.A., de Groot, K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 2005, 26, 3565-3575.
[702] Habibovic, P., Sees, T.M., van den Doel, M.A., van Blitterswijk, C.A., de Groot, K. Osteoinduction by biomaterials – physicochemical and structural influences. J. Biomed. Mater. Res. A 2006, 77A, 747-762.
[703] Reddi, A.H. Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells and biomimetic biomaterials. Tissue Eng. 2000, 6, 351-359.
[704] Ripamonti, U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained by conversion of calcium carbonate exoskeletons of coral. J. Bone Joint Surg. A 1991, 73, 692-703.
[705] Kuboki, Y., Takita, H., Kobayashi, D. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J. Biomed. Mater. Res. 1998, 39, 190-199.
[706] Zhang, J., Luo, X., Barbieri, D., Barradas, A.M.C., de Bruijn, J.D., van Blitterswijk, C.A., Yuan, H. The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomater. 2014, 10, 3254-3263.
[707] Zhang, J., Barbieri, D., Ten Hoopen, H., de Bruijn, J.D., van Blitterswijk, C.A., Yuan, H. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. J. Biomed. Mater. Res. A 2015, 103A, 1188-1199.
[708] Diaz-Flores, L., Gutierrez, R., Lopez-Alonso, A., Gonzalez, R., Varela, H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin. Orthop. Relat. Res. 1992, 275, 280-286.
[709] Boyan, B.D., Schwartz, Z. Are calcium phosphate ceramics ‘smart’ biomaterials? Nat. Rev. Rheumatol. 2011, 7, 8-9.
[710] Lu, J., Descamps, M., Dejou, J., Koubi, G., Hardouin, P., Lemaitre, J., Proust, J.P. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 408-412.
[711] Wang, H., Lee, J.K., Moursi, A., Lannutti, J.J. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J. Biomed. Mater. Res. A 2003, 67A, 599-608.
[712] Dorozhkin, S.V. Inorganic chemistry of the dissolution phenomenon, the dissolution mechanism of calcium apatites at the atomic (ionic) level. Comment Inorg. Chem. 1999, 20, 285-299.
[713] Dorozhkin, S.V. Dissolution mechanism of calcium apatites in acids: a review of literature. World J. Methodol. 2012, 2, 1-17.
[714] Sakai, S., Anada, T., Tsuchiya, K., Yamazaki, H., Margolis, H.C., Suzuki, O. Comparative study on the resorbability and dissolution behavior of octacalcium phosphate, β-tricalcium phosphate, and hydroxyapatite under physiological conditions. Dent. Mater. J. 2016, 35, 216-224.
[715] Wenisch, S., Stahl, J.P., Horas, U., Heiss, C., Kilian, O., Trinkaus, K., Hild, A., Schnettler, R. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: fine structural microscopy. J. Biomed. Mater. Res. A 2003, 67A, 713-718.
[716] Riihonen, R., Nielsen, S., Väänänen, H.K., Laitala-Leinonen, T., Kwon, T.H. Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biol. 2010, 29, 287-294.
[717] Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504-1508.
[718] Matsunaga, A., Takami, M., Irié, T., Mishima, K., Inagaki, K., Kamijo, R. Microscopic study on resorption of β-tricalcium phosphate materials by osteoclasts. Cytotechnology 2015, 67, 727-732.
[719] Narducci, P., Nicolin, V. Differentiation of activated monocytes into osteoclast-like cells on a hydroxyapatite substrate: an in vitro study. Ann. Anat. 2009, 191, 349-355.
[720] Wu, V.M., Uskoković, V. Is there a relationship between solubility and resorbability of different calcium phosphate phases in vitro? Biochim. Biophys. Acta 2016, 1860, 2157-2168.
[721] Tamimi, F., Torres, J., Bassett, D., Barralet, J., Cabarcos, E.L. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials 2010, 31, 2762-2769.
[722] Sheikh, Z., Abdallah, M.N., Hanafi, A.A., Misbahuddin, S., Rashid, H., Glogauer, M. Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials 2015, 8, 7913-7925.
[723] Raynaud, S., Champion, E., Lafon, J.P., Bernache-Assollant, D. Calcium phosphate apatites with variable Ca/P atomic ratio. III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials 2002, 23, 1081-1089.
[724] Barrère, F., van der Valk, C.M., Dalmeijer, R.A.J., van Blitterswijk, C.A., de Groot, K., Layrolle, P. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J. Biomed. Mater. Res. A 2003, 64A, 378-387.
[725] Souto, R.M., Laz, M.M., Reis, R.L. Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials 2003, 24, 4213-4221.
[726] Dellinger, J.G., Wojtowicz, A.M., Jamison, R.D. Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds. J. Biomed. Mater. Res. A 2006, 77A, 563-571.
[727] Okuda, T., Ioku, K., Yonezawa, I., Minagi, H., Kawachi, G., Gonda, Y., Murayama, H., Shibata, Y., Minami, S., Kamihara, S., Kurosawa, H., Ikeda, T. The effect of the microstructure of β-tricalcium phosphate on the metabolism of subsequently formed bone tissue. Biomaterials 2007, 28, 2612-2621.
[728] Orly, I., Gregoire, M., Menanteau, J., Heughebaert, M., Kerebel, B. Chemical changes in hydroxyapatite biomaterial under in vivo and in vitro biological conditions. Calcif. Tissue Int. 1989, 45, 20-26.
[729] Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A. Review: material fundamentals and clinical performance of plasma sprayed hydroxyapatite coatings. J. Biomed. Mater. Res. Appl. Biomater. 2001, 58, 570-592.
[730] Bertazzo, S., Zambuzzi, W.F., Campos, D.D.P., Ogeda, T.L., Ferreira, C.V., Bertran, C.A. Hydroxyapatite surface solubility and effect on cell adhesion. Colloid Surf. B 2010, 78, 177-184.
[731] Schwartz, Z., Boyan, B.D. Underlying mechanisms at the bone-biomaterial interface. J. Cell. Biochem. 1994, 56, 340-347.
[732] Puleo, D.A., Nanci, A. Understanding and controlling the bone-implant interface. Biomaterials 1999, 20, 2311-2321.
[733] Xin, R., Leng, Y., Chen, J., Zhang, Q. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials 2005, 26, 6477-6486.
[734] Girija, E.K., Parthiban, S.P., Suganthi, R.V., Elayaraja, K., Joshy, M.I.A., Vani, R., Kularia, P., Asokan, K., Kanjilal, D., Yokogawa, Y., Kalkura, S.N. High energy irradiation – a tool for enhancing the bioactivity of hydroxyapatite. J. Ceram. Soc. Jpn. 2008, 116, 320-324.
[735] Okada, M., Furukawa, K., Serizawa, T., Yanagisawa, Y., Tanaka, H., Kawai, T., Furuzono, T. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates. Langmuir 2009, 25, 6300-6306.
[736] Callis, P.D., Donaldson, K., McCord, J.F. Early cellular responses to calcium phosphate ceramics. Clin. Mater. 1988, 3, 183-190.
[737] Okumura, M., Ohgushi, H., Tamai, S. Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials 1990, 12, 28-37.
[738] Holtgrave, E.A., Donath, K. Response of odontoblast-like cells to hydroxyapatite ceramic granules. Biomaterials 1995, 16, 155-159.
[739] Doi, Y., Iwanaga, H., Shibutani, T., Moriwaki, Y., Iwayama, Y. Osteoclastic responses to various calcium phosphates in cell cultures. J. Biomed. Mater. Res. 1999, 47, 424-433.
[740] Guo, X., Gough, J.E., Xiao, P., Liu, J., Shen, Z. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J. Biomed. Mater. Res. A 2007, 82A, 1022-1032.
[741] Wang, Y., Zhang, S., Zeng, X., Ma, L.L., Weng, W., Yan, W., Qian, M. Osteoblastic cell response on fluoridated hydroxyapatite coatings. Acta Biomater. 2007, 3, 191-197.
[742] Bae, W.J., Chang, S.W., Lee, S.I., Kum, K.Y., Bae, K.S., Kim, E.C. Human periodontal ligament cell response to a newly developed calcium phosphate-based root canal sealer. J. Endod. 2010, 36, 1658-1663.
[743] Li, J., Song, Y., Zhang, S., Zhao, C., Zhang, F., Zhang, X., Cao, L., Fan, Q., Tang, T. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials 2010, 31, 5782-5788.
[744] Zhao, X., Heng, B.C., Xiong, S., Guo, J., Tan, T.T.-Y., Boey, F.Y.C., Ng, K.W., Loo, J.S.C. In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas. Nanotoxicology 2011, 5, 182-194.
[745] Detsch, R., Schaefer, S., Deisinger, U., Ziegler, G., Seitz, H., Leukers, B. In vitro-osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J. Biomater. Appl. 2011, 26, 359-380.
[746] Kanayama, K., Sriarj, W., Shimokawa, H., Ohya, K., Doi, Y., Shibutani, T. Osteoclast and osteoblast activities on carbonate apatite plates in cell cultures. J. Biomater. Appl. 2011, 26, 435-449.
[747] Liu, X., Zhao, M., Lu, J., Ma, J., Wei, J., Wei, S. Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int. J. Nanomed. 2012, 7, 1239-1250.
[748] Marchi, J., Ribeiro, C., de Almeida Bressiant, A.H., Marquesd, M.M. Cell response of calcium phosphate based ceramics, a bone substitute material. Mater. Res. 2013, 16, 703-712.
[749] Perez, R.A., Kim, T.H., Kim, M., Jang, J.H., Ginebra, M.P., Kim, H.W. Calcium phosphate cements loaded with basic fibroblast growth factor: delivery and in vitro cell response. J. Biomed. Mater. Res. A 2013, 101A, 923-931.
[750] Yin, P., Feng, F.F., Lei, T., Zhong, X.H., Jian, X.C. Osteoblastic cell response on biphasic fluorhydroxyapatite/strontium-substituted hydroxyapatite coatings. J. Biomed. Mater. Res. A 2014, 102A, 621-627.
[751] Lobo, S.E., Glickman, R., da Silva, W.N., Arinzeh, T.L., Kerkis, I. Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tiss. Res. 2015, 361, 477-495.
[752] Suzuki, T., Ohashi, R., Yokogawa, Y., Nishizawa, K., Nagata, F., Kawamoto, Y., Kameyama, T., Toriyama, M. Initial anchoring and proliferation of fibroblast L-929 cells on unstable surface of calcium phosphate ceramics. J. Biosci. Bioeng. 1999, 87, 320-327.
[753] Arinzeh, T.L., Tran, T., McAlary, J., Daculsi, G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 2005, 26, 3631-3638.
[754] Oh, S., Oh, N., Appleford, M., Ong, J.L. Bioceramics for tissue engineering applications – a review. Am. J. Biochem. Biotechnol. 2006, 2, 49-56.
[755] Appleford, M., Oh, S., Cole, J.A., Carnes, D.L., Lee, M., Bumgardner, J.D., Haggard, W.O., Ong, J.L. Effects of trabecular calcium phosphate scaffolds on stress signaling in osteoblast precursor cells. Biomaterials 2007, 28, 2747-2753.
[756] Gamie, Z., Tran, G.T., Vyzas, G., Korres, N., Heliotis, M., Mantalaris, A., Tsiridis, E. Stem cells combined with bone graft substitutes in skeletal tissue engineering. Expert Opin. Biol. Ther. 2012, 12, 713-729.
[757] Manfrini, M., di Bona, C., Canella, A., Lucarelli, E., Pellati, A., d’Agostino, A., Barbanti-Bròdano, G., Tognon, M. Mesenchymal stem cells from patients to assay bone graft substitutes. J. Cell. Physiol. 2013, 228, 1229-1237.
[758] Unger, R.E., Sartoris, A., Peters, K., Motta, A., Migliaresi, C., Kunkel, M., Bulnheim, U., Rychly, J., Kirkpatrick, C.J. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary like structures on three-dimensional porous biomaterials. Biomaterials 2007, 28, 3965-3976.
[759] Nazir, N.M., Dasmawati, M., Azman, S.M., Omar, N.S., Othman, R. Biocompatibility of in house β-tricalcium phosphate ceramics with normal human osteoblast cell. J. Eng. Sci. Technol. 2012, 7, 169-176.
[760] Tan, F., O’Neill, F., Naciri, M., Dowling, D., Al-Rubeai, M. Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating. Acta Biomater. 2012, 8, 1627-1638.
[761] Li, B., Liao, X., Zheng, L., He, H., Wang, H., Fan, H., Zhang, X. Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics. Mater. Sci. Eng. C 2012, 32, 929-936.
[762] Teixeira, S., Fernandes, M.H., Ferraz, M.P., Monteiro, F.J. Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. J. Biomed. Mater. Res. A 2010, 95A, 1-8.
[763] Yan-Zhong, Z., Yan-Yan, H., Jun, Z., Shai-Hong, Z., Zhi-You, L., Ke-Chao, Z. Characteristics of functionalized nano-hydroxyapatite and internalization by human epithelial cell. Nanoscale Res. Lett. 2011, 6, 600 (8 pages).
[764] Borcard, F., Staedler, D., Comas, H., Juillerat, F.K., Sturzenegger, P.N., Heuberger, R., Gonzenbach, U.T., Juillerat-Jeanneret, L., Gerber-Lemaire, S. Chemical functionalization of bioceramics to enhance endothelial cells adhesion for tissue engineering. J. Med. Chem. 2012, 27, 7988-7997.
[765] Treccani, L., Klein, T.Y., Meder, F., Pardun, K., Rezwan, K. Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater. 2013, 9, 7115-7150.
[766] Russo, L., Taraballi, F., Lupo, C., Poveda, A., Jiménez-Barbero, J., Sandri, M., Tampieri, A., Nicotra, F., Cipolla, L. Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation. Interface Focus 2014, 4, 20130040.
[767] Zhuang, Z., Yoshimura, H., Aizawa, M. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel. Mater. Sci. Eng. C 2013, 33, 2534-2540.
[768] Zhuang, Z., Fujimi, T.J., Nakamura, M., Konishi, T., Yoshimura, H., Aizawa, M. Development of a,b-plane-oriented hydroxyapatite ceramics as models for living bones and their cell adhesion behavior. Acta Biomater. 2013, 9, 6732-6740.
[769] Aizawa, M., Matsuura, T., Zhuang, Z. Syntheses of single-crystal apatite particles with preferred orientation to the a- and c-axes as models of hard tissue and their applications. Biol. Pharm. Bull. 2013, 36, 1654-1661.
[770] Lin, K., Wu, C., Chang, J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014, 10, 4071-4102.
[771] Chen, W., Long, T., Guo, Y.J., Zhu, Z.A., Guo, Y.P. Hydrothermal synthesis of hydroxyapatite coatings with oriented nanorod arrays. RSC Adv. 2014, 4, 185-191.
[772] Guan, J.J., Tian, B., Tang, S., Ke, Q.F., Zhang, C.Q., Zhu, Z.A., Guo, Y.P. Hydroxyapatite coatings with oriented nanoplate arrays: synthesis, formation mechanism and cytocompatibility. J. Mater. Chem. B 2015, 3, 1655-1666.
[773] Freidlin, L.K., Sharf, V.Z. Two paths for the dehydration of 1,4-butandiol to divinyl with a tricalcium phosphate catalyst. Bull. Acad. Sci. USSR Div. Chem. Sci. 1960, 9, 1577-1579.
[774] Bett, J.A.S., Christner, L.G., Hall, W.K. Studies of the hydrogen held by solids. XII. Hydroxyapatite catalysts. J. Am. Chem. Soc. 1967, 89, 5535-5541.
[775] Monma, H. Catalytic behavior of calcium phosphates for decompositions of 2-propanol and ethanol. J. Catal. 1982, 75, 200-203.
[776] Tsuchida, T., Yoshioka, T., Sakuma, S., Takeguchi, T., Ueda, W. Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Ind. Eng. Chem. Res. 2008, 47, 1443-1452.
[777] Tsuchida, T., Kubo, J., Yoshioka, T., Sakuma, S., Takeguchi, T., Ueda, W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 2008, 259, 183-189.
[778] Xu, J., White, T., Li, P., He, C., Han, Y.F. Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature. J. Am. Chem. Soc. 2010, 132, 13172-13173.
[779] Hatano, M., Moriyama, K., Maki, T., Ishihara, K. Which is the actual catalyst: chiral phosphoric acid or chiral calcium phosphate? Angew. Chem. Int. Ed. Engl. 2010, 49, 3823-3826.
[780] Zhang, D., Zhao, H., Zhao, X., Liu, Y., Chen, H., Li, X. Application of hydroxyapatite as catalyst and catalyst carrier. Prog. Chem. 2011, 23, 687-694.
[781] Gruselle, M., Kanger, T., Thouvenot, R., Flambard, A., Kriis, K., Mikli, V., Traksmaa, R., Maaten, B., Tõnsuaadu, K. Calcium hydroxyapatites as efficient catalysts for the Michael C-C bond formation. ACS Catalysis 2011, 1, 1729-1733.
[782] Stošić, D., Bennici, S., Sirotin, S., Calais, C., Couturier, J.L., Dubois, J.L., Travert, A., Auroux, A. Glycerol dehydration over calcium phosphate catalysts: effect of acidic-basic features on catalytic performance. Appl. Catal. A 2012, 447-448, 124-134.
[783] Ghantani, V.C., Lomate, S.T., Dongare, M.K., Umbarkar, S.B. Catalytic dehydration of lactic acid to acrylic acid using calcium hydroxyapatite catalysts. Green Chem. 2013, 15, 1211-1217.
[784] Chen, G., Shan, R., Shi, J., Liu, C., Yan, B. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energ. Convers. Manage. 2015, 98, 463-469.
[785] Gruselle, M. Apatites: a new family of catalysts in organic synthesis. J. Organomet. Chem. 2015, 793, 93-101.
[786] Urist, M.R., Huo, Y.K., Brownell, A.G., Hohl, W.M., Buyske, J., Lietze, A., Tempst, P., Hunkapiller, M., de Lange, R.J. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc. Natl. Acad. Sci. USA 1984, 81, 371-375.
[787] Kawasaki, T. Hydroxyapatite as a liquid chromatographic packing. J. Chromatogr. 1991, 544, 147-184.
[788] Kuiper, M., Sanches, R.M., Walford, J.A., Slater, N.K.H. Purification of a functional gene therapy vector derived from moloney murine leukaemia virus using membrane filtration and ceramic hydroxyapatite chromatography. Biotechnol. Bioeng. 2002, 80, 445-453.
[789] Jungbauer, A., Hahn, R., Deinhofer, K., Luo, P. Performance and characterization of a nanophased porous hydroxyapatite for protein chromatography. Biotechnol. Bioeng. 2004, 87, 364-375.
[790] Wensel, D.L., Kelley, B.D., Coffman, J.L. High-throughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite. Biotechnol. Bioeng. 2008, 100, 839-854.
[791] Hilbrig, F., Freitag, R. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography. Biotechnol. J. 2012, 7, 90-102.
[792] Cummings, L.J., Frost, R.G., Snyder, M.A. Monoclonal antibody purification by ceramic hydroxyapatite chromatography. Method Mol. Biol. 2014, 1131, 241-251.
[793] Nagai, M., Nishino, T., Saeki, T. A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics. Sensor Actuator 1988, 15, 145-151.
[794] Petrucelli, G.C., Kawachi, E.Y., Kubota, L.T., Bertran, C.A. Hydroxyapatite-based electrode: a new sensor for phosphate. Anal. Commun. 1996, 33, 227-229.
[795] Tagaya, M., Ikoma, T., Hanagata, N., Chakarov, D., Kasemo, B., Tanaka, J. Reusable hydroxyapatite nanocrystal sensors for protein adsorption. Sci. Technol. Adv. Mater. 2010, 11, 045002.
[796] Khairnar, R.S., Mene, R.U., Munde, S.G., Mahabole, M.P. Nano-hydroxyapatite thick film gas sensors. AIP Conf. Proc. 2011, 1415, 189-192.
[797] Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518-524.
[798] Jones, J.R., Hench, L.L. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 2003, 7, 301-307.
[799] Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941-2953.
[800] Griffith, L.G., Naughton, G. Tissue engineering – current challenges and expanding opportunities. Science 2002, 295, 1009-1014.
[801] Goldberg, V.M., Caplan, A.I. Orthopedic tissue engineering basic science and practice. Marcel Dekker, New York, USA, 2004, 338 pp.
[802] van Blitterswijk, C.A., Thomsen, P., Hubbell, J., Cancedda R., de Bruijn, J.D., Lindahl, A., Sohier, J., Williams, D.F., (Eds.), Tissue engineering. Academic Press, Burlington, MA, USA, 2008, 760 pp.
[803] Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface 2006, 3, 589-601.
[804] Cima, L.G., Langer, R. Engineering human tissue. Chem. Eng. Prog. 1993, 89, 46-54.
[805] Langer, R., Vacanti, J.P. Tissue engineering. Science 1993, 260, 920-926.
[806] El-Ghannam, A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev. Med. Dev. 2005, 2, 87-101.
[807] Kneser, U., Schaefer, D.J., Polykandriotis, E., Horch, R.E. Tissue engineering of bone: the reconstructive surgeon’s point of view. J. Cell. Mol. Med. 2006, 10, 7-19.
[808] Scott, T.G., Blackburn, G., Ashley, M., Bayer, I.S., Ghosh, A., Biris, A.S., Biswas, A. Advances in bionanomaterials for bone tissue engineering. J. Nanosci. Nanotechnol. 2013, 13, 1-22.
[809] Lutolf, M.P., Hubbell, J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47-55.
[810] Ma, P.X. Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 2008, 60, 184-198.
[811] Yang, S., Leong, K.F., Du, Z., Chua, C.K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001, 7, 679-689.
[812] Hutmacher, D.W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529-2543.
[813] Ma, P.X. Scaffolds for tissue fabrication. Mater. Today 2004, 7, 30-40.
[814] Yasuhiko, T. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface 2009, 6, S311-S324.
[815] Ma, P.X., Elisseeff, J. (Eds.) Scaffolding in tissue engineering. CRC Press, Boca Raton, FL, USA, 2006, 638 pp.
[816] Schieker, M., Seitz, H., Drosse, I., Seitz, S., Mutschler, W. Biomaterials as scaffold for bone tissue engineering. Eur. J. Trauma 2006, 32, 114-124.
[817] Williams, D.F. The biomaterials conundrum in tissue engineering. Tissue Eng. A 2014, 20, 1129-1131.
[818] Freed, L.E., Guilak, F., Guo, X.E., Gray, M.L., Tranquillo, R., Holmes, J.W., Radisic, M., Sefton, M.V., Kaplan, D., Vunjak-Novakovic, G. Advanced tools for tissue engineering: Scaffolds, bioreactors, and signaling. Tissue Eng. 2006, 12, 3285-3305.
[819] Gandaglia, A., Bagno, A., Naso, F., Spina, M., Gerosa, G. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur. J. Cardiothorac. Surg. 2011, 39, 523-531.
[820] Hui, J.H.P., Buhary, K.S., Chowdhary, A. Implantation of orthobiologic, biodegradable scaffolds in osteochondral repair. Orthop. Clin. North Am. 2012, 43, 255-261.
[821] Vanderleyden, E., Mullens, S., Luyten, J., Dubruel, P. Implantable (bio)polymer coated titanium scaffolds: a review. Curr. Pharm. Des. 2012, 18, 2576-2590.
[822] Service, R.F. Tissue engineers build new bone. Science 2000, 289, 1498-1500.
[823] Deligianni, D.D., Katsala, N.D., Koutsoukos, P.G., Missirlis, Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2001, 22, 87-96.

[824] Fini, M., Giardino, R., Borsari, V., Torricelli, P., Rimondini, L., Giavaresi, G., Aldini, N.N. In vitro behaviour of osteoblasts cultured on orthopaedic biomaterials with different surface roughness, uncoated and fluorohydroxyapatite-coated, relative to the in vivo osteointegration rate. Int. J. Artif. Organs 2003, 26, 520-528.
[825] Sato, M., Webster, T.J. Designing orthopedic implant surfaces: harmonization of nanotopographical and chemical aspects. Nanomedicine 2006, 1, 351-354.
[826] Li, X., van Blitterswijk, C.A., Feng, Q., Cui, F., Watari, F. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials 2008, 29, 3306-3316.
[827] Kumar, G., Waters, M.S., Farooque, T.M., Young, M.F., Simon, C.G. Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials 2012, 33, 4022-4030.
[828] Holthaus, M.G., Treccani, L., Rezwan, K. Osteoblast viability on hydroxyapatite with well-adjusted submicron and micron surface roughness as monitored by the proliferation reagent WST2-1. J. Biomater. Appl. 2013, 27, 791-800.
[829] Zhou, Y., Chen, F., Ho, S.T., Woodruff, M.A., Lim, T.M., Hutmacher, D.W. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials 2007, 28, 814-824.
[830] Vitale-Brovarone, C., Baino, F., Verné, E. High strength bioactive glass-ceramic scaffolds for bone regeneration. J. Mater. Sci. Mater. Med. 2009, 20, 643-653.
[831] Ebaretonbofa, E., Evans, J.R. High porosity hydroxyapatite foam scaffolds for bone substitute. J. Porous Mater. 2002, 9, 257-263.
[832] Specchia, N., Pagnotta, A., Cappella, M., Tampieri, A., Greco, F. Effect of hydroxyapatite porosity on growth and differentiation of human osteoblast-like cells. J. Mater. Sci. 2002, 37, 577-584.
[833] Hing, K.A. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int. J. Appl. Ceram. Technol. 2005, 2, 184-199.
[834] Malmström, J., Adolfsson, E., Arvidsson, A., Thomsen, P. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity. Clin. Implant Dent. Rel. Res. 2007, 9, 79-88.
[835] Peng, Q., Jiang, F., Huang, P., Zhou, S., Weng, J., Bao, C., Zhang, C., Yu, H. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering in vivo. I. Preparation and characterization of scaffold. J. Biomed. Mater. Res. A 2010, 93A, 920-929.
[836] Lew, K.S., Othman, R., Ishikawa, K., Yeoh, F.Y. Macroporous bioceramics: a remarkable material for bone regeneration. J. Biomater. Appl. 2012, 27, 345-358.
[837] Ren, L.M., Todo, M., Arahira, T., Yoshikawa, H., Myoui, A. A comparative biomechanical study of bone ingrowth in two porous hydroxyapatite bioceramics. Appl. Surf. Sci. 2012, 262, 81-88.
[838] Guda, T., Walker, J.A., Singleton, B., Hernandez, J., Oh, D.S., Appleford, M.R., Ong, J.L., Wenke, J.C. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J. Biomater. Appl. 2014, 28, 1016-1027.
[839] Shao, R., Quan, R., Zhang, L., Wei, X., Yang, D., Xie, S. Porous hydroxyapatite bioceramics in bone tissue engineering: current uses and perspectives. J. Ceram. Soc. Jpn. 2015, 123, 17-20.
[840] Stevens, M.M. Biomaterials for bone tissue engineering. Mater. Today 2008, 11, 18-25.
[841] Artzi, Z., Weinreb, M., Givol, N., Rohrer, M.D., Nemcovsky, C.E., Prasad, H.S., Tal, H. Biomaterial resorbability and healing site morphology of inorganic bovine bone and beta tricalcium phosphate in the canine: a 24-month longitudinal histologic study and morphometric analysis. Int. J. Oral Max. Impl. 2004, 19, 357-368.
[842] Burg, K.J.L., Porter, S., Kellam, J.F. Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21, 2347-2359.
[843] Ajaal, T.T., Smith, R.W. Employing the Taguchi method in optimizing the scaffold production process for artificial bone grafts. J. Mater. Process. Technol. 2009, 209, 1521-1532.
[844] Daculsi, G. Smart scaffolds: the future of bioceramic. J. Mater. Sci. Mater. Med. 2015, 26, 154.
[845] Daculsi, G., Miramond, T., Borget, P., Baroth, S. Smart calcium phosphate bioceramic scaffold for bone tissue engineering. Key Eng. Mater. 2013, 529-530, 19-23.
[846] Bohner, M., Loosli, Y., Baroud, G., Lacroix, D. Commentary: Deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 2011, 7, 478-484.
[847] Peppas, N.A., Langer, R. New challenges in biomaterials. Science 1994, 263, 1715-1720.
[848] Hench, L.L. Biomaterials: a forecast for the future. Biomaterials 1998, 19, 1419-1423.
[849] Barrère, F., Mahmood, T.A., de Groot, K., van Blitterswijk, C.A. Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions. Mater. Sci. Eng. R 2008, 59, 38-71.
[850] Liu, H., Webster, T.J. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 2007, 28, 354-369.
[851] Wang, C., Duan, Y., Markovic, B., Barbara, J., Howlett, C.R., Zhang, X., Zreiqat, H. Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials 2004, 25, 2949-2956.
[852] Samavedi, S., Whittington, A.R., Goldstein, A.S. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013, 9, 8037-8045.
[853] Matsumoto, T., Okazaki, M., Nakahira, A., Sasaki, J., Egusa, H., Sohmura, T. Modification of apatite materials for bone tissue engineering and drug delivery carriers. Curr. Med. Chem. 2007, 14, 2726-2733.
[854] Chai, Y.C., Carlier, A., Bolander, J., Roberts, S.J., Geris, L., Schrooten, J., van Oosterwyck, H., Luyten, F.P. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 2012, 8, 3876-3887.
[855] Denry, I., Kuhn, L.T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent. Mater. 2016, 32, 43-53.
[856] Traykova, T., Aparicio, C., Ginebra, M.P., Planell, J.A. Bioceramics as nanomaterials. Nanomedicine 2006, 1, 91-106.
[857] Kalita, S.J., Bhardwaj, A., Bhatt, H.A. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng. C 2007, 27, 441-449.
[858] Dorozhkin, S.V. Nanodimensional and nanocrystalline calcium orthophosphates. Int. J. Chem. Mater. Sci. 2013, 1, 105-174.
[859] Šupová, M. Isolation and preparation of nanoscale bioapatites from natural sources: a review. J. Nanosci. Nanotechnol. 2014, 14, 546-563.
[860] Zhao, J., Liu, Y., Sun, W.B., Zhang, H. Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J. 2011, 5, 40 (7 pages).
[861] Dorozhkin, S.V. Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int. J. Mater. Chem. 2012, 2, 19-46.
[862] Liu, B., Lun, D.X. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop. Surg. 2012, 4, 139-144.
[863] Venkatesan, J., Kim, S.K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering – a review. J. Biomed. Nanotechnol. 2014, 10, 3124-3140.
[864] Wu, Y., Hench, L.L., Du, J., Choy, K.L., Guo, J. Preparation of hydroxyapatite fibers by electrospinning technique. J. Am. Ceram. Soc. 2004, 87, 1988-1991.
[865] Ramanan, S.R., Venkatesh, R. A study of hydroxyapatite fibers prepared via sol-gel route. Mater. Lett. 2004, 58, 3320-3323.
[866] Aizawa, M., Porter, A.E., Best, S.M., Bonfield, W. Ultrastructural observation of single-crystal apatite fibres. Biomaterials 2005, 26, 3427-3433.
[867] Park, Y.M., Ryu, S.C., Yoon, S.Y., Stevens, R., Park, H.C. Preparation of whisker-shaped hydroxyapatite/β-tricalcium phosphate composite. Mater. Chem. Phys. 2008, 109, 440-447.
[868] Aizawa, M., Ueno, H., Itatani, K., Okada, I. Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations. J. Eur. Ceram. Soc. 2006, 26, 501-507.
[869] Seo, D.S., Lee, J.K. Synthesis of hydroxyapatite whiskers through dissolution-reprecipitation process using EDTA. J. Cryst. Growth 2008, 310, 2162-2167.
[870] Tas, A.C. Formation of calcium phosphate whiskers in hydrogen peroxide (H2O2) solutions at 90°C. J. Am. Ceram. Soc. 2007, 90, 2358-2362.
[871] Neira, I.S., Guitiaìn, F., Taniguchi, T., Watanabe, T., Yoshimura, M. Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology. J. Mater. Sci. 2008, 43, 2171-2178.
[872] Yang, H.Y., Yang, S.F., Chi, X.P., Evans, J.R.G., Thompson, I., Cook, R.J., Robinson, P. Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds. J. Eur. Ceram. Soc. 2008, 28, 159-167.
[873] Junginger, M., Kübel, C., Schacher, F.H., Müller, A.H.E., Taubert, A. Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers. RSC Adv. 2013, 3, 11301-11308.
[874] Cui, Y.S., Yan, T.T., Wu, X.P., Chen, Q.H. Preparation and characterization of hydroxyapatite whiskers. Appl. Mech. Mater. 2013, 389, 21-24.
[875] Lee, J.H., Kim, Y.J. Hydroxyapatite nanofibers fabricated through electrospinning and sol-gel process. Ceram. Int. 2014, 40, 3361-3369.
[876] Zhang, H., Zhu, Q. Synthesis of nanospherical and ultralong fibrous hydroxyapatite and reinforcement of biodegradable chitosan/hydroxyapatite composite. Modern Phys. Lett. B 2009, 23, 3967-3976.
[877] Wijesinghe, W.P.S.L., Mantilaka, M.M.M.G.P.G., Premalal, E.V.A., Herath, H.M.T.U., Mahalingam, S., Edirisinghe, M., Rajapakse, R.P.V.J., Rajapakse, R.M.G. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. Mater. Sci. Eng. C 2014, 42, 83-90.
[878] Ribeiro, C.C., Barrias, C.C., Barbosa, M.A. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. J. Mater. Sci. Mater. Med. 2006, 17, 455-463.
[879] Kimura, I., Honma, T., Riman, R.E. Preparation of hydroxyapatite microspheres by interfacial reaction in a multiple emulsion. J. Ceram. Soc. Jpn. 2007, 115, 888-893.
[880] Zhou, W.Y., Wang, M., Cheung, W.L., Guo, B.C., Jia, D.M. Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J. Mater. Sci. Mater. Med. 2008, 19, 103-110.
[881] Lim, J.H., Park, J.H., Park, E.K., Kim, H.J., Park, I.K., Shin, H.Y., Shin, H.I. Fully interconnected globular porous biphasic calcium phosphate ceramic scaffold facilitates osteogenic repair. Key Eng. Mater. 2008, 361-363, 119-122.
[882] Kawai, T., Sekikawa, H., Unuma, H. Preparation of hollow hydroxyapatite microspheres utilizing poly(divinylbenzene) as a template. J. Ceram. Soc. Jpn. 2009, 117, 340-343.
[883] Descamps, M., Hornez, J.C., Leriche, A. Manufacture of hydroxyapatite beads for medical applications. J. Eur. Ceram. Soc. 2009, 29, 369-375.
[884] Cho, J.S., Jung, D.S., Han, J.M., Kang, Y.C. Spherical shape hydroxyapatite powders prepared by flame spray pyrolysis. J. Ceram. Process. Res. 2008, 9, 348-352.
[885] Yao, A., Ai, F., Liu, X., Wang, D., Huang, W., Xu, W. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature. Mater. Res. Bull. 2010, 45, 25-28.
[886] Cho, J.S., Ko, Y.N., Koo, H.Y., Kang, Y.C. Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis. J. Mater. Sci. Mater. Med. 2010, 21, 1143-1149.
[887] Ye, F., Guo, H., Zhang, H., He, X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater. 2010, 6, 2212-2218.
[888] He, W., Tao, J., Pan, H., Xu, R., Tang, R. A size-controlled synthesis of hollow apatite nanospheres at water-oil interfaces. Chem. Lett. 2010, 39, 674-675.
[889] Itatani, K., Tsugawa, T., Umeda, T., Musha, Y., Davies, I.J., Koda, S. Preparation of submicrometer-sized porous spherical hydroxyapatite agglomerates by ultrasonic spray pyrolysis technique. J. Ceram. Soc. Jpn. 2010, 118, 462-466.
[890] Xiao, W., Fu, H., Rahaman, M.N., Liu, Y., Bal, B.S. Hollow hydroxyapatite microspheres: a novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration. Acta Biomater. 2013, 9, 8374-8383.
[891] Bohner, M., Tadier, S., van Garderen, N., de Gasparo, A., Döbelin N., Baroud, G. Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. Biomatter 2013, 3, e25103.
[892] Rahaman, M.N., Fu, H., Xiao, W., Liu, Y. Bioactive ceramic implants composed of hollow hydroxyapatite microspheres for bone regeneration. Ceram. Eng. Sci. Proc. 2014, 34, 67-76.
[893] Ito, N., Kamitakahara, M., Ioku, K. Preparation and evaluation of spherical porous granules of octacalcium phosphate/hydroxyapatite as drug carriers in bone cancer treatment. Mater. Lett. 2014, 120, 94-96.
[894] Li, Z., Wen, T., Su, Y., Wei, X., He, C., Wang, D. Hollow hydroxyapatite spheres fabrication with three-dimensional hydrogel template. Cryst Eng Comm 2014, 16, 4202-4209.
[895] Feng, J., Chong, M., Chan, J., Zhang, Z.Y., Teoh, S.H., Thian, E.S. Fabrication, characterization and in-vitro evaluation of apatite-based microbeads for bone implant science. Ceram. Transact. 2014, 247, 179-190.
[896] Kovach, I., Kosmella, S., Prietzel, C., Bagdahn, C., Koetz, J. Nano-porous calcium phosphate balls. Colloid Surf. B 2015, 132, 246-252.
[897] Kamitakahara, M., Murakami, S., Takahashi, H., Watanabe, N., Ioku, K. Formation of hydroxyapatite microtubes assisted with anatase under hydrothermal conditions. Chem. Lett. 2010, 39, 854-855.
[898] Chandanshive, B., Dyondi, D., Ajgaonkar, V.R., Banerjee, R., Khushalani, D. Biocompatible calcium phosphate based tubes. J. Mater. Chem. 2010, 20, 6923-6928.
[899] Kamitakahara, M., Takahashi, H., Ioku, K. Tubular hydroxyapatite formation through a hydrothermal process from α-tricalcium phosphate with anatase. J. Mater. Sci. 2012, 47, 4194-4199.
[900] Ustundag, C.B., Kaya, F., Kamitakahara, M., Kaya, C., Ioku, K. Production of tubular porous hydroxyapatite using electrophoretic deposition. J. Ceram. Soc. Jpn. 2012, 120, 569-573.
[901] Li, C., Ge, X., Li, G., Lu, H., Ding, R. In situ hydrothermal crystallization of hexagonal hydroxyapatite tubes from yttrium ion-doped hydroxyapatite by the Kirkendall effect. Mater. Sci. Eng. C 2014, 45, 191-195.
[902] Nonoyama, T., Kinoshita, T., Higuchi, M., Nagata, K., Tanaka, M., Kamada, M., Sato, K., Kato, K. Arrangement techniques of proteins and cells using amorphous calcium phosphate nanofiber scaffolds. Appl. Surf. Sci. 2012, 262, 8-12.
[903] Sohier, J., Daculsi, G., Sourice, S., de Groot, K., Layrolle, P. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. J. Biomed. Mater. Res. A 2010, 92A, 1105-1114.
[904] Stähli, C., Bohner, M., Bashoor-Zadeh, M., Doebelin, N., Baroud, G. Aqueous impregnation of porous β-tricalcium phosphate scaffolds. Acta Biomater. 2010, 6, 2760-2772.
[905] Lin, K., Chen, L., Qu, H., Lu, J., Chang, J. Improvement of mechanical properties of macroporous β-tricalcium phosphate bioceramic scaffolds with uniform and interconnected pore structures. Ceram. Int. 2011, 37, 2397-2403.
[906] Wójtowicz, J., Leszczyńska, J., Chróścicka, A., Ślósarczyk, A., Paszkiewicz, Z., Zima, A., Rozniatowski, K., Jeleń, P., Lewandowska-Szumieł, M. Comparative in vitro study of calcium phosphate ceramics for their potency as scaffolds for tissue engineering. Bio-Med. Mater. Eng. 2014, 24, 1609-1623.
[907] Simon, J.L., Michna, S., Lewis, J.A., Rekow, E.D., Thompson, V.P., Smay, J.E., Yampolsky, A., Parsons, J.R., Ricci, J.L. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J. Biomed. Mater. Res. A 2007, 83A, 747-758.
[908] Yoshikawa, H., Myoui, A. Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs 2005, 8, 131-136.
[909] Min, S.H., Jin, H.H., Park, H.Y., Park, I.M., Park, H.C., Yoon, S.Y. Preparation of porous hydroxyapatite scaffolds for bone tissue engineering. Mater. Sci. Forum 2006, 510-511, 754-757.
[910] Deville, S., Saiz, E., Nalla, R.K., Tomsia, A.P. Strong biomimetic hydroxyapatite scaffolds. Adv. Sci. Technol. 2006, 49, 148-152.
[911] Buckley, C.T., O’Kelly, K.U. Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93B, 459-467.
[912] Ramay, H.R.R., Zhang, M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 2004, 25, 5171-5180.
[913] Chen, G., Li, W., Zhao, B., Sun, K. A novel biphasic bone scaffold: β-calcium phosphate and amorphous calcium polyphosphate. J. Am. Ceram. Soc. 2009, 92, 945-948.
[914] Guo, D., Xu, K., Han, Y. The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties. J. Biomed. Mater. Res. A 2009, 88A, 43-52.
[915] Sarin, P., Lee, S.J., Apostolov, Z.D., Kriven, W.M. Porous biphasic calcium phosphate scaffolds from cuttlefish bone. J. Am. Ceram. Soc. 2011, 94, 2362-2370.
[916] Kim, D.H., Kim, K.L., Chun, H.H., Kim, T.W., Park, H.C., Yoon, S.Y. In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceram. Int. 2014, 40, 8293-8300.
[917] Marques, C.F., Perera, F.H., Marote, A., Ferreira, S., Vieira, S.I., Olhero, S., Miranda, P., Ferreira, J.M.F. Biphasic calcium phosphate scaffolds fabricated by direct write assembly: mechanical, anti-microbial and osteoblastic properties. J. Eur. Ceram. Soc. 2017, 37, 359-368.
[918] Furuichi, K., Oaki, Y., Ichimiya, H., Komotori, J., Imai, H. Preparation of hierarchically organized calcium phosphate-organic polymer composites by calcification of hydrogel. Sci. Technol. Adv. Mater. 2006, 7, 219-225.
[919] Wei, J., Jia, J., Wu, F., Wei, S., Zhou, H., Zhang, H., Shin, J.W., Liu, C. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration. Biomaterials 2010, 31, 1260-1269.
[920] Gbureck, U., Grolms, O., Barralet, J.E., Grover, L.M., Thull, R. Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials 2003, 24, 4123-4131.
[921] Gbureck, U., Barralet, J.E., Hofmann, M., Thull, R. Mechanical activation of tetracalcium phosphate. J. Am. Ceram. Soc. 2004, 87, 311-313.
[922] Bohner, M., Luginbühl, R., Reber, C., Doebelin, N., Baroud, G., Conforto, E. A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomater. 2009, 5, 3524-3535.
[923] Hagio, T., Tanase, T., Akiyama, J., Iwai, K., Asai, S. Formation and biological affinity evaluation of crystallographically aligned hydroxyapatite. J. Ceram. Soc. Jpn. 2008, 116, 79-82.
[924] Blawas, A.S., Reichert, W.M. Protein patterning. Biomaterials 1998, 19, 595-609.
[925] Kasai, T., Sato, K., Kanematsu, Y., Shikimori, M., Kanematsu, N., Doi, Y. Bone tissue engineering using porous carbonate apatite and bone marrow cells. J. Craniofac. Surg. 2010, 21, 473-478.
[926] Wang, L., Fan, H., Zhang, Z.Y., Lou, A.J., Pei, G.X., Jiang, S., Mu, T.W., Qin, J.J., Chen, S.Y., Jin, D. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 2010, 31, 9452-9461.
[927] Sánchez-Salcedo, S., Izquierdo-Barba, I., Arcos, D., Vallet-Regí, M. In vitro evaluation of potential calcium phosphate scaffolds for tissue engineering. Tissue Eng. 2006, 12, 279-290.
[928] Meganck, J.A., Baumann, M.J., Case, E.D., McCabe, L.R., Allar, J.N. Biaxial flexure testing of calcium phosphate bioceramics for use in tissue engineering. J. Biomed. Mater. Res. A 2005, 72A, 115-126.
[929] Case, E.D., Smith, I.O., Baumann, M.J. Microcracking and porosity in calcium phosphates and the implications for bone tissue engineering. Mater. Sci. Eng. A 2005, 390, 246-254.
[930] Tripathi, G., Basu, B. A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram. Int. 2012, 38, 341-349.
[931] Sibilla, P., Sereni, A., Aguiari, G., Banzi, M., Manzati, E., Mischiati, C., Trombelli, L., del Senno, L. Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J. Dent. Res. 2006, 85, 354-358.
[932] Verron, E., Bouler, J.M. Calcium phosphate ceramics as bone drug-combined devices. Key Eng. Mater. 2010, 441, 181-201.
[933] Zhou, T.H., Su, M., Shang, B.C., Ma, T., Xu, G.L., Li, H.L., Chen, Q.H., Sun, W., Xu, Y.Q. Nano-hydroxyapatite/β-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms. Drug Dev. Ind. Pharm. 2012, 38, 1298-1304.
[934] Parent, M., Baradari, H., Champion, E., Damia, C., Viana-Trecant, M. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: a review of the parameters affecting the loading and release of the therapeutic substance. J. Control. Release 2017, 252, 1-17.
[935] Kolmas, J., Krukowski, S., Laskus, A., Jurkitewicz, M. Synthetic hydroxyapatite in pharmaceutical applications. Ceram. Int. 2016, 42, 2472-2487.
[936] Rapoport, A., Borovikova, D., Kokina, A., Patmalnieks, A., Polyak, N., Pavlovska, I., Mezinskis, G., Dekhtyar, Y. Immobilisation of yeast cells on the surface of hydroxyapatite ceramics. Process Biochem. 2011, 46, 665-670.
[937] Mastrogiacomo, M., Muraglia, A., Komlev, V., Peyrin, F., Rustichelli, F., Crovace, A., Cancedda, R. Tissue engineering of bone: search for a better scaffold. Orthod. Craniofac. Res. 2005, 8, 277-284.
[938] Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S.M., Mukhachev, V; Lavroukov, A., Kon, E., Marcacci, M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 2001, 344, 385-386.
[939] Vacanti, C.A., Bonassar, L.J., Vacanti, M.P., Shufflebarger, J. Replacement of an avulsed phalanx with tissue-engineered bone. N. Engl. J. Med. 2001, 344, 1511-1514.
[940] Morishita, T., Honoki, K., Ohgushi, H., Kotobuki, N., Matsushima, A., Takakura, Y. Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artif. Organs 2006, 30, 115-118.
[941] Eniwumide, J.O., Yuan, H., Cartmell, S.H., Meijer, G.J., de Bruijn, J.D. Ectopic bone formation in bone marrow stem cell seeded calcium phosphate scaffolds as compared to autograft and (cell seeded) allograft. Eur. Cell Mater. 2007, 14, 30-39.
[942] Zuolin, J., Hong, Q., Jiali, T. Dental follicle cells combined with beta-tricalcium phosphate ceramic: a novel available therapeutic strategy to restore periodontal defects. Med. Hypotheses 2010, 75, 669-670.
[943] Ge, S., Zhao, N., Wang, L., Yu, M., Liu, H., Song, A., Huang, J., Wang, G., Yang, P. Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold. Int. J. Nanomed. 2012, 7, 5405-5414.
[944] Franch, J., Díaz-Bertrana, C., Lafuente, P., Fontecha, P., Durall, I. Beta-tricalcium phosphate as a synthetic cancellous bone graft in veterinary orthopaedics: a retrospective study of 13 clinical cases. Vet. Comp. Orthop. Traumatol. 2006, 19, 196-204.
[945] Vertenten, G., Gasthuys, F., Cornelissen, M., Schacht, E., Vlaminck, L. Enhancing bone healing and regeneration: present and future perspectives in veterinary orthopaedics. Vet. Comp. Orthop. Traumatol. 2010, 23, 153-162.
[946] Hench, L.L., Wilson, J. Surface-active biomaterials. Science 1984, 226, 630-636.
[947] Navarro, M., Michiardi, A., Castano, O., Planell, J.A. Biomaterials in orthopaedics. J. R. Soc. Interface 2008, 5, 1137-1158.
[948] Anderson, J.M. The future of biomedical materials. J. Mater. Sci. Mater. Med. 2006, 17, 1025-1028.
[949] Huebsch, N., Mooney, D.J. Inspiration and application in the evolution of biomaterials. Nature 2009, 462, 426-432.
[950] Sanchez-Sálcedo, S., Arcos, D., Vallet-Regí, M. Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng. Mater. 2008, 377, 19-42.
[951] Chevalier, J., Gremillard, L. Ceramics for medical applications: a picture for the next 20 years. J. Eur. Ceram. Soc. 2009, 29, 1245-1255.
[952] Salgado, P.C., Sathler, P.C., Castro, H.C., Alves, G.G., de Oliveira, A.M., de Oliveira, R.C., Maia, M.D.C., Rodrigues, C.R., Coelh, P.G., Fuly, A., Cabral, L.M., Granjeiro, J.M. Bone remodeling, biomaterials and technological applications: revisiting basic concepts. J. Biomater. Nanobiotechnol. 2011, 2, 318-328.
[953] Vallet-Regí, M. Evolution of bioceramics within the field of biomaterials. C. R. Chimie 2010, 13, 174-185.
[954] Hartgerink, J.D., Beniash, E., Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.
[955] Malhotra, A., Habibovic, P. Calcium phosphates and angiogenesis: implications and advances for bone regeneration. Trends Biotechnol. 2016, 34, 983-992.

Part II

[1] http://en.wikipedia.org/wiki/Surface_engineering (accessed in December 2016).
[2] Duan, K., Wang, R. Surface modifications of bone implants through wet chemistry. J. Mater. Chem. 2006, 16, 2309-2321.
[3] LeGeros, R.Z. Calcium phosphates in oral biology and medicine, Monographs in oral science. Myers, H.M. (Ed.), Vol. 15; Karger: Basel, Switzerland, 1991; 201 pp.
[4] Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry. Vol. 18; Elsevier: Amsterdam, Netherlands, 1994; 389 pp.
[5] Dorozhkin, S.V. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford: Singapore, 2012; 854 pp.
[6] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016; 405 pp.
[7] Ong, J.L., Chan, D.C.N. Hydroxyapatite and their use as coatings in dental implants: a review. Crit. Rev. Biomed. Eng. 1999, 28, 667-707.
[8] de Groot, K., Wolke, J.G.C., Jansen, J.A. Calcium phosphate coatings for medical implants. Proc. Inst. Mech. Eng. Part Η: J. Eng. Med. 1998, 212, 137-147.
[9] Onoki, T., Hashida, T. New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique. Surf. Coat. Tech. 2006, 200, 6801-6807.
[10] Kobayashi, T., Itoh, S., Nakamura, S., Nakamura, M., Shinomiya, K., Yamashita, K. Enhanced bone bonding of hydroxyapatite-coated titanium implants by electrical polarization. J. Biomed. Mater. Res. A 2007, 82A, 145-151.
[11] Epinette, J.A.M.D., Geesink, R.G.T. Hydroxyapatite coated hip and knee arthroplasty. Elsevier: Amsterdam, Netherlands, 1995; 394 pp.
[12] Willmann, G. Coating of implants with hydroxyapatite – material connections between bone and metal. Adv. Eng. Mater. 1999, 1, 95-105.
[13] Schliephake, H., Scharnweber, D., Roesseler, S., Dard, M., Sewing, A., Aref, A. Biomimetic calcium phosphate composite coating of dental implants. Int. J. Oral Max. Impl. 2006, 21, 738-746.
[14] Habibovic, P., Li, J., van der Valk, C. M., Meijer, G., Layrolle, P., van Blitterswijk, C. A., de Groot, K. Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials 2005, 26, 23-36.
[15] Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Kim, K.H., Park, C., Kim, H.E. Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition. J. Am. Ceram. Soc. 2009, 92, 683-687.
[16] Callahan, T.J., Gantenberg, J.B., Sands, B.E. Calcium phosphate (Ca-P) coating draft guidance for preparation of Food and Drug Administration (FDA) submissions for orthopedic and dental endosseous implants. In: Characterization and performance of calcium phosphate coatings for implants. Horowitz, E., Parr, J.E. (Eds.) ASTM STP 1196, Philadelphia, PA, USA, 1994, pp. 185-197.
[17] Implants for surgery: coating for hydroxyapatite ceramics. ISO, 1996, pp. 1-8.
[18] 510(K) Information needed for hydroxyapatite coated orthopedic implants. March 10, 1995 (revised 2/20/97). http://www.fda.gov/MedicalDevices/DeviceRegulation andGuidance/GuidanceDocuments/ucm080224.htm.
[19] ISO 13779-2:2000 Implants for surgery – Hydroxyapatite – Part 2: Coatings of hydroxyapatite. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail. htm?csnumber=26841.
[20] ISO 13779-2:2008 Implants for surgery – Hydroxyapatite – Part 2: Coatings of hydroxyapatite. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail. htm?csnumber=43827.
[21] ISO 13779-4:2002 Implants for surgery – Hydroxyapatite – Part 4: Determination of coating adhesion strength. http://www.iso.org/iso/home/store/catalogue_tc/ catalogue_detail.htm?csnumber=30723.
[22] http://en.wikipedia.org/wiki/Coating (accessed in December 2016).
[23] Ohring, M. Materials science of thin films. 2nd Ed. Academic Press: San Diego, CA, USA, 2002; 794 pp.
[24] Kibardin, S.A., Lazurkin, V.B. Thin-layer chromatography of proteins on plates coated with hydroxylapatite. Biochem. (Moscow) 1965, 30, 483-487.
[25] McHugh, T.H. Protein-lipid interactions in edible films and coatings. Nahrung 2000, 44, 148-151.
[26] Falguera, V., Quintero, J.P., Jiménez, A., Muñoz, J.A., Ibarz, A. Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci. Tech. 2011, 22, 292-303.
[27] Cabañas, M.V. Bioceramic coatings for medical implants. In: Bio-ceramics with clinical applications. Vallet-Regí, M. (Ed.). Wiley: Chichester, West Sussex, UK, 2014; pp. 249-289.
[28] Yang, Y., Kim, K.H., Ong, J.L. A review on calcium phosphate coatings produced using a sputtering process – an alternative to plasma spraying. Biomaterials 2005, 26, 327-337.
[29] Narayanan, R., Seshadri, S.K., Kwon, T.Y., Kim, K.H. Calcium phosphate-based coatings on titanium and its alloys. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85B, 279-299.
[30] Narayanan, R., Kim, K.H., Rautray, T.R. Surface modification of titanium for biomaterial applications. Nova Science: Hauppauge, NY, USA, 2010; 352 pp.
[31] Tsui, Y.C., Doyle, C., Clyne, T.W. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels. Biomaterials 1998, 19, 2015-2029.
[32] Tsui, Y.C., Doyle, C., Clyne, T.W. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: optimisation of coating properties. Biomaterials 1998, 19, 2031-2043.
[33] Zhang, Q., Leng, Y., Xin, R. A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials 2005, 26, 2857-2865.
[34] Oyane, A., Uchida, M., Choong, C., Triffitt, J., Jones, J., Ito, A. Simple surface modification of poly(ε-caprolactone) for apatite deposition from simulated body fluid. Biomaterials 2005, 26, 2407-2413.
[35] Lakstein, D., Kopelovitch, W., Barkay, Z., Bahaa, M., Hendel, D., Eliaz, N. Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti–6Al–4V implants in rabbits. Acta Biomater. 2009, 5, 2258-2269.
[36] Eliaz, N., Ritman-Hertz, O., Aronov, D., Weinberg, E., Shenhar, Y., Rosenman, G., Weinreb, M., Ron, E. The effect of surface treatments on the adhesion of electrochemically deposited hydroxyapatite coating to titanium and on its interaction with cells and bacteria. J. Mater. Sci. Mater. Med. 2011, 22, 1741-1752.
[37] Pattanayak, D.K., Yamaguchi, S., Matsushita, T., Nakamura, T., Kokubo, T. Apatite-forming ability of titanium in terms of pH of the exposed solution. J. R. Soc. Interface 2012, 9, 2145-2155.
[38] El-Rab, S.M.F.G., Fadl-allah, S.A., Montser, A.A. Improvement in antibacterial properties of Ti by electrodeposition of biomimetic Ca–P apatite coat on anodized titania. Appl. Surf. Sci. 2012, 261, 1-7.
[39] Ajami, E., Aguey-Zinsou, K.F. Calcium phosphate growth at electropolished titanium surfaces. J. Funct. Biomater. 2012, 3, 327-348.
[40] Zhao, X., Li, H., Chen, M., Li, K., Wang, B., Xu, Z., Cao, S., Zhang, L. Deng, H., Lu, J. Strong-bonding calcium phosphate coatings on carbon/carbon composites by ultrasound-assisted anodic oxidation treatment and electrochemical deposition. Appl. Surf. Sci. 2012, 258, 5117-5125.
[41] Ágreda, C.G., Mendes, M.W.D., Bressiani, J.C., Bressiani, A.H.A. Apatite coating on titanium samples obtained by powder metallurgy. Adv. Sci. Technol. 2013, 86, 28-33.
[42] Xiao, X., Yu, J., Tang, H., Mao, D., Wang, C., Liu, R. TiO2 nanotube arrays induced deposition of hydroxyapatite coating by hydrothermal treatment. Mater. Chem. Phys. 2013, 138, 695-702.
[43] Dorozhkin, S.V. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 2014, 10, 2919-2934.
[44] Lu, Y.P., Xiao, G.Y., Li, S.T., Sun, R.X., Li, M.S. Microstructural inhomogeneity in plasma-sprayed hydroxyapatite coatings and effect of post-heat treatment. Appl. Surf. Sci. 2006, 252, 2412-2421.
[45] Cao, N., Dong, J., Wang, Q., Ma, Q., Wang, F., Chen, H., Xue, C., Li, M. Plasma-sprayed hydroxyapatite coating on carbon/carbon composite scaffolds for bone tissue engineering and related tests in vivo. J. Biomed. Mater. Res. A 2010, 92A, 1019-1027.
[46] Mohammadi, Z., Ziaei-Moayyed, A.A., Mesgar, A.S.M. Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings. Appl. Surf. Sci. 2007, 253, 4960-4965.
[47] Lu, Y.P., Chen, Y.M., Li, S.T., Wang, J.H. Surface nanocrystallization of hydroxyapatite coating. Acta Biomater. 2008, 4, 1865-1872.
[48] Zhang, X., Xiao, G.Y., Liu, B., Jiang, C.C., Li, N.B., Lu, Y.P. The formation of hydroxyapatite layer onto hopeite coating on stainless steel substrate. Corr. Sci. 2016, 111, 216-229.
[49] Leonor, I.B., Reis, R.L. An innovative auto-catalytic deposition route to produce calcium-phosphate coatings on polymeric biomaterials. J. Mater. Sci. Mater. Med. 2003, 14, 435-441.
[50] Bunker, B.C., Rieke, P.C., Tarasevich, B.J., Campbell, A.A., Fryxell, G.E., Graff, G.L., Song, L., Liu, J., Virden, J.W., McVay, G.L. Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science 1994, 264, 48-55.
[51] Zheng, Y., Xiong, C., Zhang, S., Li, X., Zhang, L. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique. Mater. Sci. Eng. C 2015, 55, 512-523.
[52] Le, V.Q., Pourroy, G., Cochis, A., Rimondini, L., Abdel-Fattah, W.I., Mohammed, H.I., Carradò, A. Alternative technique for calcium phosphate coating on titanium alloy implants. Biomatter 2014, 4, e28534.
[53] Hoppe, A., Will, J., Detsch, R., Boccaccini, A.R., Greil, P. Formation and in vitro biocompatibility of biomimetic hydroxyapatite coatings on chemically treated carbon substrates. J. Biomed. Mater. Res. A 2014, 102A, 193-203.

[54] Tanahashi, M., Yao, T., Kokubo, T., Minoda, M., Miyamoto, T., Nakamura, T., Yamamuro, T. Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by NaOH treatment. J. Appl. Biomater. 1994, 5, 339-347.
[55] Duan, K., Tang, A., Wang, R. Accelerating calcium phosphate growth on NaOH-treated poly-(lactic-co-glycolic acid) by evaporation-induced surface crystallization. Appl. Surf. Sci. 2008, 255, 2442-2448.
[56] Okada, M., Furuzono, T. Hydroxyapatite nanocrystal coating on biodegradable microspheres. Mater. Sci. Eng. B 2010, 173, 199-203.
[57] Wu, M., Wang, Q., Liu, X., Liu, H. Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds. Carbon 2013, 51, 335-345.
[58] Peng, F., Shaw, M.T., Olson, J.R., Wei, M. Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers. J. Biomater. Appl. 2013, 27, 641-649.
[59] Hashizume, M., Maeda, M., Iijima, K. Biomimetic calcium phosphate coating on polyimide films by utilizing surface-selective hydrolysis treatments. J. Ceram. Soc. Jpn. 2013, 121, 816-818.
[60] Kramer, E., Kunkemoeller, B., Wei, M. Evaluation of alkaline pre-treatment of PLLA fibers for biomimetic hydroxyapatite coating. Surf. Coat. Tech. 2014, 244, 23-28.
[61] Rajesh, P., Mohan, N., Yokogawa, Y., Varma, H. Pulsed laser deposition of hydroxyapatite on nanostructured titanium towards drug eluting implants. Mater. Sci. Eng. C 2013, 33, 2899-2904.
[62] Ding, S.J. Properties and immersion behavior of magnetron-sputtered multi-layered hydroxyapatite/titanium composite coatings. Biomaterials 2003, 24, 4233-4238.
[63] Xiong, X.B., Zeng, X.R., Zou, C.L., Zhou, J.Z. Strong bonding strength between HA and (NH4)2S2O8-treated carbon/carbon composite by hydrothermal treatment and induction heating. Acta Biomater. 2009, 5, 1785-1790.
[64] Mucalo, M.R., Yokogawa, Y., Toriyama, M., Suzuki, T., Kawamoto, Y., Nagata, F., Nishizawa, K. Growth of calcium phosphate on surface-modified cotton. J. Mater. Sci. Mater. Med. 1995, 6, 597-605.
[65] Yokogawa, Y., Paz Reyes, J., Mucalo, M.R., Toriyama, M., Kawamoto, Y., Suzuki, T., Nishizawa, K., Nagata, F., Kamayama, T. Growth of calcium phosphate on phosphorylated chitin fibres. J. Mater. Sci. Mater. Med. 1997, 8, 407-412.
[66] Li, K., Wang, J., Liu, X., Xiong, X., Liu, H. Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers. Carbohyd. Polym. 2012, 90, 1573-1581.
[67] Tretinnikov, O.N., Kato, K., Ikada, Y. In vitro hydroxyapatite deposition onto a film surface-grated with organophosphate polymer. J. Biomed. Mater. Res. 1994, 28, 1365-1373.
[68] Kim, H.M., Uenoyama, M., Kokubo, T., Minoda, M., Miyamoto, T., Nakamura, T. Biomimetic apatite formation on polyethylene photografted with vinyltrimethoxysilane and hydrolyzed. Biomaterials 2001, 22, 2489-2494.
[69] Wang, X., Zhao, X., Wang, W., Zhang, J., Zhang, L., He, F., Yang, J. Controllable preparation of a nano-hydroxyapatite coating on carbon fibers by electrochemical deposition and chemical treatment. Mater. Sci. Eng. C 2016, 63, 96-105.
[70] Xiao, Y., Gong, T., Zhou, S. The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite. Biomaterials 2010, 31, 5182-5190.
[71] Neelgund, G.M., Oki, A., Luo, Z. In situ deposition of hydroxyapatite on graphene nanosheets. Mater. Res. Bull. 2013, 48, 175-179.
[72] Waterman, J., Pietak, A., Birbilis, N., Woodfield, T., Dias, G., Staiger, M.P. Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time. Mater. Sci. Eng. B 2011, 176, 1756-1760.
[73] Tanahashi, M., Yao, T., Kokubo, T., Minoda, M., Miyamoto, T., Nakamura, T., Yamamuro, T. Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by glow-discharge treatment. J. Biomed. Mater. Res. 1995, 29, 349-357.
[74] Yabutsuka, T., Fukushima, K., Kidokoro, Y., Matsunaga, T., Takai, S., Yao, T. Fabrication of bioactive fiber reinforced polyetheretherketone by the function of apatite nuclei. Key Eng. Mater. 2017, 720, 246-251.
[75] Baker, K.C., Drelich, J., Miskioglu, I., Israel, R., Herkowitz, H.N. Effect of polyethylene pretreatments on the biomimetic deposition and adhesion of calcium phosphate films. Acta Biomater. 2007, 3, 391-401.
[76] Liu, G.J., Miyaji, F., Kokubo, T., Takadama, H., Nakamura, T., Murakami, A. Apatite-organic polymer composites prepared by a biomimetic process: improvement in adhesion of the apatite layer to the substrate by ultraviolet irradiation. J. Mater. Sci. Mater. Med. 1998, 9, 285-290.
[77] Suzuki, N., Umeda, T., Sumi, T., Horikoshi, S., Kuwahara, H., Toyama, T., Musha, Y., Itatani, K. Rapid formation of hydroxyapatite layer on polyetheretherketone by vacuum ultraviolet irradiation and microwave heating techniques. J. Ceram. Soc. Jpn. 2016, 124, 49-54.
[78] Gopi, D., Sherif, E.S.M., Rajeswari, D., Kavitha, L., Pramod, R., Dwivedi, J., Polaki, S.R. Evaluation of the mechanical and corrosion protection performance of electrodeposited hydroxyapatite on the high energy electron beam treated titanium alloy. J. Alloy Compd. 2014, 616, 498-504.
[79] Gopi, D., Karthika, A., Rajeswari, D., Kavitha, L., Pramod, R., Dwivedi, J. Investigation on corrosion protection and mechanical performance of minerals substituted hydroxyapatite coating on HELCDEB-treated titanium using pulsed electrodeposition method. RSC Adv. 2014, 4, 34751-34759.
[80] Oyane, A., Uchida, M., Yokoyama, Y., Choong, C., Triffitt, J., Ito, A. Simple surface modification of poly(ε-caprolactone) to induce its apatite-forming ability. J. Biomed. Mater. Res. A 2005, 75A, 138-145.
[81] Duta, L., Serban, N., Oktar, F.N., Mihailescu, I.N. Biological hydroxyapatite thin films synthesized by pulsed laser deposition. Optoelectron. Adv. Mat. Rapid Commun. 2013, 7, 1040-1044.
[82] Mutsuzaki, H., Yokoyama, Y., Ito, A., Oyane, A. Formation of apatite coatings on an artificial ligament using a plasma- and precursor-assisted biomimetic process. Int. J. Mol. Sci. 2013, 14, 19155-19168.
[83] Roguska, A., Hiromoto, S., Yamamoto, A., Woźniak, M.J., Pisarek, M., Lewandowska, M. Collagen immobilization on 316L stainless steel surface with cathodic deposition of calcium phosphate. Appl. Surf. Sci. 2011, 257, 5037-5045.
[84] Jo, J.H., Kang, B.G., Shin, K.S., Kim, H.E., Hahn, B.D., Park, D.S., Koh, Y.H. Hydroxyapatite coating on magnesium with MgF₂ interlayer for enhanced corrosion resistance and biocompatibility. J. Mater. Sci. Mater. Med. 2011, 22, 2437-2447.
[85] Chi, M.H., Tsou, H.K., Chung, C.J., He, J.L. Biomimetic hydroxyapatite grown on biomedical polymer coated with titanium dioxide interlayer to assist osteocompatible performance. Thin Solid Films 2013, 549, 98-102.
[86] Wu, J., Hirata, I., Zhao, X., Gao, B., Okazaki, M., Kato, K. Influence of alkyl chain length on calcium phosphate deposition onto titanium surfaces modified with alkylphosphonic acid monolayers. J. Biomed. Mater. Res. A 2013, 101A, 2267-2272.
[87] Zheng, Y., Xiong, C., Zhang, L. Formation of bone-like apatite on plasma-carboxylated poly(etheretherketone) surface. Mater. Lett. 2014, 126, 147-150.
[88] Chen, W., Long, T., Guo, Y.J., Zhu, Z.A., Guo, Y.P. Hydrothermal synthesis of hydroxyapatite coatings with oriented nanorod arrays. RSC Adv. 2014, 4, 185-191.
[89] Chen, W., Tian, B., Lei, Y., Ke, Q.F., Zhu, Z.A., Guo, Y.P. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: fabrication, morphology, cytocompatibility and osteogenic differentiation. Mater. Sci. Eng. C 2016, 67, 395-408.
[90] Kizuki, T., Matsushita, T., Kokubo, T. Apatite-forming PEEK with TiO2 surface layer coating. J. Mater. Sci. Mater. Med. 2015, 26, 5359.

[91] Sidane, D., Chicot, D., Yala, S., Ziani, S., Khireddine, H., Iost, A., Decoopman, X. Study of the mechanical behavior and corrosion resistance of hydroxyapatite sol-gel thin coatings on 316 L stainless steel pre-coated with titania film. Thin Solid Films 2015, 593, 71-80.
[92] Ulasevich, S.A., Poznyak, S.K., Kulak, A.I., Lisenkov, A.D., Starykevich, M., Skorb, E.V. Photocatalytic deposition of hydroxyapatite onto a titanium dioxide nanotubular layer with fine tuning of layer nanoarchitecture. Langmuir 2016, 32, 4016-4021.
[93] Azem, F.A., Birlik, I., Braic, V., Toparli, M., Celik, E., Parau, A., Kiss, A., Titorencu, I., Vladescu, A. Effect of SiC interlayer between Ti6Al4V alloy and hydroxyapatite films. Proc. Inst. Mech. Eng. H 2015, 229, 307-318.
[94] Cruz, M.A.E., Ruiz, G.C.M., Faria, A.N., Zancanela, D.C., Pereira, L.S., Ciancaglini, P., Ramos, A.P. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces. Appl. Surf. Sci. 2016, 370, 459-468.
[95] Yang, Y.C., Yang, C.Y. Mechanical and histological evaluation of a plasma sprayed hydroxyapatite coating on a titanium bond coat. Ceram. Int. 2013, 39, 6509-6516.
[96] Sawaguchi, H., Xu, J., Kawai, T., Mineta, T., Nonomura, Y. Formation process of apatite layer on titanium-coated silicon wafer surfaces. J. Ceram. Soc. Jpn. 2016, 124, 753-756.
[97] Strąkowska, P., Beutner, R., Gnyba, M., Zielinski, A., Scharnweber, D. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films – coating characterization and first cell biological results. Mater. Sci. Eng. C 2016, 59, 624-635.
[98] Lin, Z., Zhou, D., Zhou, J., Huang, M., Zhang, X. Construction of different morphology of calcium phosphate film on titanium base oxidation layer superhydrophobic-superhydrophilic pattern. Mater. Lett. 2016, 180, 309-312.
[99] Oyane, A., Kawashita, M., Nakanishi, K., Kokubo, T., Minoda, M., Miyamoto, T., Nakamura, T. Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions. Biomaterials 2003, 24, 1729-1735.
[100] Shirosaki, Y., Kubo, M., Takashima, S., Tsuru, K., Hayakawa, S., Osaka, A. In vitro apatite formation on organic polymers modified with a silane coupling reagent. J. R. Soc. Interface 2005, 22, 335-340.
[101] Balas, F., Kawashita, M., Nakamura, T., Kokubo, T. Formation of bone-like apatite on organic polymers treated with a silane-coupling agent and a titania solution. Biomaterials 2006, 27, 1704-1710.
[102] Rakngarm, A., Mutoh, Y. Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate. J. Mech. Behav. Biomed. Mater. 2009, 2, 444-453.
[103] Laonapakul, T., Otsuka, Y., Nimkerdphol, A.R., Mutoh, Y. Acoustic emission and fatigue damage induced in plasma-sprayed hydroxyapatite coating layers. J. Mech. Behav. Biomed. Mater. 2012, 8, 123-133.
[104] Nimkerdphol, A.R., Otsuka, Y., Mutoh, Y. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF). J. Mech. Behav. Biomed. Mater. 2014, 36, 98-108.
[105] Kim, H.W., Lee, S.Y., Bae, C.J., Noh, Y.J., Kim, H.E., Kim, H.M., Ko, J.S. Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials 2003, 24, 3277-3284.
[106] Kim, H.W., Yoon, B.H., Koh, Y.H., Kim, H.E. Processing and performance of hydroxyapatite/fluorapatite double layer coating on zirconia by the powder slurry method. J. Am. Ceram. Soc. 2006, 89, 2466-2472.
[107] Pham, M.T., Reuther, H., Matz, W., Mueller, R., Steiner, G., Oswald, S., Zyganov, I. Surface induced reactivity for titanium by ion implantation. J. Mater. Sci. Mater. Med. 2000, 11, 383-391.
[108] Baumann, H., Bethge, K., Bilger, G., Jones, D., Symietz, I. Thin hydroxyapatite surface layers on titanium produced by ion implantation. Nucl. Instrum. Meth. B 2002, 196, 286-292.
[109] Krupa, D., Baszkiewicz, J., Kozubowski, J.A., Barcz, A., Sobczak, J.W., Biliński, A., Lewandowska-Szumieł, M., Rajchel, B. Effect of dual ion implantation of calcium and phosphorus on the properties of titanium. Biomaterials 2005, 26, 2847-2856.
[110] Rautray, T.R., Narayanan, R., Kwon, T.Y., Kim, K.H. Accelerator based synthesis of hydroxyapatite by MeV ion implantation. Thin Solid Films 2010, 518, 3160-3163.
[111] Coreño-Alonsoa, J., Coreño-Alonsob, O., Martínez-Rosalesc, J.M. Apatite formation on alumina: the role of the initial adsorption of calcium and phosphate ions. Ceram. Int. 2014, 40, 4909-4915.
[112] de Jonge, L.T., Leeuwenburgh, S.C.G., van den Beucken, J.J.J.P., Wolke, J.G.C., Jansen, J.A. Electrosprayed enzyme coatings as bioinspired alternatives to bioceramic coatings for orthopedic and oral implants. Adv. Funct. Mater. 2009, 19, 755-762.

[113] Ferraris, S., Spriano, S., Bianchi, C.L., Cassinelli, C., Vernè, E. Surface modification of Ti-6Al-4 V alloy for biomineralization and specific biological response: part II, alkaline phosphatase grafting. J. Mater. Sci. Mater. Med. 2011, 22, 1835-1842.
[114] Aminian, A., Pardun, K., Volkmann, E., Li Destri, G., Marletta, G., Treccani, L., Rezwan, K. Enzyme-assisted calcium phosphate biomineralisation on an inert alumina surface. Acta Biomater. 2015, 13, 335-343.
[115] Erkmen, Z.E. The effect of heat treatment on the morphology of D-gun sprayed hydroxyapatite coatings. J. Biomed. Mater. Res. Appl. Biomater. 1999, 48, 861-868.
[116] Lynn, A.K., DuQuesnay, D.L. Hydroxyapatite-coated Ti–6Al–4V. Part 2: the effects of post-deposition heat treatment at low temperatures. Biomaterials 2002, 23, 1947-1953.
[117] Yang, Y., Agarwal, C.M., Kim, K.H., Martin, H., Schul, K., Bumgardner, J.M., Ong, J.L. Characterization and dissolution behavior of sputtered calcium phosphate coatings after different postdeposition heat treatment temperatures. J. Oral Implant. 2003, 29, 270-277.
[118] Lee, Y.P., Wang, C.K., Huang, T.H., Chen, C.C., Kao, C.T., Ding, S.J. In vitro characterization of post heat-treated plasma-sprayed hydroxyapatite coatings. Surf. Coat. Tech. 2005, 197, 367-374.
[119] Johnson, S., Haluska, M., Narayan, R.J., Snyder, R.L. In situ annealing of hydroxyapatite thin films. Mater. Sci. Eng. C 2006, 26, 1312-1316.
[120] Cannillo, V., Lusvarghi, L., Sola, A., Barletta, M. Post-deposition laser treatment of plasma sprayed titania-hydroxyapatite functionally graded coatings. J. Eur. Ceram. Soc. 2009, 29, 3147-3158.
[121] Drevet, R., Fauré, J., Benhayoune, H. Thermal treatment optimization of electrodeposited hydroxyapatite coatings on Ti6Al4V substrate. Adv. Eng. Mater. 2012, 14, 377-382.
[122] Berkin, A.B., Deryabina, V.V., Sharafutdinov, M.R., Karmanov, N.S. Structural changes in calcium phosphate thin films on titanium during heat treatment. Russ. Phys. J. 2014, 56, 1124-1129.
[123] Azis, S.A.A., Kennedy, J., Cao, P. Effect of annealing on microstructure of hydroxyapatite coatings and their behaviours in simulated body fluid. Adv. Mater. Res. 2014, 922, 657-662.
[124] Shirdar, M.R., Izman, S., Taheri, M.M., Assadian, M., Kadir, M.R.A. Effect of post-treatment techniques on corrosion and wettability of hydroxyapatite-coated Co–Cr–Mo alloy. Arab. J. Sci. Eng. 2015, 40, 1197-1203.

[125] Jaber, N.B., Drevet, R., Fauré, J., Demangel, C., Potiron, S., Tara, A., Larbi, A.B.C., Benhayoune, H. A new process for the thermal treatment of calcium phosphate coatings electrodeposited on Ti6Al4V substrate. Adv. Eng. Mater. 2015, 17, 1608-1615.
[126] Hontsu, S., Nakamori, M., Tabata, H., Ishii, J., Kawai, T. Pulsed laser deposition of bioceramic hydroxyapatite thin films on polymer materials. Jpn. J. Appl. Phys. 1996, 35, L1208-L1210.
[127] Hontsu, S., Nakamori, M., Kato, N., Tabata, H., Ishii, J., Matsumoto, T., Kawai, T. Formation of hydroxyapatite thin films on surface-modified polytetrafluoroethylene substrates. Jpn. J. Appl. Phys. 2 1998, 37, L1169-L1171.
[128] Chen, C., Wang, D., Bao, Q., Zhang, L., Lei, T. Influence of laser remelting on the microstructure and phases constitution of plasma sprayed hydroxyapatite coatings. Appl. Surf. Sci. 2005, 250, 98-103.
[129] Feddes, B., Vredenberg, A.M., Wehner, M., Wolke, J.C.G., Jansen, J.A. Laser-induced crystallization of calcium phosphate coatings on polyethylene (PE). Biomaterials 2005, 26, 1645-1651.
[130] dos Santos, E.A., Moldovan, S., Mateescu, M., Faerber, J., Acosta, M., Pelletier, H., Anselme, K., Werckmann, J. Physical–chemical and biological behavior of an amorphous calcium phosphate thin film produced by RF-magnetron sputtering. Mater. Sci. Eng. C 2012, 32, 2086-2095.
[131] Cao, Y., Weng, J., Chen, J., Feng, J., Yang, Z., Zhang, X. Water vapor-treated hydroxyapatite coatings after plasma spraying and their characteristics. Biomaterials 1996, 17, 419-424.
[132] Yang, Y., Kim, K.H., Agarwal, C.M., Ong, J.L. Effect of post-deposition heating temperature and the presence of water vapor during heat treatment on crystallinity of calcium phosphate coatings. Biomaterials 2003, 24, 5131-5137.
[133] Yang, C.W., Lee, T.M., Lui, T.S., Chang, E. A comparison of the microstructural feature and bonding strength of plasma-sprayed hydroxyapatite coatings with hydrothermal and vacuum post-heat treatment. Mater. Trans. 2005, 46, 709-715.
[134] Li, H., Khor, K.A., Cheang, P. Effect of steam treatment during plasma spraying on the microstructure of hydroxyapatite (HA) splats and coatings. J. Therm. Spray Tech. 2006, 15, 610-616.
[135] Yang, C.W., Lui, T.S. Microstructural self-healing effect of hydrothermal crystallization on bonding strength and failure mechanism of hydroxyapatite coatings. J. Eur. Ceram. Soc. 2008, 28, 2151-2159.
[136] Yang, C.W., Lui, T.S. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomater. 2009, 5, 2728-2737.
[137] Huang, Y., Qu, Y., Yang, B., Li, W., Zhang, B., Zhang, X. In vivo biological responses of plasma sprayed hydroxyapatite coatings with an electric polarized treatment in alkaline solution. Mater. Sci. Eng. C 2009, 29, 2411-2416.
[138] Chen, H.T., Wang, M.C., Chang, K.M., Wang, S.H., Shih, W.J., Li, W.L. Phase transformation and morphology of calcium phosphate prepared by electrochemical deposition process through alkali treatment and calcinations. Metall. Mater. Trans. A 2014, 45, 2260-2269.
[139] Wang, C., Li, K.Z., Zhai, Y.Q., Li, H.J., Wang, J.L., Jiao, G.S. Study of fluorhydroxyapatite coatings on carbon/carbon composites. Surf. Coat. Tech. 2009, 203, 1771-1775.
[140] Su, Y., Lu, Y., Su, Y., Hu, J., Lian, J., Li, G. Enhancing the corrosion resistance and surface bioactivity of a calcium-phosphate coating on a biodegradable AZ60 magnesium alloy via a simple fluorine post-treatment method. RSC Adv. 2015, 5, 56001-56010.
[141] Kato, R., Nakamura, S., Katayama, K., Yamashita, K. Electrical polarization of plasma-spray-hydroxyapatite coatings for improvement of osteoconduction of implants. J. Biomed. Mater. Res. A 2005, 74A, 652-658.
[142] Yang, C.W., Lui, T.S., Chen, L.H. Hydrothermal crystallization effect on the improvement of erosion resistance and reliability of plasma-sprayed hydroxyapatite coatings. Thin Solid Films 2009, 517, 5380-5385.
[143] Saju, K.K., Reshmi, R., Jayadas, N.H., James, J., Jayaraj, M.K. Polycrystalline coating of hydroxyapatite on TiAl6V4 implant material grown at lower substrate temperatures by hydrothermal annealing after pulsed laser deposition. Proc. Inst. Mech. Eng. H 2009, 223, 1049-1057.
[144] Ozeki, K., Aoki, H., Masuzawa, T. Influence of the hydrothermal temperature and pH on the crystallinity of a sputtered hydroxyapatite film. Appl. Surf. Sci. 2010, 256, 7027-7031.
[145] Hahn, B.D., Lee, J.M., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Choi, J.H., Lee, B.K., Kim, J.W., Kim, H.E., Kim, S.G. Enhanced bioactivity and biocompatibility of nanostructured hydroxyapatite coating by hydrothermal annealing. Thin Solid Films 2011, 519, 8085-8090.
[146] Feng, G., Cheng, X., Xie, D., Wang, K., Zhang, B. Fabrication and characterization of nano prism-like hydroxyapatite coating on porous titanium substrate by combined biomimetic-hydrothermal method. Mater. Lett. 2016, 163, 134-137.
[147] Tian, Y.S., Qian, X.L., Chen, M.Q. Effect of saturated steam treatment on the crystallinity of plasma-sprayed hydroxyapatite coatings. Surf. Coat. Tech. 2015, 266, 38-41.
[148] Han, Y., Xu, K., Lu, J. Morphology and composition of hydroxyapatite coatings prepared by hydrothermal treatment on electrodeposited brushite coatings. J. Mater. Sci. Mater. Med. 1999, 10, 243-248.
[149] Kumar, M., Dasarathy, H., Riley, C. Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. J. Biomed. Mater. Res. 1999, 45, 302-310.
[150] da Silva, M.H.P., Lima, J.H.C., Soares, G.A., Elias, C.N., de Andrade, M.C., Best, S.M., Gibson, I.R. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. Surf. Coat. Tech. 2001, 137, 270-276.
[151] Han, Y., Fu, T., Lu, J., Xu, K. Characterization and stability of hydroxyapatite coatings prepared by an electrodeposition and alkaline-treatment process. J. Biomed. Mater. Res. 2001, 54, 96-101.
[152] Su, Y., Li, G., Lian, J. A chemical conversion hydroxyapatite coating on AZ60 magnesium alloy and its electrochemical corrosion behavior. Int. J. Electrochem. Sci. 2012, 7, 11497-11511.
[153] da Rocha, D.N., de Oliveira Cruz, L.R., Mijares, D.Q., Marçal, R.L.S.B., de Campos, J.B., Coelho, P.G., da Silva, M.H.P. Bioactivity assessment of calcium phosphate coatings. Key Eng. Mater. 2017, 720, 193-196.
[154] da Rocha, D.N., de Oliveira Cruz, L.R., de Campos, J.B., Marçal, R.L.S.B., Mijares, D.Q., Coelho, P.G., da Silva, M.H.P. Mg substituted apatite coating from alkali conversion of acidic calcium phosphate. Mater. Sci. Eng. C 2017, 70, 408-417.
[155] Eliaz, N., Shmueli, S., Shur, I., Benayahu, D., Aronov, D., Rosenman, G. The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells. Acta Biomater. 2009, 5, 3178-3191.
[156] Gregor, M., Plecenik, T., Tofail, S.A.M., Zahoran, M., Truchly, M., Vargova, M., Laffir, F., Plesch, G., Kus, P., Plecenik, A. Hydrophobicity of electron beam modified surface of hydroxyapatite films. Appl. Surf. Sci. 2015, 337, 249-253.
[157] Surmeneva, M.A., Chudinova, E.A., Grubova, I.Y., Korneva, O.S., Shulepov, I.A., Teresov, A.D., Koval, N.N., Mayer, J., Oehr, C., Surmenev, R.A. Effect of pulsed electron beam treatment on the physico-mechanical properties of hydroxyapatite-coated titanium. Ceram. Int. 2016, 42, 1470-1475.
[158] Kostuchenko, A.V., Kannykin, S.V., Kuschev, S.B., Dybov, V.A. Synthesis of composite calcium-phosphate coatings via pulsed photon processing. Bull. Russ. Acad. Sci. Physics 2016, 80, 1161-1164.
[159] Zhang, X., Li, Q., Li, L., Zhang, P., Wang, Z., Chen, F. Fabrication of hydroxyapatite/stearic acid composite coating and corrosion behavior of coated magnesium alloy. Mater. Lett. 2012, 88, 76-78.
[160] Yoshinari, M., Oda, Y., Inoue, T., Matsuzaka, K., Shimono, M. Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants. Biomaterials 2002, 23, 2879-2885.
[161] Cattini, A., Bellucci, D., Sola, A., Pawłowski, L., Cannillo, V. Functional bioactive glass topcoats on hydroxyapatite coatings: analysis of microstructure and in-vitro bioactivity. Surf. Coat. Tech. 2014, 240, 110-117.
[162] Yanovska, A., Kuznetsov, V., Stanislavov, A., Danilchenko, S., Sukhodub, L. Calcium–phosphate coatings obtained biomimetically on magnesium substrates under low magnetic field. Appl. Surf. Sci. 2012, 258, 8577-8584.
[163] Liu, C., Tian, A., Yang, H., Xu, Q., Xue, X. Electrodeposited hydroxyapatite coatings on the TiO2 nanotube in static magnetic field. Appl. Surf. Sci. 2013, 287, 218-222.
[164] Nelea, V., Pelletier, H., Iliescu, M., Werckmann, J., Craciun, V., Mihailescu, I.N., Ristoscu, C., Ghica, C. Calcium phosphate thin film processing by pulsed laser deposition and in situ assisted ultraviolet pulsed laser deposition. J. Mater. Sci. Mater. Med. 2002, 13, 1167-1173.
[165] Xiong, X.B., Zeng, X.R., Zou, J.Z., Xie, S.H. Preparation of improved hydroxyapatite coating on HT-C/C by modified induction heating deposition/hydrothermal treatment technologies. Surf. Eng. 2011, 27, 591-594.
[166] Zhao, X., Li, H., Chen, M., Li, K., Lu, J., Zhang, L., Cao, S. Nano/micro-sized calcium phosphate coating on carbon/carbon composites by ultrasonic assisted electrochemical deposition. Surf. Interface Anal. 2012, 44, 21-28.
[167] Yamamoto, E., Kato, N., Hatoko, Y., Hontsu, S. Optimization of humid conditions using an ultrasonic nebulizer for the fabrication of hydroxyapatite film with the Er:YAG laser deposition method. Key Eng. Mater. 2017, 720, 269-274.
[168] Mostaghimi, J., Passandideh-Fard, M., Chandra, S. Dynamics of splat formation in plasma spray coating process. Plasma Chem. Plasma P. 2002, 22, 59-84.
[169] Fauchais, P., Vardelle, A., Dussoubs, B. Quo Vadis thermal spraying? J. Therm. Spray Tech. 2001, 10, 44-66.
[170] Aoyagi, M., Hayashi, M., Yoshida, Y., Yao, Y. Implants for bones, joints and tooth roots. US patent No. 4146936, 1979.
[171] Zhao, G.L., Wen, G., Song, Y., Wu, K. Near surface martensitic transformation and recrystallization in a Ti–24Nb–4Zr–7.9Sn alloy substrate after application of a HA coating by plasma spraying. Mater. Sci. Eng. C 2011, 31, 106-113.
[172] Gligorijević, B.R., Vilotijević, M., Šćepanović, M., Vuković, N.S., Radović, N.A. Substrate preheating and structural properties of power plasma sprayed hydroxyapatite coatings. Ceram. Int. 2016, 42, 411-420.
[173] Saber-Samandari, S., Alamara, K., Saber-Samandari, S., Gross, K.A. Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite. Acta Biomater. 2013, 9, 9538-9546.
[174] Saber-Samandari, S., Alamara, K., Saber-Samandari, S. Calcium phosphate coatings: morphology, micro-structure and mechanical properties. Ceram. Int. 2014, 40, 563-572.
[175] Freidberg, J.P. Plasma physics and fusion energy. Cambridge University Press: Cambridge, UK, 2007; 692 pp.
[176] Herman, H. Plasma-sprayed coatings. Sci. Am. 1988, 9, 112-117.
[177] Fauchais, P. Understanding plasma spraying. J. Phys. D: Appl. Phys. 2004, 37, R86-R108.
[178] Quek, C.H., Khor, K.A., Cheang, P. Influence of processing parameters in the plasma spraying of hydroxyapatite/Ti–6Al–4V composite coatings. J. Mater. Process. Tech. 1999, 89-90, 550-555.
[179] Paital, S.R., Dahotre, N.B. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater. Sci. Eng. R 2009, 66, 1-70.
[180] Layrolle, P. 1.112. Calcium phosphate coatings. In: Comprehensive biomaterials. Ducheyne, P., Healy, K., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J. (Eds.). Vol. 1. Elsevier: Amsterdam, Netherlands, 2011; pp. 223-229.
[181] Surmenev, R.A. A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surf. Coat. Tech. 2012, 206, 2035-2056.
[182] Sui, J.L., Li, M.S., Lü, Y.P., Yin, L.W., Song, Y.J. Plasma-sprayed hydroxyapatite coatings on carbon/carbon composites. Surf. Coat. Tech. 2004, 176, 188-192.
[183] Heimann, R.B. Thermal spraying of biomaterials. Surf. Coat. Tech. 2006, 201, 2012-2019.
[184] Xu, J.L., Joguet, D., Cizek, J., Khor, K.A., Liao, H.L., Coddet, C., Chen, W.N. Synthesis and characterization on atmospheric plasma sprayed amorphous silica doped hydroxyapatite coatings. Surf. Coat. Tech. 2012, 206, 4659-4665.
[185] Gledhill, H.C., Turner, I.G., Doyle, C. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings. Biomaterials 1999, 20, 315-322.
[186] Gledhill, H.C., Turner, I.G., Doyle, C. In vitro fatigue behavior of vacuum plasma and detonation gun sprayed hydroxyapatite coatings. Biomaterials 2001, 22, 1233-1240.
[187] Jaworski, R., Pierlot, C., Pawłowski, L., Bigan, M., Martel, M. Design of the synthesis of fine HA powder for suspension plasma spraying. Surf. Coat. Tech. 2009, 203, 2092-2097.
[188] Gross, K.A., Saber-Samandari, S. Revealing mechanical properties of a suspension plasma sprayed coating with nanoindentation. Surf. Coat. Tech. 2009, 203, 2995-2999.
[189] Pawłowski, L. Suspension and solution thermal spray coatings. Surf. Coat. Tech. 2009, 203, 2807-2829.
[190] Podlesak, H., Pawłowski, L., D’Haese, R., Laureyns, J., Lampke, T., Bellayer, S. Advanced microstructural study of suspension plasma sprayed hydroxyapatite coatings. J. Therm. Spray Tech. 2010, 19, 657-664.
[191] Łatka, L., Pawłowski, L., Chicot, D., Pierlot, C., Petit, F. Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surf. Coat. Tech. 2010, 205, 954-960.
[192] d’Haese, R., Pawłowski, L., Bigan, M., Jaworski, R., Martel, M. Phase evolution of hydroxapatite coatings suspension plasma sprayed using variable parameters in simulated body fluid. Surf. Coat. Tech. 2010, 204, 1236-1246.
[193] Pateyron, B, Pawłowski, L., Calve, N., Delluc, G., Denoirjean, A. Modeling of phenomena occurring in plasma jet during suspension spraying of hydroxyapatite coatings. Surf. Coat. Tech. 2013, 214, 86-90.
[194] Xu, H., Geng, X., Liu, G., Xiao, J., Li, D., Zhang, Y., Zhu, P., Zhang, C. Deposition, nanostructure and phase composition of suspension plasma-sprayed hydroxyapatite coatings. Ceram. Int. 2016, 42, 8684-8690.
[195] Huang, Y., Song, L., Liu, X., Xiao, Y., Wu, Y., Chen, J., Wu, F., Gu, Z. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous micorstructures and osteoblastic cell responses. Biofabrication 2010, 2, 045003.
[196] Candidato, R.T., Sokołowski, P., Pawłowski, L., Denoirjean, A. Preliminary study of hydroxyapatite coatings synthesis using solution precursor plasma spraying. Surf. Coat. Tech. 2015, 277, 242-250.
[197] Mejias, A., Candidato, R.T., Pawłowski, L., Chicot, D. Mechanical properties by instrumented indentation of solution precursor plasma sprayed hydroxyapatite coatings: analysis of microstructural effect. Surf. Coat. Tech. 2016, 298, 93-102.
[198] Morks, M.F., Kobayashi, A. Effect of gun current on the microstructure and crystallinity of plasma sprayed hydroxyapatite coatings. Appl. Surf. Sci. 2007, 253, 7136-7142.
[199] Wu, G.M., Hsiao, W.D., Kung, S.F. Investigation of hydroxyapatite coated polyether ether ketone composites by gas plasma sprays. Surf. Coat. Tech. 2009, 203, 2755-2758.
[200] Morks, M.F., Kobayashi, A., Fahim, N.F. Abrasive wear behavior of sprayed hydroxyapitite coatings by gas tunnel type plasma spraying. Wear 2007, 262, 204-209.
[201] Kobayashi, A., Subramanian, B. Hydroxyapatite and YSZ reinforced hydroxyapatite coatings by gas tunnel type plasma spraying. Key Eng. Mater. 2013, 529-530, 213-216.
[202] Nakamura, M., Kobayashi, A., Nozaki, K., Horiuchi, N., Nagai, A., Yamashita, K. Improvement of osteoblast adhesion through polarization of plasma-sprayed hydroxyapatite coatings on metal. J. Med. Biol. Eng. 2014, 34, 44-48.
[203] Inagaki, M., Yokogawa, Y., Kameyama, T. Formation of highly oriented hydroxyapatite in hydroxyapatite/titanium composite coating by radio-frequency thermal plasma spraying. J. Mater. Sci. Mater. Med. 2003, 14, 919-922.
[204] Inagaki M, Kameyama T. Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crystalline orientation. Biomaterials 2007, 28, 2923-2931.
[205] Demnati, I., Parco, M., Grossin, D., Fagoaga, I., Drouet, C., Barykin, G., Combes, C., Braceras, I., Goncalves, S., Rey, C. Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun. Surf. Coat. Tech. 2012, 206, 2346-2353.
[206] Gligorijević, B.R., Vilotijević, M., Šćepanović, M., Vidović, D., Radović, N.A. Surface structural heterogeneity of high power plasma-sprayed hydroxyapatite coatings. J. Alloy Compd. 2016, 687, 421-430.
[207] Boi, M., Bianchi, M., Gambardella, A., Liscio, F., Kaciulis, S., Visani, A., Barbalinardo, M., Valle, F., Iafisco, M., Lungaro, L., Milita, S., Cavallini, M., Marcacci, M., Russo, A. Tough and adhesive nanostructured calcium phosphate thin films deposited by the pulsed plasma deposition method. RSC Adv. 2015, 5, 78561-78571.
[208] Gambardella, A., Bianchi, M., Kaciulis, S., Mezzi, A., Brucale, M., Cavallini, M., Herrmannsdoerfer, T., Chanda, G., Uhlarz, M., Cellini, A., Pedna, M.F., Sambri, V., Marcacci, M., Russo, A. Magnetic hydroxyapatite coatings as a new tool in medicine: a scanning probe investigation. Mater. Sci. Eng. C 2016, 62, 444-449.
[209] Jinawath, S., Hengst, M., Heimann, R.B. Plasma-sprayed DCPD/CaCO3 coatings on Ti6Al4V substrates. J. Sci. Res. Chula Univ. 2004, 29, 33-43.
[210] Dey, A., Mukhopadhyay, A.K., Gangadharan, S., Sinha, M.K., Basu, D., Bandyopadhyay, N.R. Nanoindentation study of microplasma sprayed hydroxyapatite coating. Ceram. Int. 2009, 35, 2295-2304.
[211] Dey, A., Mukhopadhyay, A.K. Anisotropy in nanohardness of microplasma sprayed hydroxyapatite coating. Adv. Appl. Ceram. 2010, 109, 346-354.
[212] Dey, A., Nandi, S.K., Kundu, B., Kumar, C., Mukherjee, P., Roy, S., Mukhopadhyay, A.K., Sinha, M.K., Basu, D. Evaluation of hydroxyapatite and β-tri calcium phosphate microplasma spray coated pin intra-medullary for bone repair in a rabbit model. Ceram. Int. 2011, 37, 1377-1391.
[213] Dey, A., Mukhopadhyay, A.K. Fracture toughness of microplasma-sprayed hydroxyapatite coating by nanoindentation. Int. J. Appl. Ceram. Tech. 2011, 8, 572-590.
[214] Dey, A., Mukhopadhyay, A.K. Evaluation of residual stress in microplasma sprayed hydroxyapatite coating by nanoindentation. Ceram. Int. 2014, 40, 1263-1272.
[215] Dey, A., Mukhopadhyay, A.K. Microplasma sprayed hydroxyapatite coatings. CRC Press: Boca Raton, FL, USA, 2015; 234 pp.
[216] Lu, Y.P., Jiao, Y., Wang, J.H., Xu, W.H., Xiao, G.Y., Zhu, R.F. A further insight into pores in plasma sprayed hydroxyapatite coating. Surf. Coat. Tech. 2012, 206, 3550-3553.
[217] de Groot, K., Geesink, R.G.T., Klein, C.P.A.T., Serekian, P. Plasma sprayed coatings of hydroxylapatite. J. Biomed. Mater. Res. 1987, 21, 1375-1381.
[218] Gross, K.A., Berndt, C.C. Thermal processing of hydroxyapatite for coating production. J. Biomed. Mater. Res. 1998, 39, 580-587.
[219] Gross, K.A., Berndt, C.C., Stephens, P., Dinnebier, R. Oxyapatite in hydroxyapatite coatings. J. Mater. Sci. 1998, 33, 3985-3991.
[220] Gross, K.A., Berndt, C.C., Herman, H. Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. J. Biomed. Mater. Res. 1998, 39, 407-414.
[221] Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A. Material fundamentals and clinical performance of plasma sprayed hydroxyapatite coatings: a review. J. Biomed. Mater. Res. Appl. Biomater. 2001, 58, 570-592.
[222] Sun, L., Berndt, C.C., Grey, C.P. Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. Mater. Sci. Eng. A 2003, 360, 70-84.
[223] Carayon, M.T., Lacout, J.L. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J. Solid State Chem. 2003, 172, 339-350.
[224] Li, H., Ng, B.S., Khor, K.A., Cheang, P., Clyne, T.W. Raman spectroscopy determination of phases within thermal sprayed hydroxyapatite splats and subsequent in vitro dissolution examination. Acta Mater. 2004, 52, 445-453.
[225] Heimann, R.B., Wirth, R. Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance. Biomaterials 2006, 27, 823-831.
[226] Roy, M., Bandyopadhyay, A., Bose, S. Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf. Coat. Tech. 2011, 205, 2785-2792.
[227] Demnati, I., Grossin, D., Combes, C., Rey, C. Plasma-sprayed apatite coatings: review of physical-chemical characteristics and their biological consequences. J. Med. Biol. Eng. 2014, 34, 1-7.
[228] Heimann, R.B. Tracking the thermal decomposition of plasma-sprayed hydroxylapatite. Am. Mineral. 2015,100, 2419-2425.
[229] Yang, Y.C., Chang, E. Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti–6Al–4V substrate. Biomaterials 2001, 22, 1827-1836.
[230] Yang, Y.C., Chang, E., Lee, S.Y. Mechanical properties and Young’s modulus of plasma-sprayed hydroxyapatite coating on Ti substrate in simulated body fluid. J. Biomed. Mater. Res. A 2003, 67A, 886-899.
[231] Yang, Y., Chang, E. Measurements of residual stresses in plasma-sprayed hydroxyapatite coatings on titanium alloy. Surf. Coat. Tech. 2005, 190, 122-131.
[232] Carradò, A. Structural, microstructural, and residual stress investigations of plasma-sprayed hydroxyapatite on Ti–6Al–4V. ACS Appl. Mater. Interf. 2010, 2, 561-565.
[233] Yang, Y.C. Investigation of residual stress generation in plasma-sprayed hydroxyapatite coatings with various spraying programs. Surf. Coat. Tech. 2011, 205, 5165-5171.
[234] Cizek, J., Khor, K.A., Prochazka, Z. Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Mater. Sci. Eng. C 2007, 27, 340-344.
[235] Cizek, J., Khor, K.A. Role of in-flight temperature and velocity of powder particles on plasma sprayed hydroxyapatite coating characteristics. Surf. Coat. Tech. 2012, 206, 2181-2191.
[236] Levingstone, T.J., Ardhaoui, M., Benyounis, K., Looney, L., Stokes, J.T. Plasma sprayed hydroxyapatite coatings: understanding process relationships using design of experiment analysis. Surf. Coat. Tech. 2015, 283, 29-36.
[237] Hasan, M.F., Wang, J., Berndt, C.C. Effect of power and stand-off distance on plasma sprayed hydroxyapatite coatings. Mater. Manuf. Process. 2013, 28, 1279-1285.
[238] Cheang, P., Khor, K.A. Thermal spraying of hydroxyapatite (HA) coatings: effects of powder feedstock. J. Mater. Process. Tech. 1995, 48, 429-436.
[239] Kweh, S.W.K., Khor, K.A., Cheang, P. Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock: microstructure and mechanical properties. Biomaterials 2000, 21, 1223-1234.
[240] Singh, T.P., Singh, H., Singh, H. Characterization of thermal sprayed hydroxyapatite coatings on some biomedical implant materials. J. Appl. Biomater. Funct. Mater. 2014, 12, 48-56.
[241] Gross, K.A., Babovic, M. Influence of abrasion on the surface characteristics of thermally sprayed hydroxyapatite coatings. Biomaterials 2002, 23, 4731-4737.
[242] Khor, K.A., Cheang, P. Characterization of plasma sprayed hydroxyapatite powders and coatings. In: Berndt, C.C., Bernecki, T.F. (Eds.). Thermal spray coatings: research, design and applications. ASM International, Materials Park: Ohio, USA, 1993; pp. 347-352.
[243] Dyshlovenko, S., Pateyron, B., Pawłowski, L., Murano, D. Numerical simulation of hydroxyapatite powder behaviour in plasma jet. Surf. Coat. Tech. 2004, 179, 110-117; corrigendum: Surf. Coat. Tech. 2004, 187, 408-409.
[244] Heimann, R.B. Plasma-sprayed hydroxylapatite-based coatings: chemical, mechanical, microstructural, and biomedical properties. J. Therm. Spray Tech. 2016, 25, 827-850.
[245] Oguchi, H., Ishikawa, K., Ojima, S., Hirayama, Y., Seto, K., Eguchi, G. Evaluation of a high-velocity flame-spraying technique for hydroxyapatite. Biomaterials 1992, 13, 471-477.
[246] Sobolev, V.V., Guilemany, J.M. Dynamic processes during high velocity oxyfuel spraying. Int. Mater. Rev. 1996, 41, 13-32.
[247] Haman, J.D., Chittur, K.K., Crawmer, D.E., Lucas, L.C. Analytical and mechanical testing of high velocity oxy-fuel thermal sprayed and plasma sprayed calcium phosphate coatings. J. Biomed. Mater. Res. Appl. Biomater. 1999, 48, 856-860.
[248] Khor, K.A., Li, H., Cheang, P. Processing-microstructure-property relations in HVOF sprayed calcium phosphate based bioceramic coatings. Biomaterials 2003, 24, 2233-2243.
[249] Khor, K.A., Li, H., Cheang, P. Significance of melt-fraction in HVOF sprayed hydroxyapatite particles, splats and coatings. Biomaterials 2004, 25, 1177-1186.
[250] Li, H., Khor, K.A., Cheang, P. Adhesive and bending failure of thermal sprayed hydroxyapatite coatings: effect of nanostructures at interface and crack propagation phenomenon during bending. Eng. Fract. Mech. 2007, 74, 1894-1903.
[251] Hasan, S., Stokes, J. Design of experiment analysis of the Sulzer Metco DJ high velocity oxy-fuel coating of hydroxyapatite for orthopedic applications. J. Therm. Spray Tech. 2011, 20, 186-194.
[252] Roşu, R.A., Bran, I., Popescu, M., Opriş, C. In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods. Ceram. Silikaty 2012, 56, 25-31.
[253] Ramdan, R.D., Prawara, B., Suratman, R., Pradana, I.A., Rinaldi, A. Development of HVOF coating of hydroxy apatite on titanium alloy with carbon nano tube intermediate layer. Appl. Mech. Mater. 2014, 660, 937-941.
[254] Saber-Samandari, S., Gross, K.A. The use of thermal printing to control the properties of calcium phosphate deposits. Biomaterials 2010, 31, 6386-6393.
[255] Gadow, R., Killinger, A., Stiegler, N. Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques. Surf. Coat. Tech. 2010, 205, 1157-1164.
[256] Stiegler, N., Bellucci, D., Bolelli, G., Cannillo, V., Gadow, R., Killinger, A., Lusvarghi, L., Sola, A. High-velocity suspension flame sprayed (HVSFS) hydroxyapatite coatings for biomedical applications. J. Therm. Spray Techn. 2012, 21, 275-287.
[257] Bolelli, G., Bellucci, D., Cannillo, V., Lusvarghi, L., Sola, A., Stiegler, N., Müller, P., Killinger, A., Gadow, R., Altomare, L., de Nardo, L. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour. Mater. Sci. Eng. C 2014, 34, 287-303.
[258] Cuerno, R., Barabási, A.L. Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 1995, 74, 4746-4749.
[259] van Dijk, K., Verhoeven, J., Marée, C.H.M., Habraken, F.H.P.M., Jansen, J.A. Study of the influence of oxygen on the composition of thin films obtained by r.f. sputtering from a Ca5(PO4)3OH target. Thin Solid Films 1997, 304, 191-195.
[260] Barthell, B.L., Archuleta, T.A., Kossowsky, R. Ion beam deposition of calcium hydroxyapatite. Mater. Res. Soc. Symp. Proc. 1989, 110, 709-715.
[261] Ong, J.L., Harris, L.A., Lucas, L.C., Lacefield, W.R., Rigney, D. X-ray photoelectron spectroscopy characterization of ion beam sputter deposited calcium phosphate coatings. J. Am. Ceram. Soc. 1991, 74, 2301-2304.
[262] Choi, J.M., Kim, H.E., Lee, I.S. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 2000, 21, 469-473.
[263] Wang, C.X., Chen, Z.Q., Guan, L.M., Wang, M., Liu, Z.Y., Wang, P.L. Fabrication and characterization of graded calcium phosphate coatings produced by ion beam sputtering/mixing deposition. Nucl. Instr. Methods Phys. Res. B 2001, 179, 364-372.
[264] Lee, I.S., Whang, C.N., Lee, G.H., Cui, F.Z., Ito, A. Effects of ion beam assist on the formation of calcium phosphate film. Nucl. Instr. Methods Phys. Res. B 2003, 206, 522-526.
[265] Fujihara, T., Tsukamoto, M., Abe, N., Miyake, S., Ohji, T., Akedo, J. Hydroxyapatite film formed by beam irradiation. Vacuum 2004, 73, 629-633.
[266] Lee, E.J., Lee, S.H., Kim, H.W., Kong, Y.M., Kim, H.E. Fluoridated apatite coatings on titanium obtained by electron-beam deposition. Biomaterials 2005, 26, 3843-3851.
[267] Rabiei, A., Thomas, B., Jin, C., Narayan, R., Cuomo, J., Yang, Y., Ong, J.L. A study on functionally graded HA coatings processed using ion beam assisted deposition with in situ heat treatment. Surf. Coat. Tech. 2006, 200, 6111-6116.
[268] Blalock, T., Bai, X., Rabiei, A. A study on microstructure and properties of calcium phosphate coatings processed using ion beam assisted deposition on heated substrates. Surf. Coat. Tech. 2007, 201, 5850-5858.
[269] Bai, X., Sandukas, S., Appleford, M.R., Ong, J.L., Rabiei, A. Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomater. 2009, 5, 3563-3572.
[270] Jeong, Y.H., Choe, H.C., Brantley, W.A., Sohn, I.B. Hydroxyapatite thin film coatings on nanotube-formed Ti–35Nb–10Zr alloys after femtosecond laser texturing. Surf. Coat. Tech. 2013, 217, 13-22.
[271] Cooley, D.R., van Dellen, A.F., Burgess, J.O., Windeler, S. The advantages of coated titanium implants prepared by radiofrequency sputtering from hydroxyapatite. Prosthetic Dent. 1992, 67, 93-100.
[272] van Dijk, K., Schaeken, H.G., Wolke, J.G.C., Jansen, J.A. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 1996, 17, 405-410.
[273] Nelea, V., Morosanu, C., Iliescu, M., Mihailescu, I.N. Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surf. Coat. Tech. 2003, 173, 315-322.
[274] Feddes, B., Wolke, J.G.C., Jansen, J.A., Vredenberg, A.M. Radio frequency magnetron sputtering deposition of calcium phosphate coatings: the effect of resputtering on the coating composition. J. Appl. Phys. 2003, 93, 9503-9507.
[275] Wan, T., Aoki, H., Hikawa, J., Lee, J.H. RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates. Bio-Med. Mater. Eng. 2007, 17, 291-297.
[276] Ozeki, K., Fukui, Y., Aoki, H. Influence of the calcium phosphate content of the target on the phase composition and deposition rate of sputtered films. Appl. Surf. Sci. 2007, 253, 5040-5044.
[277] Ueda, K., Narushima, T., Goto, T., Taira, M., Katsube, T. Fabrication of calcium phosphate films for coating on titanium substrates heated up to 773 K by RF magnetron sputtering and their evaluations. Biomed. Mater. 2007, 2, S160-S166.
[278] Pichugin, V.F., Surmenev, R.A., Shesterikov, E.V., Ryabtseva, M.A., Eshenko, E.V., Tverdokhlebov, S.I., Prymak, O., Epple, M. The preparation of calcium phosphate coatings on titanium and nickel-titanium by RF-magnetron sputtered deposition: composition, structure and micromechanical properties. Surf. Coat. Tech. 2008, 202, 3913-3920.
[279] Snyders, R., Bousser, E., Music, D., Jensen, J., Hocquet, S., Schneider, J.M. Influence of the chemical composition on the phase constitution and the elastic properties of RF-sputtered hydroxyapatite coatings. Plasma Processes Polym. 2008, 5, 168-174.
[280] O’Kane, C., Duffy, H., Meenan, B.J., Boyd, A.R. The influence of target stoichiometry on the surface properties of sputter deposited calcium phosphate thin films. Surf. Coat. Tech. 2008, 203, 121-128.
[281] Toque, J.A., Hamdi, M., Ide-Ektessabi, A., Sopyan, I. Effect of the processing parameters on the integrity of calcium phosphate coatings produced by RF-magnetron sputtering. Int. J. Modern Phys. B 2009, 23, 5811-5818.
[282] Surmenev, R.A., Surmeneva, M.A., Evdokimov, K.E., Pichugin, V.F., Peitsch, T., Epple, M. The influence of the deposition parameters on the properties of an RF-magnetron-deposited nanostructured calcium phosphate coating and a possible growth mechanism. Surf. Coat. Tech. 2011, 205, 3600-3606.
[283] Boyd, A.R., O’Kane, C., Meenan, B.J. Control of calcium phosphate thin film stoichiometry using multi-target sputter deposition. Surf. Coat. Tech. 2013, 233, 131-139.
[284] López, E.O., Mello, A., Sendão, H., Costa, L.T., Rossi, A.L., Ospina, R.O., Borghi, F.F., Filho, J.G.S., Rossi, A.M. Growth of crystalline hydroxyapatite thin films at room temperature by tuning the energy of the RF-magnetron sputtering plasma. ACS Appl. Mater. Interfaces 2013, 5, 9435-9445.
[285] Surmeneva, M.A., Surmenev, R.A., Nikonova, Y.A., Selezneva, I.I., Ivanova, A.A., Putlyaev, V.I., Prymak, O., Epple, M. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications. Appl. Surf. Sci. 2014, 317, 172-180.
[286] Surmeneva, M.A., Kleinhans, C., Vacun, G., Kluger, P.J., Schönhaar, V., Müller, M., Hein, S.B., Wittmar, A., Ulbricht, M., Prymak, O., Oehr, C., Surmenev, R.A. Nano-hydroxyapatite-coated metal-ceramic composite of iron-tricalcium phosphate: improving the surface wettability, adhesion and proliferation of mesenchymal stem cells in vitro. Colloid Surface B 2015, 135, 386-393.
[287] Bramowicz, M., Braic, L., Azem, F.A., Kulesza, S., Birlik, I., Vladescu, A. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings. Appl. Surf. Sci. 2016, 379, 338-346.
[288] Cotell, C.M., Chrisey, D.B., Grabowski, K.S., Sprague, J.A., Gosset, C.R. Pulsed laser deposition of hydroxylapatite thin films on Ti–6Al–4V. J. Appl. Biomater. 1992, 3, 87-93.
[289] Baeri, P., Torrisi, L., Marino, N., Foti, G. Ablation of hydroxyapatite by pulsed laser irradiation. Appl. Surface Sci. 1992, 54, 210-214.
[290] Cleries, L., Martinez, E., Fernandez-Pradas, J.M., Sardin, G., Esteve, J., Morenza, J.L. Mechanical properties of calcium phosphate coatings deposited by laser ablation. Biomaterials 2000, 21, 967-971.
[291] Nelea, V., Ristoscu, C., Chiritescu, C., Ghica, C., Mihailescu, I.N., Pelletier, H., Mille, P., Cornet, A. Pulsed laser deposition of hydroxyapatite thin films on Ti–5Al–2.5Fe substrates with and without buffer layers. Appl. Surf. Sci. 2000, 168, 127-131.
[292] Fernández-Pradas, J.M., Clèries, L., Martinez, E., Sardin, G., Esteve, J., Morenza, J.L. Influence of thickness on the properties of hydroxyapatite coatings deposited by KrF laser ablation. Biomaterials 2001, 22, 2171-2175.
[293] Fernández-Pradas, J.M., Clèries, L., Sardin, G., Morenza, J.L. Characterization of calcium phosphate coatings deposited by Nd:YAG laser ablation at 355nm: influence of thickness. Biomaterials 2002, 23, 1989-1994.
[294] Socol, G., Torricelli, P., Bracci, B., Iliescu, M., Miroiu, F., Bigi, A., Werckmann, J., Mihailescu, I.N. Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition. Biomaterials 2004, 25, 2539-2545.
[295] Bao, Q., Chen, C., Wang, D., Ji, Q., Lei, T. Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Appl. Surf. Sci. 2005, 252, 1538-1544.
[296] Kim, H., Vohra, Y.K., Louis, P.J., Lacefield, W.R., Lemons, J.E., Camata, R.P. Biphasic and preferentially oriented microcrystalline calcium phosphate coatings: in-vitro and in-vivo studies. Key Eng. Mater. 2005, 284-286, 207-210.
[297] Bigi, A., Bracci, B., Cuisinier, F., Elkaim, R., Fini, M., Mayer, I., Mihailescu, I.N., Socol, G., Sturba, L., Torricelli, P. Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials 2005, 26, 2381-2389.
[298] Koch, C.F., Johnson, S., Kumar, D., Jelinek, M., Chrisey, D.B., Doraiswamy, A., Jin, C., Narayan, R.J., Mihailescu, I.N. Pulsed laser deposition of hydroxyapatite thin films. Mater. Sci. Eng. C 2007, 27, 484-494.
[299] Kim, H., Camata, R.P., Lee, S., Rohrer, G.S., Rollett, A.D., Vohra, Y.K. Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings. Acta Mater. 2007, 55, 131-139.
[300] Paital, S.R., Balani, K., Agarwal, A., Dahotre, N.B. Fabrication and evaluation of a pulse laser-induced Ca-P coating on a Ti alloy for bioapplication. Biomed. Mater. 2009, 4, 015009.
[301] Dinda, G.P., Shin, J., Mazumder, J. Pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4V: effect of heat treatment on structure and properties. Acta Biomater. 2009, 5, 1821-1830.
[302] Tri, L.Q., Chua, D.H.C. An investigation into the effects of high laser fluence on hydroxyapatite/calcium phosphate films deposited by pulsed laser deposition. Appl. Surf. Sci. 2009, 256, 76-80.
[303] Rau, J.V., Generosi, A., Laureti, S., Komlev, V.S., Ferro, D., Cesaro, S.N., Paci, B., Albertini, V.R., Agostinelli, E., Barinov, S.M. Physicochemical investigation of pulsed laser deposited carbonated hydroxyapatite films on titanium. ACS Appl. Mater. Interfaces 2009, 1, 1813-1820.
[304] Ismail, R.A., Salim, E.T., Hamoudi, W.K. Characterization of nanostructured hydroxyapatite prepared by Nd:YAG laser deposition. Mater. Sci. Eng. C 2013, 33, 47-52.
[305] Khandelwal, H., Singh, G., Agrawal, K., Prakash, S., Agarwal, R.D. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy. Appl. Surf. Sci. 2013, 265, 30-35.
[306] Fujita, N., Makino, T., Sakoishi, Y., Asano, K., Kusunoki, M. Pulsed laser deposition of pure fluoroapatite film without OH groups. Cryst. Res. Tech. 2016, 51, 215-219.
[307] Akazawa, H., Ueno, Y. Growth of preferentially c-axis oriented hydroxyapatite thin films on Si(1 0 0) substrate by electron-cyclotron-resonance plasma sputtering. Appl. Surf. Sci. 2013, 276, 217-222.
[308] Akazawa, H., Ueno, Y. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering. J. Phys. Chem. Solids 2014, 75, 94-99.
[309] Akazawa, H., Ueno, Y. Distinct crystallinity and orientations of hydroxyapatite thin films deposited on C- and A-plane sapphire substrates. J. Cryst. Growth 2014, 404, 241-245.
[310] Akazawa, H., Ueno, Y. Low-temperature crystallization and high-temperature instability of hydroxyapatite thin films deposited on Ru, Ti, and Pt metal substrates. Surf. Coat. Tech. 2015, 266, 42-48.
[311] Massaro, C., Baker, M.A., Cosentino, F., Ramires, P.A., Klose, S., Milella, E. Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques. J. Biomed. Mater. Res. 2001, 58, 651-657.
[312] León, B., Jansen, J.A. (Eds.) Thin calcium phosphate coatings for medical implants. Springer: New York, USA, 2009; 326 pp.
[313] Zalm, P.C. Quantitative sputtering. In: Handbook of ion beam processing technology. Cuomo, J.J., Rossnagel, S.M., Kaufman, H.R., Eds. Noyes Publications; Park Ridge, NJ, USA, 1989, pp. 78-111.
[314] Elayaraja, K., Chandra, V.S., Joshy, M.I.A., Suganthi, R.V., Asokan, K., Kalkura, S.N. Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique. Appl. Surf. Sci. 2013, 274, 203-209.
[315] Hamdi, M., Hakamata, S., Ektessabi, A.M. Coating of hydroxyapatite thin film by simultaneous vapor deposition. Thin Solid Films 2000, 377-378, 484-489.
[316] Hamdi, M., Ide-Ektessabi, A. Preparation of hydroxyapatite layer by ion beam assisted simultaneous vapor deposition. Surf. Coat. Tech. 2003, 163-164, 362-367.
[317] Hamdi, M., Ide-Ektessabi, A. Calcium phosphate coatings: a comparative study between simultaneous vapor deposition and electron beam deposition techniques. Surf. Coat. Tech. 2006, 201, 3123-3128.
[318] Hamdi, M., Ide-Ektessabi, A. Dissolution behavior of simultaneous vapor deposited calcium phosphate coatings in vitro. Mater. Sci. Eng. C 2007, 27, 670-674.
[319] Ali, M.Y., Hung, W., Yongqi, F. A review of focused ion beam sputtering. Int. J. Precision Eng. Manuf. 2010, 11, 157-170.
[320] Yoshinari, M., Ohtsuka, Y., Dérand T. Thin hydroxyapatite coating produced by the ion beam dynamic mixing method. Biomaterials 1994, 15, 529-535.
[321] Yoshinari, M., Ohtsuka, Y., Dérand T. The biocomatibility (cell culture and histologic study) of hydroxyapatite-coated implants created by ion beam dynamic mixing method. Clin. Oral Impl. Res. 1996, 7, 96-100.
[322] Amy, R.L., Storb, R. Selective mitochondrial damage by a ruby laser microbeam: an electron microscopic study. Science 1955, 122, 756-758.
[323] Singh, R.K., Narayan, J. Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model. Phys. Rev. B 1990, 41, 8843-8859.
[324] Jedynski, M., Hoffman, J., Mroz, W., Szymanski, Z. Plasma plume induced during ArF laser ablation of hydroxyapatite. Appl. Surf. Sci. 2008, 255, 2230-2236.
[325] Katayama, H., Katto, M., Nakayama, T. Laser-assisted laser ablation method for high-quality hydroxyapatite coating onto titanium substrate. Surf. Coat. Tech. 2009, 204, 135-140.
[326] Bao, Q., Chen, C., Wang, D., Lei, T., Liu, J. Pulsed laser deposition of hydroxyapatite thin films under Ar atmosphere. Mater. Sci. Eng. A 2006, 429, 25-29.
[327] Fernandez-Pradas, J.M., Cleries, L., Martinez, E., Sardin, G., Esteve, J., Morenza, J.L. Calcium phosphate coatings deposited by laser ablation at 355 nm under different substrate temperatures and water vapour pressures. Appl. Phys. A 2000, 71, 37-42.
[328] Ievlev, V.M. Coatings based on calcium phosphates for metallic medical implants. Russ. Chem. Rev. 2013, 82, 131-149.
[329] Rau, J.V., Smirnov, V.V., Laureti, S., Generosi, A., Varvaro, G., Fosca, M., Ferro, D., Cesaro, S.N., Albertini, V.R., Barinov, S.M. Properties of pulsed laser deposited fluorinated hydroxyapatite films on titanium. Mater. Res. Bull. 2010, 45, 1304-1310.
[330] Koch, B., Wolke, J.G.C., de Groot, K. X-ray diffraction studies on plasma-sprayed calcium phosphate-coated implants. J. Biomed. Mater. Res. 1990, 24, 655-667.
[331] Duta, L., Oktar, F.N., Stan, G.E., Popescu-Pelin, G., Serban, N., Luculescu, C., Mihailescu, I.N. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition. Appl. Surf. Sci. 2013, 265, 41-49.
[332] Kim, H., Camata, R.P., Vohra, Y.K., Lacefield, W.R. Control of phase composition in hydroxyapatite/tetracalcium phosphate biphasic thin coatings for biomedical applications. J. Mater. Sci. Mater. Med. 2005, 16, 961-966.
[333] Kim, H., Camata, R.P., Chowdhury, S., Vohra, Y.K. In vitro dissolution and mechanical behavior of c-axis preferentially oriented hydroxyapatite thin films fabricated by pulsed laser deposition. Acta Biomater. 2010, 6, 3234-3241.
[334] Jiménez, E., Arias, J.L., León, B., Pérez-Amor, M. Electric discharge assisted pulsed laser deposition of hydroxylapatite. Thin Solid Films 2004, 453-454, 422-426.
[335] Solla, E.L., Borrajo, J.P., González, P., Serra, J., Liste, S., Chiussi, S., León, B., Pérez-Amor, M. Plasma assisted pulsed laser deposition of hydroxylapatite thin films. Appl. Surf. Sci. 2005, 248, 360-364.
[336] Shaw, B.J., Miller, R.P. Sputtering of bone on prostheses. US patent No. 3918100, 1975.
[337] Gill, W.D., Kay, E. Efficient low pressure sputtering in a large inverted magnetron suitable for film synthesis. Rev. Scientif. Instrum. 1965, 36, 277-282.
[338] Kelly, P.J., Arnell, R.D. Magnetron sputtering: a review of recent developments and applications. Vacuum 2000, 56, 159-172.
[339] Hong, Z., Luan, L., Paik, S.B., Deng, B., Ellis, D.E., Ketterson, J.B., Mello, A., Eon, J.G., Terra, J., Rossi, A. Crystalline hydroxyapatite thin films produced at room temperature – an opposing radio frequency magnetron sputtering approach. Thin Solid Films 2007, 515, 6773-6780.
[340] Lai, H.C., Tsai, H.H., Hung, K.Y., Feng, H.P. Fabrication of hydroxyapatite targets in radio frequency sputtering for surface modification of titanium dental implants. J. Intelligent Mater. System Struct. 2015, 26, 1050-1058.
[341] Boyd, A.R., Duffy, H., McCann, R., Cairns, M.L., Meenan, B.J. The influence of argon gas pressure on co-sputtered calcium phosphate thin films. Nucl. Instrum. Methods Phys. Res. B 2007, 258, 421-428.
[342] Xu, S., Long, J., Sim, L., Diong, C.H., Ostrikov, K. RF plasma sputtering deposition of hydroxyapatite bioceramics: synthesis, performance, and biocompatibility. Plasma Processes and Polymers 2005, 2, 373-390.
[343] Long, J., Sim, L., Xu, S., Ostrikov, K. Reactive plasma-aided RF sputtering deposition of hydroxyapatite bio-implant coatings. Chem. Vapor Deposition 2007, 13, 299-306.
[344] Shi, J.Z., Chen, C.Z., Yu, H.J., Zhang, S.J. Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials. Bull. Mater. Sci. 2008, 31, 877-884.
[345] Zhang, S. (Ed.) Hydroxyapatite coatings for biomedical applications. CRC Press: Boca Raton, FL, USA, 2013; 469 pp.
[346] Matsuo, S., Kiuchi, M. Low temperature chemical vapor deposition method utilizing an electron cyclotron resonance plasma. Jpn. J. Appl. Phys. 2 1983, 22, 210-212.
[347] Akazawa, H. Highly conductive, undoped ZnO thin films deposited by electron-cyclotron-resonance plasma sputtering on silica glass substrate. Thin Solid Films 2009, 518, 22-26.
[348] Tracton, A.A. Coatings technology handbook. 3rd Ed. CRC Press: Boca Raton, FL, USA, 2005; 936 pp.
[349] Allen, G.C., Ciliberto, E., Fragala, I., Spoto, G. Surface and bulk study of calcium phosphate bioceramics obtained by Metal Organic Chemical Vapor Deposition. Nucl. Instrum. Methods Phys. Res. B 1996, 116, 457-460.
[350] Darr, J.A., Guo, Z.X., Raman, V., Bououdina, M., Rehman, I.U. Metal organic chemical vapour deposition (MOCVD) of bone mineral like carbonated hydroxyapatite coatings. Chem. Commun. 2004, 6, 696-697.
[351] Hartshorn, R., Stockwell, S., Lebedev, M., Krumdieck, S. Precursor system for bio-integration ceramics and deposition onto tantala scaffold bone interface surfaces. Surf. Coat. Tech. 2007, 201, 9413-9416.
[352] Sato, M., Tu, R., Goto, T. Preparation of hydroxyapatite and calcium phosphate films by MOCVD. Mater. Trans. 2007, 48, 3149-3153.
[353] Clearwater, D.J., Hartshorn, R.M., Krumdieck, S.P. Exploring multiple precursors in pulsed pressure-MOCVD. ECS Transact. 2009, 25, 973-977.
[354] Tsutsumi, H., Niinomi, M., Nakai, M., Gozawa, T., Akahori, T., Saito, K., Tu, R., Goto, T. Fabrication of hydroxyapatite film on Ti–29Nb–13Ta–4.6Zr using a MOCVD technique. Mater. Trans. 2010, 51, 2277-2283.
[355] Krumdieck, S.P., Reyngoud, B.P., Barnett, A.D., Clearwater, D.J., Hartshorn, R.M., Bishop, C.M., Redwood, B.P., Palmer, E.L. Deposition of bio-integration ceramic hydroxyapatite by pulsed-pressure MOCVD using a single liquid precursor solution. Chem. Vap. Deposit. 2010, 16, 55-63.
[356] Nakai, M., Niinomi, M., Tsutsumi, H., Saito, K., Goto, T. Calcium phosphate coating of biomedical titanium alloys using metal-organic chemical vapour deposition. Mater. Tech. 2015, 30, B8-B12.
[357] Jiang, G., Shi, D. Coating of hydroxyapatite on porous alumina substrate through a thermal decomposition method. J. Biomed. Mater. Res. 1999, 48, 117-120.
[358] Takahashi, K., Hayakawa, T., Yoshinari, M., Hara, H., Mochizuki, C., Sato, M., Nemoto, K. Molecular precursor method for thin calcium phosphate coating on titanium. Thin Solid Films 2005, 484, 1-9.
[359] Hayakawa, T., Takahashi, K., Yoshinari, M., Okada, H., Yamamoto, H., Sato, M., Nemoto, K. Trabecular bone response to titanium implants with a thin carbonate-containing apatite coating applied using the molecular precursor method. Int. J. Oral Maxillofac. Implants 2006, 21, 851-858.
[360] Hayakawa T, Ametani A, Kuboki Y, Sato M. Thin carbonate-containing apatite coating of titanium web using molecular precursor method under oxygen gas introduction. J. Oral Tissue. Eng. 2009, 6, 201-210.
[361] Ueno, D., Sato, M., Hayakawa, T. Guided bone regeneration using hydroxyapatite-coated titanium fiber web in rabbit mandible: use of molecular precursor method. J. Hard Tiss. Biol. 2013, 22, 329-336.
[362] Hirota, M., Hayakawa, T., Ohkubo, C., Sato, M., Hara, H., Toyama, T., Tanaka, Y. Bone responses to zirconia implants with a thin carbonate-containing hydroxyapatite coating using a molecular precursor method. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102B, 1277-1288.
[363] Kaneko, H., Sasaki, H., Honma, S., Hayakawa, T., Sato, M., Yajima, Y., Yoshinari, M. Influence of thin carbonate-containing apatite coating with molecular precursor method to zirconia on osteoblast-like cell response. Dent. Mater. J. 2014, 33, 39-47.
[364] Nijhuis, A.W.G., Leeuwenburgh, S.C.G., Jansen, J.A. Wet-chemical deposition of functional coatings for bone implantology. Macromol. Biosci. 2010, 10, 1316-1329.
[365] Kim, H.M., Himeno, T., Kokubo, T., Nakamura, T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 2005, 26, 4366-4373.
[366] Wang, L., Nancollas, G.H. Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 2008, 108, 4628-4669.
[367] Wang, L.J., Lu, J.W., Xu, F.S., Zhang, F.S. Dynamics of crystallization and dissolution of calcium orthophosphates at the near-molecular level. Chin. Sci. Bull. 2011, 56, 713-721.
[368] Wang, X.J., Li, Y.C., Lin, J.G., Hodgson, P.D., Wen, C.E. Apatite-inducing ability of titanium oxide layer on titanium surface: the effect of surface energy. J. Mater. Res. 2008, 23, 1682-1688.
[369] Gu, Y.W., Tay, B.Y., Lim, C.S., Yong, M.S. Biomimetic deposition of apatite coating on surface-modified NiTi alloy. Biomaterials 2005, 26, 6916-6923.
[370] Liang, F., Zhou, L., Wang, K. Apatite formation on porous titanium by alkali and heat-treatment. Surf. Coat. Tech. 2003, 165, 133-139.
[371] Wang, X.X., Hayakawa, S., Tsuru, K., Osaka, A. A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces. J. Biomed. Mater. Res. 2000, 52, 172-178.
[372] Song, W.H., Jun, Y.K., Han, Y., Hong, S.H. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials 2004, 25, 3341-3349.
[373] Wen, H.B., Wolke, J.G.C., de Wijn, J.R., Liu, Q., Cui, F.Z. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials 1997, 18, 1471-1478.
[374] Chen, X.B., Li, Y.C., Plessis, J.D., Hodgson, P.D., Wen, C. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomater. 2009, 5, 1808-1820.
[375] Dinçer, M., Teker, D., Sağ, C.P., Öztürk, K. Enhanced bonding of biomimetic apatite coatings on surface-modified titanium substrates by hydrothermal pretreatment. Surf. Coat. Tech. 2013, 226, 27-33.
[376] Feng, B., Chen, Y., Zhang, X.D. Effect of water vapor treatment on apatite formation on precalcified titanium and bond strength of coatings to substrates. J. Biomed. Mater. Res. 2002, 59, 12-17.
[377] Kokubo, T., Kim, H.M., Kawashita, M. Novel bioactive materials with different mechanical properties. Biomaterials 2003, 24, 2161-2175.
[378] Tsutsumi, Y., Nishimura, D., Doi, H., Nomura, N., Hanawa, T. Cathodic alkaline treatment of zirconium to give the ability to form calcium phosphate. Acta Biomater. 2010, 6, 4161-4166.
[379] Li, P., Ohtsuki, C., Kokubo, T., Nakanishi, K., Soga, N., de Groot, K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J. Biomed. Mater. Res. 1994, 28, 7-15.
[380] Pham, M.T., Matz, W., Grambole, D., Herrmann, F., Reuther, H., Richter, E., Steiner, G. Solution deposition of hydroxyapatite on titanium pre-treated with a sodium ion implantation. J. Biomed. Mater. Res. 2002, 59, 716-724.
[381] Oliveira, A.L., Malafaya, P.B., Reis, R.L. Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials 2003, 24, 2575-2584.
[382] Kokubo, T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1998, 46, 2519-2527.
[383] Liu, X., Chu, P.K., Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R 2004, 47, 49-121.
[384] Variola, F., Brunski, J.B., Orsini, G., de Oliveira, T.P., Wazen, R., Nanci, A. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale 2011, 3, 335-353.
[385] http://en.wikipedia.org/wiki/Electrophoretic_deposition (accessed in December 2016).
[386] Besra, L., Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 2007, 52, 1-61.
[387] Phillips, D.C., Shaw, B.J. Electrochemical deposition of bone. US patent No. 3892648, 1975.
[388] Han, Y., Xu, K.W., Lu, J., Wu, Z. The structural characteristics and mechanical behaviors of nonstoichiometric apatite coatings sintered in air atmosphere. J. Biomed. Mater. Res. 1999, 45, 198-203.
[389] Zhitomirsky, I. Electrophoretic hydroxyapatite coatings and fibers. Mater. Lett. 2000, 42, 262-271.
[390] Wang, C., Ma, J., Cheng, W., Zhang, R. Thick hydroxyapatite coatings by electrophoretic deposition. Mater. Lett. 2002, 57, 99-105.
[391] Mondragón-Cortez, P., Vargas-Gutiérrez, G. Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Mater. Lett. 2004, 58, 1336-1339.
[392] Meng, X., Kwon, T.Y., Kim, K.H. Different morphology of hydroxyapatite coatings on titanium by electrophoretic deposition. Key Eng. Mater. 2006, 309-311, 639-642.
[393] Meng, X., Kwon, T.Y., Kim, K.H. Hydroxyapatite coating by electrophoretic deposition at dynamic voltage. Dent. Mater. J. 2008, 27, 666-671.
[394] Kollatha, V.O., Chen, Q., Closset, R., Luyten, J., Traina, K., Mullens, S., Boccaccini, A.R., Cloots, R. AC vs. DC electrophoretic deposition of hydroxyapatite on titanium. J. Eur. Ceram. Soc. 2013, 33, 2715-2721.
[395] Farrokhi-Rad, M., Shahrabi, T. Effect of triethanolamine on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol. Ceram. Int. 2013, 39, 7007-7013.
[396] Loghmani, S.K., Farrokhi-Rad, M., Shahrabi, T. Effect of polyethylene glycol on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol. Ceram. Int. 2013, 39, 7043-7051.
[397] Farrokhi-Rad, M., Shahrabi, T. Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings. Ceram. Int. 2014, 40, 3031-3039.
[398] Goudarzi, M., Batmanghelich, F., Afshar, A., Dolati, A., Mortazavi, G. Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: corrosion and sintering temperature. Appl. Surf. Sci. 2014, 301, 250-257.
[399] Rad, A.T., Solati-Hashjin, M., Osman, N.A.A., Faghihi, S. Improved bio-physical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage. Ceram. Int. 2014, 40, 12681-12691.
[400] Drevet, R., Ben Jaber, N., Fauré, J., Tara, A., Larbi, A.B.C., Benhayoune, H. Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates. Surf. Coat. Tech. 2016, 301, 94-99.
[401] Kumar, R.M., Kuntal, K.K., Singh, S., Gupta, P., Bhushan, B., Gopinath, P., Lahiri, D. Electrophoretic deposition of hydroxyapatite coating on Mg-3Zn alloy for orthopaedic application. Surf. Coat. Tech. 2016, 287, 82-92.
[402] Ma, J., Wang, C., Peng, K.W. Electrophoretic deposition of porous hydroxyapatite scaffold. Biomaterials 2003, 24, 3505-3510.
[403] Ustundag, C.B., Kaya, F., Kamitakahara, M., Kaya, C., Ioku, K. Production of tubular porous hydroxyapatite using electrophoretic deposition. J. Ceram. Soc. Jpn. 2012, 120, 569-573.
[404] Farrokhi-Rad, M., Loghmani, S.K., Shahrabi, T., Khanmohammadi, S. Electrophoretic deposition of hydroxyapatite nanostructured coatings with controlled porosity. J. Eur. Ceram. Soc. 2014, 34, 97-106.
[405] Boccaccini, A.R., Keim, S., Ma, R., Li, Y., Zhitomirsky, I. Electrophoretic deposition of biomaterials. J. R. Soc. Interface 2010, 7, S581-S613.
[406] Nie, X., Leyland, A., Matthews, A., Jiang, J.C., Meletis, E.I. Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique. J. Biomed. Mater. Res. 2001, 57, 612-618.
[407] Nie, X., Leyland, A., Matthews, A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf. Coat. Tech. 2000, 125, 407-414.
[408] Kuo, M.C., Yen, S.K. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C 2002, 20, 153-160.
[409] Yen, S.K., Lin, C.M. Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium. Mater. Chem. Phys. 2002, 77, 70-76.
[410] Manso, M., Jimenez, C., Morant, C., Herrero, P., Martinez-Duart, J.M. Electrodeposiiton of hydroxyapatite coatings in basic conditions. Biomaterials 2000, 21, 1755-1761.
[411] Duan, K., Fan, Y., Wang, R. Electrochemical deposition and patterning of calcium phosphate bioceramic coating. Ceram. Trans. 2003, 147, 53-61.
[412] Lu, X., Zhao, Z., Leng, Y. Calcium phosphate crystal growth under controlled atmosphere in electrochemical deposition. J. Cryst. Growth 2005, 284, 506-516.
[413] Wang, S.H., Shih, W.J., Li, W.L., Hon, M.H., Wang, M.C. Morphology of calcium phosphate coatings deposited on a Ti–6Al–4V substrate by an electrolytic method under 80 Torr. J. Eur. Ceram. Soc. 2005, 25, 3287-3292.
[414] Lin, S., LeGeros, R.Z., LeGeros, J.P. Adherent octacalciumphosphate coating on titanium alloy using modulated electrochemical deposition method. J. Biomed. Mater. Res. A 2003, 66A, 819-828.
[415] Drevet, R., Velard, F., Potiron, S., Laurent-Maquin, D., Benhayoune, H. In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate. J. Mater. Sci. Mater. Med. 2011, 22, 753-761.
[416] Gopi, D., Karthika, A., Sekar, M., Kavitha, L., Pramod, R., Dwivedi, J. Development of lotus-like hydroxyapatite coating on HELCDEB treated titanium by pulsed electrodeposition. Mater. Lett. 2013, 105, 216-219.
[417] Drevet, R., Benhayoune, H. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties. Mater. Sci. Eng. C 2013, 33, 4260-4265.
[418] Utku, F.S., Seckin, E., Goller, G., Tamerler, C., Urgen, M. Carbonated hydroxyapatite deposition at physiological temperature on ordered titanium oxide nanotubes using pulsed electrochemistry. Ceram. Int. 2014, 40, 15479-15487.
[419] Utku, F.S., Seckin, E., Goller, G., Tamerler, C., Urgen, M. Electrochemically designed interfaces: hydroxyapatite coated macro-mesoporous titania surfaces. Appl. Surf. Sci. 2015, 350, 62-68.
[420] Etminanfar, M.R., Khalil-Allafi, J., Parsa, A.B. On the electrocrystallization of pure hydroxyapatite nanowalls on Nitinol alloy using a bipolar pulsed current. J. Alloy Compd. 2016, 678, 549-555.
[421] Chakraborty, R., Sengupta, S., Saha, P., Das, K., Das, S. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition. Mater. Sci. Eng. C 2016, 69, 875-883.
[422] Kim, H.J., Jeong, Y.H., Choe, H.C., Brantley, W.A. Surface characteristics of hydroxyapatite coatings on nanotubular Ti–25Ta–xZr alloys prepared by electrochemical deposition. Surf. Coat. Tech. 2014, 259B, 274-280.
[423] Blackwood, D.J., Seah, K.H.W. Electrochemical cathodic deposition of hydroxyapatite: improvements in adhesion and crystallinity. Mater. Sci. Eng. C 2009, 29, 1233-1238.
[424] Zhitomirsky, I. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Coll. Interf. Sci. 2002, 97, 277-315.
[425] Shirkhanzadeh, M. Bioactive calcium phosphate coatings prepared by electrodeposition. J. Mater. Sci. Lett. 1991, 10, 1415-1417.
[426] Rossler, S., Sewing, A., Stolzel, M., Born, R., Scharnweber, D., Dard, M., Worch, H. Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature. J. Biomed. Mater. Res. A 2003, 64A, 655-663.
[427] Lee, K., Jeong, Y.H., Ko, Y.M., Choe, H.C., Brantley, W.A. Hydroxyapatite coating on micropore-formed titanium alloy utilizing electrochemical deposition. Thin Solid Films 2013, 549, 154-158.
[428] Katić, J., Metikoš-Huković, M., Babić, R. Nitinol modified by calcium phosphate coatings prepared by sol-gel and electrodeposition methods. ECS Trans. 2013, 53, 83-93.
[429] Katić, J., Metikoš-Huković, M., Škapin, S.D., Petravić, M., Varašanec, M. The potential-assisted deposition as valuable tool for producing functional apatite coatings on metallic materials. Electrochim. Acta 2014, 127, 173-179.
[430] Metoki, N., Leifenberg-Kuznits, L., Kopelovich, W., Burstein, L., Gozin, M., Eliaz, N. Hydroxyapatite coatings electrodeposited at near-physiological conditions. Mater. Lett. 2014, 119, 24-27.
[431] Eliaz, N., Sridhar, T.M. Electrocrystallization of hydroxyapatite and its dependence on solution conditions. Cryst. Growth Des. 2008, 8, 3965-3977.
[432] Lobo, A.O., Otubo, J., Matsushima, J.T., Corat, E.J. Rapid obtaining of nano-hydroxyapatite bioactive films on NiTi shape memory alloy by electrodeposition process. J. Mater. Eng. Perform. 2011, 20, 793-797.
[433] Lee, K., Jeong, Y.H., Brantley, W.A., Choe, H.C. Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method. Thin Solid Films 2013, 546, 185-188.
[434] Zogbi, M.M., Jr., Saito, E., Zanin, H., Marciano, F.R., Lobo, A.O. Hydrothermal–electrochemical synthesis of nano-hydroxyapatite crystals on superhydrophilic vertically aligned carbon nanotubes. Mater. Lett. 2014, 132, 70-74.
[435] Wang, J., Chao, Y., Wan, Q., Zhu, Z., Yu, H. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomater. 2009, 5, 1798-1807.
[436] Ban, S., Maruno, S. Hydrothermal-electrochemical deposition of hydroxyapatite. J. Biomed. Mater. Res. 1998, 42, 387-395.
[437] Ban, S., Matsuo, K., Mizutani, N., Hasegawa, J. Hydrothermal-electrochemical deposition of calcium phosphates on various metals. Dent. Mater. J. 1999, 18, 259-270.
[438] Ban, S., Hasegawa, J. Morphological regulation and crystal growth of hydrothermal-electrochemically deposited apatite. Biomaterials 2002, 23, 2965-2972.
[439] He, D., Liu, P., Liu, X., Ma, F., Chen, X., Li, W., Du, J., Wang, P., Zhao, J. Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V. J. Alloy Compd. 2016, 672, 336-343.
[440] Wang, J., Layrolle, P., Stigter, M., de Groot, K. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials 2004, 25, 583-592.
[441] Lopez-Heredia, M. A., Weiss, P., Layrolle, P. An electrodeposition method of calcium phosphate coatings on titanium alloy. J. Mater. Sci. Mater. Med. 2007, 18, 381-390.
[442] Peng, P., Kumar, S., Voelcker, N.H., Szili, E., Smart, R.S.C., Griesser, H.J. Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. J. Biomed. Mater. Res. A 2006, 76A, 347-355.
[443] Yousefpour, M., Afshar, A., Yang, X., Li, X., Yang, B., Wu, Y., Chen, J., Zhang, X. Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium. J. Electroanal. Chem. 2006, 589, 96-105.
[444] Narayanan, R., Seshadri, S.K., Kwon, T.Y., Kim, K.H. Electrochemical nano-grained calcium phosphate coatings on Ti–6Al–4V for biomaterial applications. Scripta Mater. 2007, 56, 229-232.
[445] Narayanan, R., Kim, S.Y., Kwon, T.Y., Kim, K.H. Nanocrystalline hydroxyapatite coatings from ultrasonated electrolyte: preparation, characterization and osteoblast responses. J. Biomed. Mater. Res. A 2008, 87A, 1053-1060.
[446] Narayanan, R., Kwon, T.Y., Kim, K.H. Direct nanocrystalline hydroxyapatite formation on titanium from ultrasonated electrochemical bath at physiological pH. Mater. Sci. Eng. C 2008, 28, 1265-1270.
[447] Narayanan, R., Kwon, T.Y., Kim, K.H. Preparation and characteristics of nano-grained calcium phosphate coatings on titanium from ultrasonated bath at acidic pH. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85B, 231-239.
[448] Narayanan, R., Dutta, S., Seshadri, S.K. Hydroxy apatite coatings on Ti–6Al–4V from seashell. Surf. Coat. Tech. 2006, 200, 4720-4730.
[449] Eliaz, N., Eliyahu, M. Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. J. Biomed. Mater. Res. A 2007, 80A, 621-634.
[450] Eliaz, N., Kopelovitch, W., Burstein, L., Kobayashi, E., Hanawa, T. Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by real-time quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis. J. Biomed. Mater. Res A 2009, 89A, 270-280.
[451] Wang, H., Eliaz, N., Hobbs, L.W. The nanostructure of an electrochemically deposited hydroxyapatite coating. Mater. Lett. 2011, 65, 2455-2457.
[452] Shirkhanzadeh, M. Electrochemical preparation of bioactive calcium phosphate coatings on porous substrates by the periodic pulse technique. J. Mater. Sci. Lett. 1993, 12, 16-19.
[453] Liu, D., Savino, K., Yates, M.Z. Microstructural engineering of hydroxyapatite membranes to enhance proton conductivity. Adv. Funct. Mater. 2009, 19, 3941-3947.
[454] Liu, D., Savino, K., Yates, M.Z. Coating of hydroxyapatite films on metal substrates by seeded hydrothermal deposition. Surf. Coat. Tech. 2011, 205, 3975-3986.
[455] Fu, C., Savino, K., Gabrys, P., Zeng, A., Guan, B., Olvera, D., Wang, C., Song, B., Awad, H., Gao, Y., Yates, M.Z. Hydroxyapatite thin films with giant electrical polarization. Chem. Mater. 2015, 27, 1164-1171.
[456] Asri, R.I.M., Harun, W.S.W., Hassan, M.A., Ghani, S.A.C., Buyong, Z. A review of hydroxyapatite-based coating techniques: sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 2016, 57, 95-108.
[457] Ebelmen, J. Untersuchungen über die Verbindung der Borsaure und Kieselsaure mit Aether. Ann. Chim. Phys. Ser. 3, 1846, 57, 319-355.
[458] Morris, R.E. (Ed.) The sol-gel process: uniformity, polymers and applications. Nova Science: Hauppauge, NY, USA, 2011; 887 pp.
[459] Weng, W., Baptisa, J.L. Alkoxide route for preparing hydroxyapatite and its coatings. Biomaterials 1998, 19, 125-131.
[460] Liu, D., Yang, Q., Troczynski, T. Sol-gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 2002, 23, 691-698.
[461] Metikoš-Huković, M., Tkalacec, E., Kwokal, A., Piljac, J. An in vitro study of Ti and Ti-alloys coated with sol-gel derived hydroxyapatite coatings. Surf. Coat. Tech. 2003, 165, 40-50.
[462] Kim, H.W., Kong, Y.M., Bae, C.J., Noh, Y.J., Kim, H.E. Sol–gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. Biomaterials 2004, 25, 2919-2926.
[463] Kim, H.W., Knowles, J.C., Salih, V., Kim, H.E. Hydroxyapatite and fluor-hydroxyapatite layered film on titanium processed by a sol-gel route for hard-tissue implants. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71B, 66-76.
[464] Gan, L., Pilliar, R. Calcium phosphate sol-gel-derived thin films on porous surfaced implants for enhanced osteoconductivity. Part I: Synthesis and characterization. Biomaterials 2004, 25, 5303-5312.
[465] Zhang, S., Xianting, Z., Yongsheng, W., Kui, C., Wenjian, W. Adhesion strength of sol-gel derived fluoridated hydroxyapatite coatings. Surf. Coat. Tech. 2006, 200, 6350-6354.
[466] Cheng, K., Zhang, S., Weng, W., Khor, K.A., Miao, S., Wang, Y. The adhesion strength and residual stress of colloidal-sol gel derived β-tricalcium-phosphate/fluoridated-hydroxyapatite biphasic coatings. Thin Solid Films 2008, 516, 3251-3255.
[467] Zhang, S., Wang, Y.S., Zeng, X.T., Khor, K.A., Weng, W., Sun, D.E. Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coatings. Thin Solid Films 2008, 516, 5162-5167.
[468] Aksakal, B., Gavgali, M., Dikici, B. The effect of coating thickness on corrosion resistance of hydroxyapatite coated Ti6Al4V and 316L SS implants. J. Mater. Eng. Perform. 2010, 19, 894-899.
[469] Roy, A., Singh, S.S., Datta, M.K., Lee, B., Ohodnicki, J., Kumta, P.N. Novel sol-gel derived calcium phosphate coatings on Mg4Y alloy. Mater. Sci. Eng. B 2011, 176, 1679-1689.
[470] Zhang, J.X., Guan, R.F., Zhang, X.P. Synthesis and characterization of sol-gel hydroxyapatite coatings deposited on porous NiTi alloys. J. Alloy Compd. 2011, 509, 4643-4648.
[471] Choudhury, P., Agrawal, D.C. Sol-gel derived hydroxyapatite coatings on titanium substrates. Surf. Coat. Tech. 2011, 206, 360-365.
[472] Rojaee, R., Fathi, M., Raeissi, K. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating. Mater. Sci. Eng. C 2013, 33, 3817-3825.
[473] Romonţi, D.C., Iskra, J., Bele, M., Demetrescu, I., Milošev, I. Elaboration and characterization of fluorohydroxyapatite and fluoroapatite sol-gel coatings on CoCrMo alloy. J. Alloy Compd. 2016, 665, 355-364.
[474] Malakauskaite-Petruleviciene, M., Stankeviciute, Z., Beganskiene, A., Kareiva, A. Sol-gel synthesis of calcium hydroxyapatite thin films on quartz substrate using dip-coating and spin-coating techniques. J. Sol-Gel Sci. Tech. 2014, 71, 437-446.
[475] Carradò, A., Viart, N. Nanocrystalline spin coated sol-gel hydroxyapatite thin films on Ti substrate: towards potential applications for implants. Solid State Sci. 2010, 12, 1047-1050.
[476] Roest, R., Latella, B.A., Heness, G., Ben-Nissan, B. Adhesion of sol-gel derived hydroxyapatite nanocoatings on anodised pure titanium and titanium (Ti6Al4V) alloy substrates. Surf. Coat. Tech. 2011, 205, 3520-3529.
[477] Lang, S.B., Tofail, S.A., Kholkin, A.L., Wojtaś, M., Gregor, M., Gandhi, A.A., Wang, Y., Bauer, S., Krause, M., Plecenik, A. Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Sci. Rep. 2013, 3, 2215 (6 pp.).
[478] Malakauskaite-Petruleviciene, M., Stankeviciute, Z., Niaura, G., Prichodko, A., Kareiva, A. Synthesis and characterization of sol-gel derived calcium hydroxyapatite thin films spin-coated on silicon substrate. Ceram. Int. 2015, 41, 7421-7428.
[479] Malakauskaite-Petruleviciene, M., Stankeviciute, Z., Niaura, G., Garskaite, E., Beganskiene, A., Kareiva, A. Characterization of sol-gel processing of calcium phosphate thin films on silicon substrate by FTIR spectroscopy. Vib. Spectrosc. 2016, 85, 16-21.
[480] Kim, H.W., Koh, Y.H., Li, L.H., Lee, S., Kim, H.E. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials 2004, 25, 2533-2538.
[481] Kokubo, T., Ito, S., Huang, Z.T., Hayashi, T., Sakka, S., Kitsugi, T., Yamamuro, T. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 1990, 24, 331-343.
[482] Wang, X.X., Yan, W., Hayakawa, S., Tsuru, K., Osaka, A. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials 2003, 24, 4631-4637.
[483] Qu, H., Wei, M. The effect of temperature and initial pH on biomimetic apatite coating. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 87B, 204-212.
[484] Costa, D.O., Allo, B.A., Klassen, R., Hutter, J.L., Dixon, S.J., Rizkalla, A.S. Control of surface topography in biomimetic calcium phosphate coatings. Langmuir 2012, 28, 3871-3880.
[485] Ballo, A.M., Xia, W., Palmquist, A., Lindahl, C., Emanuelsson, L., Lausmaa, J., Engqvist, H., Thomsen, P. Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants. J. R. Soc. Interface 2012, 9, 1615-1624.
[486] Jiao, Y., Xiao, G.Y., Xu, W.H., Zhu, R.F., Lu, Y.P. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres. Mater. Sci. Eng. C 2013, 33, 2744-2751.
[487] Morozowich, N.L., Lerach, J.O., Modzelewski, T., Jackson, L., Winograd, N., Allcock, H.R. Characterization of hydroxyapatite deposition on biomimetic polyphosphazenes by time-of-flight secondary ion mass spectrometry (ToF-SIMS). RSC Adv. 2014, 4, 19680-19689.
[488] Čolović, B., Jokanović, V., Jokanović, B., Jovića, N. Biomimetic deposition of hydroxyapatite on the surface of silica thin film covered steel tape. Ceram. Int. 2014, 40, 6949-6955.
[489] Barrére, F., Layrolle, P., van Blitterswijk, C.A., de Groot, K. Biomimetic calcium phosphate coatings on Ti6AI4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3-. Bone 1999, 25, Suppl. 2, 107S-111S.
[490] Barrere, F., Layrolle, P., van Blitterswijk, C.A., de Groot, K. Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. J. Mater. Sci. Mater. Med. 2001, 12, 529-534.
[491] da Rocha, D.N., de Oliveira Cruz, L.R., Mijares, D.Q., Marçal, R.L.S.B., de Campos, J.B., Coelho, P.G., da Silva, M.H.P. Temperature influence on the calcium phosphate coatings by chemical method. Key Eng. Mater. 2017, 720, 197-200.
[492] Stefanic, M., Krnel, K., Pribosic, I., Kosmac, T. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl. Surf. Sci. 2012, 258, 4649-4656.
[493] Stefanic, M., Krnel, K., Kosmac, T. Novel method for the synthesis of a β-tricalcium phosphate coating on a zirconia implant. J. Eur. Ceram. Soc. 2013, 33, 3455-3465.
[494] Zan, Q., Zhuang, Y., Dong, L., Wang, C., Wen, N., Xu, G. Improving bioactivity of porous β-TCP ceramics by forming bone-like apatite layer on the surfaces of pore walls. Key Eng. Mater. 2012, 512-515, 1815-1820.
[495] Takadama, H., Kim, H.M., Kokubo, T., Nakamura, T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J. Biomed. Mater. Res. 2001, 57, 441-448.
[496] Uchida, M., Kim, H.M., Kokubo, T., Fujibayashi, S., Nakamura, T. Structural dependence of apatite formation on titania gels in a simulated body fluid. J. Biomed. Mater. Res. A 2003, 64A, 164-170.
[497] Tsutsumi, Y., Nishimura, D., Doi, H., Nomura, N., Hanawa, T. Difference in surface reactions between titanium and zirconium in Hanks’ solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mater. Sci. Eng. C 2009, 29, 1702-1708.
[498] Kokubo, T., Yamaguchi, S. 1.113. Bioactive layer formation on metals and polymers. In: Comprehensive biomaterials. Ducheyne, P., Healy, K., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J. (Eds.). Vol. 1. Elsevier: Amsterdam, Netherlands, 2011; pp. 231-244.
[499] Sun, T., Wang, M. Electrochemical deposition of apatite/collagen composite coating on NiTi shape memory alloy and coating properties. Mater. Res. Soc. Symp. Proc. 2010, 1239, 141-146.
[500] Miyaji, F., Kim, H.M., Handa, S., Kokubo, T., Nakamura, T. Bonelike apatite coating on organic polymers: novel nucleation process using sodium silicate solution. Biomaterials 1999, 20, 913-919.

[501] Kim, H.M., Kishimoto, K., Miyaji, F., Kokubo, T., Yao, T., Suetsugu, Y., Tanaka, J., Nakamura, T. Composition and structure of apatite formed on organic polymer in simulated body fluid with a high content of carbonate ion. J. Mater. Sci. Mater. Med. 2000, 11, 421-426.
[502] Barrere, F., van Blitterswijk, C.A., de Groot, K., Layrolle, P. Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials 2002, 23, 1921-1930.
[503] Barrere, F., van Blitterswijk, C.A., de Groot, K., Layrolle, P. Nucleation of biomimetic Ca-P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium. Biomaterials 2002, 23, 2211-2220.
[504] Barrere, F., Snel, M.M.E., van Blitterswijk, C.A., de Groot, K., Layrolle, P. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials 2004, 25, 2901-2910.
[505] Xu, C., Wang, Q., Ban, H., Xu, W. Rapid deposition of hydroxyapatite on Mg-alloy by biomineralization method. Adv. Mater. Res. 2012, 413, 160-165.
[506] Taş, A.C., Bhaduri, S.B. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10x simulated body fluid. J. Mater. Res. 2004, 19, 2742-2749.
[507] Barnes, D.H., Jugdaosingh, R., Kiamil, S., Best, S.M. Shelf life and chemical stability of calcium phosphate coatings applied to poly carbonate urethane substrates. J. Biotech. Biomaterial 2011, 1, 112 (11 pages).
[508] Vaquette, C., Ivanovski, S., Hamlet, S.M., Hutmacher, D.W. Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials 2013, 34, 5538-5551.
[509] Bayrak, G.K., Demirtaş, T.T., Gümüşderelioğlu, M. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds. Carbohyd. Polym. 2017, 157, 803-813.
[510] Nijhuis, A.W.G., Nejadnik, M.R., Nudelman, F., Walboomers, X.F., te Riet, J., Habibovic, P., Birgani, Z.T., Li, Y., Bomans, P.H.H., Jansen, J.A., Sommerdijk, N.A.J.M., Leeuwenburgh, S.C.G. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings. Acta Biomater. 2014, 10, 931-939.
[511] Li, F., Feng, Q.L., Cui, F.Z., Li, H.D., Schubert, H. A simple biomimetic method for calcium phosphate coating. Surf. Coat. Tech. 2002, 154, 88-93.
[512] Dorozhkina, E.I., Dorozhkin, S.V. Structure and properties of the precipitates formed from condensed solutions of the revised simulated body fluid. J. Biomed. Mater. Res. A 2003, 67A, 578-581.
[513] Li, P. Biomimetic nano-apatite coating capable of promoting bone ingrowth. J. Biomed. Mater. Res. A 2003, 66A, 79-85.
[514] Bigi, A., Boanini, E., Bracci, B., Facchini, A., Panzavolta, S., Segatti, F., Struba, L. Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 2005, 26, 4085-4089.
[515] Bracci, B., Panzavolta, S., Bigi, A. A new simplified calcifying solution to synthesize calcium phosphate coatings. Surf. Coat. Tech. 2013, 232, 13-21.
[516] Ribeiro, A.A., Balestra, R.M., Rocha, M.N., Peripolli, S.B., Andrade, M.C., Pereira, L.C., Oliveira, M.V. Dense and porous titanium substrates with a biomimetic calcium phosphate coating. Appl. Surf. Sci. 2013, 265, 250-256.
[517] Vasilescu, C., Popa, M., Drob, S.I., Osiceanu, P., Anastasescu, M., Moreno, J.M.C. Deposition and characterization of bioactive ceramic hydroxyapatite coating on surface of Ti–15Zr–5Nb alloy. Ceram. Int. 2014, 40, 14973-14982.
[518] Zheng, Y., Dong, G., He, L., Wu, G., Zheng, H., Deng, C. In vitro study of calcium phosphate layers on hydroxyapatite ceramics surface mineralized in different solutions. Ceram. Int. 2016, 42, 1660-1665.
[519] Zhou, H., Nabiyouni, M., Bhaduri, S.B. Microwave assisted apatite coating deposition on Ti6Al4V implants. Mater. Sci. Eng. C 2013, 33, 4435-4443.
[520] Ren, Y., Zhou, H., Nabiyouni, M., Bhaduri, S.B. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy. Mater. Sci. Eng. C 2015, 49, 364-372.
[521] Su, Y., Guo, Y., Huang, Z., Zhang, Z., Li, G., Lian, J., Ren, L. Preparation and corrosion behaviors of calcium phosphate conversion coating on magnesium alloy. Surf. Coat. Tech. 2016, 307, 99-108.
[522] Shen, S., Cai, S., Li, Y., Ling, R., Zhang, F., Xu, G., Wang, F. Microwave aqueous synthesis of hydroxyapatite bilayer coating on magnesium alloy for orthopedic application. Chem. Eng. J. 2017, 309, 278-287.
[523] Chandanshive, B., Dyondi, D., Ajgaonkar, V.R., Banerjee, R., Khushalani, D. Biocompatible calcium phosphate based tubes. J. Mater. Chem. 2010, 20, 6923-6928.
[524] Brinker, C.J., Frye, G.C., Hurd, A.J., Ashley, C.S. Fundamentals of sol-gel dip coating. Thin Solid Films 1991, 201, 97-108.
[525] Lacefield, W.R. Hydroxyapatite coatings. Ann. New York Acad. Sci. 1988, 523, 72-80.
[526] Duan, K., Tang, A., Wang, R. A new evaporation-based method for the preparation of biomimetic calcium phosphate coatings on metals. Mater. Sci. Eng. C 2009, 29, 1334-1337.
[527] Pontin, M.G., Lange, F.F., Sanchez-Herencia, A.J., Moreno, R. Effect of unfired tape porosity on surface film formation by dip coating. J. Am. Ceram. Soc. 2005, 88, 2945-2948.
[528] Gu, Y., Meng, G. A model for ceramic membrane formation by dip-coating. J. Eur. Ceram. Soc. 1999, 19, 1961-1966.
[529] Li, T., Lee, J., Kobayashi, T., Aoki, H. Hydroxyapatite coating by dipping method, and bone bonding strength. J. Mater. Sci. Mater. Med. 1996, 7, 355-357.
[530] Mavis, B., Taş, A.C. Dip coating of calcium hydroxyapatite on Ti–6Al–4V substrates. J. Am. Ceram. Soc. 2000, 83, 989-991.
[531] Choi, J., Bogdanski, D., Koller, M., Esenwein, S.A., Muller, D., Muhr, G., Epple, M. Calcium phosphate coating of nickel-titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials 2003, 24, 3689-3696.
[532] Bini, R.A., Santos, M.L., Filho, E.A., Marques, R.F.C., Guastaldi, A.C. Apatite coatings onto titanium surfaces submitted to laser ablation with different energy densities. Surf. Coat. Tech. 2009, 204, 399-403.
[533] Jimbo, R., Coelho, P.G., Vandeweghe, S., Schwartz-Filho, H.O., Hayashi, M., Ono, D., Andersson, M., Wennerberg, A. Histological and three-dimensional evaluation of osseointegration to nanostructured calcium phosphate-coated implants. Acta Biomater. 2011, 7, 4229-4234.
[534] Amiruddin, A.M.H., Shamsudin, R., Jalar, A., Hamid, M.A.A. Single layer brushite coating onto stainless steel substrate using dip-coating technique. Adv. Mater. Res. 2012, 399-401, 2004-2007.
[535] Albano, M.P., Garrido, L.B. Effect of zirconia tape porosity on fluorapatite surface film formation by dip coating. Ceram. Int. 2013, 39, 29-37.
[536] Albano, M.P., Garrido, L.B., Teixeira, L.N., Rosa, A.L., Oliveira, P.T. Comparison of different fluorapatite dip coated layers on porous zirconia tapes. Ceram. Int. 2014, 40, 12509-12517.
[537] Sonmez, S., Aksakal, B., Dikici, B. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy. J. Alloy Compd. 2014, 596, 125-131.
[538] You, C., Yeo, I.S., Kim, M.D., Eom, T.K., Lee, J.Y., Kim, S. Characterization and in vivo evaluation of calcium phosphate coated cp-titanium by dip-spin method. Curr. Appl. Phys. 2005, 5, 501-506.
[539] Yuan, Q., Sahu, L.K., D’Souza, N.A., Golden, T.D. Synthesis of hydroxyapatite coatings on metal substrates using a spincasting technique. Mater. Chem. Phys. 2009, 116, 523-526.
[540] Mennicke, U., Salditt, T. Preparation of solid-supported lipid bilayers by spin-coating. Langmuir 2002, 18, 8172-8177.
[541] Tunkara, E., Dag, Ö. Salt-acid-surfactant lyotropic liquid crystalline mesophases: synthesis of highly transparent mesoporous calcium hydroxyapatite thin films. Eur. J. Inorg. Chem. 2016, 2016, 2114-2121.
[542] Fujishiro, Y., Yabuki, H., Kawamura, K., Sato, T., Okuwaki, A. Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions. J. Chem. Technol. Biotechnol. 1993, 57, 349-353.
[543] Fujishiro, Y., Fuiimoto, A., Sato, T., Okuwaki, A. Coating of hydroxyapatite on titanium plates using thermal dissociation of calcium-EDTA chelate complex in phosphate solutions under hydrothermal conditions. J. Coll. Interf. Sci. 1995, 173, 119-127.
[544] Najdoski, M.Z., Majhi, P., Grozdanov, I.S. A simple chemical method for preparation of hydroxyapatite coatings on Ti6Al4V substrate. J. Mater. Sci. Mater. Med. 2001, 12, 479-483.
[545] Xiong, J., Li, Y., Hodgson, P.D., Wen, C. Nanohydroxyapatite coating on a titanium-niobium alloy by a hydrothermal process. Acta Biomater. 2010, 6, 1584-1590.
[546] Hiromoto, S., Tomozawa, M. Corrosion behavior of magnesium with hydroxyapatite coatings formed by hydrothermal treatment. Mater. Trans. 2010, 51, 2080-2087.
[547] Tomozawa, M., Hiromoto, S. Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium. Appl. Surf. Sci. 2011, 257, 8253-8257.
[548] Tomozawa, M., Hiromoto, S. Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values. Acta Mater. 2011, 59, 355-363.
[549] Hu, X., Shen, H., Cheng, Y., Xiong, X., Wang, S., Fang, J., Weim, S. One-step modification of nano-hydroxyapatite coating on titanium surface by hydrothermal method. Surf. Coat. Tech. 2010, 205, 2000-2006.
[550] Li, K.K., Wang, B., Yan, B., Lu, W. Preparing Ca–P coating on biodegradable magnesium alloy by hydrothermal method: in vitro degradation behavior. Chin. Sci. Bull. 2012, 57, 2319-2322.
[551] Kim, S.M., Jo, J.H., Lee, S.M., Kang, M.H., Kim, H.E., Estrin, Y., Lee, J.H., Lee, J.W., Koh, Y.H. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response. J. Biomed. Mater. Res. A 2014, 102A, 429-441.
[552] Suchanek, K., Bartkowiak, A., Gdowik, A., Perzanowski, M., Kąc, S., Szaraniec, B., Suchanek, M., Marszałek, M. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates. Mater. Sci. Eng. C 2015, 51, 57-63.
[553] Yang, H., Xia, K., Wang, T., Niu, J., Song, Y., Xiong, Z., Zheng, K., Wei, S., Lu, W. Growth, in vitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys. J. Alloy Compd. 2016, 672, 366-373.
[554] Abdal-Hay, A., Hamdy, A.S., Khalil, K.A., Lim, J.H. A novel simple in situ biomimetic and simultaneous deposition of bonelike apatite within biopolymer matrix as bone graft substitutes. Mater. Lett. 2014, 137, 260-264.
[555] Mishima, F.D., Louro, L.H.L., Moura, F.N., Gobbo, L.A., da Silva, M.H.P. Hydroxyapatite scaffolds produced by hydrothermal deposition of monetite on polyurethane sponges substrates. Key Eng. Mater. 2012, 493-494, 820-825.
[556] Xiao, D., Guo, T., Yang, F., Feng, G., Shi, F., Li, J., Wang, D., Duan, K., Weng, J. In situ formation of nanostructured calcium phosphate coatings on porous hydroxyapatite scaffolds using a hydrothermal method and the effect on mesenchymal stem cell behavior. Ceram. Int. 2017, 43, 1588-1596.
[557] Sasaki, M., Inoue, M., Katada, Y., Hiromoto, S., Taguchi, T. Formation of hydroxyapatite on nickel-free high-nitrogen stainless steel by chemical solution deposition method in neutral/alkaline solution. Key Eng. Mater. 2013, 529-530, 237-242.
[558] Hiromoto, S., Tomozawa, M., Maruyama, N. Fatigue property of a bioabsorbable magnesium alloy with a hydroxyapatite coating formed by a chemical solution deposition. J. Mech. Behav. Biomed. Mater. 2013, 25, 1-10.
[559] Ohtsu, N., Hiromoto, S., Yamane, M., Satoh, K., Tomozawa, M. Chemical and crystallographic characterizations of hydroxyapatite- and octacalcium phosphate-coatings on magnesium synthesized by chemical solution deposition using XPS and XRD. Surf. Coat. Tech. 2013, 218, 114-118.
[560] Lee, L.H., Han, J.S. Deposition behavior and characteristics of hydroxyapatite coatings on Al2O3, Ti, and Ti6Al4V formed by a chemical bath method. Ceram. Int. 2014, 40, 5321-5326.
[561] Asl, S.K.F., Nemeth, S., Tan, M.J. Hydrothermally deposited protective and bioactive coating for magnesium alloys for implant application. Surf. Coat. Tech. 2014, 258, 931-937.
[562] Asl, S.K.F., Nemeth, S., Tan, M.J. Mechanism of calcium phosphate deposition in a hydrothermal coating process. Surf. Coat. Tech. 2015, 270, 197-205.
[563] Morales, J.G., Clemente, R.R., Armas, B., Combescure, C., Berjoan, R., Cubo, J., Martínez, E., Carmona, J.G., Garelik, S., Murtra, J., Muraviev, D.N. Controlled nucleation and growth of thin hydroxyapatite layers on titanium implants by using induction heating technique. Langmuir 2004, 20, 5174-5178.
[564] Xiong, X.B., Zeng, X.R., Zhou, C.L. Preparation of enhanced HA coating on H2O2-treated carbon/carbon composite by induction heating and hydrothermal treatment methods. Mater. Chem. Phys. 2009, 114, 434-438.
[565] Xiong, X.B., Zhou, C.L., Zeng, X.R., Li, P., Fa, Y.B., Tang, H.L., Xie, S.H. Transformation of induction heating deposited monetite coating to hydroxyapatite coating on HT-C/C composites by hydrothermal treatment in two types of solution. Mater. Sci. Eng. C 2009, 29, 2019-2023.
[566] Xiong, X.B., Zeng, X.R., Zhou, C.L. Induction heating deposition of calcium phosphate coating on carbon/carbon composites for biomedical applications. Adv. Mater. Res. 2009, 79-82, 903-906.
[567] Xiong, X.B., Huang, J.F., Zeng, X.R., Liang, P., Zou, J.Z. Coatings of needle/stripe-like fluoridated hydroxyapatite on H2O2-treated carbon/carbon composites prepared by induction heating and hydrothermal methods. Front. Mater. Sci. 2012, 6, 160-167.
[568] Xiong, X.B., Ni, X.Y., Zeng, X.R., Zou, J.Z. A study of monetite precipitation on HT-C/C composites by induction heating method at different substrate temperatures. Surf. Coat. Tech. 2013, 223, 6-10.
[569] Ni, X.Y., Chu, C.C., Xiong, X.B., Li, A.J., Bai, R.C. Preparation of hydroxyapatite coating using chemical liquid vaporization deposition on carbon/carbon composites. RSC Adv. 2014, 4, 41129-41134.
[570] Ziani-Cherif, H., Abe, Y., Imachi, K., Matsuda, T. Hydroxyapatite coating on titanium by thermal substrate method in aqueous solution. J. Biomed. Mater. Res. 2002, 59, 390-397.
[571] Okido, M., Kuroda, K., Ishikawa, M., Ichino, R., Takai, O. Hydroxyapatite coating on titanium by means of thermal substrate method in aqueous solutions. Solid State Ionics 2002, 151, 47-52.
[572] Kuroda, K., Miyashita, Y., Ichino, R., Okido, M., Takai, O. Preparation of calcium phosphate coatings on titanium using the thermal substrate method and their in vitro evaluation. Mater. Trans. 2002, 43, 3015-3019.
[573] Kuroda, K., Ichino, R., Okido, M., Takai, O. Effects of ion concentration and pH on hydroxyapatite deposition from aqueous solution onto titanium by the thermal substrate method. J. Biomed. Mater. Res. 2002, 61, 354-359.
[574] Kuroda, K., Miyashita, Y., Ichino, R., Okido, M. Hydroxyapatite coating on titanium by thermal substrate method in an aqueous solution and its behavior in SBF. Mater. Sci. Forum 2003, 426-432, 3189-3194.
[575] Kuroda, K., Nakamoto, S., Ichino, R., Okido, M., Pilliar, R.M. Hydroxyapatite coatings on a 3D porous surface using thermal substrate method. Mater. Trans. 2005, 46, 1633-1635.
[576] Yanovska, A., Kuznetsov, V., Stanislavov, A., Danilchenko, S., Sukhodub, L. Synthesis and characterization of hydroxyapatite-based coatings for medical implants obtained on chemically modified Ti6Al4V substrates. Surf. Coat. Tech. 2011, 205, 5324-5329.
[577] Miyazaki, H., Maeda, H., Yoshida, S., Suzuki, H., Ota, T. Deposition of hydroxyapatite thin films from saturated calcium phosphate solution by controlling the substrate temperature. J. Ceram. Soc. Jpn. 2014, 122, 835-837.
[578] Taguchi, T., Kishida, A., Akashi, M. Hydroxyapatite formation on/in poly(vinyl alcohol) hydrogel matrices using a novel alternate soaking process. Chem. Lett. 1998, 27, 711-712.
[579] Yang, H., Masse, S., Zhang, H., Hélary, C., Li, L., Coradin, T. Surface reactivity of hydroxyapatite nanocoatings deposited on iron oxide magnetic spheres toward toxic metals. J. Coll. Interf. Sci. 2014, 417, 1-8.
[580] Furuzono, T., Taguchi, T., Kishida, A., Akashi, M., Tamada, Y. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J. Biomed. Mater. Res. 2000, 50, 344-352.
[581] Taguchi, T., Muraoka, Y., Matsuyama, H., Kishida, A., Akashi, M. Apatite coating on hydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process. Biomaterials 2001, 22, 53-58.
[582] Góes, J.C., Figueiró, S.D., Oliveira, A.M., Macedo, A.A., Silva, C.C., Ricardo, N.M., Sombra, A.S. Apatite coating on anionic and native collagen films by an alternate soaking process. Acta Biomater. 2007, 3, 773-778.
[583] Kono, H., Miyamoto, M., Ban, S. Bioactive apatite coating on titanium using an alternate soaking process. Dent. Mater. J. 2007, 26, 186-193.
[584] Watanabe, J., Akashi, M. Integration approach for developing a high-performance biointerface: sequential formation of hydroxyapatite and calcium carbonate by an improved alternate soaking process. Appl. Surf. Sci. 2008, 255, 344-349.
[585] Yoshioka, T., Onomoto, H., Kashiwazaki, H., Inoue, N., Koyama, Y., Takakuda, K., Tanaka, J. Improvement of biocompatibility of chitosan fiber modified by Ca-phosphate deposition through an alternate soaking process. Mater. Trans. 2009, 50, 1269-1272.
[586] Chang, W., Mu, X., Zhu, X., Ma, G., Li, C., Xu, F., Nie, J. Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers. Mater. Sci. Eng C 2013, 33, 4369-4376.
[587] Izawa, H., Nishino, S., Maeda, H., Morita, K., Ifuku, S., Morimoto, M., Saimoto, H., Kadokawa, J.I. Mineralization of hydroxyapatite upon a unique xanthan gum hydrogel by an alternate soaking process. Carbohyd. Polym. 2014, 102, 846-851.
[588] Shanmugavel, S., Reddy, V.J., Ramakrishna, S., Lakshmi, B.S., Dev, V.G.R. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J. Biomater. Appl. 2014, 29, 46-58.
[589] Chahal, S., Hussain, F.S.J., Yusoff, M.M., Rasad, M.S.B.A., Kumar, A. Nanohydroxyapatite-coated hydroxyethyl cellulose/poly (vinyl) alcohol electrospun scaffolds and their cellular response. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 115-122.
[590] Chatelain, G., Bourgeois, D., Ravaux, J., Averseng, O., Vidaud, C., Meyer, D. Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions. Biomed. Mater. 2014, 9, 015003.
[591] Anawati, Asoh, H., Ono, S. Enhanced uniformity of apatite coating on a PEO film formed on AZ31 Mg alloy by an alkali pretreatment. Surf. Coat. Tech. 2015, 272, 182-189.
[592] Strangem, D.G.T., Oyen, M.L. Biomimetic bone-like composites fabricated through an automated alternate soaking process. Acta Biomater. 2011, 7, 3586-3594.
[593] Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surf. Coat. Tech. 2000, 130, 195-206.
[594] Legostaeva, E.V., Sharkeev, Y.P., Epple, M., Prymak, O. Structure and properties of microarc calcium phosphate coatings on the surface of titanium and zirconium alloys. Russ. Phys. J. 2014, 56, 1130-1136.
[595] Sun, J., Han, Y., Huang, X. Hydroxyapatite coatings prepared by micro-arc oxidation in Ca- and P-containing electrolyte. Surf. Coat. Tech. 2007, 201, 5655-5658.
[596] Yang, X., Yu, S., Li, W. Preparation of bioceramic films containing hydroxyapatites on Ti–6Al–4V alloy surfaces by the micro-arc oxidation technique. Mater. Res. Bull. 2009, 44, 947-949.
[597] Ma, C., Zhang, X., Qu, L., Li, M. Calcium and phosphate biocoatings on magnesium alloy fabricated by micro-arc oxidation. Adv. Mater. Res. 2010, 105-106, 565-568.
[598] Gao, J.H., Guan, S.K., Chen, J., Wang, L.G., Zhu, S.J., Hu, J.H., Ren, Z.W. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg–Zn–Ca alloy. Appl. Surf. Sci. 2011, 257, 2231-2237.
[599] Pan, Y.K., Chen, C.Z., Wang, D.G., Zhao, T.G. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg–Zn–Zr magnesium alloy. Colloid Surface B 2013, 109, 1-9.
[600] Sharkeev, Y.P., Kulyashova, K.S. Regularities of forming calcium phosphate coatings on zirconium from electrolytes based on synthesized and biological hydroxyapatite. Russ. Phys. J. 2014, 56, 1170-1175.
[601] Seyfoori, A., Mirdamadi, S., Seyedraoufi, Z.S., Khavandi, A., Aliofkhazraei, M. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy. Mater. Chem. Phys. 2013, 142, 87-94.
[602] Bai, Y., Kim, K.A., Park, I.S., Lee, S.J., Bae, T.S., Lee, M.H. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing. Mater. Sci. Eng. B 2011, 176, 1213-1221.
[603] Rojaeea, R., Fathia, M., Raeissi, K. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments. Appl. Surf. Sci. 2013, 285B, 664-673.
[604] Razavi, M., Fathi, M., Savabi, O., Vashaee, D., Tayebi, L. Biodegradable magnesium alloy coated by fluoridated hydroxyapatite using MAO/EPD technique. Surf. Eng. 2014, 30, 545-551.
[605] Wei, D., Zhou, Y., Wang, Y., Jia, D. Characteristic of microarc oxidized coatings on titanium alloy formed in electrolytes containing chelate complex and nano-HA. Appl. Surf. Sci. 2007, 253, 5045-5050.
[606] Matykina, E., Montuori, M., Gough, J., Monfort, F., Berkani, A., Skeldon, P., Thompson, G.E., Habazaki, H. Spark anodising of titanium for biomedical applications. T. I. Met. Finish. 2006, 84, 125-133.
[607] Gao, Y., Yerokhin, A., Matthews, A. Deposition and evaluation of duplex hydroxyapatite and plasma electrolytic oxidation coatings on magnesium. Surf. Coat. Tech. 2015, 269, 170-182.
[608] Liu, F., Xu, J., Wang, F., Zhao, L., Shimizu, T. Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy. Surf. Coat. Techn. 2010, 204, 3294-3299.
[609] Li, Y., Lee, I.S., Cui, F.Z., Choi, S.H. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials 2008, 29, 2025-2032.
[610] Li, L.H., Kim, H.W., Lee, S.H., Kong, Y.M., Kim, H.E. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. J. Biomed. Mater. Res. A 2005, 73A, 48-54.
[611] Frauchiger, V.M., Schlottig, F., Gasser, B., Textor, M. Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 2004, 25, 593-606.
[612] Liu, F., Song, Y., Wang, F., Shimizu, T., Igarashi, K., Zhao, L. Formation characterization of hydroxyapatite on titanium by microarc oxidation and hydrothermal treatment. J. Biosci. Bioeng. 2005, 100, 100-104.
[613] Kim, M.S., Ryu, J.J., Sung, Y.M. One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation. Electrochem. Commun. 2007, 9, 1886-1891.
[614] Han, Y., Sun, J., Huang, X. Formation mechanism of HA-based coatings by micro-arc oxidation. Electrochem. Comm. 2008, 10, 510-513.
[615] Ou, S.F., Lin, C.S., Pan, Y.N. Microstructure and surface characteristics of hydroxyapatite coating on titanium and Ti-30Nb-1Fe-1Hf alloy by anodic oxidation and hydrothermal treatment. Surf. Coat. Tech. 2011, 205, 2899-2906.
[616] Faghihi-Sani, M.A., Arbabi, A., Mehdinezhad-Roshan, A. Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique. Ceram. Int. 2013, 39, 1793-1798.
[617] Durdu, S., Deniz, Ö.F., Kutbay, I., Usta, M. Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation. J. Alloy Compd. 2013, 551, 422-429.
[618] Yeung, W.K., Reilly, G.C., Matthews, A., Yerokhin, A. In vitro biological response of plasma electrolytically oxidized and plasma-sprayed hydroxyapatite coatings on Ti–6Al–4V alloy. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101B, 939-949.
[619] Tang, H., Gao, Y. Preparation and characterization of hydroxyapatite containing coating on AZ31 magnesium alloy by micro-arc oxidation. J. Alloy Compd. 2016, 688, 699-708.
[620] Shin, K.R., Yoon, S.I., Ko, Y.G., Shin, D.H. Deposition of hydroxyl-apatite on titanium subjected to electrochemical plasma coating. Electrochim. Acta 2013, 109, 173-180.
[621] Lugovskoy, A., Lugovskoy, S. Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys. Mater. Sci. Eng. C 2014, 43, 527-532.
[622] Rafieerad, A.R., Ashra, M.R., Mahmoodian, R., Bushroa, A.R. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: a review paper. Mater. Sci. Eng. C 2015, 57, 397-413.
[623] Bocanegra-Bernal, M.H. Hot isostatic pressing (HIP) technology and its applications to metals and ceramics. J. Mater. Sci. 2004, 39, 6399-6420.
[624] Khor, K., Yip, C., Cheang, P. Post-spray hot isostatic pressing of plasma sprayed Ti–6Al–4V/hydroxyapatite composite coatings. J. Mater. Process. Tech. 1997, 71, 280-287.
[625] Herø, H., Wie, H., Jorgensen, R.B., Ruyter, I.E. Hydroxyapatite coatings on Ti produced by hot isostatic pressing. J. Biomed. Mater. Res. 1994, 28, 343-348.
[626] Wie, H., Hero, H., Solheim, T. Hot isostatic pressing-processed hydroxyapatite-coated titanium implants: light microscopic and scanning electron microscopy investigations. Int. J. Oral. Maxillofac. Implants 1998, 13, 837-844.
[627] Fu, Y., Batchelor, A.W., Khor, K.A. Hot isostatic pressing of hydroxyapatite coating for improved fretting wear resistance. J. Mater. Sci. Lett. 1998, 17, 1695-1696.
[628] Nonami, T., Kamiya, A., Naganuma, K., Kameyana, T. Implantation of hydroxyapatite granules into superplastic titanium alloy for biomaterials. Mater. Sci. Eng. C 1998, 6, 281-284.
[629] Nonami, T., Kamiya, A., Naganuma, K., Kameyana, T. Preparation of hydroxyapatite-granule-implanted superplastic titanium-alloy. J. Mater. Sci. Mater. Med. 1998, 9, 203-206.
[630] Parast, S.Y., Jauhari, I., Zaeem, M.A. Implantation of HA into superplastic Ti–6Al–4V: kinetics and mechanical behaviors of implanted layer. Metall. Mater. Trans. A 2011, 42A, 219-226.
[631] Khalid, H.M., Jauhari, I., Dom, A.H.M. Development of nanolayer hydroxyapatite (HA) on titanium alloy via superplastic deformation method. Metall. Mater. Trans. A 2012, 43A, 3776-3785.
[632] Khalid, H.M., Jauhari, I., Jamlus, S.A., Dom, A.H.M. High temperature deformation of Ti alloy superplastically embedded with HA. Mater. Sci. Eng. A 2012, 534, 37-42.
[633] Khalid, H.M., Hasan, S.N., Jauhari, I. Mechanical behaviour of nanolayer hydroxyapatite (HA) coating developed through superplastic embedment of titanium (Ti) alloy (Ti–6Al–4V). Mater. Chem. Phys. 2016, 177, 314-321.
[634] Onoki, T., Yamamoto, S.Y. Hydroxyapatite ceramics coating on magnesium alloy via a double layered capsule hydrothermal hot-pressing. J. Ceram. Soc. Jpn. 2010, 118, 749-752.
[635] Onoki, T., Tanaka, M.A., Hashida, T. New processing method for hydroxyapatite coating by hydrothermal techniques. J. Jpn. Soc. Powder Powder Metall. 2005, 52, 861-864.
[636] Onoki, T., Kuno, T., Nakahira, A., Hashida, T. Effects of titanium surface treatment on adhesive properties of hydroxyapatite ceramics coating to titanium substrates by double layered capsule hydrothermal hot-pressing. J. Ceram. Soc. Jpn. 2010, 118, 530-534.
[637] Manso, M., Langletm, M., Jimenezm, C., Martinez-Duart, J.M. Microstructural study of aerosol-gel derived hydroxyapatite coatings. Biomol. Eng. 2002, 19, 63-66.
[638] Manso, M., Ogueta, S., Herrero-Fernández, P., Vázquez, L., Langlet, M., García-Ruiz, J.P. Biological evaluation of aerosol-gel-derived hydroxyapatite coatings with human mesenchymal stem cells. Biomaterials 2002, 23, 3985-3990.
[639] Manso, M., Martínez-Duart, J.M., Langlet, M., Jiménez, C., Herrero, P., Millon, E. Aerosol-gel-derived microcrystalline hydroxyapatite coatings. J. Mater. Res. 2002, 17, 1482-1489.
[640] Manso-Silván, M., Langlet, M., Jiménez, C., Fernández, M., Martínez-Duart, J.M. Calcium phosphate coatings prepared by aerosol-gel. J. Eur. Ceram. Soc. 2003, 23, 243-246.
[641] Seo, D.S., Chae, H.C., Lee, J.K. Fabrication and microstructure of hydroxyapatite coatings on zirconia by room temperature spray process. J. Nanosci. Nanotech. 2015, 15, 6039-6043.
[642] Seo, D.S., Lee, J.K., Hwang, K.H., Hahn, B.D., Yoon, S.Y. Influence of starting powders on hydroxyapatite coatings fabricated by room temperature spraying method. J. Nanosci. Nanotech. 2015, 15, 6032-6038.
[643] Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Choi, J.H., Kim, J.W., Cho, Y.L., Park, C., Kim, H.E., Kim, S.G. Preparation and in vitro characterization of aerosol-deposited hydroxyapatite coatings with different surface roughnesses. Appl. Surf. Sci. 2011, 257, 7792-7799.
[644] Hahn, B.D., Cho, Y.L., Park, D.S., Choi, J.J., Ryu, J., Kim, J.W., Ahn, C.W., Park, C., Kim, H.E., Kim, S.G. Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition. J. Biomater. Appl. 2013, 27, 587-594.
[645] Kim, S.W., Seo, D.S., Lee, J.K. Fabrication of xenogeneic bone-derived hydroxyapatite thin film by aerosol deposition method. Appl. Surf. Sci. 2008, 255, 388-390.
[646] Jo, J.H., Li, Y., Kim, S.M., Kim, H.E. Koh, Y.H. Hydroxyapatite/poly(ε-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility. J. Biomater. Appl. 2013, 28, 617-625.
[647] Kitajima, A., Tsukamoto, M., Akedo, J. Hydroxyapatite film coated on poly-L-lactic acid by aerosol deposition method. J. Ceram. Soc. Jpn. 2010, 118, 417-420.
[648] Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Choi, J.H., Kim, J.W., Ahn, C.W., Kim, H.E., Yoon, B.H., Jung, I.K. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery. Appl. Surf. Sci. 2013, 283, 6-11.
[649] Hahn, B.D., Lee, J.M., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Lee, B.K., Shin, D.S., Kim, H.E. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 2009, 5, 3205-3214.
[650] Ryu, J., Kim, K.Y., Hahn, B.D., Choi, J.J., Yoon, W.H., Lee, B.K., Park, D.S., Park, C. Photocatalytic nanocomposite thin films of TiO2-β-calcium phosphate by aerosol-deposition. Cat. Comm. 2009, 10, 596-599.
[651] Kim, S.G., Hahn, B.D., Park, D.S., Lee, Y.C., Choi, E.J., Chae, W.S., Baek, D.H., Choi, J.Y. Aerosol deposition of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. J. Oral Maxillofac. Surg. 2011, 69, e354-e363.
[652] Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Choi, J.H., Kim, H.E., Kim, S.G. Aerosol deposition of hydroxyapatite–chitosan composite coatings on biodegradable magnesium alloy. Surf. Coat. Tech. 2011, 205, 3112-3118.
[653] Snyder, K.L., Holmes, H.R., McCarthy, C., Rajachar, R.M. Bioactive vapor deposited calcium-phosphate silica sol-gel particles for directing osteoblast behavior. J. Biomed. Mater. Res. A 2016, 104A, 2135-2148.
[654] Gärtner, F., Stoltenhoff, T., Schmidt, T., Kreye, H. The cold spray process and its potential for industrial applications. J. Therm. Spray Tech. 2006, 15, 223-232.

[655] Cinca, N., Vilardell, A.M., Dosta, S., Concustell, A., Cano, I.G., Guilemany, J.M., Estradé, S., Ruiz, A., Peiró, F. A new alternative for obtaining nanocrystalline bioactive coatings: study of hydroxyapatite deposition mechanisms by cold gas spraying. J. Am. Ceram. Soc. 2016, 99, 1420-1428.
[656] Zhang, L., Zhang, W.T. Numerical investigation on particle velocity in cold spraying of hydroxyapatite coating. Adv. Mater. Res. 2011, 188, 717-722.
[657] Zhang, L., Zhang, W., Wu, Z. Numerical simulation of hydroxyapatite particle impacting on Ti substrate in cold spraying. Appl. Mech. Mater. 2012, 130-134, 900-903.
[658] Zhang, L., Zhang, W., Li, H., Geng, W., Bao, Y. Development of a cold spraying system for fabricating hydroxyapatite coating. Appl. Mech. Mater. 2012, 151, 300-304.
[659] Singh, R.P., Batra, U. Effect of cold spraying parameters and their interaction an hydroxyapatite deposition. J. Appl. Fluid Mech. 2013, 6, 555-561.
[660] Noorakma, A.C.W., Zuhailawati, H., Aishvarya, V., Dhindaw, B.K. Hydroxyapatite-coated magnesium-based biodegradable alloy: cold spray deposition and simulated body fluid studies. J. Mater. Eng. Perform. 2013, 22, 2997-3004.
[661] Lee, J.H., Jang, H.L., Lee, K.M., Baek, H.R., Jin, K., Noh, J.H. Cold-spray coating of hydroxyapatite on a three-dimensional polyetheretherketone implant and its biocompatibility evaluated by in vitro and in vivo minipig model. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105B, 647-657.
[662] Abdal-Hay, A., Barakat, N.A.M., Lim, J.K. Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications. Ceram. Int. 2013, 39, 183-195.
[663] Liu, Y., Dang, Z., Wang, Y., Huang, J., Li, H. Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon 2014, 67, 250-259.
[664] Liu, Y., Huang, J., Li, H. Nanostructural characteristics of vacuum cold-sprayed hydroxyapatite/graphene-nanosheet coatings for biomedical applications. J. Therm. Spray Technol. 2014, 23, 1149-1156.
[665] Kern, M., Thompson, V.P. Effects of sandblasting and silica-coating procedures on pure titanium. J. Dent. 1994, 22, 300-306.
[666] Ishikawa, K., Miyamoto, Y., Nagayama, M., Asaoka, K. Blast coating method: new method of coating titanium surface with hydroxyapatite at room temperature. J. Biomed. Mater. Res. Appl. Biomater. 1997, 38, 129-134.
[667] Mano, T., Ueyama, Y., Ishikawa, K., Matsumura, T., Suzuki, K. Initial tissue response to a titanium implant coated with apatite at room temperature using a blast coating method. Biomaterials 2002, 23, 1931-1936.
[668] Gbureck, U., Masten, A., Probst, J., Thull, R. Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers. Mater. Sci. Eng. C 2003, 23, 461-465.
[669] O’Hare, P., Meenan, B.J., Burke, G.A., Byrne, G., Dowling, D., Hunt, J.A. Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials 2010, 31, 515-522.
[670] O’Neill, L., O’Sullivan, C., O’Hare, P., Sexton, L., Keady, F., O’Donoghue, J. Deposition of substituted apatites onto titanium surfaces using a novel blasting process. Surf. Coat. Tech. 2009, 204, 484-488.
[671] O’Sullivan, C., O’Hare, P., O’Leary, N.D., Crean, A.M., Ryan, K., Dobson, A.D., O’Neill, L. Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 95B, 141-149.
[672] Barry, J.N., Twomey, B., Cowley, A., O'Neill, L., McNally, P.J., Dowling, D.P. Evaluation and comparison of hydroxyapatite coatings deposited using both thermal and non-thermal techniques. Surf. Coat. Tech. 2013, 226, 82-91.
[673] Dunne, C.F., Twomey, B., O’Neill, L., Stanton, K.T. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation. J. Biomater. Appl. 2014, 28, 767-778.
[674] Barry, J.N., Cowley, A., McNally, P.J., Dowling, D.P. Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique. J. Biomed. Mater. Res. A 2014, 102A, 871-879.
[675] Dunne, C.F., Twomey, B., Kelly, C., Simpson, J.C., Stanton, K.T. Hydroxyapatite and fluorapatite coatings on dental screws: effects of blast coating process and biological response. J. Mater. Sci. Mater. Med. 2015, 26, 5347.
[676] Byrne, G.D., O'Neill, L., Twomey, B., Dowling, D.P. Comparison between shot peening and abrasive blasting processes as deposition methods for hydroxyapatite coatings onto a titanium alloy. Surf. Coat. Tech. 2013, 216, 224-231.
[677] Kurella, A.K., Dahotre, N.B. A multi-textured calcium phosphate coating for hard tissue via laser surface engineering. JOM 2006, 58, 64-66.
[678] Paital, S.R., Dahotre, N.B. Laser surface treatment for porous and textured Ca-P bio-ceramic coating on Ti–6Al–4V. Biomed. Mater. 2007, 2, 274-281.
[679] Kurella, A.K., Hu, M.Z., Dahotre, N.B. Effect of microstructural evolution on wettability of laser coated calcium phosphate on titanium alloy. Mater. Sci. Eng. C 2008, 28, 1560-1564.
[680] Paital, S.R., Dahotre, N.B. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca–P bioceramic coating. Acta Biomater. 2009, 5, 2763-2772.
[681] Santhanakrishnan, S., Ho, Y.H., Dahotre, N.B. Laser coating of hydroxyapatite on Mg for enhanced physiological corrosion resistance and biodegradability. Mater. Tech. 2012, 27, 273-277.
[682] Nag, S., Paital, S.R., Nandawana, P., Mahdak, K., Ho, Y.H., Vora, H., Banerjee, R., Dahotre, N.B. Laser deposited biocompatible Ca–P coatings on Ti–6Al–4V: microstructural evolution and thermal modeling. Mater. Sci. Eng. C 2013, 33, 165-173.
[683] Tlotleng, M., Akinlabi, E., Shukla, M., Pityana, S. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process. Mater. Sci. Eng. C 2014, 43, 189-198.
[684] Cheng, G.J., Ye, C. Experiment, thermal simulation, and characterizations on transmission laser coating of hydroxyapatite on metal implant. J. Biomed. Mater. Res. A 2010, 92A, 70-79.
[685] Lusquiños, F., Pou, J., Arias, J.L., Boutinguiza, M., Léon, B., Pérez-Amor, M., Driessens, F.C.M., Merry, J.C., Gibson, I., Best, S., Bonfield, W. Production of calcium phosphate coatings on Ti6Al4V obtained by Nd:Yttrium-aluminum-garnet laser cladding. J. Appl. Phys. 2001, 90, 4231-4236.
[686] Lusquiños, F., de Carlos, A., Pou, J., Arias, J.L., Boutinguiza, M., León, B., Pérez-Amor, M., Driessens, F.C.M., Hing, K., Gibson, I., Best, S., Bonfield, W. Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties. J. Biomed. Mater. Res. A 2003, 64A, 630-637.
[687] Lusquiños, F., Pou, J., Boutinguiza, M., Quintero, F., Soto, R., León, B., Pérez-Amor, M. Main characteristics of calcium phosphate coatings obtained by laser cladding. Appl. Surf. Sci. 2005, 247, 486-492.
[688] Lusquiños, F., Pou, J., Arias, J.L., Boutinguiza, M., León, B., Pérez-Amor, M., Driessens, F.C.M. Alloying of hydroxyapatite onto Ti6Al-4V by high power laser irradiation. J. Mater. Sci. Mater. Med. 2002, 13, 601-605.
[689] Paital, S.R., He, W., Dahotre, N.B. Laser pulse dependent micro textured calcium phosphate coatings for improved wettability and cell compatibility. J. Mater. Sci. Mater. Med. 2010, 21, 2187-2200.
[690] Wang, Y.C., Li, Y.M., Yu, H.L., Ding, J.J., Tang, X.H., Li, J.G., Zhou, Y.H. In situ fabrication of bioceramic composite coatings by laser cladding. Surf. Coat. Tech. 2005, 491, 47-54.
[691] Wang, D.G., Chen, C.Z., Ma, J., Zhang, G. In situ synthesis of HA coating by laser cladding. Colloid Surface B 2008, 66, 155-162.
[692] Zheng, M., Fan, D., Li, X.K., Zhang, J.B., Liu, Q.B. Microstructure and in vitro bioactivity of laser-cladded bioceramic coating on titanium alloy in a simulated body fluid. J. Alloy Compd. 2010, 489, 211-214.
[693] Lü, X., Lin, X., Guan, T., Gao, B., Huang, W. Effect of the mass ratio of CaCO3 to CaHPO4·2H2O on in situ synthesis of hydroxyapatite coating by laser cladding. Rare Metal Mater. Eng. 2011, 40, 22-27.
[694] Lü, X., Lin, X., Cao, Y., Hu, J., Gao, B., Huang, W. Effects of processing parameters and heat treatment on phase structure of the hydroxyapatite coating on pure Ti surface by laser cladding in-situ synthesis. Rare Metal Mater. Eng. 2011, 40, 714-717.
[695] Lv, X., Lin, X., Hu, J., Gao, B., Huang, W. Phase evolution in calcium phosphate coatings obtained by in situ laser cladding. Mater. Sci. Eng. C 2012, 32, 872-877.
[696] Yang, G., Hu, S.H., Liu, Y., Huang, A.G. Laser cladding of fluoridated hydroxyapatite coatings on titanium alloy: preparation and characterization. Appl. Mech. Mater. 2014, 487, 204-209.
[697] Zhu, Y., Liu, Q., Xu, P., Li, L., Jiang, H., Bai, Y. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding. Laser Phys. Lett. 2016, 13, 055601 (6 pages).
[698] Gao, Y., Hu, J., Guan, T.H., Wu, J., Zhang, C.B., Gao, B. Physical properties and cellular responses to calcium phosphate coating produced by laser rapid forming on titanium. Lasers Med. Sci. 2014, 29, 9-17.
[699] Pei, X., Wang, J., Wan, Q., Kang, L., Xiao, M., Bao, H. Functionally graded carbon nanotubes/hydroxyapatite composite coating by laser cladding. Surf. Coat. Tech. 2011, 205, 4380-4387.
[700] Griffith, M.L., Keicher, D.L., Romero, J.T., Smugeresky, J.E., Atwood, C.L., Harwell, L.D., Greene, D.L. Laser engineered net shaping (LENS™) for the fabrication of metallic components. Am. Soc, Mech. Eng. Mater. Div. 1996, 74, 175-176.
[701] Roy, M., Krishna, B.V., Bandyopadhyay, A., Bose, S. Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants. Acta Biomater. 2008, 4, 324-333.
[702] Roy, M., Bandyopadhyay, A., Bose, S. In vitro antimicrobial and biological properties of laser assisted tricalcium phosphate coating on titanium for load bearing implant. Mater. Sci. Eng. C 2009, 29, 1965-1968.
[703] Balla, V.K., Das, M., Bose, S., Ram, G.D.J., Manna, I. Laser surface modification of 316L stainless steel with bioactive hydroxyapatite. Mater. Sci. Eng. C 2013, 33, 4594-4598.
[704] Roy, M., Balla, V.K., Bandyopadhyay, A., Bose, S. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma. Acta Biomater. 2011, 7, 866-873.
[705] Piqué, A. The Matrix-Assisted Pulsed Laser Evaporation (MAPLE) process: origins and future directions. Appl. Phys. A 2011, 105, 517-528.
[706] Visan, A., Grossin, D., Stefan, N., Duta, L., Miroiu, F.M., Stan, G.E., Sopronyi, M., Luculescu, C., Freche, M., Marsan, O., Charvilat, C., Ciuca, S., Mihailescu, I.N. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications. Mater. Sci. Eng. B 2014, 181, 56-63.
[707] Boanini, E., Torricelli, P., Fini, M., Sima, F., Serban, N., Mihailescu, I.N., Bigi, A. Magnesium and strontium doped octacalcium phosphate thin films by matrix assisted pulsed laser evaporation. J. Inorg. Biochem. 2012, 107, 65-72.
[708] Negroiu, G., Piticescu, R.M., Chitanu, G.C., Mihailescu, I.N., Zdrentu, L., Miroiu, M. Biocompatibility evaluation of a novel hydroxyapatite-polymer coating for medical implants (in vitro tests). J. Mater. Sci. Mater. Med. 2008, 19, 1537-1544.
[709] Bigi, A., Boanini, E., Capuccini, C., Fini, M., Mihailescu, I.N., Ristoscu, C., Sima, F., Torricelli, P. Biofunctional alendronate-hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials 2009, 30, 6168-6177.
[710] Miroiu, F.M., Socol, G., Visan, A., Stefan, N., Craciun, D., Craciun, V., Dorcioman, G., Mihailescu, I.N., Sima, L.E., Petrescu, S.M., Andronie, A., Stamatin, I., Moga, S., Ducu, C. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation. Mater. Sci. Eng. B 2010, 169, 151-158.
[711] Visan, A., Stan, G.E., Ristoscu, C., Popescu-Pelin, G., Sopronyi, M., Besleaga, C., Luculescu, C., Chifiriuc, M.C., Hussien, M.D., Marsan, O., Kergourlay, E., Grossin, D., Brouillet, F., Mihailescu, I.N. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders. Int. J. Pharm. 2016, 511, 505-515.
[712] Pramatarova, L., Pecheva, E., Dimova-Malinovska, D., Presker, R., Stutzmann, M., Schwarz, U., Kniep, R. A novel laser-liquid-solid interaction process for hydroxyapatite formation on porous silicon. Proc. SPIE – Int. Soc. Optical Eng. 2005, 5830, 110-114.
[713] Pecheva, E., Petrov, T., Lungu, C., Montgomery, P., Pramatarova, L. Stimulated in vitro bone-like apatite formation by a novel laser processing technique. Chem. Eng. J. 2008, 137, 144-153.
[714] Lee, B.H., Oyane, A., Tsurushima, H., Shimizu, Y., Sasaki, T., Koshizaki, N. A new approach for hydroxyapatite coating on polymeric materials using laser-induced precursor formation and subsequent aging. ACS Appl. Mater. Interfaces 2009, 1, 1520-1524.
[715] Oyane, A., Sakamaki, I., Shimizu, Y., Kawaguchi, K., Koshizaki, N. Liquid-phase laser process for simple and area-specific calcium phosphate coating. J. Biomed. Mater. Res. A 2012, 100A, 2573-2580.
[716] Oyane, A., Sakamaki, I., Pyatenko, A., Nakamura, M., Ishilawa, Y., Shimizu, Y., Kawaguchi, K., Koshizaki, N. Laser-assisted calcium phosphate deposition on polymer substrates in supersaturated solutions. RSC Adv. 2014, 4, 53645-53648.
[717] Oyane, A., Matsuoka, N., Koga, K., Shimizu, Y., Nakamura, M., Kawaguchi, K., Koshizaki, N., Sogo, Y., Ito, A., Unuma. H. Laser-assisted biomimetic process for surface functionalization of titanium metal. Colloid Interface Sci. Commun. 2015, 4, 5-9.
[718] Mahanti, M., Nakamura, M., Pyatenko, A., Sakamaki, I., Koga, K., Oyane, A. The mechanism underlying calcium phosphate precipitation on titanium via ultraviolet, visible, and near infrared laser-assisted biomimetic process. J. Phys. D: Appl. Phys. 2016, 49, 304003 (10 pages).
[719] Oyane, A., Sakamaki, I., Shimizu, Y., Kawaguchi, K., Sogo, Y., Ito, A., Koshizaki, N. Laser-assisted biomimetic process for calcium phosphate coating on a hydroxyapatite ceramic. Key Eng. Mater. 2013, 529-530, 217-222.
[720] van Zomeren, A., Kelder, E.M., Marijnissen, J.C.M., Schoonman, J. The production of thin films of LiMn2O4 by electrospraying. J. Aerosol Sci. 1994, 25, 1229-1235.
[721] Leeuwenburgh, S., Wolke, J., Schoonman, J., Jansen, J. Electrostatic spray deposition (ESD) of calcium phosphate coatings. J. Biomed. Mater. Res. A 2003, 66A, 330-334.
[722] Leeuwenburgh, S.C.G., Wolke, J.G.C., Schoonman, J., Jansen, J.A. Influence of precursor solution parameters on chemical properties of calcium phosphate coatings prepared using electrostatic spray deposition (ESD). Biomaterials 2004, 25, 641-649.
[723] Leeuwenburgh, S.C.G., Wolke, J.G.C., Schoonman, J., Jansen, J.A. Influence of deposition parameters on morphological properties of biomedical calcium phosphate coatings prepared using electrostatic spray deposition. Thin Solid Films 2005, 472, 105-113.
[724] Leeuwenburgh, S.C.G., Wolke, J.G.C., Schoonman, J., Jansen, J.A. Influence of deposition parameters on chemical properties of calcium phosphate coatings prepared by using electrostatic spray deposition. J. Biomed. Mater. Res. A 2005, 74A, 275-284.
[725] Leeuwenburgh, S.C.G., Wolke, J.G.C., Schoonman, J., Jansen, J.A. Deposition of calcium phosphate coatings with defined chemical properties using the electrostatic spray deposition technique. J. Eur. Ceram. Soc. 2006, 26, 487-493.
[726] Leeuwenburgh, S.C.G., Heine, M.C., Wolke, J.G.C., Pratsinis, S.E., Schoonman, J., Jansen, J.A. Morphology of calcium phosphate coatings for biomedical applications deposited using electrostatic spray deposition. Thin Solid Films 2006, 503, 69-78.
[727] Lee, W.H., Kim, Y.H., Oh, N.H., Cheon, Y.W., Cho, Y.J., Lee, C.M., Kim, K.B., Lee, N.S. A study of hydroxyapatite coating on porous Ti compact by electrostatic spray deposition. Solid State Phenom. 2007, 124-126, 1789-1792.
[728] Li X., Huang, J., Edirisinghe, M.J. Development of nano-hydroxyapatite coating by electrohydrodynamic atomization spraying. J. Mater. Sci. Mater. Med. 2007, 19, 1545-1551.
[729] Li, X., Ahmad, Z., Huang, J., Edirisinghe, M.J. Electrohydrodynamic coating of metal with nano-sized hydroxyapatite. J. Biomed. Mater. Eng. 2007, 17, 335-346.
[730] Jiang, W., Sun, L., Nyandoto, G., Malshe, A.P. Electrostatic spray deposition of nanostructured hydroxyapatite coating for biomedical applications. J. Manufact. Sci. Eng. Trans. ASME 2008, 130, 0210011-0210017.
[731] Li, X., Koller, G., Huang, J., di Silvio, L., Renton, T., Esat, M., Bonfield, W., Edirisinghe, M. A novel jet-based nano-hydroxyapatite patterning technique for osteoblast guidance. J. R. Soc. Interface 2010, 7, 189-197.
[732] Thian, E.S., Ahmad, Z., Huang, J., Edirisinghe, M.J., Jayasinghe, S.N., Ireland, D.C., Brooks, R.A., Rushton, N., Bonfield, W., Best, S.M. The role of surface wettability and surface charge of electrosprayed nanoapatites on the behaviour of osteoblasts. Acta Biomater. 2010, 6, 750-755.
[733] Iafisco, M., Bosco, R., Leeuwenburgh, S.C.G., van den Beucken, J.J.J.P., Jansen, J.A., Prat, M., Roveri, N. Electrostatic spray deposition of biomimetic nanocrystalline apatite coatings onto titanium. Adv. Eng. Mater. 2012, 14, B13-B20.
[734] Zhu, Y., Chen, Y., Xu, G., Ye, X., He, D., Zhong, J. Micropattern of nano-hydroxyapatite/silk fibroin composite onto Ti alloy surface via template-assisted electrostatic spray deposition. Mater. Sci. Eng. C 2012, 32, 390-394.
[735] Kim, B.H., Jeong, J.H., Jeon, Y.S., Jeon, K.O., Hwang, K.S. Hydroxyapatite layers prepared by sol-gel assisted electrostatic spray deposition. Ceram. Int. 2007, 33, 119-122.
[736] Hou, X., Choy, K.L., Leach, S.E. Processing and in vitro behavior of hydroxyapatite coatings prepared by electrostatic spray assisted vapor deposition method. J. Biomed. Mater. Res. A 2007, 83A, 683-691.
[737] Aizawa, M., Itatani, K., Howell, F.S., Kishioka, A., Kinoshita, M. Formation of porous calcium phosphate films on α-Al2O3 substrates by spray-pyrolysis technique. J. Ceram. Soc. Jpn. 1994, 102, 732-736.
[738] Aizawa, M., Itatani, K., Howell, F.S., Kishioka, A., Kinoshita, M. Formation of porous calcium phosphate films on partially stabilized zirconia substrates by the spray-pyrolysis technique. J. Mater. Sci. 1995, 30, 4936-4945.
[739] Aizawa, M., Yamamoto, T., Itatani, K., Suemasu, H., Mozue, A., Okada, I. Formation of calcium-phosphate films with gradient composition on alumina ceramics by spray-pyrolysis technique and their biocompatibilities by cell-culture tests. Key Eng. Mater. 2001, 192-195, 103-106.
[740] Cabaňas, M.V., Vallet-Regí, M. Calcium phosphate coatings deposited by aerosol chemical vapour deposition. J. Mater. Chem. 2003, 13, 1104-1107.
[741] Aizawa, M., Itatani, K., Okada, I. Characterization of porous β-tricalcium phosphate films formed on alumina ceramics by spray-pyrolysis technique and their in vitro evaluations using osteoblasts. J. Ceram. Soc. Jpn. 2005, 113, 245-251.
[742] Jokanovic, V., Uskokovic, D. Calcium hydroxyapatite thin films on titanium substrates prepared by ultrasonic spray pyrolysis. Mater. Trans. 2005, 46, 228-235.
[743] Ye, G., Troczynski, T. Hydroxyapatite coatings by pulsed ultrasonic spray pyrolysis. Ceram. Int. 2008, 34, 511-516.
[744] Aguilar-Frutis, M., Kumar, S., Falcony, C. Spray-pyrolyzed hydroxyapatite thin-film coatings. Surf. Coat. Tech. 2009, 204, 1116-1120.
[745] Rajapakse, R.M.G., Wijesinghe, W.P.S.L., Mantilaka, M.M.M.G.P.G., Senarathna, K.G.C., Herath, H.M.T.U., Premachandra, T.N., Ranasinghe, C.S.K., Rajapakse, R.P.V.J., Edirisinghe, M., Mahalingam, S., Bandara, I.M.C.C.D., Singh, S. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces. Mater. Sci. Eng. C 2016, 63, 172-184.
[746] Johnson, T.E., Bower, K.W. Review of the drop on-demand ink jet with primary emphasis on the Gould jet concept. J. Appl. Photo. Eng. 1979, 5, 174-178.
[747] Sun, J., Thian, E.S., Fuh, J.Y.H., Chang, L., Hong, G.S., Wang, W., Tay, B.Y., Wong, Y.S. Fabrication of bio-inspired composite coatings for titanium implants using the micro-dispensing technique. Microsyst. Tech. 2012, 18, 2041-2051.
[748] Thian, E.S., Chang, L., Lim, P.N., Gurucharan, B., Sun, J., Fuh, J.Y.H., Ho, B., Tay, B.Y., Teo, E.Y., Wang, W. Chemically-modified calcium phosphate coatings via drop-on-demand micro-dispensing technique. Surf. Coat. Tech. 2013, 231, 29-33.
[749] Chang, L., Sun, J., Fuh, J.Y.H., Thian, E.S. Deposition and characterization of a dual-layer silicon- and silver-containing hydroxyapatite coating via a drop-on-demand technique. RSC Adv. 2013, 3, 11162-11168.
[750] Gómez-Morales, J., Verdugo-Escamilla, C., Gavira, J.A. Bioinspired calcium phosphate coated mica sheets by vapour diffusion and its effects on lysozyme assembly and crystallization. Cryst. Growth Des. 2016, 16, 5150-5158.
[751] Hannora, A.E., Mukasyan, A.S., Mansurov, Z.A. Mechanochemical synthesis of nanocrystalline hydroxyapatite coating. Eurasian ChemTech J. 2010, 12, 79-95.
[752] Hayashi, N., Ueno, S., Komarov, S.V., Kasai, E., Oki, T. Fabrication of hydroxyapatite coatings by the ball impact process. Surf. Coat. Tech. 2012, 206, 3949-3954.
[753] Brendel, T., Engel, A., Rüssel, C. Hydroxyapatite coatings by a polymeric route. J. Mater. Sci. Mater. Med. 1992, 3, 175-179.
[754] Oliveira, J.M., Leonor, I.B., Reis, R. Preparation of bioactive coatings on the surface of bioinert polymers through an innovative “auto-catalytic” electroless route. Key Eng. Mater. 2005, 284-286, 203-207.
[755] Le, V.Q., Cochis, A., Rimondini, L., Pourroy, G., Stanic, V., Palkowski, H., Carrado, A. Biomimetic calcium–phosphates produced by an autocatalytic route on stainless steel 316L and bio-inert polyolefin. RSC Adv. 2013, 3, 11255-11262.
[756] Aguilar-Reyes, E.A., León Patiño, C.A., Jacinto-Díaz, B. Formation of calcium-phosphate coatings on Ti6Al4V substrates by an autocatalytic deposition route. Key Eng. Mater. 2015, 631, 247-252.
[757] Chen, B., Liang, C. Preparation of hydroxyapatite coating by the use of a sacrificial Mg anode method. Ceram. Int. 2007, 33, 701-703.
[758] Blanda, G., Brucato, V., Pavia, F.C., Greco, S., Piazza, S., Sunseri, C., Inguanta, R. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel. Mater. Sci. Eng. C 2016, 64, 93-101.
[759] Mousa, H.M., Lee, D.H., Park, C.H., Kim, C.S. A novel simple strategy for in situ deposition of apatite layer on AZ31B magnesium alloy for bone tissue regeneration. Appl. Surf. Sci. 2015, 351, 55-65.
[760] Mousa, H.M., Hussein, K.H., Raslan, A.A., Lee, J., Woo, H.M., Park, C.H., Kim, C.S. Amorphous apatite thin film formation on a biodegradable Mg alloy for bone regeneration: strategy, characterization, biodegradation, and in vitro cell study. RSC Adv. 2016, 6, 22563-22574.
[761] Hernández-Montelongo, J., Muñoz-Noval, A., Torres-Costa, V., Martín-Palma, R.J., Manso-Silvan, M. Cyclic calcium phosphate electrodeposition on porous silicon. Int. J. Electrochem. Sci. 2012, 7, 1840-1851.
[762] Hernandez-Montelongo, J., Gallach, D., Naveas, N., Torres-Costa, V., Climent-Font, A., García-Ruiz, J.P., Manso-Silvan, M. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: spin coating vs electrochemical activation. Mater. Sci. Eng. C 2014, 34, 245-251.
[763] Subramanian, B., Dhandapani, P., Maruthamuthu, S., Jayachandran, M. Biosynthesis of calcium hydroxylapatite coating on sputtered Ti/TiN nano multilayers and their corrosion behavior in simulated body solution. J. Biomater. Appl. 2012, 26, 687-705.
[764] Fujii, S., Oleada, M., Sawa, H., Furuzono, T., Nakamura, Y. Hydroxyapatite nanoparticles as particulate emulsifier: fabrication of hydroxyapatite-coated biodegradable microspheres. Langmuir 2009, 25, 9759-9766.
[765] Fujii, S., Okada, M., Nishimura, T., Sugimoto, T., Maeda, H., Hamasaki, H., Furuzono, T., Nakamura, Y. Hydroxyapatite-coated poly(ε-caprolactone) microspheres fabricated via a Pickering emulsion route: effect of fabrication parameters on diameter and chemical composition. Compos. Interf. 2013, 20, 45-56.
[766] Okada, M., Fujii, S., Nishimura, T., Nakamura, Y., Takeda, S., Furuzono, T. Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route. Appl. Surf. Sci. 2012, 262, 39-44.
[767] Okada, M., Takeda, S., Furuzono, T. A novel approach to prepare hydroxyapatite-coated biodegradable polymer microspheres loaded with magnetic Fe3O4 via nanoparticle-stabilized emulsions. Key Eng. Mater. 2013, 529-530, 223-228.
[768] Ohtsu, N., Nakamura, Y., Semboshi, S. Thin hydroxyapatite coating on titanium fabricated by chemical coating process using calcium phosphate slurry. Surf. Coat. Tech. 2012, 206, 2616-2621.
[769] Ohtsu, N., Takahara, T., Hirano, M., Arai, H. Effect of treatment temperature on the biocompatibility and mechanical strength of hydroxyapatite coating formed on titanium using calcium phosphate slurry. Surf. Coat. Tech. 2014, 239, 185-190.
[770] Yang, J.Z., Sultana, R., Hu, X.Z., Huang, Z.H. Porous hydroxyapatite coating on strong ceramic substrate fabricated by low density slip coating-deposition and coating-substrate co-sintering. J. Eur. Ceram. Soc. 2011, 31, 2065-2071.
[771] Sultana, R., Yang, J., Hu, X. Deposition of micro-porous hydroxyapatite/tri-calcium phosphate coating on zirconia-based substrate. J. Am. Ceram. Soc. 2012, 95, 1212-1215.
[772] Yang, J.Z., Sultana, R., Ichim, P., Hu, X.Z., Huang, Z.H., Yi, W., Jiang, B., Xu, Y. Micro-porous calcium phosphate coatings on load-bearing zirconia substrate: processing, property and application. Ceram. Int. 2013, 39, 6533-6542.
[773] Banba, Y., Umeda, T., Kuroe, H., Toyama, T., Musha, Y., Itatani, K. Formation of hydroxyapatite layer on graphite sheet immersed in calcium phosphate solution by microwave heating. J. Ceram. Soc. Jpn. 2013, 121, 901-906.
[774] Kansal, H.K., Singh, S., Kumar, P. Technology and research developments in powder mixed electric discharge machining (PMEDM). J. Mater. Proc. Technol. 2007, 184, 32-41.
[775] Ekmekci, N., Ekmekci, B. Hydroxyapatite deposition onto Ti–6Al–4V surface in powder mixed electrical discharge machining. Adv. Mater. Res. 2014, 856, 205-209.
[776] Ou, S.F., Wang, C.Y. Fabrication of a hydroxyapatite-containing coating on Ti–Ta alloy by electrical discharge coating and hydrothermal treatment. Surf. Coat. Tech. 2016, 302, 238-243.
[777] Sohmura, T., Tamasaki, H., Ohara, T., Takahashi, J. Calcium-phosphate surface coating by casting to improve bioactivity of titanium. J. Biomed. Mater. Res. Appl. Biomater. 2001, 58, 478-485.
[778] Escobedo, J.C., Ortiz, J.C., Almanza, J.M., Cortés, D.A. Hydroxyapatite coating on a cobalt base alloy by investment casting. Scripta Mater. 2006, 54, 1611-1615.
[779] Minouei, H., Meratian, M., Fathi, M.H., Ghazvinizadeh, H. Biphasic calcium phosphate coating on cobalt-base surgical alloy during investment casting. J. Mater. Sci. Mater. Med. 2011, 22, 2449-2455.
[780] Arafat, A., Idris, M.H., Kadir, M.R.A., Jafari, H. Characterisation of calcium phosphate coating on investment cast 316L stainless steel. Mater. Res. Inn. 2014, 18, Suppl. 2, S2-886-S2-891.
[781] Thian, E.S., Huang, J., Best, S.M., Barber, Z.H., Bonfield, W. Magnetron co-sputtered silicon-containing hydroxyapatite thin films – an in vitro study. Biomaterials 2005, 26, 2947-2956.
[782] Thian, E.S., Huang, J., Best, S.M., Barber, Z.H., Bonfield, W. Silicon-substituted hydroxyapatite: the next generation of bioactive coatings. Mater. Sci. Eng. C 2007, 27, 251-256.
[783] Cai, Y., Zhang, S., Zeng, X., Qian, M., Sun, D., Weng, W. Interfacial study of magnesium-containing fluoridated hydroxyapatite coatings. Thin Solid Films 2011, 519, 4629-4633.
[784] Surmeneva, M.A., Chaikina, M.V., Zaikovskiy, V.I., Pichugin, V.F., Buck, V., Prymak, O., Epple, M., Surmenev, R.A. The structure of an RF-magnetron sputter-deposited silicate-containing hydroxyapatite-based coating investigated by high-resolution techniques. Surf. Coat. Tech. 2013, 218, 39-46.
[785] Li, H., Khor, K.A., Cheang, P. Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials 2002, 23, 85-91.
[786] Zhao, X., Hu, T., Li, H., Chen, M., Cao, S., Zhang, L., Hou, X. Electrochemically assisted co-deposition of calcium phosphate/collagen coatings on carbon/carbon composites. Appl. Surf. Sci. 2011, 257, 3612-3619.
[787] Singh, G., Singh, S., Prakash, S. Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy. Surf. Coat. Tech. 2011, 205, 4814-4820.
[788] Ciobanu, G., Ciobanu, O. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces. Mater. Sci. Eng. C 2013, 33, 1683-1688.
[789] Mittal, M., Nath, S.K., Prakash, S. Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement. Mater. Sci. Eng. C 2013, 33, 2838-2845.
[790] Ustundag, C.B., Avciata, O., Kaya, F., Kaya, C. Hydrothermally mixed hydroxyapatite-multiwall carbon nanotubes composite coatings on biomedical alloys by electrophoretic deposition. J. Phys. Chem. B 2013, 117, 1571-1576.
[791] Li, M., Liu, Q., Jia, Z., Xu, X., Cheng, Y., Zheng, Y., Xi, T., Wei, S. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 2014, 67, 185-197.
[792] Demnati, I., Grossin, D., Combes, C., Parco, M., Braceras, I., Rey, C. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings. Biomed. Mater. 2012, 7, 054101 (10 pages).

[793] Chen, W., Oh, S., Ong, A.P., Oh, N., Liu, Y., Courtney, H.S., Appleford, M., Ong, J.L. Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J. Biomed. Mater. Res. A 2007, 82A, 899-906.
[794] Qu, J., Lu, X., Li, D., Ding, Y., Leng, Y., Weng, J., Qu, S., Feng, B., Watari, F. Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97B, 40-48.
[795] Eraković, S., Janković, A., Veljović, D., Palcevskis, E., Mitrić, M., Stevanović, T., Janaćković, D., Miskovic-Stankovic, V. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. J. Phys. Chem. B 2013, 117, 1633-1643.
[796] Mirzaee, M., Vaezi, M., Palizdar, Y. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Mater. Sci. Eng. C 2016, 69, 675-684.
[797] Chen, W., Liu, Y., Courtney, H.S., Bettenga, M., Agrawal, C.M., Bumgardner, J.D., Ong, J.L. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006, 27, 5512-5517.
[798] Syromotina, D.S., Surmeneva, M.A., Gorodzha, S.N., Pichugin, V.F., Ivanova, A.A., Grubova, I.Y., Kravchuk, K.S., Gogolinskii, K.V., Prymak, O., Epple, M., Surmenev, R.A. Physical-mechanical characteristics of RF magnetron sputter-deposited coatings based on silver-doped hydroxyapatite. Russ. Phys. J. 2014, 56, 1198-1205.
[799] Ivanova, A.A., Surmeneva, M.A., Tyurin, A.I., Pirozhkova, T.S., Shuvarin, I.A., Prymak, O., Epple, M., Chaikina, M.V., Surmenev, R.A. Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films. Appl. Surf. Sci. 2016, 360, 929-935.
[800] Noda, I., Miyaji, F., Ando, Y., Miyamoto, H., Shimazaki, T., Yonekura, Y., Miyazaki, M., Mawatari, M., Hotokebuchi, T. Development of novel thermal sprayed antibacterial coating and evaluation of release properties of silver ions. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 89B, 456-465.
[801] Fielding, G.A., Roy, M., Bandyopadhyay, A., Bose, S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 2012, 8, 3144-3152.
[802] Guimond-Lischer, S., Ren, Q., Braissant, O., Gruner, P., Wampfler, B., Maniura-Weber, K. Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants. Biointerphases 2016, 11, 011012.
[803] Sanpo, N., Tan, M.L., Cheang, P., Khor, K.A. Antibacterial property of cold-sprayed HA-Ag/PEEK coating. J. Therm. Spray Techn. 2009, 18, 10-15.
[804] Bai, X., More, K., Rouleau, C.M., Rabiei, A. Functionally graded hydroxyapatite coatings doped with antibacterial components. Acta Biomater. 2010, 6, 2264-2273.
[805] Jelinek, M., Kocourek, T., Remsa, J., Weiserová, M., Jurek, K., Mikšovský, J., Strnad, J., Galandáková, A., Ulrichová, J. Antibacterial, cytotoxicity and physical properties of laser – silver doped hydroxyapatite layers. Mater. Sci. Eng. C 2013, 33, 1242-1246.
[806] Yanovska, A.A., Stanislavov, A.S., Sukhodub, L.B., Kuznetsov, V.N., Illiashenko, V.Y., Danilchenko, S.N., Sukhodub, L.F. Silver-doped hydroxyapatite coatings formed on Ti–6Al–4V substrates and their characterization. Mater. Sci. Eng. C 2014, 36, 215-220.
[807] Xia, W., Lindahl, C., Lausmaa, J., Borchardt, P., Ballo, A., Thomsen, P., Engqvist, H. Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta Biomater. 2010, 6, 1591-1600.
[808] Wang, X., Ito, A., Sogo, Y., Li, X., Oyane, A. Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomater. 2010, 6, 962-968.
[809] Wang, X., Ito, A., Sogo, Y., Li, X., Oyane, A. Silicate-apatite composite layers on external fixation rods and in vitro evaluation using fibroblast and osteoblast. J. Biomed. Mater. Res. A 2010, 92A, 1181-1189.
[810] Hijón, N., Cabañas, M.V., Peña, J., Vallet-Regí, M. Dip coated silicon-substituted hydroxyapatite films. Acta Biomater. 2006, 2, 567-574.
[811] Bir, F., Khireddine, H., Touati, A., Sidane, D., Yala, S., Oudadesse, H. Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates. Appl. Surf. Sci. 2012, 258, 7021-7030.
[812] Singh, G., Singh, H., Sidhu, B.S. Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application. Appl. Surf. Sci. 2013, 284, 811-818.
[813] Zhou, H., Hou, S., Zhangd, M., Yang, M., Deng, L., Xiong, X., Ni, X. Deposition of calcium phosphate coatings using condensed phosphates (P2O74- and P3O105-) as phosphate source through induction heating. Mater. Sci. Eng. C 2016, 69, 337-342.
[814] Drevet, R., Lemelle, A., Untereiner, V., Manfait, M., Sockalingum, G.D., Benhayoune, H. Morphological modifications of electrodeposited calcium phosphate coatings under amino acids effect. Appl. Surf. Sci. 2013, 268, 343-348.
[815] Yusoff, M.F.M., Kadir, M.R.A., Iqbal, N., Hassan, M.A., Hussain, R. Dipcoating of poly (ε-caprolactone)/hydroxyapatite composite coating on Ti6Al4V for enhanced corrosion protection. Surf. Coat. Tech. 2014, 245, 102-107.
[816] Oyane, A., Wang, X., Sogo, Y., Ito, A., Tsurushima, H. Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomater. 2012, 8, 2034-2046.
[817] Xiao, X.F., Liu, R.F., Zheng, Y.Z. Characterization of hydroxyapatite/titania composite coatings codeposited by a hydrothermal–electrochemical method on titanium. Surf. Coat. Tech. 2006, 200, 4406-4413.
[818] Kim, D.Y., Kim, M., Kim, H.E., Koh, Y.H., Kim, H.W., Jang, J.H. Formation of hydroxyapatite within porous TiO2 layer by micro-arc oxidation coupled with electrophoretic deposition. Acta Biomater. 2009, 5, 2196-2205.
[819] Shirkhanzadeh, M., Azadegan, M., Liu, G.Q. Bioactive delivery systems for the slow-release of antibiotics – incorporation of Ag+ ions into micro-porous hydroxyapatite coatings. Mater. Lett. 1995, 24, 7-12.
[820] Lee, I.S., Whang, C.N., Ohm, K.S., Parkm, J.C., Leem, K.Y., Lee, G.H., Chung, S.M., Sun, X.D. Formation of silver incorporated calcium phosphate film for medical applications. Nucl. Instrum. Meth. B 2006, 242, 45-47.
[821] Ciobanu, G., Ilisei, S., Luca, C. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold. Mater. Sci. Eng. C 2014, 35, 36-42.
[822] Tian, B., Chen, W., Dong, Y., Marymont, J.V., Lei, Y., Ke, Q., Guo, Y., Zhu, Z. Silver nanoparticle-loaded hydroxyapatite coating: structure, antibacterial properties, and capacity for osteogenic induction in vitro. RSC Adv. 2016, 6, 8549-8562.
[823] Fu, C., Zhang, X., Savino, K., Gabrys, P., Gao, Y., Chaimayo, W., Miller, B.L., Yates, M.Z. Antimicrobial silver-hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surf. Coat. Tech. 2016, 301, 13-19.
[824] Funao, H., Nagai, S., Sasaki, A., Hoshikawa, T., Tsuji, T., Okada, Y., Koyasu, S., Toyama, Y., Nakamura, M., Aizawa, M., Matsumoto, M., Ishii, K. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection. Sci. Rep. 2016, 6, 23238.
[825] Yang, F., Liu, Y. Artificial hydroxyapatite film for the conservation of outdoor marble artworks. Mater. Lett. 2014, 124, 201-203.
[826] Sassoni, E., Naidu, S., Scherer, G.W. The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. J. Cult. Herit. 2011, 12, 346-355.
[827] Yang, F., Liu, Y., Zuo, G., Wanga, X., Hua, P., Ma, Q., Dong, G., Yue, Y., Zhang, B. Hydroxyapatite conversion layer for the preservation of surface gypsification marble relics. Corros. Sci. 2014, 88, 6-9.
[828] Franzoni, E., Sassoni, E., Graziani, G. Brushing, poultice or immersion? The role of the application technique on the performance of a novel hydroxyapatite-based consolidating treatment for limestone. J. Cult. Herit. 2015, 16, 173-184.
[829] Sassoni, E., Franzoni, E. Sugaring marble in the Monumental Cemetery in Bologna (Italy): characterization of naturally and artificially weathered samples and first results of consolidation by hydroxyapatite. Appl. Phys. A 2014, 117, 1893-1906.

[830] Kanno, C.M., Sanders, R.L., Flynn, S.M., Lessard, G., Myneni, S.C.B. Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone. Environ. Sci. Technol. 2014, 48, 5798-5807.
[831] Naidu, S., Scherer, G.W. Nucleation, growth and evolution of calcium phosphate films on calcite. J. Coll. Interf. Sci. 2014, 435, 128-137.
[832] Graziania, G., Sassonia, E., Franzonia, E., Scherer, G.W. Hydroxyapatite coatings for marble protection: optimization of calcite covering and acid resistance. Appl. Surf. Sci. 2016, 368, 241-257.
[833] Huang, W., Day, D.E., Kittiratanapiboon, K., Rahaman, M.N. Kinetics and mechanism of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J. Mater. Sci. Mater. Med. 2006, 17, 583-596.
[834] Zhao, D., Huang, W., Rahaman, M.N., Day, D.E., Wang, D. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution. Acta Biomater. 2009, 5, 1265-1273.
[835] Li, Y., Rahaman, M.N., Fu, Q., Bal, B.S., Yao, A., Day, D.E. Conversion of bioactive borosilicate glass to multilayered hydroxyapatite in dilute phosphate solution. J. Am. Ceram. Soc. 2007, 90, 3804-3810.
[836] Roy, D.M., Linnehan, S.K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974, 247, 220-222.
[837] Xu, Y., Wang, D., Yang, L., Tang, H. Hydrothermal conversion of coral into hydroxyapatite. Mater. Charact. 2001, 47, 83-87.
[838] Ripamonti, U., Crooks, J., Khoali, L., Roden, L. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials 2009, 30, 1428-1439.
[839] Tang, S., Tian, B., Guo, Y.J., Zhu, Z.A., Guo, Y.P. Chitosan/carbonated hydroxyapatite composite coatings: fabrication, structure and biocompatibility. Surf. Coat. Tech. 2014, 251, 210-216.
[840] Wu, X., Zhao, X., Li, Y., Yang, T., Yan, X., Wang, K. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method. Mater. Sci. Eng. C 2015, 54, 150-157.
[841] Tamura, A., Asaoka, T., Furukawa, K., Ushida, T., Tateishi, T. Application of α-TCP/HAp functionally graded porous beads for bone regenerative scaffold. Adv. Sci. Technol. 2013, 86, 63-69.
[842] Polikreti, K., Maniatis, Y. Micromorphology, composition and origin of the orange patina on the marble surfaces of Propylaea (Acropolis, Athens). Sci. Total Environ. 2003, 308, 111-119.
[843] Maravelaki-Kalaitzaki, P. Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): characterization and origin. Anal. Chim. Acta 2005, 532, 187-198.
[844] LeGeros, R.Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 2008, 108, 4742-4753.
[845] Peraire, C., Arias, J.L., Bernal, D., Pou, J., León, B., Arañó, A., Roth, W. Biological stability and osteoconductivity in rabbit tibia of pulsed laser deposited hydroxylapatite coatings. J. Biomed. Mater. Res. A 2006, 77A, 370-379.
[846] Arias, J.L., Mayor, M.B., Pou, J., Leng, Y., León, B., Pérez-Amor, M. Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials 2003, 24, 3403-3408.
[847] Leeuwenburgh, S.C.G., Wolke, J.G.C., Lommen, L., Pooters, T., Schoonman, J., Jansen, J.A. Mechanical properties of porous, electrosprayed calcium phosphate coatings. J. Biomed. Mater. Res. A 2006, 78A, 558-569.
[848] Blalock, T.L., Bai, X., Narayan, R., Rabiei, A. Effect of substrate temperature on mechanical properties of calcium phosphate coatings. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85B, 60-67.
[849] Saber-Samandari, S., Gross, K.A. Nanoindentation reveals mechanical properties within thermally sprayed hydroxyapatite coatings. Surf. Coat. Tech. 2009, 203, 1660-1664.
[850] Gross, K.A., Saber-Samandari, S., Heemann, K.S. Evaluation of commercial implants with nanoindentation defines future development needs for hydroxyapatite coatings. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93B, 1-8.
[851] McManamon, C., de Silva, J.P., Power, J., Ramirez-Garcia, S., Morris, M.A., Cross, G.L. Interfacial characteristics and determination of cohesive and adhesive strength of plasma-coated hydroxyapatite via nanoindentation and microscratch techniques. Langmuir 2014, 30, 11412-11420.
[852] Hasan, F., Wang, J., Berndt, C. Evaluation of the mechanical properties of plasma sprayed hydroxyapatite coatings. Appl. Surf. Sci. 2014, 303, 155-162.
[853] Ievlev, V.M., Kostyuchenko, A.V., Darinskii, B.M., Barinov, S.M. Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings. Phys. Solid State 2014, 56, 321-329.
[854] Hasan, M.F., Wang, J., Berndt, C. Determination of the mechanical properties of plasma-sprayed hydroxyapatite coatings using the Knoop indentation technique. J. Therm. Spray Tech. 2015, 24, 865-877.
[855] Ben-Nissan, B., Latella, B.A., Bendavid, A. 3.305. Biomedical thin films: mechanical properties. In: Comprehensive biomaterials. Ducheyne, P., Healy, K., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J. (Eds.). Vol. 3. Elsevier: Amsterdam, Netherlands, 2011; pp. 63-73.
[856] Kummer, F.J., Jaffe, W.L. Stability of a cyclically loaded hydroxylapatite coating: effect of substrate material, surface, preparation and testing environment. J. Appl. Mater. 1992, 3, 211-215.
[857] Reis, R.L., Monteiro, F.J., Hastings, G.W. Stability of hydroxylapatite plasma-sprayed coated Ti–6Al–4V under cyclic bending in simulated physiological solution. J. Mater. Sci. Mater. Med. 1994, 5, 457-462.
[858] Wolke, J.G.C., van der Waerden, J.P.C.M., de Groot, K., Jansen, J.A. Stability of radiofrequency magnetron sputtered calcium phosphate coatings under cyclically loaded conditions. Biomaterials 1997, 18, 483-488.
[859] Clemens, J.A.M., Wolke, J.G.C., Klein, C.P.A.T., de Groot, K. Fatigue behavior of calcium phosphate coatings with different stability under dry and wet conditions. J. Biomed. Mater. Res. 1999, 48, 741-748.
[860] Loanapakul, T., Nimkerdphol, A.R., Otsuka, Y., Mutoh, Y. Fatigue behavior and apatite precipitation of plasma-sprayed HAp coating on commercially pure titanium substrate in simulated body fluid (SBF). Adv. Mater. Res. 2012, 506, 66-69.
[861] Nimkerdphol, A.R., Loanapakul, T., Otsuka, Y., Mutoh, Y. Effect of apatite precipitation on failure behavior of hydroxyapatite coating layer on titanium substrate. Adv. Mater. Res. 2012, 506, 61-65.
[862] Otsuka, Y., Kojima, D., Mutoh, Y. Prediction of cyclic delamination lives of plasma-sprayed hydroxyapatite coating on Ti–6Al–4V substrates with considering wear and dissolutions. J. Mech. Behav. Biomed. Mater. 2016, 64, 113-124.
[863] Haynes, J.A., Rigney, E.D., Janowski, G.M. Effects of cyclic bending and physiological solution on plasma-sprayed hydroxylapatite coatings of varying crystallinity. J. Biomed. Mater. Res. 1999, 48, 403-410.
[864] Ashroff, S., Napper, S.A., Hale Jr., P.N., Siriwardane, U., Mukherjee, D.P. Cyclic fatigue of hydroxyapatite-coated titanium alloy implant material – effect of crystallinity. J. Long-Term Eff. Med. Implant 1996, 6, 143-155.
[865] Zhang, C., Leng, Y., Zhang, X. In vitro stability of plasma-sprayed hydroxyapatite coatings on Ti–6Al–4V implants under cyclic loading. J. Biomed. Mater. Res. 2000, 50, 267-275.
[866] Gineste, L., Gineste, M., Ranz, X., Ellefterion, A., Guilhem, A., Rouquet, N., Frayssinet, P. Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J. Biomed. Mater. Res. 1999, 48, 224-234.
[867] Wang, B.C., Lee, T.M., Chang, E., Yang, C.Y. The shear strength and the failure mode of plasma-sprayed hydroxyapatite coating to bone: the effect of coating thickness. J. Biomed. Mater. Res. 1993, 27, 1315-1327.
[868] Yang, C.Y., Wang, B.C., Lee, T.M., Chang, E., Chang, G.L. Intramedullary implant of plasma-sprayed hydroxyapatite coating: an interface study. J. Biomed. Mater. Res. 1997, 36, 39-48.
[869] Vercaigne, S., Wolke, J.G.C., Naert, I., Jansen, J.A. A mechanical evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of the goat: Part 1. Clin. Oral Implant. Res. 2000, 11, 305-313.
[870] Lynn, A.K., DuQuesnay, D.L. Hydroxyapatite-coated Ti–6Al–4V Part 1: The effect of coating thickness on mechanical fatigue behavior. Biomaterials 2002, 23, 1937-1946.
[871] Svehla, M., Morberg, P., Bruce, W., Zicat, B., Walsh, W.R. The effect of substrate roughness and hydroxyapatite coating thickness on implant shear strength. J Arthroplasty 2002, 17, 304-311.
[872] Lee, J.H., Kim, S.G., Lim, S.C. Histomorphometric study of bone reactions with different hydroxyapatite coating thickness on dental implants in dogs. Thin Solid Films 2011, 519, 4618-4622.
[873] Reikeras, O., Gunderson, R.B. Failure of HA coating on a gritblasted acetabular cup: 155 Patients followed for 7–10 years. Acta Orthop. Scand. 2002, 73, 104-108.
[874] Pawłowski, L. The science and engineering of thermal spray coatings. 2nd ed.; Wiley: New York, USA, 2008; 691 pp.
[875] Guipont, V., Jeandin, M., Bansard, S., Khor, K.A., Nivard, M., Berthe, L., Cuq-Lelandais, J.P., Boustie, M. Bond strength determination of hydroxyapatite coatings on Ti–6Al–4V substrates using the LAser Shock Adhesion Test (LASAT). J. Biomed. Mater. Res. A 2010, 95A, 1096-1104.
[876] Nimb, L., Gotfredsen, K., Steen, J.J. Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study. Acta Orthop. Belg. 1993, 59, 333-338.
[877] ASTM C633 – 01(2008) Standard test method for adhesion or cohesion strength of thermal spray coatings. http://www.astm.org/Standards/C633.htm.
[878] ASTM F1147 – 05(2011) Standard test method for tension testing of calcium phosphate and metallic coatings. http://www.astm.org/Standards/F1147.htm.
[879] Mukherjee, D.P., Dorairaj, N.R., Mills, D.K., Graham, D., Krauser, J.T. Fatigue properties of hydroxyapatite-coated dental implants after exposure to a periodontal pathogen. J. Biomed. Mater. Res. 2000, 53, 467-474.
[880] Cheng, K., Ren, C., Weng, W., Du, P., Shen, G., Han, G., Zhang, S. Bonding strength of fluoridated hydroxyapatite coatings: a comparative study on pull-out and scratch analysis. Thin Solid Films 2009, 517, 5361-5364.
[881] Toque, J.A., Herliansyah, M.K., Hamdi, M., Ide-Ektessabi, A., Sopyan, I. Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing. J. Mech. Behav. Biomed. Mater. 2010, 3, 324-330.
[882] Hamdi, M., Toque, J.A., Ide-Ektessabi, A. Wear characteristics and adhesion behavior of calcium phosphate thin-films. Key Eng. Mater. 2010, 443, 469-474.
[883] Barnes, D., Johnson, S., Snell, R., Best, S. Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates. J. Mech. Behav. Biomed. Mater. 2012, 6, 128-138.
[884] Roland, T., Pelletier, H., Krier, J. Scratch resistance and electrochemical corrosion behavior of hydroxyapatite coatings on Ti6Al4V in simulated physiological media. J. Appl. Electrochem. 2013, 43, 53-63.
[885] Kulyashova, K., Sharkeev, Y., Sainova, A. Mechanical properties of calcium phosphate coatings produced by method of RF-magnetron sputtering on bioinert alloys. Adv. Mater. Res. 2014, 1013, 188-193.
[886] ISO 20502:2005 Fine ceramics (advanced ceramics, advanced technical ceramics) – Determination of adhesion of ceramic coatings by scratch testing. http://www.iso. org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=34189.
[887] Mohseni, E., Zalnezhad, E., Bushroa, A.R. Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: a review paper. Int. J. Adhes. Adhes. 2014, 48, 238-257.
[888] Vasanthan, A., Kim, H., Drukteinis, S., Lacefield, W. Implant surface modification using laser guided coatings: in vitro comparison of mechanical properties. J. Prosthodontics 2008, 17, 357-364.
[889] Filiaggi, M.J., Coombs, N.A., Pilliar, R.M. Characterization of the interface in plasma-sprayed HA coating/Ti–6Al–4V implant system. J. Biomed. Mater. Res. 1991, 25, 1211-1229.
[890] Wang, X., Li, Y., Lin, J., Hodgson, P.D., Wen, C. Effect of heat-treatment atmosphere on the bond strength of apatite layer on Ti substrate. Dent. Mater. 2008, 24, 1549-1555.
[891] Rajesh, P., Muraleedharan, C.V., Komath, M., Varma, H. Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer. J. Mater. Sci. Mater. Med. 2011, 22, 497-505.
[892] Yang, S., Man, H.C., Xing, W., Zheng, X. Adhesion strength of plasma-sprayed hydroxyapatite coatings on laser gas-nitrided pure titanium. Surf. Coat. Tech. 2009, 203, 3116-3122.
[893] Yang, S., Xing, W., Man, H.C. Pulsed laser deposition of hydroxyapatite film on laser gas nitriding NiTi substrate. Appl. Surf. Sci. 2009, 255, 9889-9892.
[894] Man, H.C., Chiu, K.Y., Cheng, F.T., Wong, K.H. Adhesion study of pulsed laser deposited hydroxyapatite coating on laser surface nitrided titanium. Thin Solid Films 2009, 517, 5496-5501.
[895] Nelea, V., Morosanu, C., Bercu, M., Mihailescu, I.N. Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate. J. Mater. Sci. Mater. Med. 2007, 18, 2347-2354.
[896] Berezhnaya, A.Y., Mittova, V.O., Kukueva, E.V., Mittova, I.Y. Effect of high-temperature annealing on solid-state reactions in hydroxyapatite/TiO2 films on titanium substrates. Inorg. Mater. 2010, 46, 971-977.
[897] Yang, J.X., Jiao, Y.P., Cui, F.Z., Lee, I.S., Yin, Q.S., Zhang, Y. Modification of degradation behavior of magnesium alloy by IBAD coating of calcium phosphate. Surf. Coat. Tech. 2008, 202, 5733-5736.
[898] Kokubo, T., Miyaji, F., Kim, H.M. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J. Am. Ceram. Soc. 1996, 79, 1127-1129.
[899] Kim, H.M., Miyaji, F., Kokubo, T., Nakamura, T. Bonding strength of bonelike apatite layer to Ti metal substrate. J. Biomed. Mater. Res. 1997, 38, 121-127.
[900] Chen, X., Li, Y., Hodgson, P.D., Wen, C. Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Mater. Sci. Eng. C 2009, 29, 165-171.
[901] Wu, V.M., Uskoković, V. Is there a relationship between solubility and resorbability of different calcium phosphate phases in vitro? Biochim. Biophys. Acta 2016, 1860, 2157-2768.
[902] Tucker, B.E., Cottel, C.M., Auyeung, R.C.Y., Spector, M., Nancollas, G.H. Pre-conditioning and dual constant composition dissolution kinetics of pulsed laser deposited hydroxyapatite thin films on silicon substrates. Biomaterials 1996, 17, 631-637.
[903] Xue, W., Liu, X., Zheng, X., Ding C. Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J. Biomed. Mater. Res. A 2005, 74A, 553-561.
[904] Khor, K.A., Li, H., Cheang, P., Boey, S.Y. In vitro behavior of HVOF sprayed calcium phosphate splats and coatings. Biomaterials 2003, 24, 723-735.
[905] Verestiuc, L., Morosanu, C., Bercu, M., Pasuk, I., Mihailescu, I.N. Chemical growth of calcium phosphate layers on magnetron sputtered HA films. J. Cryst. Growth 2004, 264, 483-491.
[906] van der Wal, E., Wolke, J.G.C., Jansen, J.A., Vredenberg, A.M. Initial reactivity of RF magnetron sputtered calcium phosphate thin films in simulated body fluids. Appl. Surf. Sci. 2005, 246, 183-192.
[907] van der Wal, E., Oldenburg, S.J., Heij, T., van der Gon, A.W.D., Brongersma, H.H., Wolke, J.G.C., Jansen, J.A., Vredenberg, A.M. Adsorption and desorption of Ca and PO4 species from SBFs on RF-sputtered calcium phosphate thin films. Appl. Surf. Sci. 2006, 252, 3843-3854.
[908] Heimann, R.B. Characterization of as-plasma-sprayed and incubated hydroxyapatite coatings with high resolution techniques. Materialwiss. Werkst. 2009, 40, 23-30.
[909] Ntsoane, T.P., Topic, M., Bucher, R. Near-surface in vitro studies of plasma sprayed hydroxyapatite coatings. Powder Diffr. 2011, 26, 138-143.
[910] Choudhary, L., Raman, R.K.S., Nie, J.F. In vitro evaluation of degradation of a calcium phosphate coating on a Mg-Zn-Ca alloy in a physiological environment. Corrosion 2012, 68, 499-506.
[911] Edreira, E.R.U., Wolke, J.G.C., Aldosari, A.A.F., Al-Johany, S.S., Anil, S., Jansen, J.A., van den Beucken, J.J.J.P. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance. J. Biomed. Mater. Res. A 2015, 103A, 300-310.
[912] Luo, Z.S., Cui, F.Z., Feng, Q.L., Li, H.D., Zhu, X.D., Spector, M. In vitro and in vivo evaluation of degradability of hydroxyapatite coatings synthesized by ion beam-assisted deposition. Surf. Coat. Tech. 2000, 131, 192-195.
[913] Surmenev, R.A., Ryabtseva, M.A., Shesterikov, E.V., Pichugin, V.F., Peitsch, T., Epple, M. The release of nickel from nickel-titanium (NiTi) is strongly reduced by a sub-micrometer thin layer of calcium phosphate deposited by RF-magnetron sputtering. J. Mater. Sci. Mater. Med. 2010, 21, 1233-1239.
[914] Ueda, K., Kawasaki, Y., Narushima, T., Goto, T., Kurihara, J., Nakagawa, H., Kawamura, H., Taira, M. Calcium phosphate films with/without heat treatments fabricated using RF magnetron sputtering. J. Biomech. Sci. Eng. 2009, 4, 392-403.
[915] Gross, K.A., Berndt, C.C. In vitro testing of plasma-sprayed hydroxyapatite coatings. J. Mater. Sci. Mater. Med. 1994, 5, 219-224.
[916] Gross, K.A., Berndt, C.C., Goldschlag, D.D., Iacono, V.J. In vitro changes of hydroxyapatite coatings. Int. J. Oral Max. Impl. 1997, 12, 589-597.
[917] Boyd, A.R., Meenan, B.J., Leyland, N.S. Surface characterisation of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution. Surf. Coat. Tech. 2006, 200, 6002-6013.
[918] Coelho, P.G., de Assis, S.L., Costa, I., Thompson, V.P. Corrosion resistance evaluation of a Ca- and P-based bioceramic thin coating in Ti–6Al–4V. J. Mater. Sci. Mater. Med. 2009, 20, 215-222.
[919] Lim, Y.M., Kim, B.H., Jeon, Y.S., Jeon, K.O., Hwang, K.S. Calcium phosphate films deposited by electrostatic spray deposition and an evaluation of their bioactivity. J. Ceram. Process. Res. 2005, 6, 255-258.
[920] Long, T., Hong, F., Shen, S., Wang, L., Wang, Y., Wang, J. In vitro degradation of electrodeposited calcium phosphate coatings by osteoclast-like cells. Biomed. Mater. 2012, 7, 045012.
[921] Klein, C.P.A.T., Patka, P., Wolke, J.G.C., de Blieck-Hogervorst, J.M.A., de Groot, K. Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite and α-tricalcium phosphate. Biomaterials 1994, 15, 146-150.
[922] Klein, C.P.A.T., Patka, P., van der Lubbe, H.B.M., Wolcke, J.G.C., de Groot, K. Plasma-sprayed coatings of tetracalcium phosphate, hydroxylapatite, and α-TCP on titanium alloy: an interface study. J. Biomed. Mater. Res. 1991, 25, 53-65.
[923] Pezeshki, P., Lugowski, S., Davies, J.E. Dissolution behavior of calcium phosphate nanocrystals deposited on titanium alloy surfaces. J. Biomed. Mater. Res. A 2010, 94A, 660-666.
[924] Klein, C.P.A.T., Wolke, J.G.C., de Blieck-Hogervorst, J.M.A., de Groot, K. Calcium phosphate plasma-sprayed coatings and their stability: an in vivo study. J. Biomed. Mater. Res, 1994, 28, 909-917.
[925] Dhert, W.J.A., Klein, C.P.A.T.,Wolke, J.G.C., van der Velde, E.A., de Groot, K., Rozing, P.M. A mechanical investigation of fluorapatite, magnesium whitlockite and hydroxylapatite plasma-sprayed coatings in goats. J. Biomed. Mater. Res. 1992, 25, 1183-1200.
[926] Dhert, W.J.A., Klein, C.P.A.T., Jansen, J.A., van der Velde, E.A., Vriesde, R.C., de Groot, K., Rozing, P.M. A histological and histomorphometrical investigation of fluorapatite, magnesium whitlockite and hydroxylapatite plasma-sprayed coatings in goats. J. Biomed. Mater. Res. 1993, 27, 127-138.
[927] Caulier, H., van der Waerden, J.P.C.M., Paquay, Y.C.G.J., Wolke, J.G.C., Kalk, W., Naert, I., Jansen, J.A. Effect of calcium phosphate (Ca-P) coatings on trabecular bone response: a histological study. J. Biomed. Mater. Res. 1995, 29, 1061-1069.
[928] de Bruijn, J.D., Bovell, Y.P., van Blitterswijk, C.A. Structural arrangements at the interface between plasma sprayed calcium phosphates and bone. Biomaterials 1994, 15, 543-550.
[929] Cleries, L., Fernandez-Pradas, J.M., Morenza, J.L. Behaviour in simulated body fluid of calcium phosphate coatings obtained by laser ablation. Biomaterials 2000, 21, 1861-1865.
[930] Rojaee, R., Fathi, M.H., Raeissi, K., Sharifnabi, A. Biodegradation assessment of nanostructured fluoridated hydroxyapatite coatings on biomedical grade magnesium alloy. Ceram. Int. 2014, 40, 15149-15158.
[931] Hulshoff, J.E.G., van Dijk, K., van der Waerden, J.P.C.M., Kalk, W., Jansen, J.A. A histological and histomorphometrical evaluation of screw-type calciumphosphate (Ca-P) coated implants; an in vivo experiment in maxillary cancellous bone of goats. J. Mater. Sci. Mater. Med. 1996, 7, 603-609.
[932] Caulier, H., van der Waerden, J.P.C.M., Wolke, J.G.C., Kalk, W., Naert, I., Jansen, J.A. A histological and histomorphometrical evaluation of the application of screw-designed calciumphosphate (Ca-P)-coated implants in the cancellous maxillary bone of the goat. J. Biomed. Mater. Res. 1997, 35, 19-30.
[933] Caulier, H., Hayakawa, T., Naert, I., van der Waerden, J.P.C.M., Wolke, J.G.C., Jansen, J.A. An animal study on the bone behaviour of Ca-P-coated implants: influence of implant location. J. Mater. Sci. Mater. Med. 1997, 8, 531-536.
[934] Siebers, M.C., Matsuzaka, K., Walboomers, X.F., Leeuwenburgh, S.C.G., Wolke, J.G.C., Jansen, J.A. Osteoclastic resorption of calcium phosphate coatings applied with electrostatic spray deposition (ESD), in vitro. J. Biomed. Mater. Res. A 2005, 74A, 570-580.
[935] Manders, P.J.D., Wolke, J.G.C., Jansen, J.A. Bone response adjacent to calcium phosphate electrostatic spray deposition coated implants: an experimental study in goats. Clin. Oral Implant. Res. 2006, 17, 548-553.
[936] Simank, H.G., Stuber, M., Frahm, R., Helbig, L., van Lenthe H., Müller R. The influence of surface coatings of dicalcium phosphate (DCPD) and growth and differentiation factor-5 (GDF-5) on the stability of titanium implants in vivo. Biomaterials 2006, 27, 3988-3994.
[937] Mello, A., Hong, Z., Rossi, A.M., Luan, L., Farina, M., Querido, W., Eon, J., Terra, J., Balasundaram, G., Webster, T., Feinerman, A., Ellis, D.E., Ketterson, J.B., Ferreira, C.L. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Biomed. Mater. 2007, 2, 67-77.
[938] Hashimoto, Y., Kawashima, M., Hatanaka, R., Kusunoki, M., Nishikawa, H., Hontsu, S., Nakamura, M. Cytocompatibility of calcium phosphate coatings deposited by an ArF pulsed laser. J. Mater. Sci. Mater. Med. 2008, 19, 327-333.
[939] Coelho, P.G., Lemons, J.E. Physico/chemical characterization and in vivo evaluation of nanothickness bioceramic depositions on alumina-blasted/acid-etched Ti–6Al–4V implant surfaces. J. Biomed. Mater. Res. A 2009, 90A, 351-361.
[940] Sima, L.E., Stan, G.E., Morosanu, C.O., Melinescu, A., Ianculescu, A., Melinte, R., Neamtu, J., Petrescu, S.M. Differentiation of mesenchymal stem cells onto highly adherent radio frequency-sputtered carbonated hydroxylapatite thin films. J. Biomed. Mater. Res. A 2010, 95A, 1203-1214.
[941] Hong, Z., Mello, A., Yoshida, T., Luan, L., Stern, P.H., Rossi, A., Ellis, D.E., Ketterson, J.B. Osteoblast proliferation on hydroxyapatite coated substrates prepared by right angle magnetron sputtering. J. Biomed. Mater. Res. A 2010, 93A, 878-885.
[942] Quaranta, A., Iezzi, G., Scarano, A., Coelho, P.G., Vozza, I., Marincola, M., Piattelli, A. A histomorphometric study of nanothickness and plasma-sprayed calcium-phosphorous-coated implant surfaces in rabbit bone. J. Periodontology 2010, 81, 556-561.
[943] Cairns, M.L., Meenan, B.J., Burke, G.A., Boyd, A.R. Influence of surface topography on osteoblast response to fibronectin coated calcium phosphate thin films. Colloid Surface B 2010, 78, 283-290.
[944] Gross, K.A., Muller, D., Lucas, H., Haynes, D.R. Osteoclast resorption of thermal spray hydoxyapatite coatings is influenced by surface topography. Acta Biomater. 2012, 8, 1948-1956.
[945] Shi, J., Dong, L.L., He, F., Zhao, S., Yang, G.L. Osteoblast responses to thin nanohydroxyapatite coated on roughened titanium surfaces deposited by an electrochemical process. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, e311-e316.
[946] McCafferty, M.M., Burke, G.A., Meenan, B.J. Mesenchymal stem cell response to conformal sputter deposited calcium phosphate thin films on nanostructured titanium surfaces. J. Biomed. Mater. Res. A 2014, 102A, 3585-3597.
[947] Hayakawa, T., Yoshinari, M., Kiba, H., Yamamoto, H., Nemoto, K., Jansen, J.A. Trabecular bone response to surface roughened and calcium phosphate (Ca-P) coated titanium implants. Biomaterials 2002, 23, 1025-1031.
[948] Ong, J.L., Bessho, K., Cavin, R., Carnes, D.L. Bone response to radio frequency sputtered calcium phosphate implants and titanium implants in vivo. J. Biomed. Mater. Res. 2002, 59, 184-190.
[949] Dalton, J.E., Cook, S.D. In vivo mechanical and histological characteristics of HA-coated implants vary with coating vendor. J. Biomed. Mater. Res. 1995, 29, 239-245.
[950] Nguyen, H.Q., Deporter, D.A., Pilliar, R.M., Valiquette, N., Yakubovich, R. The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials 2004, 25, 865-876.
[951] Yan, Y., Wolke, J.G.C., de Ruijter, A., Li, Y., Jansen, J.A. Growth behavior of rat bone marrow cells on RF magnetron sputtered hydroxyapatite and dicalcium pyrophosphate coatings. J. Biomed. Mater. Res. A 2006, 78A, 42-49.
[952] Zhao, B.H., Lee, I.S., Bai, W., Cui, F.Z., Feng, H.L. Improvement of fibroblast adherence to titanium surface by calcium phosphate coating formed with IBAD. Surf. Coat. Tech. 2005, 193, 366-371.
[953] Pareta, R.A., Taylor, E., Webster, T.J. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. Nanotechnology (2008, 19, 265101.
[954] Drevet, R., Viteaux, A., Maurin, J.C., Benhayoune, H. Human osteoblast-like cells response to pulsed electrodeposited calcium phosphate coatings. RSC Adv. 2013, 3, 11148-11154.
[955] Ball, M.D., Downes, S., Scotchford, C.A., Antonov, E.N., Bagratashvili, V.N., Popov, V.K., Lo, W.J., Grant, D.M., Howdle, S.M. Osteoblast growth on titanium foils coated with hydroxyapatite by pulsed laser ablation. Biomaterials 2001, 22, 337-347.
[956] Bucci-Sabattini, V., Cassinelli, C., Coelho, P.G., Minnici, A., Trani, A., Ehrenfest, D.M.D. Effect of titanium implant surface nanoroughness and calcium phosphate low impregnation on bone cell activity in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 109, 217-224.
[957] Gan, L., Wang, J., Tache, A., Valiquette, N., Deporter, D., Pilliar, R. Calcium phosphate sol-gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part II: short-term in vivo studies. Biomaterials 2004, 25, 5313-5321.
[958] Lavos-Valereto, I.C., Wolynec, S., Deboni, M.C.Z., Knig, Jr., B. In vitro and in vivo biocompatibility testing of Ti–6Al–7Nb alloy with and without plasma-sprayed hydroxyapatite coating. J. Biomed. Mater. Res. 2001, 58, 727-733.
[959] Lee, J.M., Lee, C. W. Comparison of hydroxyapatite-coated and non-hydroxyapatite-coated noncemented total hip arthroplasty in same patients. J. Arthroplasty 2007, 22, 1019-1023.
[960] Goosen, J.H., Kums, A.J., Kollen, B.J., Verheyen, C.C. Porous-coated femoral components with or without hydroxyapatite in primary uncemented total hip arthroplasty: a systematic review of randomized controlled trials. Arch. Orthop. Trauma Surg. 2009, 129, 1165-1169.
[961] Sato, T., Nakashima, Y., Komiyama, K., Yamamoto, T., Motomura, G., Iwamoto, Y. The absence of hydroxyapatite coating on cementless acetabular components does not affect long-term survivorship in total hip arthroplasty. J. Arthroplasty 2016, 31, 1228-1232.
[962] Valancius, K., Soballe, K., Nielsen, P.T., Laursen, M.B. No superior performance of hydroxyapatite-coated acetabular cups over porous-coated cups. Acta Orthop. 2013, 84, 544-548.
[963] Yoon, K.S., Kim, H.J., Lee, J.H., Kang, S.B., Seong, N.H., Koo, K.H. A randomized clinical trial of cementless femoral stems with and without hydroxyapatite/tricalcium-phosphate coating: an 8- to 12-year follow-up study. J. Arthroplasty 2007, 22, 504-508.
[964] Lazarinis, S., Krrholm, J., Hailer, N.P. Effects of hydroxyapatite coating on survival of an uncemented femoral stem. Acta Orthop. 2011, 82, 399-404.
[965] Camazzola, D., Hammond, T., Gandhi, R., Davey, J.R. A randomized trial of hydroxyapatite-coated femoral stems in total hip arthroplasty. A 13-year follow-up. J. Arthroplasty 2009, 24, 33-37.
[966] Stilling, M., Rahbek, O., Søballe, K. Inferior survival of hydroxyapatite versus titanium-coated cups at 15 years. Clin. Orthop. Rel. Res. 2009, 467, 2872-2879.
[967] Kim, Y.H., Kim, J.S., Joo, J.H., Park, J.W. Is hydroxyapatite coating necessary to improve survivorship of porous-coated titanium femoral stem? J. Arthroplasty 2012, 27, 559-563.
[968] Lombardi, Jr. A.V., Berend, K.R., Mallory, T.H. Hydroxyapatite-coated titanium porous plasma spray tapered stem: experience at 15 to 18 years. Clin. Orthop. Relat. Res. 2006, 453, 81-85.
[969] Reikerås, O. Femoral revision surgery using a fully hydroxyapatite-coated stem: a cohort study of twenty two to twenty seven years. Int. Orthop. 2017, 41, 271-275.
[970] Lee, J.J., Rouhfar, L., Beirne, O.R. Survival of hydroxyapatite-coated implants: a meta-analytic review. J. Oral Maxillofac. Surg. 2000, 58, 1372-1379.
[971] Gandhi, R., Davey, J.R., Mahomed, N.N. Hydroxyapatite coated femoral stems in primary total hip arthroplasty. A meta-analysis. J. Arthroplasty 2009, 24, 38-42.
[972] Gottlander, M., Johansson, C.B., Wennerberg, A., Albrektsson, T., Radin, S., Ducheyne, P. Bone tissue reactions to an electrophoretically applied calcium phosphate coating. Biomaterials 1997, 18, 551-557.
[973] Pegg, E.C., Matboli, F., Marriott, T., Khan, I., Scotchford, C.A. Topographical and chemical effects of electrochemically assisted deposited hydroxyapatite coatings on osteoblast-like cells. J. Biomater. Appl. 2014, 28, 946-953.
[974] Piattelli, A., Cosci, F., Scarano, A., Trisi, P. Localized chronic suppurative bone infection as a sequel of peri-implantitis in a hydroxyapatite-coated dental implant. Biomaterials 1995, 16, 917-920.
[975] Walschus, U., Hoene, A., Neumann, H.G., Wilhelm, L., Lucke, S., Luthen, F., Rychly, J., Schlosser, M. Morphometric immunohistochemical examination of the inflammatory tissue reaction after implantation of calcium phosphate-coated titanium plates in rats. Acta Biomater. 2009, 5, 776-784.
[976] Bloebaum, R.D., Beeks, D., Dorr, L.D., Savory, C.G., DuPont, J.A., Hofmann, A.A. Complications with hydroxyapatite particulate separation in total hip arthroplasty. Clin. Orthop. Relat. Res. 1994, 298, 19-26.
[977] Bauer, T.W. Hydroxyapatite: coating controversies. Orthopedics 1995, 18, 885-888.
[978] Morscher, E.W., Hefti, A., Aebi, U. Severe osteolysis after third-body wear due to hydroxyapatite particles from acetabular cup coating. J. Bone Jt. Surg. Br. 1998, 80, 267-272.
[979] Lazarinis, S., Krärholm, J., Hailer, N.P. Increased risk of revision of acetabular cups coated with hydroxyapatite: a Swedish Hip Arthroplasty Register study involving 8,043 total hip replacements. Acta Orthop. 2010, 81, 53-59.
[980] Oosterbos, C.J.M., Vogely, H.C., Nijhof, M.W., Fleer, A., Verbout, A.J., Tonino, A.J., Dhert, W.J.A. Osseointegration of hydroxyapatite-coated and noncoated Ti6Al4V implants in the presence of local infection: a comparative histomorphometrical study in rabbits. J. Biomed. Mater. Res. 2002, 60, 339-347.

[981] Geesink, R.G.T., de Groot, K., Klein, C.P.A.T. Chemical implant fixation using hydroxyl-apatite coatings. The development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates. Clin. Orthop. Rel. Res. 1987, 225, 147-170.
[982] Furlong, R.J., Osborn, J.F. Fixation of hip prostheses by hydroxyapatite ceramic coating. J. Bone Jt. Surg. Br. 1991, 73, 741-745.
[983] Bauer, T.W., Geesink, R.G.T., Zimmerman, R., McMahon, J.T. Hydroxyapatite-coated femoral stems. Histological analysis of components retrieved at autopsy. J. Bone Jt. Surg. Am. 1991, 73, 1439-1452.
[984] Buma, P., Gardeniers, J.W. Tissue reactions around a hydroxyapatite-coated hip prostheses: case report of a retrieveal specimen. J. Arthroplasty 1995, 10, 389-395.
[985] Thomas, K.A., Cook, C.D., Ray, R.J., Jarcho, M. Biologic response to hydroxylapatite coated titanium hips. J. Arthroplasty 1989, 4, 43-53.
[986] Park, Y.S., Yi, K.Y., Lee, I.S., Han, C.H., Jung, Y.C. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int. J. Oral Max. Impl. 2005, 20, 31-38.
[987] Siebers, M.C., Wolke, J.G.C., Walboomers, F.X., Leeuwenburgh, S.C.G., Jansen, J.A. In vivo evaluation of the trabecular bone behavior to porous electrostatic spray deposition-derived calcium phosphate coatings. Clin. Oral Implant. Res. 2007, 18, 354-361.
[988] Schwarz, M.L.R., Kowarsch, M., Rose, S., Becker, K., Lenz, T., Jani, L. Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model. J. Biomed. Mater. Res. A 2009, 89A, 667-678.
[989] Junker, R., Manders, P.J.D., Wolke, J.G.C., Borisov, Y., Jansen, J.A. Bone-supportive behavior of microplasma-sprayed CaP-coated implants: mechanical and histological outcome in the goat. Clin. Oral Implant. Res. 2010, 21, 189-200.
[990] Suzuki, M., Calasans-Maia, M.D., Marin, C., Granato, R., Gil, J.N., Granjeiro, J.M., Coelho, P.G. Effect of surface modifications on early bone healing around plateau root form implants: an experimental study in rabbits. J. Oral Maxillofac. Surg. 2010, 68, 1631-1638.
[991] Barkarmo, S., Wennerberg, A., Hoffman, M., Kjellin, P., Breding, K., Handa, P., Stenport, V. Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. J. Biomed. Mater. Res. A 2013, 101A, 465-471.
[992] Alghamdi, H.S., Bosco, R., van den Beucken, J.J.J.P., Walboomers, X.F., Jansen, J.A. Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats. Biomaterials 2013, 34, 3747-3757.
[993] Dong, Y., Yang, J., Wang, L., Ma, X., Huang, Y., Qiu, Z., Cui, F. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating. J. Biomater. Appl. 2014, 28, 990-997.
[994] Race, A., Heffernan, C.D., Sharkey, P.F. The addition of a hydroxyapatite coating changes the immediate postoperative stability of a plasma-sprayed femoral stem. J. Arthroplasty 2011, 26, 289-295.
[995] Søballe, K., Hansen, E.S., Brockstedt-Rasmussen, H.B., Bünger, C. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J. Bone Jt. Surg. Br. 1993, 75, 270-278.
[996] Daugaard, H., Elmengaard, B., Bechtold, J.E., Jensen, T., Soballe, K. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J. Biomed. Mater. Res. A 2010, 92A, 913-921.
[997] Mutsuzaki, H., Sogo, Y., Oyane, A., Ito, A. Improved bonding of partially osteomyelitic bone to titanium pins owing to biomimetic coating of apatite. Int. J. Mol. Sci. 2013, 15, 24366-24379.
[998] Yokota, S., Nishiwaki, N., Ueda, K., Narushima, T., Kawamura, H., Takahashi, T. Evaluation of thin amorphous calcium phosphate coatings on titanium dental implants deposited using magnetron sputtering. Implant Dent. 2014, 23, 343-350.
[999] Thorfve, A., Lindahl, C., Xia, W., Igawa, K., Lindahl, A., Thomsen, P., Palmquist, A., Tengvall, P. Hydroxyapatite coating affects the Wnt signaling pathway during peri-implant healing in vivo. Acta Biomater. 2014, 10, 1451-1462.
[1000] Jimbo, R., Coelho, P.G., Bryington, M., Baldassarri, M., Tovar, N., Currie, F., Hayashi, M., Janal, M.N., Andersson, M., Ono, D., Vandeweghe, S., Wennerberg, A. Nano hydroxyapatite-coated implants improve bone nanomechanical properties. J. Dent. Res. 2012, 91, 1172-1177.
[1001] Granato, R., Marin, C., Suzuki, M., Gil, J.N., Janal, M.N., Coelho, P.G. Biomechanical and histomorphometric evaluation of a thin ion beam bioceramic deposition on plateau root form implants: an experimental study in dogs. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 396-403.
[1002] Ozeki, K., Yuhta, T., Aoki, H., Nishimura, I., Fukui, Y. Push-out strength of hydroxyapatite coated by sputtering technique in bone. Bio-Med. Mater. Eng. 2001, 11, 63-68.
[1003] Rahbek, O., Overgaard, S., Lind, M., Bendix, K., Bunger, C., Soballe, K. Sealing effect of hydroxyapatite coating on peri-implant migration of particles. An experimental study in dogs. J. Bone Jt. Surg. Br. 2001, 83, 441-447.
[1004] Søballe, K., Hansen, E.S., Brockstedt-Rasmussen, H.B., Hjortdal, V.E., Juhl, G.I., Pedersen, C.M., Hvid, I., Bünger, C. Gap healing enhanced by hydroxyapatite coatings in dogs. Clin. Orthop. 1991, 272, 300-307.
[1005] Stephenson, P.K., Freeman, M.A.R., Revell, P.A., Germain, J., Tuke, M., Pirie, C.J. The effect of hydroxyapatite coating on growth of bone into cavities in an implant. J. Arthroplasty 1991, 6, 51-58.
[1006] Ducheyne, P., Healy, K.E. The effect of plasma-sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt-chromium alloys. J. Biomed. Mater. Res. 1988, 22, 1137-1163.
[1007] Sousa, S.R., Barbosa, M.A. Effect of hydroxyapatite thickness on metal ion release from Ti6Al4V substrates. Biomaterials 1996, 17, 397-404.
[1008] Ozeki, K., Yuhta, T., Aoki, H., Fukui, Y. Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings. Bio-Med. Mater. Eng. 2003, 13, 271-279.
[1009] Cheng, X., Roscoe, S.G. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins. Biomaterials 2005, 26, 7350-7356.
[1010] Zhang, Y.J., Xi, X.H., Jia, H.L., Dan, Z. Controlling the biodegradation rate of AZ31 with biomimetic apatite coating. Adv. Mater. Res. 2013, 821-822, 1047-1050.
[1011] Cui, W., Beniash, E., Gawalt, E., Xu, Z., Sfeir, C. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition. Acta Biomater. 2013, 9, 8650-8659.
[1012] Cook, S.D., Thomas, K.A., Dalton, J.E., Volkman, T.K., Whitecloud III, T.S., Kay, J.F. Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength. J. Biomed. Mater. Res. 1992, 26, 989-1001.
[1013] Wang, C., Gross, K.A., Anderson, G.I., Dunstan, C.R., Carbone, A., Berger, G., Ploska, U., Zreiqat, H. Bone growth is enhanced by novel bioceramic coatings on Ti alloy implants. J. Biomed. Mater. Res. A 2009, 90A, 419-428.
[1014] Barkarmo, S., Andersson, M., Currie, F., Kjellin, P., Jimbo, R., Johansson, C., Stenport, V. Enhanced bone healing around nanohydroxyapatite-coated polyetheretherketone implants: an experimental study in rabbit bone. J. Biomater. Appl. 2014, 29, 737-747.
[1015] Pilliar, R.M., Deporter, D.A., Watson, P.A., Pharoah, M., Chipman, M., Valiquette, N., Carter, S., de Groot, K. The effect of partial coating with hydroxyapatite on bone remodeling in relation to porous-coated titanium-alloy dental implants in the dog. J. Dent. Res. 1991, 70, 1338-1345.
[1016] Yoon, H.J., Song, J.E., Um, Y.J., Chae, G.J., Chung, S.M., Lee, I.S., Jung, U.W., Kim, C.S., Choi, S.H. Effects of calcium phosphate coating to SLA surface implants by the ion-beam-assisted deposition method on self-contained coronal defect healing in dogs. Biomed. Mater. 2009, 4, 044107.
[1017] Bigi, A., Fini, M., Bracci, B., Boanini, E., Torricelli, P., Giavaresi, G., Aldini, N.N., Facchini, A., Sbaiz, F., Giardino, R. The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Biomaterials 2008, 29, 1730-1736.
[1018] Park, D.S., Kim, I.S., Kim, H., Chou, A.H.K., Hahn, B.D., Li, L.H., Hwang, S.J. Improved biocompatibility of hydroxyapatite thin film prepared by aerosol deposition. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 353-358.
[1019] Alghamdi, H.S., Cuijpers, V.M.J.I., Wolke, J.G.C., van den Beucken, J.J.J.P., Jansen, J.A. Calcium-phosphate-coated oral implants promote osseointegration in osteoporosis. J. Dent. Res. 2013, 92, 982-988.
[1020] Deplaine, H., Lebourg, M., Ripalda, P., Vidaurre, A., Sanz-Ramos, P., Mora, G., Prósper, F., Ochoa, I., Doblaré, M., Ribelles, J.L.G., Izal-Azcárate, I., Ferrer. G.G. Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101B, 173-186.
[1021] Luo, R., Liu, Z., Yan, F., Kong, Y., Zhang, Y. The biocompatibility of hydroxyapatite film deposition on micro-arc oxidation Ti6Al4V alloy. Appl. Surf. Sci. 2013, 266, 57-61.
[1022] Geesink, R.G.T. Osteoconductive coating for total joint arthroplasty. Clin. Orthop. Rel. Res. 2002, 395, 53-65.
[1023] Wu, J., Guo, Y.Q., Yin, G.F., Chen, H.Q., Kang, Y. Induction of osteoconductivity by BMP-2 gene modification of mesenchymal stem cells combined with plasma-sprayed hydroxyapatite coating. Appl. Surf. Sci. 2008, 255, 336-339.
[1024] Cao, N., Dong, J., Wang, Q., Ma, Q., Xue, C., Li, M. An experimental bone defect healing with hydroxyapatite coating plasma sprayed on carbon/carbon composite implants. Surf. Coat. Tech. 2010, 205, 1150-1156.
[1025] Hirota, M., Hayakawa, T., Yoshinari, M., Ametani, A., Shima, T., Monden, Y., Ozawa, T., Sato, M., Koyama, C., Tamai, N., Iwai, T., Tohnai, I. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation. Int. J. Oral Maxillofac. Surg. 2012, 41, 1304-1309.
[1026] Ripamonti, U., Roden, L.C., Renton, L.F. Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials 2012, 33, 3813-3823.
[1027] Barrere, F., van der Valk, C.M., Dalmeijer, R.A.J., Meijer, G., van Blitterswijk, C.A., de Groot, K., Layrolle, P. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J. Biomed. Mater. Res. A 2003, 66A, 779-788.
[1028] Surmenev, R.A., Surmeneva, M.A., Ivanova, A.A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis – a review. Acta Biomater. 2014, 10, 557-579.
[1029] Yang, C.Y., Wang, B.C., Chang, W.J., Chang, E., Wu, J.D. Mechanical and histological evaluations of cobalt-chromium alloy and hydroxyapatite plasma-sprayed coatings in bone. J. Mater. Sci. Mater. Med. 1996, 7, 167-174.

[1030] Mohammadi, S., Esposito, M., Hall, J., Emanuelsson, L., Krozer, A., Thomsen, P. Short-term bone response to titanium implants coated with thin radiofrequent magnetron-sputtered hydroxyapatite in rabbits. Clin. Implant Dent. Rel. Res. 2003, 5, 241-253.
[1031] Vercaigne, S., Wolke, J.G.C., Naert, I., Jansen, J.A. A histological evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of the goat: Part 2. Clin. Oral Implant. Res. 2000, 11, 314-324.
[1032] Dostálová, T., Himmlová, L., Jélinek, M., Grivas, C. Osseointegration of loaded dental implant with KrF laser hydroxylapatite films on Ti6Al4V alloy by minipigs. J. Biomed. Optics 2001, 6, 239-243.
[1033] Mathew, D., Bhardwaj, G., Wang, Q., Sun, L., Ercan, B., Geetha, M., Webster, T.J. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals. Int. J. Nanomed. 2014, 9, 1775-1781.
[1034] Hu, J., Zhou, Y., Huang, L., Liu, J., Lu, H. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. BMC Musculoskeletal Disorders 2014, 15, 114 (11 pages).
[1035] Hu, J., Yang, Z., Zhou, Y., Liu, Y., Li, K., Lu, H. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. J. Mater. Sci. Mater. Med. 2015, 26, 257.
[1036] Yang, G.L., He, F.M., Hu, J.A., Wang, X.X., Zhao, S.F. Biomechanical comparison of biomimetically and electrochemically deposited hydroxyapatite-coated porous titanium implants. J. Oral Maxillofac. Surg. 2010, 68, 420-427.
[1037] Stigter, M., Bezemer, J., de Groot, K., Layrolle, P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J. Control. Release 2004, 99, 127-137.
[1038] Alt, V., Bitschnau, A., Osterling, J., Sewing, A., Meyer, C., Kraus, R., Meissner, S.A., Wenisch, S., Domann, E., Schnettler, R. The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials 2006, 27, 4627-4634.
[1039] Siebers, M.C., Walboomers, X.F., Leeuwenburgh, S.C.G., Wolke, J.C.G., Boerman, O.C., Jansen, J.A. Transforming growth factor-β1 release from a porous electrostatic spray deposition-derived calcium phosphate coating. Tiss. Eng. 2006, 12, 2449-2456.
[1040] Luong, L.N., McFalls, K.M., Kohn D.H. Gene delivery via DNA incorporation within a biomimetic apatite coating. Biomaterials 2009, 30, 6996-7004.
[1041] Choi, S., Murphy, W.L. Sustained plasmid DNA release from dissolving mineral coatings. Acta Biomater. 2010, 6, 3426-3435.
[1042] Saran, N., Zhang, R., Turcotte, R.E. Osteogenic protein-1 delivered by hydroxyapatite-coated implants improves bone ingrowth in extracortical bone bridging. Clin. Orthop. Relat. Res. 2011, 469, 1470-1478.
[1043] Majid, K., Tseng, M.D., Baker, K.C., Reyes-Trocchia, A., Herkowitz, H.N. Biomimetic calcium phosphate coatings as bone morphogenetic protein delivery systems in spinal fusion. Spine J. 2011, 11, 560-567.
[1044] Bao, L., Liu, J.X., Shi, F., Zhang, L.P., Jiang, Y.Y., Liu, G.S., Hu, Z.Q. Rapid biomimetic deposition of drug-loaded apatite coatings. Adv. Mater. Res. 2013, 712-715, 439-442.
[1045] Taha, M., Chai, F., Blanchemain, N., Goube, M., Martel, B., Hildebrand, H.F. Validating the poly-cyclodextrins based local drug delivery system on plasma-sprayed hydroxyapatite coated orthopedic implant with toluidine blue O. Mater. Sci. Eng. C 2013, 33, 2639-2647.
[1046] Bastari, K., Arshath, M., Ng, Z.H.M., Chia, J.H., Yow, Z.X.D., Sana, B., Tan, M.F.C, Lim, S., Loo, S.C.J. A controlled release of antibiotics from calcium phosphate-coated poly(lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm. J. Mater. Sci. Mater. Med. 2014, 25, 747-757.
[1047] Liu, Y., Zhang, X., Liu, Y., Jin, X., Fan, C., Ye, H., Ou, M., Lv, L., Wu, G., Zhou, Y. Bi-functionalization of a calcium phosphate-coated titanium surface with slow-release simvastatin and metronidazole to provide antibacterial activities and pro-osteodifferentiation capabilities. PLoS ONE 2014, 9, Article number e97741.
[1048] Dorozhkin, S.V. Calcium orthophosphates (CaPO4): occurrence and properties. Prog. Biomater. 2016, 5, 9-70.
[1049] Saithna, A. The influence of hydroxyapatite coating of external fixator pins on pin loosening and pin track infection: a systematic review. Injury 2010, 41, 128-132.
[1050] Tieanboon, P., Jaruwangsanti, N., Kiartmanakul, S. Efficacy of hydroxyapatite in pedicular screw fixation in canine spinal vertebra. Asian Biomed. 2009, 3, 177-181.
[1051] Coelho, P.G., Cardaropoli, G., Suzuki, M., Lemons, J.E. Early healing of nanothickness bioceramic coatings on dental implants. An experimental study in dogs. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88B, 387-393.
[1052] Hulshoff, J.E.G., van Dijk, K., van Der Waerden, J.P.C.M., Wolke, J.G.C., Kalk, W., Jansen, J.A. Evaluation of plasma-spray and magnetron-sputter Ca-P-coated implants: an in vivo experiment using rabbits. J. Biomed. Mater. Res. 1996, 31, 329-337.

[1053] Hulshoff, J.E.G., Hayakawa, T., van Dijk, K., Leijdekkers-Govers, A.F.M., van der Waerden, J.P.C.M., Jansen, J.A. Mechanical and histologic evaluation of Ca-P plasma-spray and magnetron sputter-coated implants in trabecular bone of the goat. J. Biomed. Mater. Res. 1997, 36, 75-83.
[1054] Yang, C.Y., Yang, C.W., Chen, L.R., Wu, M.C., Lui, T.S., Kuo, A., Lee, T.M. Effect of vacuum post-heat treatment of plasma-sprayed hydroxyapatite coatings on their in vitro and in vivo biological responses. J. Med. Biol. Eng. 2009, 29, 296-302.
[1055] Hench, L.L. Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487-1510.
[1056] Capello, W.D., D’Antonio, J.A., Feinberg, J.R., Manley, M.T. Hydroxyapatite-coated total hip femoral components in patients less than fifty years old. Clinical and radiographic results after five to eight years of follow-up. J. Bone Jt. Surg. Am. 1997, 79, 1023-1029.
[1057] Wheeler, D.L., Montfort, M.J., McLoughlin, S.W. Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J. Biomed. Mater. Res. 2001, 55, 603-612.
[1058] Mistry, S., Kundu, D., Datta, S., Basu, D. Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone. Australian Dent. J. 2011, 56, 68-75.
[1059] Geesink, R.G.T. Hydroxyapatite-coated total hip prostheses; two-year clinical and roentgenographic results of 100 cases. Clin. Orthop. Rel. Res. 1990, 261, 39-58.
[1060] Makani, A., Kim, T.W.B., Kamath, A.F., Garino. J.P., Lee, G.C. Outcomes of long tapered hydroxyapatite-coated stems in revision total hip arthroplasty. J. Arthroplasty 2014, 29, 827-830.
[1061] Geesink, R.G.T., Hoefnagels, N.H.M. Six-year results of hydroxyapatite-coated total hip replacement. J. Bone Jt. Surg. Br. 1995, 77, 534-547.
[1062] Wheeler, S.L. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int. J. Oral Max. Impl. 1996, 11, 340-350.
[1063] Chang, J.K., Chen, C.H., Huang, K.Y., Wang, G.J. Eight-year results of hydroxyapatite-coated hip arthroplasty. J. Arthroplasty 2006, 21, 541-546.
[1064] MaNally, S.A., Shepperd, H.A.N., Mann, C.V., Walczak, J.P. The results at nine to twelve years of the use of a hydroxyapatite-coated femoral stem. J. Bone Jt. Surg. 2000, 82B, 378-382.
[1065] Oosterbos, C.J.M., Rahmy, A.I.A., Tonino, A.J., Witpeerd, W. High survival rate of hydroxyapatite-coated hip prostheses 100 consecutive hips followed for 10 years. Acta Orthop. Scandinavica 2004, 75, 127-133.
[1066] Trisi, P., Keith, D.J., Rocco, S. Human histologic and histomorphometric analyses of hydroxyapatite-coated implants after 10 years of function: a case report. Int. J. Oral Max. Impl. 2005, 20, 124-130.
[1067] Lecuire, F., Berard, J.B., Martres, S. Minimum 10-year follow-up results of ALPINA cementless hydroxyapatite-coated anatomic unicompartmental knee arthroplasty. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 385-394.
[1068] Matsumine, A., Myoui, A., Kusuzaki, K., Araki, N., Seto, M., Yoshikawa, H., Uchida, A. Calcium hydroxyapatite ceramic implants in bone tumor surgery. A long-term follow-up study. J. Bone Jt. Surg. Br. 2004, 86, 719-725.
[1069] Muirhead-Allwood, S.K., Sandiford, N., Skinner, J.A., Hua, J., Kabir, C., Walker, P.S. Uncemented custom computer-assisted design and manufacture of hydroxyapatite-coated femoral components: survival at 10 to 17 years. J. Bone Jt. Surg. Br. 2010, 92, 1079-1084.
[1070] Shetty, A.A., Slack, R., Tindall, A., James, K.D., Rand, C. 1 Results of a hydroxyapatite-coated (Furlong) total hip replacement. A 13- to 15-year follow-up. J. Bone Jt. Surg. Br. 2005, 87, 1050-1054.
[1071] Capello, W.N., D’Antonio, J.A., Jaffe, W.L., Geesink, R.G., Manley, M.T., Feinberg, J.R. Hydroxyapatite-coated femoral components: 15-year minimum follow up. Clin. Orthop. Relat. Res. 2006, 453, 75-80.
[1072] Rajaratnam, S.S., Jack, C., Tavakkolizadeh, A., George, M.D., Fletcher, R.J., Hankins, M., Shepperd, J.A.N. Long-term results of a hydroxyapatite-coated femoral component in total hip replacement: a 15- to 21-year follow-up study. J. Bone Jt. Surg. Br. 2008, 90, 27-30.
[1073] Buchanan, J.M. 16 year review of hydroxyapatite ceramic coated hip implants – a clinical and histological evaluation. Key Eng. Mater. 2005, 284-286, 1049-1052.
[1074] Buchanan, J.M. 17 year review of hydroxyapatite ceramic coated hip implants – a clinical and histological evaluation. Key Eng. Mater. 2006, 309-311, 1341-1344.
[1075] Syed, M.A., Hutt, N.J., Shah, N., Edge, A.J. Hydroxyapatite ceramic-coated femoral components in young patients followed up for 17 to 25 years: an update of a previous report. Bone Joint J. 2015, 97B, 749-754.
[1076] Batta, V., Coathup, M.J., Parratt, M.T., Pollock, R.C., Aston, W.J., Cannon, S.R., Skinner, J.A., Briggs, T.W., Blunn, G.W. Uncemented, custom-made, hydroxyapatite-coated collared distal femoral endoprostheses: up to 18 years’ follow-up. Bone Joint J. 2014, 96B, 263-269.
[1077] Buchanan, J.M., Goodfellow, S. Nineteen years review of hydroxyapatite ceramic coated hip implants: a clinical and histological evaluation. Key Eng. Mater. 2008, 361-363, 1315-1318.
[1078] Epinette, J.A., Manley, M.T. (Eds.) Fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. Springer: France, 2004; 452 pp.
[1079] Tinsley, D., Watson, C.J., Russell, J.L. A comparison of hydroxylapatite coated implant retained fixed and removable mandibular prostheses over 4 to 6 years. Clin. Oral Implant. Res. 2001, 12, 159-166.
[1080] Binahmed, A., Stoykewych, A., Hussain, A., Love, B., Pruthi, V. Long-term follow-up of hydroxyapatite-coated dental implants – a clinical trial. Int. J. Oral Max. Impl. 2007, 22, 963-968.
[1081] Iezzi, G., Scarano, A., Petrone, G., Piattelli, A. Two human hydroxyapatite-coated dental implants retrieved after a 14-year loading period: a histologic and histomorphometric case report. J. Periodontol. 2007, 78, 940-947.
[1082] Kato, E., Yamada, M., Sakurai, K. Retrospective clinical outcome of nanopolymorphic crystalline hydroxyapatite-coated and anodic oxidized titanium implants for 10 years. J. Prosthodontic Res. 2015, 59, 62-70.
[1083] van Oirschot, B.A.J.A., Bronkhorst, E.M., van den Beucken, J.J.J.P., Meijer, G.J., Jansen, J.A., Junker, R. A systematic review on the long-term success of calcium phosphate plasma-spray-coated dental implants. Odontology 2016, 104, 347-356.
[1084] Herrera, A., Mateo, J., Gil-Albarova, J., Lobo-Escolar, A., Ibarz, E., Gabarre, S., Más, Y., Gracia, L. Cementless hydroxyapatite coated hip prostheses. BioMed Res. Int. 2015, 2015, 386461.
[1085] Bral, A., Mommaerts, M.Y. In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: a systematic review. J. Craniomaxillofac. Surg. 2016, 44, 400-412.
[1086] Coelho, P.G., Granjeiro, J.M., Romanos, G.E., Suzuki, M., Silva, N.R.F., Cardaropoli, G., van Thompson, P., Lemons, J.E. Basic research methods and current trends of dental implant surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88B, 579-596.
[1087] Wang, G., Zreiqat, H. Functional coatings or films for hard-tissue applications. Materials 2010, 3, 3994-4050.
[1088] Lee, W.H., Loo, C.Y., Rohanizadeh, R. A review of chemical surface modification of bioceramics: effects on protein adsorption and cellular response. Colloid Surface B 2014, 122, 823-834.
[1089] Choi, S., Yu, X., Jongpaiboonkit, L., Hollister, S.J., Murphy, W.L. Inorganic coatings for optimized non-viral transfection of stem cells. Sci. Rep. 2013, 3, 1567 (8 pages).
[1090] Dan, H., Vaquette, C., Fisher, A.G., Hamlet, S.M., Xiao, Y., Hutmacher, D.W., Ivanovski, S. The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials 2014, 35, 113-122.

Part III

[1] Lanfranco, L.P., Eggers, S. Caries through time: an anthropological overview. In: Contemporary approach to dental caries. Li, M.Y. (Ed.). InTech, Rijeka, Croatia; 2012, pp. 3-34.
[2] Wang, W., Zeng, X.L., Liu, W. [Dental caries in ancient Chinese in Xia Dynasty]. Zhonghua Kou Qiang Yi Xue Za Zhi 2008, 43, 308-310. (in Chinese).
[3] Bellagarda, G. [Dental caries and their treatment in the writings of the ancients]. Minerva Med. 1965, 56, 892-903. (in Italian).
[4] Fujita, H. Dental caries in Japanese human skeletal remains. J. Oral Biosci. 2009, 51, 105-114.
[5] Corbett, M.E., Moore, W.J. Distribution of dental caries in ancient British populations. 1. Anglo-Saxon period. Caries Res. 1971, 5, 151-168.
[6] Corbett, M.E., Moore, W.J. Distribution of dental caries in ancient British populations. II. Iron age, Romano-British and Mediaeval periods. Caries Res. 1973, 7, 139-153.
[7] Corbett, M.E., Moore, W.J. Distribution of dental caries in ancient British populations. III. The 17th century. Caries Res. 1975, 9, 163-175.
[8] Corbett, M.E., Moore, W.J. Distribution of dental caries in ancient British populations. IV. The 19th century. Caries Res. 1976, 10, 401-414.
[9] Kerr, N.W. The prevalence and pattern of distribution of root caries in a Scottish medieval population. J. Dent. Res. 1990, 69, 857-860.
[10] LeGeros, R.Z. Calcium phosphates in demineralization/remineralization processes. J. Clin. Dent. 1999, 10, 65-73.
[11] González-Cabezas, C. The chemistry of caries: remineralization and demineralization events with direct clinical relevance. Dent. Clin. North. Am. 2010, 54, 469-478.
[12] West, N.X., Joiner, A. Enamel mineral loss. J. Dent. 2014, 42, Suppl. 1, S2-S11.
[13] Ilie, O., van Loosdrecht, M.C.M., Picioreanu, C. Mathematical modelling of tooth demineralisation and pH profiles in dental plaque. J. Theor. Biol. 2012, 309, 159-175.
[14] Fabregas, R., Rubinstein, J. On the initial propagation of dental caries. J. R. Soc. Interface 2014, 11, 20140809.
[15] Fabregas, R., Rubinstein, J. A mathematical model for the progression of dental caries. Math. Med. Biol. 2014, 31, 319-337.
[16] Dowd, F.J. Saliva and dental caries. Dent. Clin. North Am. 1999, 43, 579-597.
[17] Fejerskov, O., Kidd, E. (Eds.) Dental caries: the disease and its clinical management. 2nd Ed. Wiley-Blackwell: 2008; 640 pp.
[18] Mjör, I.A., Toffenetti, F. Secondary caries: a literature review with case reports. Quintessence Int. 2000, 31, 165-179.
[19] Eccles, J.D. Dental erosion of nonindustrial origin. A clinical survey and classification. J. Prosthet. Dent. 1979, 42, 649-653.
[20] Lussi, A. (Ed.) Dental erosion: from diagnosis to therapy. Karger: Basel, Switzerland, 2006; 219 pp.
[21] Höland, W., Schweiger, M., Watzke, R., Peschke, A., Kappert, H. Ceramics as biomaterials for dental restoration. Expert Rev. Med. Dev. 2008, 5, 729-745.
[22] Dorozhkin, S.V. Calcium orthophosphates bioceramics. Ceram. Int. 2015, 41, 13913-13966.
[23] Dorozhkin, S.V. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram. Int. 2016, 42, 6529-6554.
[24] Widström, E., Birn, H., Haugejorden, O., Sundberg, H. Fear of amalgam: dentists’ experiences in the Nordic countries. Int. Dent. J. 1992, 42, 65-70.
[25] Thompson, J.Y., Stoner, B.R., Piascik, J.R. Ceramics for restorative dentistry: critical aspects for fracture and fatigue resistance. Mater. Sci. Eng. C 2007, 27, 565-569.
[26] Cravens, J.E. Lacto-phosphate of lime; pathology and treatment of exposed dental pulps and sensitive dentine. Dent. Cosmos 1876, 18, 463-469; discussion 469-476.
[27] Pendleton, L.W. The lacto-phosphate of lime. Transactions of the Maine Medical Association 1873, 4, 313-318.
[28] Reynolds, E.C. Calcium phosphate-based remineralization systems: scientific evidence? Aust. Dent. J. 2008, 53, 268-273.
[29] Dorozhkin, S.V. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford: Singapore, 2012; 854 pp.
[30] Dorozhkin, S.V. Calcium orthophosphates (CaPO4): occurrence and properties. Prog. Biomater. 2016, 5, 9-70.
[31] LeGeros, R.Z. Calcium phosphates in oral biology and medicine. Karger: Basel, Switzerland, 1991; 210 pp.
[32] Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates. In: Studies in inorganic chemistry. Volume 18; Elsevier: Amsterdam, The Netherlands, 1994; 389 pp.
[33] Dorozhkin, S.V. Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH: Weinheim, Germany, 2016; 405 pp.
[34] http://en.wikipedia.org/wiki/Dentistry (accessed in December 2016).
[35] http://en.wikipedia.org/wiki/Dental_public_health (accessed in December 2016).
[36] http://en.wikipedia.org/wiki/Endodontics (accessed in December 2016).
[37] http://en.wikipedia.org/wiki/Specialty_(dentistry) (accessed in December 2016).
[38] Friedman, C.D., Constantino, P.D., Jones, K., Chow, L.C., Pelzer, H., Sisson, G. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch. Otolaryngol. Head Neck Surg. 1991, 117, 385-389.
[39] Reddi, S.P., Stevens, M.R., Kline, S.N., Villanueva, P. Hydroxyapatite cement in craniofacial trauma surgery, indications and early experience. J. Cran. Maxillofac. Trauma 1999, 5, 7-12.
[40] Friedman, C.D., Costantino, P.D., Synderman, C.H., Chow, L.C., Takagi, S. Reconstruction of the frontal sinus and frontofacial skeleton with hydroxyapatite cement. Arch. Facial Plast. Surg. 2000, 2, 124-129.
[41] Smartt, J.M., Karmacharya, J., Gannon, F.H., Ong, G., Jackson, O., Bartlett. S.P., Poser, R.D., Kirschner, R.E. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement: assessment of biocompatibility, osteoconductivity and remodeling capacity. Plast. Reconstr. Surg. 2005, 115, 1642-1650.
[42] Kuemmerle, J.M., Oberle, A., Oechslin, C., Bohner, M., Frei, C., Boecken, I., von Rechenberg, B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty – an experimental study in sheep. J. Cran. Maxillofac. Surg. 2005, 33, 37-44.
[43] Luaces-Rey, R., Garciìa-Rozado, A., Crespo-Escudero, J.L., Seijas, B.P., Arenaz-Buìa, J., Loìpez-Cedruìn, J.L. Use of carbonated calcium phosphate bone cement and resorbable plates for the treatment of frontal sinus fractures: two case reports. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 272-273.
[44] Tamimi, F., Torres, J., Cabarcos, E.L., Bassett, D.C., Habibovic, P., Luceron, E., Barralet, J.E. Minimally invasive maxillofacial vertical bone augmentation using brushite based cements. Biomaterials 2009, 30, 208-216.
[45] Abe, T., Anan, M., Kamida, T., Fujiki, M. Surgical technique for anterior skull base reconstruction using hydroxyapatite cement and titanium mesh. Acta Neurochirur. 2009, 151, 1337-1338.
[46] Benson, A.G., Djalilian, H.R. Complications of hydroxyapatite bone cement reconstruction of retrosigmoid craniotomy: two cases. Ear Nose Throat J. 2009, 88, E1-E4.
[47] Lee, D.W., Kim, J.Y., Lew, D.H. Use of rapidly hardening hydroxyapatite cement for facial contouring surgery. J. Craniofac. Surg. 2010, 21, 1084-1088.
[48] Singh, K.A., Burstein, F.D., Williams, J.K. Use of hydroxyapatite cement in pediatric craniofacial reconstructive surgery: strategies for avoiding complications. J. Craniofac. Surg. 2010, 21, 1130-1135.
[49] Bambakidis, N.C., Munyon, C., Ko, A., Selman, W.R., Megerian, C.A. A novel method of translabyrinthine cranioplasty using hydroxyapatite cement and titanium mesh: a technical report. Skull Base 2010, 20, 157-161.
[50] Huang, M.S., Wu, H.D., Teng, N.C., Peng, B.Y., Wu, J.Y., Chang, W.J., Yang, J.C., Chen, C.C., Lee, S.Y. In vivo evaluation of poorly crystalline hydroxyapatite-based biphasic calcium phosphate bone substitutes for treating dental bony defects. J. Dent. Sci. 2010, 5, 100-108.
[51] Sanada, Y., Fujinaka, T., Yoshimine, T., Kato, A. Optimal reconstruction of the bony defect after frontotemporal craniotomy with hydroxyapatite cement. J. Clin. Neurosci. 2011, 18, 280-282.
[52] http://en.wikipedia.org/wiki/Orthodontics (accessed in December 2016).
[53] http://en.wikipedia.org/wiki/Prosthodontics (accessed in December 2016).
[54] Xie, C., Lu, H., Li, W., Chen, F.M., Zhao, Y.M. The use of calcium phosphate-based biomaterials in implant dentistry. J. Mater. Sci. Mater. Med. 2012, 23, 853-862.
[55] McDonagh, M.S., Kleijnen, J., Whiting, P.F., Wilson, P.M., Sutton, A.J., Chestnutt, I., Cooper, J., Misso, K., Bradley, M., Treasure, E. Systematic review of water fluoridation. British Med. J. 2000, 321, 855-859.
[56] Roveri, N., Foresti, E., Lelli, M., Lesci, I.G. Recent advancements in preventing teeth health hazard: the daily use of hydroxyapatite instead of fluoride. Rec. Pat. Biomed. Eng. 2009, 2, 197-215.
[57] Fischer, R.B., Muhler, J.C., Ring, C.E. X-ray study of fluorapatite formation during the fluoride treatment of powdered dental enamel. J. Dent. Res. 1956, 35, 773-777.
[58] http://en.wikipedia.org/wiki/Dentifrice (accessed in December 2016).
[59] McClendon, J.F. Carpousis, A. Prevention of dental caries by brushing the teeth with powdered fluorapatite. J. Dent. Res. 1945, 24, 199.
[60] Shern, R.J., Couet, K.M., Chow, L.C., Brown, W.E. Effects of sequential calcium phosphate-fluoride rinses on fluoride uptake in rats. J. Dent. Res. 1979, 58, Spec. Iss. B, 1023.
[61] Shern, R.J., Chow, L.C., Couet, K.M., Kingman, A., Brown, W.E. Effects of sequential calcium phosphate-fluoride rinses on dental plaque, staining, fluoride uptake, and caries in rats. J. Dent. Res. 1984, 63, 1355-1359.
[62] Wefel, J.S., Harless, J.D. The use of saturated DCPD in remineralization of artificial caries lesions in vitro. J. Dent. Res. 1987, 66, 1640-1643.
[63] Schreiber, C.T., Shern, R.J., Chow, L.C., Kingman, A. Effects of rinses with an acidic calcium phosphate solution on fluoride uptake, caries, and in situ plaque pH in rats. J. Dent. Res. 1988, 67, 959-963.
[64] Kani, T., Kani, M., Isozaki, A., Kato, H., Fukuoka, Y., Ohashi, T., Tokumoto, T. The effect to apatite-containing dentifrices on artificial caries lesions. J. Dent. Health 1988, 38, 364-365.
[65] Kani, T., Kani, M., Isozaki, A., Shimatani, H., Ohashi, T., Tokumoto, T. Effect of apatite-containing dentifrices on dental caries in school children. J. Dent. Health 1989, 39, 104-109.
[66] Okashi, T., Kani, T., Isozaki, A., Nishida, A., Shintani, H., Tokumoto, T., Ishizu, E., Kuwahara, Y., Kani, M. Remineralization of artificial caries lesions by hydroxyapatite. J. Dent. Health 1991, 41, 214-223.
[67] Gaffar, A., Blake-Haskins, J., Mellberg, J. In vivo studies with a dicalcium phosphate dihydrate/MFP system for caries prevention. Int. Dent. J. 1993, 43, Suppl. 1, 81-88.
[68] Zhang, Y.P., Din, C.S., Miller, S., Nathoo, S.A., Gaffar, A. Intra-oral remineralization of enamel with a MFP/DCPD and MFP/silica dentifrice using surface microhardness. J. Clin. Dent. 1995, 6, 148-153.
[69] Sullivan, R.J., Charig, A., Blake-Haskins, J., Zhang, Y.P., Miller, S.M., Strannick, M., Gaffar, A., Margolis, H.C. In vivo detection of calcium from dicalcium phosphate dihydrate dentifrices in demineralized human enamel and plaque. Adv. Dent. Res. 1997, 11, 380-387.
[70] Kodaka, T., Kobori, M., Hirayama, A., Masayuki, A. Abrasion of human enamel by brushing with a commercial dentifrice containing hydroxyapatite crystals in vitro. J. Electron Microsc. 1999, 48, 167-172.
[71] Hicks, M.J., Flaitz, C.M. Enamel caries formation and lesion progression with a fluoride dentifrice and a calcium-phosphate containing fluoride dentifrice: a polarized light microscopic study. ASDC J. Dent. Child. 2000, 67, 21-28.
[72] Sullivan, R.J., Masters, J., Cantore, R., Roberson, A., Petrou, I., Stranick, M., Goldman, H., Guggenheim, B., Gaffar, A. Development of an enhanced anticaries efficacy dual component dentifrice containing sodium fluoride and dicalcium phosphate dihydrate. Am. J. Dent. 2001, 14, Spec. Iss. 5, 3A-11A.
[73] Boneta, A.E., Neesmith, A., Mankodi, S., Berkowitz, H.J., Sánchez, L., Mostler, K., Stewart, B., Sintes, J., de Vizio, W., Petrone, M.E., Volpe, A.R., Zhang, Y.P., McCool, J.J., Bustillo, E., Proskin, H.M. The enhanced anticaries efficacy of a sodium fluoride and dicalcium phosphate dihydrate dentifrice in a dual-chambered tube. A 2-year caries clinical study on children in the United States of America. Am. J. Dent. 2001, 14, Spec. Iss. 5, pp. 13A-17A.

[74] Silva, M.F.D.A., Melo, E.V.D.S., Stewart, B., de Vizio, W., Sintes, J.L., Petrone, M.E., Volpe, A.R., Zhang, Y.P., McCool, J.J., Proskin, H.M. The enhanced anticaries efficacy of a sodium fluoride and dicalcium phosphate dihydrate dentifrice in a dual-chambered tube. A 2-year caries clinical study on children in Brazil. Am. J. Dent. 2001, 14, Spec. Iss. 5, 19A-23A.
[75] Niwa, M., Sato, T., Li, W., Aoki, H., Aoki, H., Daisaku, T. Polishing and whitening properties of toothpaste containing hydroxyapatite. J. Mater. Sci. Mater. Med. 2001, 12, 277-281.
[76] Sintes, J.L., Elías-Boneta, A., Stewart, B., Volpe, A.R., Lovett, J. Anticaries efficacy of a sodium monofluorophosphate dentifrice containing xylitol in a dicalcium phosphate dihydrate base. A 30-month caries clinical study in Costa Rica. Am. J. Dent. 2002, 15, 215-219.
[77] Kim, B.I., Jeong, S.H., Jang, S.O., Kim, K.N., Kwon, H.K., Park. Y.D., Tooth whitening effect of toothpastes containing nano-hydroxyapatite. Key Eng. Mater. 2006, 309-311, 541-544.
[78] Jeong, S.H., Jang, S.O., Kim, K.N., Kwon, H.K., Park, Y.D., Kim, B.I. Remineralization potential of new toothpaste containing nano-hydroxyapatite. Key Eng. Mater. 2006, 309-311, 537-540.
[79] Lv, K., Zhang, J., Meng, X., Li, X. Remineralization effect of the nano-HA toothpaste on artificial caries. Key Eng. Mater. 2007, 330-332, 267-270.
[80] Jeong, S.H., Hong, S.J., Choi, C.H., Kim, B.I. Effect of new dentifrice containing nano-sized carbonated apatite on enamel remineralization. Key Eng. Mater. 2007, 330-332, 291-294.
[81] Roveri, N., Battistella, E., Bianchi, C.L., Foltran, I., Foresti, E., Iafisco, M., Lelli, M., Naldoni, A., Palazzo, B., Rimondini, L. Surface enamel remineralization: biomimetic apatite nanocrystals and fluoride ions different effects. J. Nanomater. 2009, 2009, 746383 (9 pages).
[82] Kim, S.H., Park, J.B., Lee, C.W., Koo, K.T., Kim, T.I., Seol, Y.J., Lee, Y.M., Ku, Y., Chung, C.P., Rhyu, I.C. The clinical effects of a hydroxyapatite containing toothpaste for dentine hypersensitivity. J. Korean Acad. Periodontol. 2009, 39, 87-94.
[83] Tschoppe, P., Zandim, D.L., Martus, P., Kielbassa, A.M. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 2011, 39, 430-437.
[84] Najibfard, K., Chedjieu, I., Ramalingam, K., Amaechi, B.T. Remineralization of early caries by a nano-hydroxyapatite dentifrice. J. Clin. Dent. 2011, 22, 139-143.
[85] Wang, C.J., Zhang, Y.F., Wei, J., Wei, S.C. Repair of artificial enamel lesions by nano fluorapatite paste containing fluorin. J. Clin. Rehabil. Tiss. Eng. Res. 2011, 15, 6346-6350.

[86] Kovtun, A., Kozlova, D., Ganesan, K., Biewald, C., Seipold, N., Gaengler, P., Arnold, W.H., Epple, M. Chlorhexidine-loaded calcium phosphate nanoparticles for dental maintenance treatment: combination of mineralising and antibacterial effects. RSC Adv. 2012, 2, 870-875.
[87] Vanichvatana, S., Auychai, P. Efficacy of two calcium phosphate pastes on the remineralization of artificial caries: a randomized controlled double-blind in situ study. Int. J. Oral Sci. 2013, 5, 224-228.
[88] Sun, Y., Li, X., Deng, Y., Sun, J.N., Tao, D., Chen, H., Hu, Q., Liu, R., Liu, W., Feng, X., Wang, J., Carvell, M., Joiner, A. Mode of action studies on the formation of enamel minerals from a novel toothpaste containing calcium silicate and sodium phosphate salts. J. Dent. 2014, 42, Suppl. 1, S30-S38.
[89] Browning, W.D., Cho, S.D., Deschepper, E.J. Effect of a nano-hydroxyapatite paste on bleaching-related tooth sensitivity. J. Esthet. Restor. Dent. 2012, 24, 268-276.
[90] Comar, L.P., Souza, B.M., Gracindo, L.F., Buzalaf, M.A.R., Magalhães, A.C. Impact of experimental nano-HAP pastes on bovine enamel and dentin submitted to a pH cycling model. Braz. Dent. J. 2013, 24, 273-278.
[91] Hannig, C., Basche, S., Burghardt, T., Al-Ahmad, A., Hannig, M. Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Invest. 2013, 17, 805-814.
[92] de Carvalho, F.G., Vieira, B.R., Santos, R.L., Carlo, H.L., Lopes, P.Q., de Lima, B.A. In vitro effects of nano-hydroxyapatite paste on initial enamel carious lesions. Pediatr. Dent. 2014, 36, 85-89.
[93] Mielczarek A, Michalik J. The effect of nano-hydroxyapatite toothpaste on enamel surface remineralization. An in vitro study. Am. J. Dent. 2014, 27, 287-290.
[94] Vyavhare, S., Sharma, D.S., Kulkarni, V.K. Effect of three different pastes on remineralization of initial enamel lesion: an in vitro study. J. Clin. Pediatr. Dent. 2015, 39, 149-160.
[95] Souza, B.M., Comar, L.P., Vertuan, M., Neto, C.F., Buzalaf, M.A., Magalhães, A.C. Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental demineralisation and remineralisation in situ. Caries Res. 2015, 49, 499-507.
[96] Hill, R.G., Gillam, D.G., Chen, X. The ability of a nano hydroxyapatite toothpaste and oral rinse containing fluoride to protect enamel during an acid challenge using 19F solid state NMR spectroscopy. Mater. Lett. 2015, 156, 69-71.
[97] Esteves-Oliveira, M., Santos, N.M., Meyer-Lueckel, H., Wierichs, R.J., Rodrigues, J.A. Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro. Clin. Oral. Investig. 2017, 21, 291-300.
[98] Pickel, F.D., Bilotti, A. The effects of a chewing gum containing dicalcium phosphate on salivary calcium and phosphate. Alabama J. Med. Sci. 1965, 2, 286-287.
[99] Finn, S.B., Jamison, H.C. The effect of a dicalcium phosphate chewing gum on caries incidence in children: 30-month results. J. Am. Dent. Assoc. 1967, 74, 987-995.
[100] Finn, S.B. The role of a dicalcium phosphate chewing gum in the control of human dental caries. Int. Dent. J. 1967, 17, 339-352.
[101] Richardson, A.S., Hole, L.W., McCombie, F., Kolthammer, J. Anticariogenic effect of dicalcium phosphate dihydrate chewing gum: results after two years. J. Canadian Dent. Assoc. 1972, 38, 213-218.
[102] Wilson, C.J. The effect of calcium sucrose phosphates chewing gum on caries incidence in children. J. Wisconsin Dent. Assoc. 1975, 51, 521-525.
[103] Chow, L.C., Takagi, S., Shern, R.J., Chow, T.H., Takagi, K.K., Sieck, B.A. Effects on whole saliva of chewing gums containing calcium phosphates. J. Dent. Res. 1994, 73, 26-32.
[104] Vogel, G.L., Zhang, Z., Carey, C.M., Ly, A., Chow, L.C., Proskin, H.M. Composition of plaque and saliva following a sucrose challenge and use of an α-tricalcium-phosphate-containing chewing gum. J. Dent. Res. 1998, 77, 518-524; erratum: p. 1575.
[105] Vogel, G.L., Zhang, Z., Carey, C.M., Ly, A., Chow, L.C., Proskin, H.M. Composition of plaque and saliva following use of an α-tricalcium-phosphate-containing chewing gum and a subsequent sucrose challenge. J. Dent. Res. 2000, 79, 58-62.
[106] Shen, P., Cai, F., Nowicki, A., Vincent, J., Reynolds, E.C. Remineralization of enamel subsurface lesions by sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. J. Dent. Res. 2001, 80, 2066-2070.
[107] Iijima, Y., Cai, F., Shen, P., Walker, G., Reynolds, C., Reynolds, E.C. Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. Caries Res. 2004, 38, 551-556.
[108] Itthagarun, A., King, N.M., Yiu, C., Dawes, C. The effect of chewing gums containing calcium phosphates on the remineralization of artificial caries-like lesions in situ. Caries Res. 2005, 39, 251-254.
[109] Cai, F., Manton, D.J., Shen, P., Walker, G.D., Cross, K.J., Yuan, Y., Reynolds. C., Reynolds, E.C. Effect of addition of citric acid and casein phosphopeptide-amorphous calcium phosphate to a sugar-free chewing gum on enamel remineralization in situ. Caries Res. 2007, 41, 377-383.
[110] Morgan, M.V., Adams, G.G., Bailey, D.L., Tsao, C.E., Fischman, S.L., Reynolds, E.C. The anticariogenic effect of sugar-free gum containing CPP-ACP nanocomplexes on approximal caries determined using digital bitewing radiography. Caries Res. 2008, 42, 171-184.
[111] Thaweboon, S., Nakornchai, S., Miyake, Y., Yanagisawa, T., Thaweboon, B., Sooampon, S., Lexomboon, D. Remineralizaron of enamel subsurface lesions by xylitol chewing gum containing funoran and calcium hydrogenphosphate. Southeast Asian J. Tropical Medicine and Public Health 2009, 40, 345-353.
[112] Dodds, M.W., Chidichimo, D., Haas, M.S. Delivery of active agents from chewing gum for improved remineralization. Adv. Dent. Res. 2012, 24, 58-62.
[113] Shammukha, G., Santhosh, B.P., Preeti J., Naveen, B., Inderjith, G., Santhosh, B., Sakari, N.B. Evaluation of changes in salivary concentration of calcium by CPP-ACP containing chewing gum – a clinical trial. Int. J. Adv. Res. Oral Sci. 2012, 1, 1-7.
[114] Porciani, P.F., Chazine, M., Grandini, S. A clinical study of the efficacy of a new chewing gum containing calcium hydroxyapatite in reducing dentin hypersensitivity. J. Clin. Dent. 2014, 25, 32-36.
[115] Emamieh, S., Khaterizadeh, Y., Goudarzi, H., Ghasemi, A., Baghban, A.A., Torabzadeh, H. The effect of two types chewing gum containing casein phosphopeptide-amorphous calcium phosphate and xylitol on salivary Streptococcus mutans. J. Conserv. Dent. 2015, 18, 192-195.
[116] Sultan, S., Chaitra, T.R., Chaudhary, S., Manuja, N., Kaur, H., Amit, S.A., Ravishankar, T.L. Effect of ACP-CPP chewing gum and natural chewable products on plaque pH: Calcium and phosphate concentration. J. Clin. Diagn. Res. 2016, 10, ZC13-ZC17.
[117] Cochrane, N.J., Cai, F., Huq, N.L., Burrow, M.F., Reynolds, E.C. New approaches to enhanced remineralization of tooth enamel. J. Dent. Res. 2010, 89, 1187-1197.
[118] Head, J.A. A study of saliva and its action on tooth enamel in reference to its hardening and softening. J. Am. Med. Ass. 1912, 59, 2118-2122.
[119] Koulourides, T., Cueto, H., Pigman, W. Rehardening of softened enamel surfaces of human teeth by solutions of calcium phosphates. Nature 1961, 189, 226-227.
[120] Silverstone, L.M., Johnson, N.W. The effect on sound human enamel of exposure to calcifying fluids in vitro. Caries Res. 1971, 5, 323-342.
[121] Silverstone, L.M. Remineralization of human enamel in vitro. Proc. R. Soc. Med. 1972, 65, 906-908.
[122] ten Cate, J.M., Arends, J. Remmeralization of artificial enamel lesions in vitro. Caries Res 1977, 11, 277-286.
[123] ten Cate, J.M., Arends, J. Remmeralization of artificial enamel lesions in vitro. II. Determination of activation energy and reaction order. Caries Res. 1978, 12, 213-222.
[124] ten Cate, J.M., Arends, J. Remmeralization of artificial enamel lesions in vitro. III. A study of the deposition mechanism. Caries Res. 1980, 14, 351-358.
[125] ten Cate, J.M., Jongebloed, W.L., Arends, J. Remmeralization of artificial enamel lesions in vitro. IV. Influence of fluorides and diphosphonates on short- and long-term remineralization. Caries Res. 1981, 15, 60-69.
[126] Kim, M.Y., Kwon, H.K., Choi, C.H., Kim, B.I. Combined effects of nano-hydroxyapatite and NaF on remineralization of early caries lesion. Key Eng. Mater. 2007, 330-332, 1347-1350.
[127] Lu, K., Meng, X., Zhang, J., Li, X., Zhou, M. Inhibitory effect of synthetic nano-hydroxyapatite on dental caries. Key Eng. Mater. 2007, 336-338, 1538-1541.
[128] Zhen, T., Hongkun, W., Anchun, M., Zhiqin, C., Yubao, L. Effect of apatite nanoparticles on remineralization of the demineralized human dentin. Key Eng. Mater. 2007, 330-332, 1381-1384.
[129] Rimondini, L., Palazzo, B., Iafisco, M., Canegallo, L., Demarosi, F., Merlo, M., Roveri, N. The remineralizing effect of carbonate-hydroxyapatite nanocrystals on dentine. Mater. Sci. Forum 2007, 539-543, 602-605.
[130] Roveri, N., Battistella, E., Foltran, I., Foresti, E., Iafisco, M., Lelli, M., Palazzo, B., Rimondini, L. Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization. Adv. Mater. Res. 2008, 47-50, 821-824.
[131] Huang, S.B., Gao, S.S., Yu, H.Y. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed. Mater. 2009, 4, 034104.
[132] Yin, Y., Yun, S., Fang, J., Chen, H. Chemical regeneration of human tooth enamel under near-physiological conditions. Chem. Commun. 2009, 5892-5894.
[133] Lv, K.L., Yuan, H.W., Meng, X.C., Li, X.Y. Remineralized evaluation of nano-hydroxyapatite to artificial caries. Adv. Mater. Res. 2010, 105-106, 576-579.
[134] Huang, S., Gao, S., Cheng, L., Yu, H. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res. 2011, 45, 460-468.
[135] Wu, D., Yang, J., Li, J., Chen, L., Tang, B., Chen, X., Wu, W., Li, J. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel. Biomaterials 2013, 34, 5036-5047.
[136] Haghgoo, R., Rezvani, M.B., Zeinabadi, M.S. Comparison of nano-hydroxyapatite and sodium fluoride mouthrinse for remineralization of incipient carious lesions. J. Dent. (Tehran) 2014, 11, 406-410.
[137] Besinis, A., van Noort, R., Martin, N. Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles. Dent. Mater. 2014, 30, 249-262.
[138] Chow, L.C., Takagi, S. Remineralization of root lesions with concentrated calcium and phosphate solutions. Dent. Mater. J. 1995, 14, 31-36.
[139] Reynolds, E.C. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J. Dent. Res. 1997, 76, 1587-1595.
[140] Wang, H.Y., Sun, K.N., Shan, T., Yang, X.Q., Zhao, Y., Liang, Y.J. Biomimetic synthesis of fluorapatite coating. Adv. Mater. Res. 2011, 306-307, 63-71.
[141] Ning, T.Y., Xu, X.H., Zhu, L.F., Zhu, X.P., Chu, C.H., Liu, L.K., Li, Q.L. Biomimetic mineralization of dentin induced by agarose gel loaded with calcium phosphate. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 138-144.
[142] Tian, K., Peng, M., Wu, P., Liao, C.H., Huang, F.Y. Biomineralization of the hydroxyapatite with 3D-structure for enamel reconstruction. Adv. Mater. Res. 2012, 391-392, 633-637.
[143] Gu, H., Mijares, D., Zhao, Z., Boylan, R., Ling, J., LeGeros, R.Z. Experimental antibacterial and mineralizing calcium phosphate-based treatment for dentin surfaces. J. Biomater. Appl. 2013, 27, 783-790.
[144] Chen, L., Liang, K., Li, J., Wu, D., Zhou, X., Li, J. Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro. Arch. Oral Biol. 2013, 58, 975-980.
[145] Cao, Y., Mei, M.L., Li, Q.L., Lo, E.C., Chu, C.H. Agarose hydrogel biomimetic mineralization model for the regeneration of enamel prismlike tissue. ACS Appl. Mater. Interfaces 2014, 6, 410-420.
[146] Wu, X.T., Mei, M.L., Li, Q.L. Cao, C.Y., Chen, J.L., Xia, R., Zhang, Z.H., Chu, C.H. A direct electric field-aided biomimetic mineralization system for inducing the remineralization of dentin collagen matrix. Materials 2015, 8, 7889-7899.
[147] Wang, Q., Liu, S., Gao, X., Wei, Y., Deng, X., Chen, H., Zhang, X. Remineralizing efficacy of fluorohydroxyapatite gel on artificial dentinal caries lesion. J. Nanomater. 2015, 2015, Article number 380326.
[148] Singh, M.L., Papas, A.S. Long-term clinical observation of dental caries in salivary hypofunction patients using a supersaturated calcium-phosphate remmeralizing rinse. J. Clin. Dent. 2009, 20, 87-92.
[149] Lee, H.J., Min, J.H., Choi, C.H., Kwon, H.G., Kim, B.I. Remineralization potential of sports drink containing nano-sized hydroxyapatite. Key Eng. Mater. 2007, 330-332, 275-278.
[150] Min, J.H., Kwon, H.K., Kim, B.I. The addition of nano-sized hydroxyapatite to a sports drink to inhibit dental erosion – in vitro study using bovine enamel. J. Dent. 2011, 39, 629-635.
[151] Luo, J., Ning, T., Cao, Y., Zhu, X., Xu, X., Tang, X., Chu, C.H., Li, Q. Biomimic enamel remineralization by hybridization calcium- and phosphate-loaded liposomes with amelogenin-inspired peptide. Key Eng. Mater. 2012, 512-515, 1727-1730.
[152] Jandt, K.D. Probing the future in functional soft drinks on the nanometre scale – towards tooth friendly soft drinks. Trends Food Sci. Technol. 2006, 17, 263-271.
[153] Lippert, F., Parker, D.M., Jandt, K.D. In situ remineralisation of surface softened human enamel studied with AFM nanoindentation. Surface Sci. 2004, 553, 105-114.
[154] Lippert, F., Parker, D.M., Jandt, K.D. In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J. Colloid Interf. Sci. 2004, 280, 442-448.
[155] Lippert, F., Parker, D.M., Jandt, K.D. Toothbrush abrasion of surface softened enamel studied with tapping mode AFM and AFM nanoindentation. Caries Res. 2004, 38, 464-472.
[156] Li, X., Wang, J., Joiner, A., Chang, J. The remineralisation of enamel: a review of the literature. J. Dent. 2014, 42, Suppl. 1, S12-S20.
[157] Niu, L.N., Zhang, W., Pashley, D.H., Breschi, L., Mao, J., Chen, J.H., Tay, F.R. Biomimetic remineralization of dentin. Dent. Mater. 2014, 30, 77-96.
[158] Cao, C.Y., Mei, M.L., Li, Q.L., Lo, E.C.M., Chu, C.H. Methods for biomimetic mineralisation of human enamel: a systematic review. Materials 2015, 8, 2873-2886.
[159] https://en.wikipedia.org/wiki/Dentin_hypersensitivity (accessed in December 2016).
[160] Sugawara, A., Chow, L.C., Takagi, S., Nishiyama, M., Ohashi, M. [An in vitro study of dentin hypersensitivity using calcium phosphate cement]. Shika Zairyo Kikai 1989, 8, 282-294.
[161] Yates, R., Owens, J., Jackson, R., Newcombe, R.G., Addy, M. A split-mouth placebo-controlled study to determine the effect of amorphous calcium phosphate in the treatment of dentine hypersensitivity. J. Clin. Periodontol. 1998, 25, 687-692.
[162] Suge, T., Ishikawa, K., Kawasaki, A., Suzuki, K., Matsuo, T., Noiri, Y., Imazato, S., Ebisu, S. Calcium phosphate precipitation method for the treatment of dentin hypersensitivity. Am. J. Dent. 2002, 15, 220-226.
[163] Geiger, S., Matalon, S., Blasbalg, J., Tung, M.S., Eichmiller, F.C. The clinical effect of amorphous calcium phosphate (ACP) on root surface hypersensitivity. Oper. Dent. 2003, 28, 496-500.
[164] Shetty, S., Kohad, R., Yeltiwar, R. Hydroxyapatite as an in-office agent for tooth hypersensitivity: a clinical and scanning electron microscopic study. J. Periodontol. 2010, 81, 1781-1789.
[165] Low, S.B., Allen, E.P., Kontogiorgos, E.D. Reduction in dental hypersensitivity with nano-hydroxyapatite, potassium nitrate, sodium monoflurophosphate and antioxidants. Open Dent. J. 2015, 9, 92-97.
[166] Mehta, D., Gowda, V., Finger, W.J., Sasaki, K. Randomized, placebo-controlled study of the efficacy of a calcium phosphate containing paste on dentin hypersensitivity. Dent. Mater. 2015, 31, 1298-1303.
[167] Zhou, J., Chiba, A., Scheffel, D.L., Hebling, J., Agee, K., Niu, L.N., Tay, F.R., Pashley, D.H. Effects of a dicalcium and tetracalcium phosphate-based desensitizer on in vitro dentin permeability. PLoS One 2016, 11, e0158400.
[168] Miloslavich, E.L. Calcium metabolism in its relation to dental pathology calciprival odontopathia. Int. J. Orthodontia Oral Surg. Radiography 1925, 11, 111-123.
[169] Monroe, E.A, Votava, W., Bass, D.B., Mcmullen, J. New calcium phosphate ceramic material for bone and tooth implants. J. Dent. Res. 1971, 50, 860-862.
[170] Nery, E.B., Lynch, K.L., Hirthe, W.M., Mueller; K.H. Bioceramic implants in surgically produced infrabony defects. J. Periodontol. 1975, 46, 328-347.
[171] Nery, E.B., Lynch, K.L., Rooney, G.E. Alveolar ridge augmentation with tricalcium phosphate ceramic. J. Prost. Dent. 1978, 40, 668-675.
[172] Denissen, H.W., de Groot, K. Immediate dental root implants from synthetic dense calcium hydroxylapatite. J. Prost. Dent. 1979, 42, 551-556.
[173] LeGeros, R.Z. Calcium phosphate materials in restorative dentistry: a review. Adv. Dent. Res. 1988, 2, 164-180.
[174] Kouassi, M., Michaïlesco, P., Lacoste-Armynot, A., Boudeville, P. Antibacterial effect of a hydraulic calcium phosphate cement for dental applications. J. Endod. 2003, 29, 100-103.
[175] Mehdawi, I., Neel, E.A., Valappil, S.P., Palmer, G., Salih, V., Pratten, J., Spratt, D.A., Young, A.M. Development of remineralizing, antibacterial dental materials. Acta Biomater. 2009, 5, 2525-2539.
[176] Koch, K.A., Brave, D.G., Nasseh, A.A. Bioceramic technology: closing the endo-restorative circle, Part I. Dent. Today 2010, 29, 100-105.
[177] Xu, H.H.K., Sun, L., Weir, M.D., Takagi, S., Chow, L.C., Hockey, B. Effects of incorporating nanosized calcium phosphate particles on of properties of whisker-reinforced dental composites. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81B, 116-125.
[178] Dickens-Venz, S.H., Takagi, S., Chow, L.C., Bowen, R.L., Johnston, A.D., Dickens, B. Physical and chemical properties of resin-reinforced calcium phosphate cements. Dent. Mater. 1994, 10, 100-106.
[179] Lee, Y.K., Lim, B.S., Kim, C.W. Mechanical properties of calcium phosphate based dental filling and regeneration materials. J. Oral Rehabil. 2003, 30, 418-425.
[180] Briak, H.E., Durand, D., Nurit, J., Munier, S., Pauvert, B., Boudeville, P. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. J. Biomed. Mater. Res. 2002, 63, 447-453.
[181] Dickens, S.H., Flaim, G.M., Takagi, S. Mechanical properties and biochemical activity of remineralizing resin-based Ca–PO4 cements. Dent. Mater. 2003, 19, 558-566.
[182] Michaïlesco, P., Kouassi, M., Briak, H.E., Armynot, A., Boudeville, P. Antimicrobial activity and tightness of a DCPD – CaO-based hydraulic calcium phosphate cement for root canal filling. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 74B, 760-767.
[183] Xu, H.H.K., Takagi, S., Sun, L., Hussain, L., Chow, L.C., Guthrie, W.F., Yen, J.H. Development of a nonrigid, durable calcium phosphate cement for use in periodontal bone repair. J. Am. Dent. Assoc. 2006, 137, 1131-1138.
[184] Sugawara, A., Fujikawa, K., Takagi, S., Chow, L.C. Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs. Dent. Mater. J. 2008, 27, 787-794.
[185] Wei, J., Wang, J., Shan, W., Liu, X., Ma, J., Liu, C., Fang, J., Wei, S. Development of fluorapatite cement for dental enamel defects repair. J. Mater. Sci. Mater. Med. 2011, 22, 1607-1614.
[186] Wei, J., Wang, J., Liu, X., Ma, J., Liu, C., Fang, J., Wei, S. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration. Appl. Surf. Sci. 2011, 257, 7887-7892.
[187] Thein-Han, W., Liu, J., Xu, H.H.K. Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent. Mater. 2012, 28, 1059-1070.
[188] Yoshikawa, M., Hayami, S., Tsuji, I., Toda, T. Histopathological study of a newly developed root canal sealer containing tetracalcium-dicalcium phosphates and 1.0% chondroitin sulfate. J. Endod. 1997, 23, 162-166.
[189] Xu, H.H.K., Sun, L., Weir, M.D., Antonucci, J.M., Yakagi, S., Chow, L.C., Peltz, M. Nano DCPA-whisker composites with high strength and Ca and PO4 release. J. Dent. Res. 2006, 85, 722-727.
[190] Xu, H.H.K., Weir, M.D., Sun, L., Takagi, S., Chow, L.C. Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J. Dent. Res. 2007, 86, 378-383.
[191] Xu, H.H.K., Weir, M.D., Sun, L. Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent. Mater. 2007, 23, 1482-1491.
[192] Chen, M.H. Update on dental nanocomposites. J. Dent. Res. 2010, 89, 549-560.
[193] Jean, A.H., Pouezat, J.A., Daculsi, G. Pulpal response to calcium phosphate materials. In vivo study of calcium phosphate materials in endodontics. Cell. Mater. 1993, 3, 193-200.
[194] Stefanic, M., Krnel, K., Pribosic, I., Kosmac, T. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl. Surf. Sci. 2012, 258, 4649-4656.
[195] Bao, L., Liu, J., Shi, F., Jiang, Y., Liu, G. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl. Surf. Sci. 2014, 290, 48-52.
[196] Miura, K., Matsui, K., Kawai, T., Kato, Y., Matsui, A., Suzuki, O., Kamakura, S., Echigo, S. Octacalcium phosphate collagen composites with titanium mesh facilitate alveolar augmentation in canine mandibular bone defects. Int. J. Oral Maxillofac. Surg. 2012, 41, 1161-1169.
[197] Sena, M., Yamashita, Y., Nakano, Y., Ohgaki, M., Nakamura, S., Yamashita, K., Takagi, Y. Octacalcium phosphate-based cement as a pulp-capping agent in rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 97, 749-755.
[198] Imamura, Y., Tanaka, Y., Nagai, A., Yamashita, K., Takagi, Y. Self-sealing ability of OCP-mediated cement as a deciduous root canal filling material. Dent. Mater. J. 2010, 29, 582-588.
[199] Kamakura, S., Sasano, Y., Nakamura, M., Suzuki, O., Ohki, H., Kagayama, M., Motegi, K. Initiation of alveolar ridge augmentation in the rat mandible by subperiosteal implantation of octacalcium phosphate. Arch. Oral Biol. 1996, 41, 1029-1038.
[200] Kamakura, S., Sasano, Y., Homma, H., Suzuki, O., Kagayama, M., Motegi, K. Experimental oral pathology: implantation of octacalcium phosphate nucleates isolated bone formation in rat skull defects. Oral Dis. 2001, 7, 259-265.
[201] Wang, X., Suzawa, T., Miyauchi, T., Zhao, B., Yasuhara, R., Anada, T., Nakamura, M., Suzuki, O., Kamijo, R. Synthetic octacalcium phosphate-enhanced reparative dentine formation via induction of odontoblast differentiation. J. Tissue Eng. Regen. Med. 2015, 9, 1310-1320.
[202] Ambrosio, A.M.A., Sahota, J.S., Khan, Y., Laurencin C.T. A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J. Biomed. Mater. Res. 2001, 58, 295-301.
[203] Skrtic, D., Antonucci, J.M., Eanes, E.D. Effect of the monomer and filler system on the remineralizing potential of bioactive dental composites based on amorphous calcium phosphate. Polym. Adv. Technol. 2001, 12, 369-379.
[204] Skrtic, D., Antonucci, J.M., Eanes, E.D. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J. Res. Natl. Inst. Stands. Technol. 2003, 108, 167-182.
[205] Skrtic, D., Antonucci, J.M., Eanes, E.D., Eidelman, N. Dental composites based on hybrid and surface-modified amorphous calcium phosphates. Biomaterials 2004, 25, 1141-1150.
[206] Skrtic, D., Antonucci, J.M. Matrix resin effects on selected physicochemical properties of amorphous calcium phosphate composites. J. Bioact. Compat. Polym. 2005, 20, 29-49.
[207] Skrtic, D., Antonucci, J.M., Eanes, E.D. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent. Mater. 1996, 12, 295-301.
[208] Skrtic, D., Antonucci, J.M. Dental composites based on amorphous calcium phosphate – resin composition/physicochemical properties study. J. Biomater. Appl. 2007, 21, 375-393.

[209] Skrtic, D., Hailer A.W., Takagi, S., Antonucci, J.M., Eanes, E.D. Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J. Dent. Res. 1996, 75, 1679-1686.
[210] Oshiro, M., Yamaguchi, K., Takamizawa, T., Inage, H., Watanabe, T., Irokawa, A., Ando, S., Miyazaki, M. Effect of CPP-ACP paste on tooth mineralization: an FE-SEM study. J. Oral Sci. 2007, 49, 115-120.
[211] O’Donnell, J.N.R., Schumacher, G.E., Antonucci, J.M., Skrtic, D. Adhesion of amorphous calcium phosphate composites bonded to dentin: a study in failure modality. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 238-249.
[212] Antonucci, J.M., O’Donnell, J.N.R., Schumacher, G.E., Skrtic, D. Amorphous calcium phosphate composites and their effect on composite–adhesive–dentin bonding. J. Adhes. Sci. Technol. 2009, 23, 1133-1147.
[213] Walker, G.D., Cai, F., Shen, P., Adams, G.G., Reynolds, C., Reynolds, E.C. Casein phosphopeptide-amorphous calcium phosphate incorporated into sugar confections inhibits the progression of enamel subsurface lesions in situ. Caries Res. 2010, 44, 33-40.
[214] Xu, H.H.K., Moreau, J.L., Sun, L., Chow, L.C. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent. Mater. 2011, 27, 762-769.
[215] Uysal, T., Amasyali, M., Koyuturk, A.E., Sagdic, D. Efficiency of amorphous calcium phosphate-containing orthodontic composite and resin modified glass ionomer on demineralization evaluated by a new laser fluorescence device. Eur. J. Dent. 2009, 3, 127-134.
[216] Reynolds, E.C. Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: a review. Spec. Care Dentist. 1998, 18, 8-16.
[217] Tung, M.S., Eichmiller, F.C. Dental applications of amorphous calcium phosphates. J. Clin. Dent. 1999, 10, 1-6.
[218] Uysal, T., Ustdal, A., Nur, M., Catalbas, B. Bond strength of ceramic brackets bonded to enamel with amorphous calcium phosphate-containing orthodontic composite. Eur. J. Orthod. 2010, 32, 281-284.
[219] Dunn, W.J. Shear bond strength of an amorphous calcium-phosphate-containing orthodontic resin cement. Am. J. Orthod. Dentofac. Orthoped. 2007, 131, 243-247.
[220] Keçik, D., Çehreli, S.B., Şar, Ç., Ünver, B. Effect of acidulated phosphate fluoride and casein phosphopeptide-amorphous calcium phosphate application on shear bond strength of orthodontic brackets. Angle Orthod. 2008, 78, 129-133.
[221] Foster, J.A., Berzins, D.W., Bradley, T.G. Bond strength of an amorphous calcium phosphate-containing orthodontic adhesive. Angle Orthod. 2008, 78, 339-344.
[222] Sun, W., Zhang, F., Guo, J., Wu, J., Wu, W. Effects of amorphous calcium phosphate on periodontal ligament cell adhesion and proliferation in vitro. J. Med. Biol. Eng. 2008, 28, 107-112.
[223] Uysal, T., Ulker, M., Baysal, A., Usumez, S. Microleakage between composite-wire and composite-enamel interfaces of flexible spiral wire retainers. Part 2: Comparison of amorphous calcium phosphate-containing adhesive with conventional lingual retainer composite. Eur. J. Orthod. 2009, 31, 652-657.
[224] Uysal, T., Ulker, M., Akdogan, G., Ramoglu, S.I., Yilmaz, E. Bond strength of amorphous calcium phosphate-containing orthodontic composite used as a lingual retainer adhesive. Angle Orthod. 2009, 79, 117-121.
[225] Uysal, T., Amasyali, M., Ozcan, S., Koyuturk, A.E., Akyol, M., Sagdic, D. In vivo effects of amorphous calcium phosphate-containing orthodontic composite on enamel demineralization around orthodontic brackets. Aust. Dent. J. 2010, 55, 285-291.
[226] Uysal, T., Amasyali, M., Koyuturk, A.E., Ozcan, S., Sagdic, D. Amorphous calcium phosphate-containing orthodontic composites. Do they prevent demineralisation around orthodontic brackets? Aust. Orthod. J. 2010, 26, 10-15.
[227] Bröchner, A., Christensen, C., Kristensen, B., Tranæus, S., Karlsson, L., Sonnesen, L., Twetman, S. Treatment of post-orthodontic white spot lesions with casein phosphopeptide-stabilised amorphous calcium phosphate. Clin. Oral Invest. 2011, 15, 369-373.
[228] Antonucci, J.M., Skrtic, D. Fine-tuning of polymeric resins and their interfaces with amorphous calcium phosphate. A strategy for designing effective remineralizing dental composites. Polymers 2010, 2, 378-392.
[229] Beerens, M.W., van der Veen, M.H., van Beek, H., Ten Cate, J.M. Effects of casein phosphopeptide amorphous calcium fluoride phosphate paste on white spot lesions and dental plaque after orthodontic treatment: a 3-month follow-up. Eur. J. Oral Sci. 2010, 118, 610-617.
[230] Zhao, J., Liu, Y., Sun, W.B., Zhang, H. Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J. 2011, 8, 40 (7 pages).
[231] Gupta, R., Prakash, V. CPP-ACP complex as a new adjunctive agent for remineralisation: a review. Oral Health Prev. Dent. 2011, 9, 151-165.
[232] Zhang, Q., Zou, J., Yang, R., Zhou, X. Remineralization effects of casein phosphopeptide-amorphous calcium phosphate crème on artificial early enamel lesions of primary teeth. Int. J. Paediatr. Dent. 2011, 21, 374-381.
[233] Moreau, J.L., Sun, L., Chow, L.C., Xu, H.H.K. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 98B, 80-88.
[234] Fletcher, J., Walsh, D., Fowler, C.E., Mann, S. Electrospun mats of PVP/ACP nanofibres for remineralization of enamel tooth surfaces. Cryst Eng Comm 2011, 13, 3692-3697.
[235] Uysal, T., Baysal, A., Uysal, B., Aydinbelge, M., Al-Qunaian, T. Do fluoride and casein phosphopeptide-amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthod. 2011, 81, 490-495.
[236] Tabrizi, A., Cakirer, B. A comparative evaluation of casein phosphopeptide-amorphous calcium phosphate and fluoride on the shear bond strength of orthodontic brackets. Eur. J. Orthod. 2011, 33, 282-287.
[237] Hamba, H., Nikaido, T., Inoue, G., Sadr, A., Tagami, J. Effects of CPP-ACP with sodium fluoride on inhibition of bovine enamel demineralization: a quantitative assessment using micro-computed tomography. J. Dent. 2011, 39, 405-413.
[238] Skrtic, D., Antonucci, J.M. Bioactive polymeric composites for tooth mineral regeneration: physicochemical and cellular aspects. J. Funct. Biomater. 2011, 2, 271-307.
[239] Chow, C.K.W., Wu, C.D., Evans, C.A. In vitro properties of orthodontic adhesives with fluoride or amorphous calcium phosphate. Int. J. Dent. 2011, 2011, 583521 (8 pages).
[240] Hegde, M., Moany, A. Remineralization of enamel subsurface lesions with casein phosphopeptide-amorphous calcium phosphate: a quantitative energy dispersive X-ray analysis using scanning electron microscopy: an in vitro study. J. Conserv. Dent. 2012, 15, 61-67.
[241] Bar-Hillel, R., Feuerstein, O., Tickotsky, N., Shapira, J., Moskovitz, M. Effects of amorphous calcium phosphate stabilized by casein phosphopeptides on enamel de- and remineralization in primary teeth: an in vitro study. J. Dent. Child. (Chic.) 2012, 79, 9-14.
[242] Çehreli, S.B., Şar, C., Polat-Özsoy, O., Ünver, B., Özsoy, S. Effects of a fluoride-containing casein phosphopeptide-amorphous calcium phosphate complex on the shear bond strength of orthodontic brackets. Eur. J. Orthod. 2012, 34, 193-197.
[243] Hammad, S.M., El Banna, M.S., Elsaka, S.E. Twelve-month bracket failure rate with amorphous calcium phosphate bonding system. Eur. J. Orthod. 2013, 35, 622-627.
[244] Park, S.Y., Cha, J.Y., Kim, K.N., Hwang, C.J. The effect of casein phosphopeptide amorphous calcium phosphate on the in vitro shear bond strength of orthodontic brackets. Korean J. Orthod. 2013, 43, 23-28.
[245] Gurunathan, D., Somasundaram, S. Prevention of white spot lesion in orthodontic patients using casein phosphopeptide-stabilized amorphous calcium phosphate – a systematic review. Int. J. Pharma Bio Sci. 2015, 6, B702-B706.
[246] Baysal, A., Uysal, T. Do enamel microabrasion and casein phosphopeptide-amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthod. 2012, 82, 36-41.
[247] Prabhakar, A.R., Sharma, D., Sugandhan, S. Comparative evaluation of the remineralising effects and surface microhardness of glass ionomer cement containing grape seed extract and casein phosphopeptide – amorphous calcium phosphate: an in vitro study. Eur. Arch. Paediatr. Dent. 2012, 13, 138-143.
[248] Weir, M.D., Chow, L.C., Xu, H.H.K. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J. Dent. Res. 2012, 91, 979-984.
[249] Zhao, J., Liu, Y., Sun, W.B., Yang, X. First detection, characterization, and application of amorphous calcium phosphate in dentistry. J. Dent. Sci. 2012, 7, 316-323.
[250] Kato, N., Yamamoto, E., Isai, A., Nishikawa, H., Kusunoki, M., Yoshikawa, K., Hontsu, S. Ultrathin amorphous calcium phosphate freestanding sheet for dentin tubule sealing. Bioceram. Dev. Appl. 2013, S1, 007.
[251] Kato, N., Isai, A., Yamamoto, E., Nishikawa, H., Kusunoki, M., Yoshikawa, K., Yasuo, K., Yamamoto, K., Hontsu, S. Evaluation of dentin tubule sealing rate improved by attaching ultrathin amorphous calcium phosphate sheet. Key Eng. Mater. 2015, 631, 258-261.
[252] Reema, S.D., Lahiri, P.K., Roy, S.S. Review of casein phosphopeptides-amorphous calcium phosphate. Chin. J. Dent. Res. 2014, 17, 7-14.
[253] Cross, K.J., Huq, N.L., Reynolds, E.C. Casein phosphopeptide–amorphous calcium phosphate nanocomplexes: a structural model. Biochemistry, 2016, 55, 4316-4325.
[254] Schemehorn, B.R., Orban, J.C., Wood, G.D., Fischer, G.M., Winston, A.E. Remineralization by fluoride enhanced with calcium and phosphate ingredients. J. Clin. Dent. 1999, 10, 13-16.
[255] Mayne, R.J., Cochrane, N.J., Cai, F., Woods, M.G., Reynolds, E.C. In-vitro study of the effect of casein phosphopeptide amorphous calcium fluoride phosphate on iatrogenic damage to enamel during orthodontic adhesive removal. Am. J. Orthod. Dentofac. Orthoped. 2011, 139, e543-e551.
[256] Llena, C., Forner, L., Baca, P. Anticariogenicity of casein phosphopeptide-amorphous calcium phosphate: a review of the literature. J. Contemp. Dent. Pract. 2009, 10, 1-9.
[257] Cai, F., Shen, P., Morgan, M.V., Reynolds, E.C. Remineralization of enamel subsurface lesions in situ by sugar-free lozenges containing casein phosphopeptide-amorphous calcium phosphate. Aust. Dent. J. 2003, 48, 240-243.
[258] Langhorst, S.E., O’Donnell, J.N.R., Skrtic, D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent. Mater. 2009, 25, 884-891.
[259] Kumar, V.L.N., Itthagarun, A., King, N.M. The effect of casein phosphopeptide-amorphous calcium phosphate on remineralization of artificial caries-like lesions: an in vitro study. Aust. Dent. J. 2008, 53, 34-40.
[260] Ranjitkar, S., Rodriguez, J.M., Kaidonis, J.A., Richards, L.C., Townsend, G.C., Bartlett, D.W. The effect of casein phosphopeptide-amorphous calcium phosphate on erosive enamel and dentine wear by toothbrush abrasion. J. Dent. 2009, 37, 250-254.
[261] Ranjitkar, S., Narayana, T., Kaidonis, J.A., Hughes, T.E., Richards, L.C., Townsend, G.C. The effect of casein phosphopeptide-amorphous calcium phosphate on erosive dentine wear. Aust. Dent. J. 2009, 54, 101-107.
[262] Wegehaupt, F.J., Attin, T. The role of fluoride and casein phosphopeptide/amorphous calcium phosphate in the prevention of erosive/abrasive wear in an in vitro model using hydrochloric acid. Caries Res. 2010, 44, 358-363.
[263] Al-Mullahi, A.M., Toumba, K.J. Effect of slow-release fluoride devices and casein phosphopeptide/amorphous calcium phosphate nanocomplexes on enamel remineralization in vitro. Caries Res. 2010, 44, 364-371.
[264] Giniger, M., MacDonald, J., Spaid, M., Felix, H. A 180-day clinical investigation of the tooth whitening efficacy of a bleaching gel with added amorphous calcium phosphate. J. Clin. Dent. 2005, 16, 11-16.
[265] Giniger, M., MacDonald, J., Ziemba, S., Felix, H. The clinical performance of professionally dispensed bleaching gel with added amorphous calcium phosphate. J. Am. Dent. Assoc. 2005, 136, 383-392.
[266] Reynolds, E.C., Cai, F., Cochrane, N.J., Shen, P., Walker, G.D., Morgan, M.V., Reynolds, C. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J. Dent. Res. 2008, 87, 344-348.
[267] Ramalingam, L., Messer, L.B., Reynolds, E.C. Adding casein phosphopeptide-amorphous calcium phosphate to sports drinks to eliminate in vitro erosion. Pediatr. Dent. 2005, 27, 61-67.
[268] Panich, M., Poolthong, S. The effect of casein phosphopeptide-amorphous calcium phosphate and a cola soft drink on in vitro enamel hardness. J. Am. Dent. Assoc. 2009, 140, 455-460.
[269] Silva, K.G., Pedrini, D., Delbem, A.C.B., Ferreira, L., Cannon, M. In situ evaluation of the remineralizing capacity of pit and fissure sealants containing amorphous calcium phosphate and/or fluoride. Acta Odontol. Scand. 2010, 68, 11-18.
[270] Bayrak, S., Tunc, E.S., Sonmez, I.S., Egilmez, T., Ozmen, B. Effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) application on enamel microhardness after bleaching. Am. J. Dent. 2009, 22, 393-396.
[271] Yengopal, V., Mickenautsch, S. Caries preventive effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): a meta-analysis. Acta Odontol. Scand. 2009, 67, 321-332.
[272] Walker, G.D., Cai, F., Shen, P., Reynolds, C., Ward, B., Fone, C., Honda, S., Koganei, M., Oda, M., Reynolds, E.C. Increased remineralization of tooth enamel by milk containing added casein phosphopeptide-amorphous calcium phosphate. J. Dairy Res. 2006, 73, 74-78.
[273] Walker, G.D., Cai, F., Shen, P., Bailey, D.L., Yuan, Y., Cochrane, N.J., Reynolds, C., Reynolds, E.C. Consumption of milk with added casein phosphopeptide-amorphous calcium phosphate remineralizes enamel subsurface lesions in situ. Aust. Dent. J. 2009, 54, 245-249.
[274] Willershausen, B., Schulz-Dobrick, B., Gleissner, C. In vitro evaluation of enamel remineralisation by a casein phosphopeptide-amorphous calcium phosphate paste. Oral Health Prev. Dent. 2009, 7, 13-21.
[275] Mei, H.L., Chen, L.Y., Zhang, D., Zhang, P.L., Liu, B., Zhao, W., Qi, H.Y. Effects of casein phosphopeptide-stabilized amorphous calcium phosphate solution on enamel remineralization. J. Clin. Rehabil. Tiss. Eng. Res. 2009, 13, 4825-4828.
[276] Aykut-Yetkiner, A., Kara, N., Ateş, M., Ersin, N., Ertuğrul, F. Does casein phosphopeptid amorphous calcium phosphate provide remineralization on white spot lesions and inhibition of Streptococcus mutans? J. Clin. Pediatr. Dent. 2014, 38, 302-306.
[277] Zhou, C., Zhang, D., Bai, Y., Li, S. Casein phosphopeptide-amorphous calcium phosphate remineralization of primary teeth early enamel lesions. J. Dent. 2014, 42, 21-29.
[278] Li, J., Xie, X., Wang, Y., Yin, W., Antoun, J.S., Farella, M., Mei, L. Long-term remineralizing effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on early caries lesions in vivo: a systematic review. J. Dent. 2014, 42, 769-777.
[279] Zhang, L., Weir, M.D., Chow, L.C., Antonucci, J.M., Chen, J., Xu, H.H.K. Novel rechargeable calcium phosphate dental nanocomposite. Dent. Mater. 2016, 32, 285-293.
[280] Zhang, L., Weir, M.D., Chow, L.C., Reynolds, M.A., Xu, H.H.K. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release. Sci. Rep. 2016, 6, 36476 (11 pages).
[281] Zhang, K., Cheng, L., Weir, M.D., Bai, Y.X., Xu, H.H.K. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite. Int. J. Oral Sci. 2016, 8, 45-53.
[282] Pepelassi, E.M., Bissada, N.F., Greenwell, H., Farah, C.F. Doxycycline-tricalcium phosphate composite graft facilitates osseous healing in advanced periodontal furcation defects. J. Periodontol. 1991, 62, 106-115.
[283] Wiltfang, J., Schlegel, K.A., Schultze-Mosgau, S., Nkenke, E., Zimmermann, R., Kessler, P. Sinus floor augmentation with β-tricalciumphosphate (β-TCP): does platelet-rich plasma promote its osseous integration and degradation? Clin. Oral Implant. Res. 2003, 14, 213-218.
[284] Zerbo, I.R., Zijderveld, S.A., de Boer, A., Bronckers, A.L.J.J., de Lange, G., ten Bruggenkate, C.M., Burger, E.H. Histomorphometry of human sinus floor augmentation using a porous β-tricalcium phosphate: a prospective study. Clin. Oral Implant. Res. 2004, 15, 724-732.
[285] Zijderveld, S.A., Zerbo, I.R., van den Bergh, J.P.A., Schulten, E.A.J.M., ten Bruggenkate, C.M. Maxillary sinus floor augmentation using a β-tricalcium phosphate (Cerasorb®) alone compared to autogenous bone grafts. Int. J. Oral Maxillofac. Implants 2005, 20, 432-440.
[286] Shayesteh, Y.S., Khojasteh, A., Soleimani, M., Alikhasi, M., Khoshzaban, A., Ahmadbeigi, N. Sinus augmentation using human mesenchymal stem cells loaded into a β-tricalcium phosphate/hydroxyapatite scaffold. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 106, 203-209.
[287] Marukawa, K., Ueki, K., Okabe, K., Nakagawa, K., Yamamoto, E. Use of self-setting α-tricalcium phosphate for maxillary sinus augmentation in rabbit. Clin. Oral Implant. Res. 2011, 22, 606-612.
[288] Klijn, R.J., Hoekstra, J.W.M., van den Beucken, J.J.J.P., Meijer, G.J., Jansen, J.A. Maxillary sinus augmentation with microstructured tricalcium phosphate ceramic in sheep. Clin. Oral Implant. Res. 2012, 23, 274-280.
[289] Yoshino, K., Taniguchi, Y., Yoda, Y., Matsukubo, T. Autotransplantation of tooth by osteotome sinus floor elevation technique with beta-tricalcium phosphate (β-TCP). J. Oral Maxil. Surg. Med. Pathol. 2013, 25, 351-354.
[290] Fischer-Brandies, E., Dielert, E. Clinical use of tricalciumphosphate and hydroxyapatite in maxillofacial surgery. J. Oral Implant. 1985, 12, 40-44.
[291] Ignatius, A.A., Ohnmacht, M., Claes, L.E., Kreidler, J., Palm, F. A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery. J. Biomed. Mater. Res. 2001, 58, 564-569.
[292] Horch, H.H., Sader, R., Pautke, C., Neff, A., Deppe, H., Kolk, A. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws. Int. J. Oral Maxillofac. Surg. 2006, 35, 708-713.
[293] Saito, E., Saito, A., Kuboki, Y., Kimura, M., Honma, Y., Takahashi, T., Kawanami, M. Periodontal repair following implantation of beta-tricalcium phosphate with different pore structures in class III furcation defects in dogs. Dent. Mater. J. 2012, 31, 681-688.
[294] Bilginer, S., Esener, T., Söylemezoglu, F., Tiftik, A.M. The investigation of biocompatibility and apical microleakage of tricalcium phosphate based root canal sealers. J. Endod. 1997, 23, 105-109.
[295] Niwa, K., Ogawa, K., Miyazawa, K., Aoki, T., Kawai, T., Goto, S. Application of α-tricalcium phosphate coatings on titanium subperiosteal orthodontic implants reduces the time for absolute anchorage: a study using rabbit femora. Dent. Mater. J. 2009, 28, 477-486.
[296] Yamamoto, E., Kato, N., Isai, A., Nishikawa, H., Hashimoto, Y., Yoshikawa, K., Hontsu, S. A novel treatment for dentine cavities with intraoral laser ablation method using an Er:YAG laser. Key Eng. Mater. 2015, 631, 262-266.
[297] Karlinsey, R.L., Mackey, A.C., Walker, E.R., Frederick, K.E. Surfactant-modified β-TCP: structure, properties, and in vitro remineralization of subsurface enamel lesions. J. Mater. Sci. Mater. Med. 2010, 21, 2009-2020.
[298] Karlinsey, R.L., Mackey, A.C., Walker, E.R., Frederick, K.E. Preparation, characterization and in vitro efficacy of an acid-modified β-TCP material for dental hard-tissue remineralization. Acta Biomater. 2010, 6, 969-978.
[299] Karlinsey, R.L., Pfarrer, A.M. Fluoride plus functionalized β-TCP: a promising combination for robust remineralization. Adv. Dent. Res. 2012, 24, 48-52.
[300] Shayegan, A., Petein, M., Abbeele, A.V. Beta-tricalcium phosphate, white mineral trioxide aggregate, white Portland cement, ferric sulfate, and formocresol used as pulpotomy agents in primary pig teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 105, 536-542.
[301] Heller, A.I., Koenigs, J.F., Brilliant, J.D., Melfi, R.C., Driskell, T.D. Direct pulp capping of permanent teeth in primates using a resorbable form of tricalcium phosphate ceramic. J. Endod. 1975, 1, 95-101.
[302] Koenigs, J.F., Heller, A.L., Brilliant, J.D., Melfi, R.C., Driskell, T.D. Induced apical closure of permanent teeth in adult primates using a resorbable form of tricalcium phosphate ceramic. J. Endod. 1975, 1, 102-106.
[303] Boone, M.E., Kafrawy, H. Pulp reaction to a tricalcium phosphate ceramic capping agent. Oral Surg. Oral Med. Oral Pathol. 1979, 47, 369-371.
[304] Himel, V., Brady, J., Weir, J. Evaluation of repair of mechanicial perforations of the pulp chamber floor using biodegradable tricalcium phospahte or calcium hydroxide. J. Endod. 1985, 11, 161-165.
[305] Yoshiba, K., Yoshiba, N., Iwaku, M. Histological observations of hard tissue barrier formation in amputated dental pulp capped with alpha-tricalcium phosphate containing calcium hydroxide. Endod. Dent. Traumatol. 1994, 10, 113-120.
[306] Higashi, T. Influence of particle size of calcium phosphate ceramics as a capping agent on the formation of a hard tissue barrier in amputated dental pulp. J. Endod. 1996, 22, 281-283.
[307] Sinai, I.H., Romea, D.J., Glassman, G., Morse, D.R., Fantasia, J., Furst, M.L. An evaluation of tricalcium phosphate as a treatment for endodontic perforations. J. Endod. 1989, 15, 399-403.
[308] Balla, R., LoMonaco, C.J., Skribner, J., Lin, L.M. Histological study of furcation perforations treated with tricalcium phosphate, hydroxylapatite, amalgam, and life. J. Endod. 1991, 17, 234-238.
[309] Harbert, H. Generic tricalcium phosphate plugs: an adjunct in endodontics. J. Endod. 1991, 17, 131-134.
[310] Gaberthüel, T.W., Strub, J.R. Treatment of periodontal pockets with tricalcium phosphate in man. A preliminary report. SSO Schweiz Monatsschr. Zahnheilkd. 1977, 87, 809-814.
[311] Strub, J.R., Gaberthüel, T.W. Trikalziumphosphat und dessen biologisch abbaubare Keramik in der parodontalen Knochenchirurgie Eine Literaturubersicht. [Tricalcium phosphate and its biodegradable ceramics in periodontal bone surgery. A review of the literature]. SSO Schweiz Monatsschr. Zahnheilkd. 1978, 88, 798-803.
[312] Baldock, W.T., Hutchens, Jr., L.H., McFall, Jr., W.T., Simpson, D.M. An evaluation of tricalcium phosphate implants in human periodontal osseous defects of two patients. J. Periodontol. 1985, 56, 1-7.
[313] Saffar, J.L., Colombier, M.L., Detienville, R. Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans. J. Periodontol. 1990, 61, 209-216.
[314] Stavropoulos, A., Windisch, P., Szendröi-Kiss, D., Peter, R., Gera, I., Sculean, A. Clinical and histologic evaluation of granular beta-tricalcium phosphate for the treatment of human intrabony periodontal defects: a report on five cases. J. Periodontol. 2010, 81, 325-334.
[315] Asvanund, P., Chunhabundit, P. Alveolar bone regeneration by implantation of nacre and B-tricalcium phosphate in guinea pig. Implant Dent. 2012, 21, 248-253.
[316] Okubo, N., Fujita, T., Ishii, Y., Ota, M., Shibukawa, Y., Yamada, S. Coverage of gingival recession defects using acellular dermal matrix allograft with or without beta-tricalcium phosphate. J. Biomater. Appl. 2013, 27, 627-637.
[317] Saito, A., Saito, E., Ueda, Y., Shibukawa, Y., Honma, Y., Takahashi, T., Kimura, M., Kuboki, Y., Kato, H. Effect of tunnel structure of β-TCP on periodontal repair in class III furcation defects in dogs. Bioceram. Dev. Appl. 2014, 4, 073.
[318] Matsuura, T., Akizuki, T., Hoshi, S., Ikawa, T., Kinoshita, A., Sunaga, M., Oda, S., Kuboki, Y., Izumi, Y. Effect of a tunnel-structured β-tricalcium phosphate graft material on periodontal regeneration: a pilot study in a canine one-wall intrabony defect model. J. Periodont. Res. 2015, 50, 347-355.

[319] Ogawa, K., Miyaji, H., Kato, A., Kosen, Y., Momose, T., Yoshida, T., Nishida, E., Miyata, S., Murakami, S., Takita, H., Fugetsu, B., Sugaya, T., Kawanami, M. Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs. J. Periodont. Res. 2016, 51, 758-767.
[320] Cãlin, C., Pãtraşcu, I. Growth factors and beta-tricalcium phosphate in the treatment of periodontal intraosseous defects: a systematic review and meta-analysis of randomised controlled trials. Arch. Oral Biol. 2016, 66, 44-54.
[321] Maksimovskii, I.M., Zemskova, M.I. Primenenie kal’tsii-fosfatnoi keramiki pri lechenii glubokogo kariesa. [The use of a calcium phosphate ceramic in treating deep caries.] Stomatologiia 1994, 73, 14-17.
[322] Wang, Y., Wang, Q.S. Application of nano-hydroxyapatite and its composite biomaterials in stomatology. J. Clin. Rehabil. Tiss. Eng. Res. 2010, 14, 1426-1428.
[323] Besinis, A., van Noort, R., Martin, N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent. Mater. 2012, 28, 1012-1023.
[324] Chen, H., Clarkson, B.H., Sun, K., Mansfield, J.F. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J. Colloid Interf. Sci. 2005, 288, 97-103.
[325] Onuma, K., Yamagishi, K., Oyane, A. Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J. Cryst. Growth 2005, 282, 199-207.
[326] Meng, X., Lv, K., Zhang, J., Qu, D. Caries inhibitory activity of the nano-HA in vitro. Key Eng. Mater. 2007, 330-332, 251-254.
[327] Li, B.G., Wang, J.P., Zhao, Z.Y., Sui, Y.F., Zhang, Y.X. Mineralizing of nano-hydroxyapatite powders on artificial caries. Rare Metal. Mat. Eng. 2007, 36, 128-130.
[328] Li, L., Pan, H.H., Tao, J.H., Xu, X.R., Mao, C.Y., Gu, X.H., Tang, R.K. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J. Mater. Chem. 2008, 18, 4079-4084.
[329] Lim, K.T., Suh, J.D., Kim, J., Choung, P.H., Chung, J.H. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99B, 399-411.
[330] Block, M.S., Kent, J.N., Kay, J.F. Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J. Oral Maxillofac. Surg. 1987, 45, 601-607.
[331] Block, M.S., Kent, J.N., Beirne, O.R. Long-term follow-up on hydroxylapatite-coated cylindrical dental implants: a comparison between developmental and recent periods. J. Oral Maxillofac. Surg. 1994, 52, 937-944.

[332] Jones, J.D., Saigusa, M., van Sickels, J.E., Tiner, B.D., Gardner, W.A. Clinical evaluation of hydroxyapatite-coated titanium plasma-sprayed and titanium plasma-sprayed cylinder dental implants. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1997, 84, 137-141.
[333] Gineste, L., Gineste, M., Ranz, X., Ellefterion, A., Guilhem, A., Rouquet, N., Frayssinet, P. Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J. Biomed. Mater. Res. 1999, 48, 224-234.
[334] Ong, J.L., Chan, D.C.N. Hydroxyapatite and their use as coatings in dental implants: a review. Crit. Rev. Biomed. Eng. 1999, 28, 667-707.
[335] Jones, J.D., Lupori, J., van Sickels, J.E., Gardner, W. A 5-year comparison of hydroxyapatite-coated titanium plasma-sprayed and titanium plasma-sprayed cylinder dental implants. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999, 87, 649-652.
[336] Block, M.S., Gardiner, D., Almerico, B., Neal, C. Loaded hydroxylapatite-coated implants and uncoated titanium-threaded implants in distracted dog alveolar ridges. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2000, 89, 676-685.
[337] Yoshinari, M., Oda, Y., Inoue, T., Matsuzaka, K., Shimono, M. Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants. Biomaterials 2002, 23, 2879-2885.
[338] Schliephake, H., Scharnweber, D., Roesseler, S., Dard, M., Sewing, A., Aref, A. Biomimetic calcium phosphate composite coating of dental implants. Int. J. Oral Maxillofac. Implants 2006, 21, 738-746.
[339] Kim, S.G., Hahn, B.D., Park, D.S., Lee, Y.C., Choi, E.J., Chae, W.S., Baek, D.H., Choi, J.Y. Aerosol deposition of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. J. Oral Maxillofac. Surg. 2011, 69, e354-e363.
[340] Jung, U.W., Hwang, J.W., Choi, D.Y., Hu, K.S., Kwon, M.K., Choi, S.H., Kim, H.J. Surface characteristics of a novel hydroxyapatite-coated dental implant. J. Periodont. Implant Sci. 2012, 42, 59-63.
[341] Kano, T., Yamamoto, R., Miyashita, A., Komatsu, K., Hayakawa, T., Sato, M., Oida, S. Regeneration of periodontal ligament for apatite-coated tooth-shaped titanium implants with and without occlusion using rat molar model. J. Hard Tiss. Biol. 2012, 21, 189-202.
[342] van Oirschot, B.A.J.A., Bronkhorst, E.M., van den Beucken, J.J.J.P., Meijer, G.J., Jansen, J.A., Junker, R. A systematic review on the long-term success of calcium phosphate plasma-spray-coated dental implants. Odontology 2016, 104, 347-356.
[343] Tinsley, D., Watson, C.J., Russell, J.L. A comparison of hydroxylapatite coated implant retained fixed and removable mandibular prostheses over 4 to 6 years. Clin. Oral Implant. Res. 2001, 12, 159-166.
[344] Binahmed, A., Stoykewych, A., Hussain, A., Love, B., Pruthi, V. Long-term follow-up of hydroxyapatite-coated dental implants – a clinical trial. Int. J. Oral Maxillofac. Implants 2007, 22, 963-968.
[345] Iezzi, G., Scarano, A., Petrone, G., Piattelli, A. Two human hydroxyapatite-coated dental implants retrieved after a 14-year loading period: a histologic and histomorphometric case report. J. Periodontol. 2007, 78, 940-947.
[346] Owadally, I.D., Ford, T.R.P. Effect of addition of hydroxyapatite on the physical properties of IRM. Int. Endod. J. 1994, 27, 227-232.
[347] Owadally, I.D., Chong, B.S., Ford, T.R.P., Wilson, R.F. Biological properties of IRM with the addition of hydroxyapatite as a retrograde root filling material. Endod. Dent. Traumatol. 1994, 10, 228-232.
[348] Nicholson, J.W., Hawkins, S.J., Smith, J.E. The incorporation of hydroxyapatite into glass-polyalkenoate (“glass-ionomer”) cements: a preliminary study. J. Mater. Sci. Mater. Med. 1993, 4, 418-421.
[349] Yap, A.U., Pek, Y.S., Kumar, R.A., Cheang, P., Khor, K.A. Experimental studies on a new bioactive material: HAIonomer cements. Biomaterials 2002, 23, 955-962.
[350] Lucas, M.E., Arita, K., Nishino, M. Toughness, bonding and fluoride release properties of hydroxyapatite-added glass ionomer cement. Biomaterials 2003, 24, 3787-3794.
[351] Moshaverinia, A., Ansari, S., Moshaverinia, M., Roohpour, N., Darr, J.A., Rehman, I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008, 4, 432-440.
[352] Moshaverinia, A., Ansari, S., Movasaghi, Z., Billington, R.W., Darr, J.A., Rehman, I.U. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent. Mater. 2008, 24, 1381-1390.
[353] Arita, K., Yamamoto, A., Shinonaga, Y., Harada, K., Abe, Y., Nakagawa, K., Sugiyama, S. Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement. Dent. Mater. J. 2011, 30, 672-683.
[354] Lin, J., Zhu, J., Gu, X., Wen, W., Li, Q., Fischer-Brandies, H., Wang, H., Mehl, C. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater. 2011, 7, 1346-1353.
[355] Neto, D.M.A., Carvalho, E.V., Rodrigues, E.A., Feitosa, V.P., Sauro, S., Mele, G., Carbone, L., Mazzetto, S.E., Rodrigues, L.K., Fechine, P.B. Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants. Dent. Mater. 2016, 32, 784-793.

[356] Domingo, C., Arcís, R.W., López-Macipe, A., Osorio, R., Rodríguez-Clemente, R., Murtra, J., Fanovich, M.A., Toledano, M. Dental composites reinforced with hydroxyapatite: mechanical behavior and absorption/elution characteristics. J. Biomed. Mater. Res. 2001, 56, 297-305.
[357] Brostow, W., Estevez, M., Lobland, H.E.H., Hoang, L., Rodriguez, J.R., Vargar, S. Porous hydroxyapatite-based obturation materials for dentistry. J. Mater. Res. 2008, 23, 1587-1596.
[358] Oduncu, B.S., Yucel, S., Aydin, I., Sener, I.D., Yamaner, G. Polymerisation shrinkage of light-cured hydroxyapatite (HA) − reinforced dental composites. World Acad. Sci. Eng. Technol. 2010, 40, 286-291.
[359] Huang, S., Gao, S., Cheng, L., Yu, H. Combined effects of nano-hydroxyapatite and Galla chinensis on remineralisation of initial enamel lesion in vitro. J. Dent. 2010, 38, 811-819.
[360] Zhang, Y., Wang, Y. Hydroxyapatite effect on photopolymerization of self-etching adhesives with different aggressiveness. J. Dent. 2012, 40, 564-570.
[361] Vargas, S., Estevez, M., Hernandez, A., Laiz, J.C., Brostow, W., Lobland, H.E.H., Rodriguez, J.R. Hydroxyapatite based hybrid dental materials with controlled porosity and improved tribological and mechanical properties. Mater. Res. Innov. 2013, 17, 154-160.
[362] Schlafer, S., Birkedal, H., Olsen, J., Skovgaard, J., Sutherland, D.S., Wejse, P.L., Nyvad, B., Meyer, R.L. Calcium-phosphate-osteopontin particles for caries control. Biofouling 2016, 32, 349-357.
[363] Marković, D., Petrović, V., Krstić. N., Lazarević-Macanović M., Nikolić, Z. Radiological assesment of apex formation following use of hydroxyapatite. Acta Veter. (Beograd) 2007, 57, 275-287.
[364] Krell, K.V., Wefel, J.S. A calcium phosphate cement root canal sealer – scanning electron microscopic analysis. J. Endod. 1984, 10, 571-576.
[365] Krell, K.V., Madison, S. Comparison of apical leakage in teeth obturated with a calcium phosphate cement or Grossman’s cement using lateral condensation. J. Endod. 1985, 11, 336-339.
[366] Chohayeb, A.A., Chow, L.C., Tsaknis, P. Evaluation of calcium phosphate as a root canal sealer-filler material. J. Endod. 1987, 13, 384-387.
[367] Sugawara, A., Chow, L.C., Takagi, S., Chohayeb, H. In vitro evaluation of the sealing ability of a calcium phosphate cement when used as a root canal sealer-filler. J. Endod. 1990, 16, 162-165.
[368] Chaung, H.M., Hong, C.H., Chiang, C.P., Lin, S.K., Kuo, Y.S., Lan, W.H., Hsieh, C.C. Comparison of calcium phosphate cement mixture and pure calcium hydroxide as direct pulp-capping agents. J. Formos. Med. Assoc. 1996, 95, 545-550.
[369] Dupoirieux, L., Gard, C. Hydroxyapatite cement for calvarial reconstruction. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2000, 89, 140-142.
[370] Cherng, A.M., Chow, L.C., Takagi, S. In vitro evaluation of a calcium phosphate cement root canal filler/sealer. J. Endod. 2001, 27, 613-615.
[371] Sugawara, A., Fujikawa, K., Kusama, K., Nishiyama, M., Murai, S., Takagi, S., Chow, L.C. Histopathologic reaction of calcium phosphate cement for alveolar ridge augmentation. J. Biomed. Mater. Res. 2002, 61, 47-52.
[372] Fujikawa, K., Sugawara, A., Kusama, K., Nishiyama, M., Murai, S., Takagi, S., Chow, L.C. Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement. Dent. Mater. J. 2002, 21, 296-305.
[373] Comuzzi, L., Ooms, E., Jansen, J.A. Injectable calcium phosphate cement as a filler for bone defects around oral implants, an experimental study in goats. Clin. Oral Implants Res. 2002, 13, 304-311.
[374] Shirakata, Y., Oda, S., Kinoshita, A., Kikuchi, S., Tsuchioka, H., Ishikawa, I. Histocompatible healing of periodontal defects after application of injectable calcium phosphate bone cement. A preliminary study in dogs. J. Periodontol. 2002, 73, 1043-1053.
[375] Kim, J.S., Baek, S.H., Bae, K.S. In vitro study of the biocompatibility of newly developed calcium phosphate-based root canal sealers. J. Endod. 2004, 30, 708-711.
[376] Noetzel, J., Özer, K., Reisshauer, B.H., Anil, A., Rössler, R., Neumann, K., Kielbassa, A.M. Tissue responses to an experimental calcium phosphate cement and mineral trioxide aggregate as materials for furcation perforation repair, a histological study in dogs. Clin. Oral Invest. 2006, 10, 77-83.
[377] Witjaksono, W., Naing, L., Mulyawati, E., Samsudin, A.R., Oo, M.M.T. Sealing ability of hydroxyapatite as a root canal sealer: in vitro study. Dent. J. 2007, 40, 101-105.
[378] Ascherman, J.A., Foo, R., Nanda, D., Parisien, M. Reconstruction of cranial bone defects using a quick-setting hydroxyapatite cement and absorbable plates. J. Craniofac. Surg. 2008, 19, 1131-1135.
[379] Lee, S.K., Lee, S.K., Lee, S.I., Park, J.H., Jang, J.H., Kim, H.W., Kim, E.C. Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J. Endod. 2010, 36, 1537-1542.
[380] Arisan, V., Anil, A., Wolke, J.G., Özer, K. The effect of injectable calcium phosphate cement on bone anchorage of titanium implants: an experimental feasibility study in dogs. Int. J. Oral Maxillofac. Surg. 2010, 39, 463-468.
[381] Barros, C.M.B., de Oliveira, S.V., Marques, J.B., Viana, K.M.S., Costa, A.C.F.M. Analysis of the hydroxyapatite incorporate MTA dental application. Mater. Sci. Forum 2012, 727-728, 1381-1386.
[382] Xiao, Y., Yin, Q., Wang, L., Bao, C. Macro-porous calcium phosphate scaffold with collagen and growth factors for periodontal bone regeneration in dogs. Ceram. Int. 2015, 41, 995-1003.
[383] Hontsu, S., Kato, N., Yamamoto, E., Nishikawa, H., Kusunoki, M., Hayami, T., Yoshikawa, K. Regeneration of tooth enamel by flexible hydroxyapatite sheet. Key Eng. Mater. 2012, 493-494, 615-619.
[384] Yamamoto, E., Kato, N., Nishikawa, H., Kusunoki, M., Hayami, T., Yoshikawa, K., Hontsu, S. Adhesive strength between flexible hydroxyapatite sheet and tooth enamel. Key Eng. Mater. 2013, 529-530, 522-525.
[385] Yamamoto, E., Kato, N., Isai, A., Nishikawa, H., Kusunoki, M., Yoshikawa, K., Hontsu, S. Restoration of tooth enamel using a flexible hydroxyapatite sheet coated with tricalcium phosphate. Bioceram. Dev. Appl. 2013, S1, 006.
[386] Jaber, L., Mascres, C., Donohue, W.B. Electron microscope characteristics of dentin repair after hydroxyapatite direct pulp capping in rats. J. Oral. Pathol. Med. 1991, 20, 502-508.
[387] Jaber, L., Mascrès, C., Donohue, W.B. Reaction of the dental pulp to hydroxyapatite. Oral Surg. Oral Med. Oral Pathol. 1992, 73, 92-98.
[388] Li, T., Akao, M., Takagi, M. Tissue reaction of hydroxyapatite sol to rat molar pulp. J. Mater. Sci. Mater. Med. 1998, 9, 631-642.
[389] Hayashi, Y., Imai, M., Yanagiguchi, K., Viloria, I.L., Ikeda, T. Hydroxyapatite applied as direct pulp capping medicine substituted for osteodentin. J. Endod. 1999, 25, 225-229.
[390] Zhang, W., Walboomers, X.F., Jansen, J.A. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-β1. J. Biomed. Mater. Res. A 2008, 85A, 439-444.
[391] Nakagawa, K.I. [Clinico-pathological studies of dental biomaterials in endodontic therapy, with special reference to the biocompatibility of the hydroxyapatite on exposed vital human pulp]. Shikwa Gakuho 1983, 83, 501-527.
[392] Maeda, Y., Okada, M., Okuno, Y., Soga, K., Yamamoto, H., Okazaki, M. Clinical application of implant stabilizers: combined use of single-crystal sapphire endodontic implants with hydroxyapatite particles. J. Osaka Univ. Dent. Sch. 1984, 24, 131-144.
[393] Roane, J.B., Benenati, F.W. Successful management of a perforated mandibular molar using amalgam and hydroxyapatite. J. Endod. 1987, 13, 400-404.
[394] Yamaguchi, K. Biological evaluation of new hydroxyapatite endodontic cement in vivo. Histopathological and clinico-pathological observation. Dent. Sci. Reports 1989, 89, 761-792.
[395] Tomizuka, K. Experimental study on apatite ceramics used as endodontic endosseous implant. Kokubyo Gakkai Zasshi 1990, 57, 201-226.
[396] White, J.M., Goodis, H. In vitro evaluation of an hydroxyapatite root canal system filling material. J. Endod. 1991, 17, 561-566.
[397] MacDonald, A., Moore, B.K., Newton, C.W., Brown Jr., C.E. Evaluation of an apatite cement as a root end filling material. J. Endod. 1994, 20, 598-604.
[398] Gambarini, G., Tagger, M. Sealing ability of a new hydroxyapatite-containing endodontic sealer using lateral condensation and thermatic compaction of gutta-percha, in vitro. J. Endod. 1996, 22, 165-167.
[399] Mangin, C., Yesilsoy, C., Nissan, R., Stevens, R. The comparative sealing ability of hydroxyapatite cement, mineral trioxide aggregate, and super ethoxybenzoic acid as root-end filling materials. J. Endod. 2003, 29, 261-264.
[400] Yu, L., Xu, B., Wu, B. Treatment of combined endodontic-periodontic lesions by intentional replantation and application of hydroxyapatites. Dent. Traumatol. 2003, 19, 60-63.
[401] Marković, D., Živojinović, V., Koković, V., Jokanović, V. Hydroxyapatite as a root canal system filling material: cytotoxicity testing. Mater. Sci. Forum 2004, 453-454, 555-560.
[402] Teodorović N, Martinović Ž. Significance of crown-down root canal preparation technique in endodontic therapy by using the hydroxylapatite sealer. Vojnosanit. Pregl. 2005, 62, 447-452.
[403] Fathi, M.H., Salehi, M., Mortazavi, V., Mousavi, S.B., Parsapour, A. Novel hydroxyapatite/niobium surface coating for endodontic dental implant. Surf. Eng. 2006, 22, 353-358.
[404] Masudi, S.M., Luddin, N., Mohamad, D., Alkashakhshir, J.J., Adnan, R., Ramli, R.A. In vitro study on apical sealing ability of nano-hydroxyapatite-filled epoxy resin based endodontic sealer. AIP Conf. Proceed. 2010, 1217, 467-471.
[405] Vaishnavi, C., Mohan, B., Narayanan, L.L. Treatment of endodontically induced periapical lesions using hydroxyapatite, platelet-rich plasma, and a combination of both: an in vivo study. J. Conserv. Dent. 2011, 14, 140-146.
[406] Collares, F.M., Leitune, V.C.B., Rostirolla, F.V., Trommer, R.M., Bergmann, C.P., Samuel, S.M.W. Nanostructured hydroxyapatite as filler for methacrylate-based root canal sealers. Int. Endod. J. 2012, 45, 63-67.
[407] Wang, J.P., Geogi, G. Antimicrobial and sealant properties of nanohydroxyapatite as endodontic sealer. Chin. J. Tissue Eng. Res. 2014, 18, 3350-3354.
[408] Alhashimi, R.A., Mannocci, F., Sauro, S. Experimental polyethylene-hydroxyapatite carrier-based endodontic system: an in vitro study on dynamic thermomechanical properties, sealing ability, and measurements of micro-computed tomography voids. Eur. J. Oral Sci. 2016, 24, 279-286.

[409] Hara, Y., Murakami, T., Kajiyama, K., Maeda, K., Akamine, A., Nagamine, N., Miyatake, S., Abe, T., Azemoto, Y., Aono, M. [Application of calcium phosphate ceramics to periodontal therapy. 8. Effects of orthodontic force on repaired bone with hydroxyapatite]. Nihon Shishubyo Gakkai Kaishi 1989, 31, 224-234.
[410] Müller, N. Alveolarfortsatzerhohung mit Hydroxylapatit. Klinische Erfahrungen aus prothetischer Sicht. [Augmentation of alveolar process with hydroxylapatite. Clinical orthodontic experience]. Dtsch. Zahnarztl. Z. 1989, 44, 596-599.
[411] Schneider, B., Diedrich, P. Interaktion von kieferorthopadischer Zahnbewegung und Hydroxylapatit-Keramik. [Interaction between orthodontic tooth movement and hydroxyapatite ceramics]. Dtsch. Zahnarztl. Z. 1989, 44, 282-285.
[412] Giordano, M., Macchi, A., Ostinelli, E., Tagliabue, A. Effetto protettivo sullo smalto della idrossilapatite ultramicronizzata addizionata ad un cemento composito ortodontico. Studio in vivo. [Protective effect on enamel of ultra-micronized hydroxyapatite in combination with orthodontic composite cement. In vivo study]. Minerva Stomatologica 1996, 45, 29-35.
[413] Liang, X., Tang, S.Q., Lu, D., Zhao, Z.H., Chao, Y.L., Wang, H. Study on hydroxyapatite-coated titanium implants used as orthodontic anchorage – an experimental investigation of implant stability and peri-implant neck tissue in dogs. Chinese J. Dent. Res. 1998, 1, 57-61.
[414] Akhavan, A., Sodagar, A., Mojtahedzadeh, F., Sodagar, K. Investigating the effect of incorporating nanosilver/nanohydroxyapatite particles on the shear bond strength of orthodontic adhesives. Acta Odontol. Scand. 2013, 71, 1038-1042.
[415] Enan, E.T., Hammad, S.M. Microleakage under orthodontic bands cemented with nano-hydroxyapatite-modified glass ionomer: an in vivo study. Angle Orthodontist 2013, 83, 981-986.
[416] Seifi, M., Arayesh, A., Shamloo, N., Hamedi, R. Effect of nanocrystalline hydroxyapatite socket preservation on orthodontically induced inflammatory root resorption. Cell J. 2015, 16, 514-527.
[417] Ajami, S., Pakshir, H.R., Babanouri, N. Impact of nanohydroxyapatite on enamel surface roughness and color change after orthodontic debonding. Prog. Orthod. 2016, 17, 11 (8 pages).
[418] Frame, J.W., Brady, C.L., Browne, R.M. Augmentation of the edentulous mandible using bone and hydroxyapatite: a comparative study in dogs. Int. J. Oral Surg. 1981, 10, 88-92.
[419] Boyne, P. Impact of durapatite as a bone grafting material in oral and maxillofacial surgery. Compend. Contin. Educ. Dent. 1982, Suppl. 2, S83-S86.
[420] Mangano, C., Venini, E., Venini, G. Il DAC blu come sostituto dell’osso in chirurgia orale. [Dense apatite ceramic (DAC) as a bone substitute in oral surgery.] Dent. Cadmos 1984, 52, pp. 97, 100-101, 104-105.
[421] Cranin, A.N., Tobin, G.P., Glebman, J. Applications of hydroxylapatite in oral and maxillofacial surgery. Part I: Periodontal and endosteal-implant repairs. Compendium (Newtown, Pa.) 1987, 8, pp. 254-256, 258, 261.
[422] Cranin, A.N., Tobin, G.P., Gelbman, J. Applications of hydroxylapatite in oral and maxillofacial surgery. Part II: Ridge augmentation and repair of major oral defects. Compendium (Newtown, Pa.) 1987, 8, pp. 334-335, 337.
[423] Frame, J.W., Brady, C.L. The versatility of hydroxyapatite blocks in maxillofacial surgery. Br. J. Oral Maxillofac. Surg. 1987, 25, 452-464.
[424] Frame, J.W. Hydroxyapatite as a biomaterial for alveolar ridge augmentation. Int. J. Oral Maxillofac. Surg. 1987, 16, 642-655.
[425] Asanami, S., Koike, O., Chikata, M., Shiba, H., Ikeuchi, S., Okada, Y., Ohsaka, F., Nomoto, T. Studies of the clinical usefulness of porous hydroxylapatite in the field of dental and oral surgery. Keio J. Med. 1988, 37, 265-281.
[426] Shirakawa, M., Nomura, T., Itoh, T., Sakai, N., Shizume, M. Clinical application of hydroxyapatite ceramics APS-7 in the field of oral surgery. Shigaku Odontology; J. Nippon Dent. College 1988, 76, 782-815.
[427] Salyer, K.E., Hall, C.D. Porous hydroxyapatite as an onlay bone-graft substitute for maxillofacial surgery. Plast. Reconstr. Surg. 1989, 84, 236-244.
[428] Hemmerle, J., Leize, M., Voegel, J.C. Long-term behaviour of a hydroxyapatite/ collagen-glycosaminoglycan biomaterial used for oral surgery: a case report. J. Mater. Sci. Mater. Med. 1995, 6, 360-366.
[429] Kent, J.N., Quinn, J.H., Zide, M.F. Alveolar ridge augmentation using nonresorbable hydroxylapatite with or without autogenous cancellous bone. J. Oral Maxillofac. Surg. 1983, 41, 629-642.
[430] Holmes, R.E., Hagler, H.K. Porous hydroxylapatite as a bone graft substitute in mandibular contour augmentation: a histometric study. J. Oral Maxillofac. Surg. 1987, 45, 421-429.
[431] Wittkampf, A.R.M. Augmentation of the maxillary alveolar ridge with hydroxylapatite and fibrin glue. J. Oral Maxillofac. Surg. 1988, 46, 1019-1021.
[432] Friedman, C.D., Costantino, P.D., Takagi, S., Chow, L.C. BoneSourceTM hydroxyapatite cement, a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J. Biomed. Mater. Res. 1998, 43, 428-432.
[433] Ylinen, P., Suuronen, R., Taurio, R., Törmälä, P., Rokkanen, P. Use of hydroxylapatite/polymer-composite in facial bone augmentation. An experimental study. Int. J. Oral Maxillofac. Surg. 2002, 31, 405-409.
[434] Hallman, M., Hedin, M., Sennerby, L., Lundgren, S. A prospective 1-year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with bovine hydroxyapatite and autogenous bone. J. Oral Maxillofac. Surg. 2002, 60, 277-284.
[435] Wiltfang, J., Kessler, P., Buchfelder, M., Merten, H.A., Neukam, F.W., Rupprecht, S. Reconstruction of skull bone defects using the hydroxyapatite cement with calvarial split transplants. J. Oral Maxillofac. Surg. 2004, 62, 29-35.
[436] Zecha, P.J., Schortinghuis, J., van der Wal, J.E., Nagursky, H., van den Broek, K.C., Sauerbier, S., Vissink, A., Raghoebar, G.M. Applicability of equine hydroxyapatite collagen (eHAC) bone blocks for lateral augmentation of the alveolar crest. A histological and histomorphometric analysis in rats. Int. J. Oral Maxillofac. Surg. 2011, 40, 533-542.
[437] Scarano, A., Degidi, M., Perrotti, V., Piattelli, A., Iezzi, G. Sinus augmentation with phycogene hydroxyapatite: histological and histomorphometrical results after 6 months in humans. A case series. Oral Maxillofac. Surg. 2012, 16, 41-45.
[438] Mercier, P. Failures in ridge reconstruction with hydroxyapatite. Analysis of cases and methods for surgical revision. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1995, 80, 389-393.
[439] Redondo, L.M., García Cantera, J.M., Hernández, A.V., Puerta, C.V. Effect of particulate porous hydroxyapatite on osteoinduction of demineralized bone autografts in experimental reconstruction of the rat mandible. Int. J. Oral Maxillofac. Surg. 1995, 24, 445-448.
[440] Mercier, P., Bellavance, F., Cholewa, J., Djokovic, S. Long-term stability of atrophic ridges reconstructed with hydroxylapatite: a prospective study. J. Oral Maxillofac. Surg. 1996, 54, 960-969.
[441] Lew, D., Farrell, B., Bardach, J., Keller, J. Repair of craniofacial defects with hydroxyapatite cement. J. Oral Maxillofac. Surg. 1997, 55, 1441-1449; discussion 1449-1451.
[442] Mishra, S., Singh, R.K., Mohammad, S., Pradhan, R., Pal, U.S. A comparative evaluation of decalcified freeze dried bone allograft, hydroxyapatite and their combination in osseous defects of the jaws. J. Maxillofac. Oral Surg. 2010, 9, 236-240.
[443] Zhang, J.C., Lu, H.Y., Lv, G.Y., Mo, A.C., Yan, Y.G., Huang, C. The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles. Int. J. Oral Maxillofac. Surg. 2010, 39, 469-477.
[444] Sverzut, A.T., Rodrigues, D.C., Lauria, A., Armando, R.S., de Oliveira, P.T., Moreira, R.W.F. Clinical, radiographic, and histological analyses of calcium phosphate cement as filling material in maxillary sinus lift surgery. Clin. Oral Implant. Res. 2015, 26, 633-638.
[445] Wolford, L.M., Wardrop, R.W., Hartog, J.M. Coralline porous hydroxylapatite as a bone graft substitute in orthognathic surgery. J. Oral Maxillofac. Surg. 1987, 45, 1034-1042.
[446] Moenning, J.E., Wolford, L.M. Coralline porous hydroxyapatite as a bone graft substitute in orthognathic surgery: 24-month follow-up results. Int. J. Adult Orthod. Orthognathic Surg. 1989, 4, 105-117.
[447] Rosen, H.M., Ackerman, J.L. Porous block hydroxyapatite in orthognathic surgery. Angle Orthod. 1991, 61, 185-191; discussion 192.
[448] Cottrell, D.A., Wolford, L.M. Long-term evaluation of the use of coralline hydroxyapatite in orthognathic surgery. J. Oral Maxillofac. Surg. 1998, 56, 935-941; discussion 941-942.
[449] Wolford, L.M., Freitas, R.Z. Porous block hydroxyapatite as a bone graft substitute in the correction of jaw and craniofacial deformities. BUMC Proc. 1999, 12, 243-246.
[450] Larsen, H.D., Finger, I.M., Guerra, L.R., Kent, J.N. Prosthodontic management of the hydroxylapatite denture patient: a preliminary report. J. Prost. Dent. 1983, 49, 461-470.
[451] Larsen, H.D., Guerra, L.R., Finger, I.M. Hydroxylapatite: prosthodontic clinical considerations. Compend. Contin. Educ. Dent. 1984, 5, 786-790.
[452] Balshi, T.J. Preventive durapatite ridge augmentation for esthetic fixed prosthodontics. J. Prost. Dent. 1987, 58, 266-270.
[453] Nelson, D.R., von Gonten, A.S. Prosthodontic management of the hydroxylapatite-augmented ridge. Gen. Dent. 1988, 36, 315-319.
[454] Tanaka, O., Hirai, T., Murase, H. Prosthodontic analysis in mandibular ridge augmentation with hydroxyapatite particle. Part I. Evaluation of alveolar ridge form. Nippon Hotetsu Shika Gakkai Zasshi 1988, 32, 1345-1357.
[455] Zeltser, C., Masella, R., Cholewa, J., Mercier, P. Surgical and prosthodontic residual ridge reconstruction with hydroxyapatite. J. Prost. Dent. 1989, 62, 441-448.
[456] Tanaka, O., Hirai, T., Murase, H. Prosthodontic analysis in mandibular ridge augmentation with hydroxyapatite particle. 2. Evaluation of masticatory function and overall assessment. Nippon Hotetsu Shika Gakkai Zasshi 1989, 33, 1466-1476.
[457] Denissen, H.W., Kalk, W., Veldhuis, A.A.H., van den Hooff, A. Eleven-year study of hydroxyapatite implants. J. Prost. Dent. 1989, 61, 706-712.
[458] Ogiso, M., Tabata, T., Kuo, P.T., Borgese, D. A histologic comparison of the functional loading capacity of an occluded dense apatite implant and the natural dentition. J. Prost. Dent. 1994, 71, 581-588.
[459] Ngoc, N.T.B., Mukohyama, H., Hlaing, S., Kondo, H., Inoue, T., Taniguchi, H., Ohyama, T. Prosthodontic treatment for patients with large mandibular defects; porous hydroxyapatite grafts. J. Med. Dent. Sci. 1997, 44, 93-98.
[460] Sung, Y.M., Shin, Y.K., Ryu, J.J. Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications. Nanotechnol. 2007, 18, 065602.
[461] Meffert, R.M., Thomas, J.R., Hamilton, K.M., Brownstein, C.N. Hydroxylapatite as an alloplastic graft in the treatment of human periodontal osseous defects. J. Periodontol. 1985, 56, 63-73.
[462] Stahl, S.S., Froum, S.J. Histologic and clinical responses to porous hydroxylapatite implants in human periodontal defects. Three to twelve months postimplantation. J. Periodontol. 1987, 58, 689-695.
[463] Bowen, J.A., Mellonig, J.T., Gray, J.L., Towle, H.T. Comparison of decalcified freeze-dried bone allograft and porous particulate hydroxyapatite in human periodontal osseous defects. J. Periodontol. 1989, 60, 647-654.
[464] Mora, F., Ouhayoun, J.P. Clinical evaluation of natural coral and porous hydroxyapatite implants in periodontal bone lesions: results of a 1-year follow-up. J. Clin. Periodontol. 1995, 22, 877-884.
[465] Brown, G.D., Mealey, B.L., Nummikoski, P.V., Bifano, S.L., Waldrop, T.C. Hydroxyapatite cement implant for regeneration of periodontal osseous defects in humans. J. Periodontol. 1998, 69, 146-157.
[466] Yukna, R.A., Callan, D.P., Krauser, J.T., Evans, G.H., Aichelmann-Reidy, M.E., Moore, K., Cruz, R., Scott, J.B. Multi-center clinical evaluation of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) as a bone replacement graft material in human periodontal osseous defects. 6-month results. J. Periodontol. 1998, 69, 655-663.
[467] Morris, H.F., Ochi, S., Spray, J.R., Olson, J.W. Periodontal-type measurements associated with hydroxyapatite-coated and non-HA-coated implants: uncovering to 36 months. Ann. Periodontol. 2000, 5, 56-67.
[468] Okuda, K., Tai, H., Tanabe, K., Suzuki, H., Sato, T., Kawase, T., Saito, Y., Wolff, L.F., Yoshie, H. Platelet-rich plasma combined with a porous hydroxyapatite graft for the treatment of intrabony periodontal defects in humans: a comparative controlled clinical study. J. Periodontol. 2005, 76, 890-898.
[469] Okuda, K., Yamamiya, K., Kawase, T., Mizuno, H., Ueda, M., Yoshie, H. Treatment of human infrabony periodontal defects by grafting human cultured periosteum sheets combined with platelet-rich plasma and porous hydroxyapatite granules: case series. J. Int. Acad. Periodontol. 2009, 11, 206-213.
[470] Kawase, T., Okuda, K., Kogami, H., Nakayama, H., Nagata, M., Sato, T., Wolff, L.F., Yoshie, H. Human periosteum-derived cells combined with superporous hydroxyapatite blocks used as an osteogenic bone substitute for periodontal regenerative therapy: an animal implantation study using nude mice. J. Periodontol. 2010, 81, 420-427.
[471] Trombelli, L., Simonelli, A., Pramstraller, M., Wikesjö, U.M.E., Farina, R. Single flap approach with and without guided tissue regeneration and a hydroxyapatite biomaterial in the management of intraosseous periodontal defects. J. Periodontol. 2010, 81, 1256-1263.
[472] Heinz, B., Kasaj, A., Teich, M., Jepsen, S. Clinical effects of nanocrystalline hydroxyapatite paste in the treatment of intrabony periodontal defects: a randomized controlled clinical study. Clin. Oral Invest. 2010, 14, 525-531.
[473] Jung, U.W., Lee, J.S., Park, W.Y., Cha, J.K., Hwang, J.W., Park, J.C., Kim, C.S., Cho, K.S., Chai, J.K., Choi, S.H. Periodontal regenerative effect of a bovine hydroxyapatite/collagen block in one-wall intrabony defects in dogs: a histometric analysis. J. Periodont. Implant Sci. 2011, 41, 285-292.
[474] Horváth, A., Stavropoulos, A., Windisch, P., Lukács, L., Gera, I., Sculean, A. Histological evaluation of human intrabony periodontal defects treated with an unsintered nanocrystalline hydroxyapatite paste. Clin. Oral Invest. 2013, 17, 423-430.
[475] Yoshinuma, N., Sato, S., Fukuyama, T., Murai, M., Ito, K. Ankylosis of nonresorbable hydroxyapatite graft material as a contributing factor in recurrent periodontitis. Int. J. Periodontics Restorative Dent. 2012, 32, 331-336.
[476] Shirai, Y., Okuda, K., Kubota, T., Wolff, L.F., Yoshie, H. The comparative effectiveness of granules or blocks of superporous hydroxyapatite for the treatment of intrabony periodontal defects. Open J. Stomatol. 2012, 2, 81-87.
[477] Machot, E.A., Hoffmann, T., Lorenz, K., Khalili, I., Noack, B. Clinical outcomes after treatment of periodontal intrabony defects with nanocrystalline hydroxyapatite (Ostim) or enamel matrix derivatives (Emdogain): a randomized controlled clinical trial. Bio Med Res. Int. 2014, 2014, 786353 (9 pages).
[478] Madhumathi, K., Kumar, T.S.S. Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed. Mater. (Bristol) 2014, 9, Article number 035002.
[479] Dorozhkin, S.V. Dissolution mechanism of calcium apatites in acids: a review of literature. World J. Methodol. 2012, 2, 1-17.
[480] Xu, H.H.K., Moreau, J.L. Dental glass-reinforced composite for caries inhibition: calcium phosphate ion release and mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 92B, 332-340.
[481] Shen, Q., Sun, J., Wu, J., Liu, C., Chen, F. An in vitro investigation of the mechanical-chemical and biological properties of calcium phosphate/calcium silicate/bismutite cement for dental pulp capping. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 141-148.
[482] Xu, H.H.K., Weir, M.D., Sun, L. Calcium and phosphate ion releasing composite: effect of pH on release and mechanical properties. Dent. Mater. 2009, 25, 535-542.
[483] Chen, Y.Z., Lü, X.Y., Liu, G.D. A novel root-end filling material based on hydroxyapatite, tetracalcium phosphate and polyacrylic acid. Int. Endod. J. 2013, 46, 556-564.
[484] Daculsi, G., Weiss, P., Bouler, J.M., Gauthier, O., Millot, F., Aguado, E. Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone 1999, 25, Suppl. 1, 59S-61S.
[485] Weiss, P., Layrolle, P., Clergeau, L.P., Enckel, B., Pilet, P., Amouriq, Y., Daculsi, G., Giumelli, B. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 2007, 28, 3295-3305.
[486] Struillou, X., Boutigny, H., Badran, Z., Fellah, B.H., Gauthier, O., Sourice, S., Pilet, P., Rouillon, T., Layrolle, P., Weiss, P., Soueidan, A. Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J. Mater. Sci. Mater. Med. 2011, 22, 1707-1717.
[487] Ellinger, R.F., Nery, E.B., Lynch, K.L. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int. J. Periodontics Restorative Dent. 1986, 6, 22-33.
[488] Nery, E.B., Eslami, A., van Swol, R.L. Biphasic calcium phosphate ceramic combined with fibrillar collagen with and without citric acid conditioning in the treatment of periodontal osseous defects. J. Periodontol. 1990, 61, 166-172.
[489] Nery, E.B., Lee, K.K., Czajkowski, S., Dooner, J.J., Duggan, M., Ellinger, R.F., Henkin, J.M., Hines, R., Miller, M., Olson, J.W. A Veterans Administration Cooperative Study of biphasic calcium phosphate ceramic in periodontal osseous defects. J. Periodontol. 1990, 61, 737-744.
[490] Nery, E.B., LeGeros, R.Z., Lynch, K.L., Lee, K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/βTCP in periodontal osseous defects. J. Periodontol. 1992, 63, 729-735.
[491] Sculean, A., Windisch, P., Szendröi-Kiss, D., Horváth, A., Rosta, P., Becker, J., Gera, I., Schwarz, F. Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J. Periodontol. 2008, 79, 1991-1999.
[492] Shi, H., Ma, J., Zhao, N., Chen, Y., Liao, Y. Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs. J. Mater. Sci. Mater. Med. 2008, 19, 3515-3524.
[493] Su, B., Su, J., Ran, J., Su, B. Biological performance of dental biphasic calcium phosphate ceramics modified by cold plasma. Key Eng. Mater. 2008, 368-372, 1264-1267.
[494] Pandit, N., Gupta, R., Gupta, S. A comparative evaluation of biphasic calcium phosphate material and bioglass in the treatment of periodontal osseous defects: a clinical and radiological study. J. Contemp. Dent. Pract. 2010, 11, 25-32.

[495] Kaushick, B.T., Jayakumar, N.D., Padmalatha, O., Varghese, S. Treatment of human periodontal infrabony defects with hydroxyapatite + β tricalcium phosphate bone graft alone and in combination with platelet rich plasma: a randomized clinical trial. Indian J. Dent. Res. 2011, 22, 505-510.
[496] Kim, S., Jung, U.W., Lee, Y.K., Choi, S.H. Effects of biphasic calcium phosphate bone substitute on circumferential bone defects around dental implants in dogs. Int. J. Oral Maxillofac. Implants 2011, 26, 265-273.
[497] Wagner, W., Wiltfang, J., Pistner, H., Yildirim, M., Ploder, B., Chapman, M., Schiestl, N., Hantak, E. Bone formation with a biphasic calcium phosphate combined with fibrin sealant in maxillary sinus floor elevation for delayed dental implant. Clin. Oral Implants Res. 2012, 23, 1112-1117.
[498] Pietruska, M., Pietruski, J., Nagy, K., Brecx, M., Arweiler, N.B., Sculean, A. Four-year results following treatment of intrabony periodontal defects with an enamel matrix derivative alone or combined with a biphasic calcium phosphate. Clin. Oral Invest. 2012, 16, 1191-1197.
[499] Wang, L., Li, J., Xie, Y., Yang, P., Liao, Y., Guo, G. Effect of nano biphasic calcium phosphate bioceramics on periodontal regeneration in the treatment of alveolar defects. Adv. Mater. Res. 2012, 486, 422-425.
[500] Seong, K.C., Cho, K.S., Daculsi, C., Seris, E., Daculsi, G. Eight-year clinical follow-up of sinus grafts with micro-macroporous biphasic calcium phosphate granules. Key Eng. Mater. 2014, 587, 321-324.
[501] Bosco, J., Enkel, B., Armengol, V., Daculsi, G., Jean, A., Weiss, P. Bioactive calcium phosphate material for dental endodontic treatment. Root apical deposition. Key Eng. Mater. 2006, 309-311, 1157-1160.
[502] Kiba, W., Imazato, S., Takahashi, Y., Yoshioka, S., Ebisu, S., Nakano, T. Efficacy of polyphasic calcium phosphates as a direct pulp capping material. J. Dent. 2010, 38, 828-837.
[503] Nevins, A.J., LaPorta, R.F., Borden, B.G., Spangberg, L.S. Pulpotomy and partial pulpectomy procedures in monkey teeth using cross-linked collagen-calcium phosphate gel. Oral Surg. Oral Med. Oral Pathol. 1980, 49, 360-365.
[504] Shayegan, A., Atash, R., Petein, M., Abbeele, A.V. Nanohydroxyapatite used as a pulpotomy and direct pulp capping agent in primary pig teeth. J. Dent. Child. (Chic). 2010, 77, 77-83.
[505] Yang, S.E., Baek, S.H., Lee, W., Kum, K.Y., Bae, K.S. In vitro evaluation of the sealing ability of newly developed calcium phosphate-based root canal sealer. J. Endod. 2007, 33, 978-981.
[506] Khashaba, R.M., Chutkan, N.B., Borke, J.L. Comparative study of biocompatibility of newly developed calcium phosphate-based root canal sealers on fibroblasts derived from primary human gingiva and a mouse L929 cell line. Int. Endod. J. 2009, 42, 711-718.
[507] Bae, W.J., Chang, S.W., Lee, S.I., Kum, K.Y., Bae, K.S., Kim, E.C. Human periodontal ligament cell response to a newly developed calcium phosphate-based root canal sealer. J. Endod. 2010, 36, 1658-1663.
[508] Khashaba, R.M., Moussa, M.M., Chutkan, N.B., Borke, J.L. The response of subcutaneous connective tissue to newly developed calcium phosphate-based root canal sealers. Int. Endod. J. 2011, 44, 342-352.
[509] Bae, K.H., Chang, S.W., Bae, K.S., Park, D.S. Evaluation of pH and calcium ion release in capseal I and II and in two other root canal sealers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, e23-e28.
[510] Shon, W.J., Bae, K.S., Baek, S.H., Kum, K.Y., Han, A.R., Lee, W.C. Effects of calcium phosphate endodontic sealers on the behavior of human periodontal ligament fibroblasts and MG63 osteoblast-like cells. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 2141-2147.
[511] Tiwari, S., Nandlal, B. Role of synthetic hydroxyapatite in dentistry. Lap Lambert Academic Publishing: Saarbrucken, Deutschland, 2012; 90 pp.
[512] Chang, S.W., Lee, S.Y., Kang, S.K., Kum, K.Y., Kim, E.C. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J. Endod. 2014, 40, 1642-1648.
[513] Al-Haddad, A., Abu Kasim, N.H., Che Ab Aziz, Z.A. Interfacial adaptation and thickness of bioceramic-based root canal sealers. Dent. Mater. J. 2015, 34, 516-521.
[514] Portella, F.F., Collares, F.M., dos Santos, L.A., dos Santos, B.P., Camassola, M., Leitune, V.C.B., Samuel, S.M.W. Glycerol salicylate-based containing α-tricalcium phosphate as a bioactive root canal sealer. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103B, 1663-1669.
[515] Chang, S.W., Lee, Y.K., Zhu, Q., Shon, W.J., Lee, W.C., Kum, K.Y., Baek, S.H., Lee, I.B., Lim, B.S., Bae, K.S. Comparison of the rheological properties of four root canal sealers. Int. J. Oral. Sci. 2015, 7, 56-61.
[516] Chau, J.Y.M., Hutter, J.W., Mork, T.O., Nicoll, B.K. An in vitro study of furcation perforation repair using calcium phosphate cement. J. Endod. 1997, 23, 588-592.
[517] Cherng, A.M., Takagi, S., Chow, L.C. Acid neutralization capacity of a tricalcium silicate-containing calcium phosphate cement as an endodontic material. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 471-476.
[518] Ishida, H., Nahara, Y., Hamada, T. Dimensional accuracy of castable apatite ceramic crowns: the influence of heat treatment on dimensional changes and distortion of crowns. J. Prost. Dent. 1992, 68, 279-283.
[519] Hulshoff, J.E.G., Jansen, J.A. Initial interfacial healing events around calcium phosphate (Ca-P) coated oral implants. Clin. Oral Implant. Res. 1997, 8, 393-400.
[520] Alexander, F., Christian, U., Stefan, T., Christoph, V., Reinhard, G., Georg, W. Long-term effects of magnetron-sputtered calcium phosphate coating on osseointegration of dental implants in non-human primates. Clin. Oral Implant. Res. 2009, 20, 183-188.
[521] Junker, R., Manders, P.J.D., Wolke, J., Borisov, Y., Braceras, I., Jansen, J.A. Bone reaction adjacent to microplasma-sprayed calcium phosphate-coated oral implants subjected to an occlusal load, an experimental study in the dog. Clin. Oral Implant. Res. 2011, 22, 135-142.
[522] Palarie, V., Bicer, C., Lehmann, K.M., Zahalka, M., Draenert, F.G., Kämmerer, P.W. Early outcome of an implant system with a resorbable adhesive calcium-phosphate coating-a prospective clinical study in partially dentate patients. Clin. Oral Invest. 2012, 16, 1039-1048.
[523] Alghamdi, H.S., van Oirschot, B.A.J.A., Bosco, R., van den Beucken, J.J., Aldosari, A.A.F., Anil, S., Jansen, J.A. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin. Oral Implant. Res. 2013, 24, 475-483.
[524] van Oirschot, B.A., Bronkhorst, E.M., van den Beucken, J.J., Meijer, G.J., Jansen, J.A., Junker, R. A systematic review on the long-term success of calcium phosphate plasma-spray-coated dental implants. Odontology 2016, 104, 347-356.
[525] Sato, I., Akizuki, T., Oda, S., Tsuchioka, H., Hayashi, C., Takasaki, A.A., Mizutani, K., Kawakatsu, N., Kinoshita, A., Ishikawa, I., Izumi, Y. Histological evaluation of alveolar ridge augmentation using injectable calcium phosphate bone cement in dogs. J. Oral Rehabil. 2009, 36, 762-769.
[526] Meguro, D., Hayakawa, T., Kawasaki, M., Kasai, K. Shear bond strength of calcium phosphate ceramic brackets to human enamel. Angle Orthod. 2006, 76, 301-305.
[527] Meguro, D., Hayakawa, T., Kasai, K. Efficacy of using orthodontic adhesive resin in bonding and debonding characteristics of a calcium phosphate ceramic bracket. Orthod. Waves 2006, 65, 148-154.
[528] Joo, H.J., Park, Y.G. Friction of calcium phosphate brackets to stainless steel wire. Korean J. Orthod. 2007, 37, 376-385.
[529] Crubezy, E., Murail, P., Girard, L., Bernadou, J.P. False teeth of the Roman world. Nature 1998, 391, 29.
[530] Bobbio, A. The first endosseous alloplastic implant in the history of man. Bull. Hist. Dent. 1972, 20, 1-6.
[531] Lavenus, S., Louarn, G., Layrolle, P. Nanotechnology and dental implants. Int. J. Biomaterials 2010, 2010, 915327 (9 pages).
[532] Khoury, F., Antoun, H., Missika, P. Bone augmentation in oral implantology. Quintessence Publishing: Hanover Park, IL, USA, 2007; 435 pp.
[533] Chiapasco, M., Casentini, P., Zaniboni, M. Bone augmentation procedures in implant dentistry. Int. J. Oral Maxillofac. Implants 2009, 24, Suppl. 2, 37-59.
[534] Gaetti-Jardim, E.C., Santiago-Junior, J.F., Goiato, M.C., Pellizer, E.P., Magro-Filho, O., Jardim, E.G., Jr. Dental implants in patients with osteoporosis: a clinical reality? J. Craniofac. Surg. 2011, 22, 1111-1113.
[535] Reis, E.C.C., Borges, A.P.B., Araújo, M.V.F., Mendes, V.C., Guan, L., Davies, J.E. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials 2011, 32, 9244-9253.
[536] Levin, M.P., Getter, L., Cutright, D.E., Bhaskar, S.N. Biodegradable ceramic in periodontal defects. Oral Surg. Oral Med. Oral Pathol. 1974, 38, 344-351.
[537] Chen, F.M., Zhang, J., Zhang, M., An, Y., Chen, F., Wu, Z.F. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 2010, 31, 7892-7927.
[538] Hayashi, C., Kinoshita, A., Oda, S., Mizutani, K., Shirakata, Y., Ishikawa, I. Injectable calcium phosphate bone cement provides favorable space and a scaffold for periodontal regeneration in dogs. J. Periodontol. 2006, 77, 940-946.
[539] Shirakata, Y., Setoguchi, T., Machigashira, M., Matsuyama, T., Furuichi, Y., Hasegawa, K., Yoshimoto, T., Izumi, Y. Comparison of injectable calcium phosphate bone cement grafting and open flap debridement in periodontal intrabony defects: a randomized clinical trial. J. Periodontol. 2008, 79, 25-32.
[540] Chitsazi, M.T., Shirmohammadi, A., Faramarzie, M., Pourabbas, R., Rostamzadeh, A.N. A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Med. Oral Patol. Oral Cir. Bucal. 2011, 16, 448-453.
[541] Shirakata, Y., Taniyama, K., Yoshimoto, T., Takeuchi, N., Noguchi, K. Effect of bone swaging with calcium phosphate bone cement on periodontal regeneration in dogs. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 35-42.
[542] D’Lima, J.P., Paul, J., Palathingal, P., Varma, B.R.R., Bhat, M., Mohanty, M. Histological and histometrical evaluation of two synthetic hydroxyapatite based biomaterials in the experimental periodontal defects in dogs. J. Clin. Diagn. Res. 2014, 8, ZC52-ZC55.
[543] Bansal, R., Patil, S., Chaubey, K., Thakur, R., Goyel, P. Clinical evaluation of hydroxyapatite and β-tricalcium phosphate composite graft in the treatment of intrabony periodontal defect: a clinico-radiographic study. J. Indian Soc. Periodontol. 2014, 18, 610-617.
[544] Dan, H., Vaquette, C., Fisher, A.G., Hamlet, S.M., Xiao, Y., Hutmacher, D.W., Ivanovski, S. The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials 2014, 35, 113-122.
[545] Nevins, A.J., Cymerman, J.J. Revitalization of open apex teeth with apical periodontitis using a collagen-hydroxyapatite scaffold. J. Endod. 2015, 41, 966-973.
[546] Elgendy, E.A., Shady, T.E.A. Clinical and radiographic evaluation of nanocrystalline hydroxyapatite with or without platelet-rich fibrin membrane in the treatment of periodontal intrabony defects. J. Indian Soc. Periodontol. 2015, 19, 61-65.
[547] García, D., García, L., Pérez, M.P., Suarez, M., Delgado, J.A., García, R., Rodríguez, Y., Fernández, I., Márquez, D. Filling of post-extraction dental socket with hydroxyapatite granules APAFILL-G™. Key Eng. Mater. 2001, 192-195, 925-928.
[548] Checchi, V., Savarino, L., Montevecchi, M., Felice, P., Checchi, L. Clinical-radiographic and histological evaluation of two hydroxyapatites in human extraction sockets: a pilot study. Int. J. Oral Maxillofac. Surg. 2011, 40, 526-532.
[549] Lee, J.S., Wikesjö, U.M.E., Jung, U.W., Choi, S.H., Pippig, S., Siedler, M., Kim, C.K. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a β-tricalcium phosphate carrier into one-wall intrabony defects in dogs. J. Clin. Periodontol. 2010, 37, 382-389.
[550] Emerton, K.B., Drapeau, S.J., Prasad, H., Rohrer, M., Roffe, P., Hopper, K., Schoolfield, J., Jones, A., Cochran, D.L. Regeneration of periodontal tissues in non-human primates with rhGDF-5 and beta-tricalcium phosphate. J. Dent. Res. 2011, 90, 1416-1421.
[551] Ridgway, H.K., Mellonig, J.T., Cochran, D.L. Human histologic and clinical evaluation of recombinant human platelet-derived growth factor and beta-tricalcium phosphate for the treatment of periodontal intraosseous defects. Int. J. Periodontics Restorative Dent. 2008, 28, 171-179.
[552] Jayakumar, A., Rajababu, P., Rohini, S., Butchibabu, K., Naveen, A., Reddy, P.K., Vidyasagar, S., Satyanarayana, D., Kumar, S.P. Multi-centre, randomized clinical trial on the efficacy and safety of recombinant human platelet-derived growth factor with β-tricalcium phosphate in human intra-osseous periodontal defects. J. Clin. Periodontol. 2011, 38, 163-172.
[553] Sorensen, R.G., Wikesjö, U.M.E., Kinoshita, A., Wozney, J.M. Periodontal repair in dogs: Evaluation of a bioresorbable calcium phosphate cement (Ceredex™) as a carrier for rhBMP-2. J. Clin. Periodontol. 2004, 31, 796-804.
[554] Pietruska, M., Skurska, A., Pietruski, J., Dolińska, E., Arweiler, N., Milewski, R., Duraj, E., Sculean, A. Clinical and radiographic evaluation of intrabony periodontal defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute. Ann. Anat. 2012, 194, 533-537.
[555] Elangovan, S., Jain, S., Tsai, P.C., Margolis, H.C., Amiji, M. Nano-sized calcium phosphate particles for periodontal gene therapy. J. Periodontol. 2013, 84, 117-125.
[556] Papas, A. Calcium phosphate mouth rinse for preventing oral mucositis. Community Oncology 2008, 5, 171-172.
[557] Waśko-Grabowska, A., Rzepecki, P., Oborska, S., Barzał, J., Gawroński, K., Młot, B., Szczylik, C. Efficiency of supersaturated calcium phosphate mouth rinse treatment in patients receiving high-dose melphalan or BEAM prior to autologous blood stem cell transplantation: a single-center experience. Transplant. Proc. 2011, 43, 3111-3113.
[558] Markiewicz, M., Dzierzak-Mietla, M., Frankiewicz, A., Zielinska, P., Koclega, A., Kruszelnicka, M., Kyrcz-Krzemien, S. Treating oral mucositis with a supersaturated calcium phosphate rinse: comparison with control in patients undergoing allogeneic hematopoietic stem cell transplantation. Support. Care Cancer 2012, 20, 2223-2229.
[559] Miyamoto, C.T., Wobb, J., Micaily, B., Li, S., Achary, M.P. A retrospective match controlled study of supersaturated calcium phosphate oral rinse vs. supportive care for radiation induced oral mucositis. J. Cancer Ther. 2012, 3, 630-636.
[560] Nyman, S., Lindhe, J., Karring, T., Rylander, H. New attachment following surgical treatment of human periodontal disease. J. Clin. Periodontol. 1982, 9, 290-206.
[561] Chai, Y., Slavkin, H.C. Prospects for tooth regeneration in the 21st century: a perspective. Microsc. Res. Tech. 2003, 60, 469-479.
[562] Hu, B., Nadiri, A., Kuchler-Bopp, S., Perrin-Schmitt, F., Peters, H., Lesot, H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng. 2006, 12, 2069-2075.
[563] Duailibi, S.E., Duailibi, M.T., Zhang, W., Asrican, R., Vacanti, J.P., Yelick, P.C. Bioengineered dental tissues grown in the rat jaw. J. Dent. Res. 2008, 87, 745-750.
[564] Ikeda, E., Morita, R., Nakao, K., Ishida, K., Nakamura, T., Takano-Yamamoto, T., Ogawa, M., Mizuno, M., Kasugai, S., Tsuji, T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc. Natl. Acad. Sci. USA 2009, 106, 13475-13480.
[565] Horst, O.V., Chavez, M.G., Jheon, A.H., Desai, T., Klein, O.D. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent. Clin. North Am. 2012, 56, 495-520.
[566] Yelick, P.C., Vacanti, J.P. Bioengineered teeth from tooth bud cells. Dent. Clin. North Am. 2006, 50, 191-203.
[567] Nakao, K., Morita, R., Saji, Y., Ishida, K., Tomita, Y., Ogawa, M., Saitoh, M., Tomooka, Y., Tsuji, T. The development of a bioengineered organ germ method. Nat. Methods 2007, 4, 227-230.
[568] Yu, J.H., Wang, Y.J., Deng, Z.H., Tang, L., Li, Y.F., Shi, J.N., Jin, Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol. Cell 2007, 99, 465-674.
[569] An, S., Ling, J., Gao, Y., Xiao, Y. Effects of varied ionic calcium and phosphate on the proliferation, osteogenic differentiation and mineralization of human periodontal ligament cells in vitro. J. Periodontol. Res. 2012, 47, 374-382.
[570] Kitamura, C., Nishihara, T., Terashita, M., Tabata, Y., Washio, A. Local regeneration of dentin-pulp complex using controlled release of FGF-2 and naturally derived sponge-like scaffolds. Int. J. Dent. 2012, 2012, 190561 (8 pages).
[571] Zuolin, J., Hong, Q., Jiali, T. Dental follicle cells combined with beta-tricalcium phosphate ceramic: a novel available therapeutic strategy to restore periodontal defects. Med. Hypotheses 2010, 75, 669-670.
[572] Zheng, L., Yang, F., Shen, H., Hu, X., Mochizuki, C., Sato, M., Wang, S., Zhang, Y. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials 2011, 32, 7053-7059.
[573] Liao, F., Chen, Y., Li, Z., Wang, Y., Shi, B., Gong, Z., Cheng, X. A novel bioactive three-dimensional β-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J. Mater. Sci. Mater. Med. 2010, 21, 489-496.
[574] Markopoulou, C.E., Dereka, X.E., Vavouraki, H.N., Pepelassi, E.E., Mamalis, A.A., Karoussis, I.K., Vrotsos, I.A. Effect of rhTGF-β1 combined with bone grafts on human periodontal cell differentiation. Growth Factors 2011, 29, 14-20.
[575] Liu, H.C., E, L.L., Wang, D.S., Su, F., Wu, X., Shi, Z.P., Lv, Y., Wang, J.Z. Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tiss. Eng. A 2011, 17, 2417-2433.
[576] Ohara, T., Itaya, T., Usami, K., Ando, Y., Sakurai, H., Honda, M.J., Ueda, M., Kagami, H. Evaluation of scaffold materials for tooth tissue engineering. J. Biomed. Mater. Res. A 2010, 94A, 800-805.
[577] Tonomura, A., Mizuno, D., Hisada, A., Kuno, N., Ando, Y., Sumita, Y., Honda, M.J., Satomura, K., Sakurai, H., Ueda, M., Kagami, H. Differential effect of scaffold shape on dentin regeneration. Ann. Biomed. Eng. 2010, 38, 1664-1671.
[578] Yang, X., Yang, F., Walboomers, X.F., Bian, Z., Fan, M., Jansen, J.A. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J. Biomed. Mater. Res. A 2010, 93A, 247-257.
[579] Viale-Bouroncle, S., Bey, B., Reichert, T.E., Schmalz, G., Morsczeck, C. β-tricalcium-phosphate stimulates the differentiation of dental follicle cells. J. Mater. Sci. Mater. Med. 2011, 22, 1719-1724.

You have not viewed any product yet.