Glycocalyx and its Roles in Inflammation and Atherosclerosis

Ye Zeng
Associated Professor, Institute of Biomedical Engineering, West China school of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China

Series: Cell Biology Research Progress, New Developments in Medical Research
BISAC: SCI017000

Clear

$95.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

The major component of glycocalyx, heparan sulfate covalently attaches to proteoglycan core proteins, which is abundant at the cell surface and in the extracellular matrix. Heparan sulfate could provide binding sites on endothelial cells to retain and activate highly diffusible cytokines and inflammatory chemokines to regulate cell functions, such as proliferation and migration. Under physiological and pathological conditions, the remodeling in structure of heparan sulfate including the abnormal expression, and irregular distribution that critically play a fundamental role in inflammation and atherosclerosis, as well as many other diseases was observed.

This book aims to integrate a current understanding of the identified molecular mechanisms in the regulation of glycocalyx, especially the heparan sulfate structure. Additionally, the available drugs that can protect the heparan sulfate or induce its synthesis, and the measurement techniques of the endothelial glycocalyx, as well as the relationship between structure and function of heparan sulfate in the progression of inflammation and atherosclerosis are analyzed. (Imprint: Nova Biomedical)

Acknowledgements

Preface

Chapter 1. Introduction and Overview

Chapter 2. Remodeling in Structure of Glycocalyx

Chapter 3. Measurement Techniques of the Endothelial Glycocalyx

Chapter 4. Association between Heparan Sulfate and Inflammation, Atherosclerosis

Chapter 5. Conclusion

References

Index

Biographical Sketch

Abdolrazaghi, M., Navidbakhsh, M. & Hassani, K. (2010). Mathematical modelling and electrical analog equivalent of the human cardiovascular system. Cardiovasc Eng, 10, 45-51.
Abela, G.S., Picon, P.D., Friedl, S.E., Gebara, O.C., Miyamoto, A., Federman, M., Tofler, G.H. & Muller, J.E. (1995). Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation, 91, 776-784.
Abela, O.G., Ahsan, C.H., Alreefi, F., Salehi, N., Baig, I., Janoudi, A. & Abela, G.S. (2016). Plaque Rupture and Thrombosis: the Value of the Atherosclerotic Rabbit Model in Defining the Mechanism. Curr Atheroscler Rep, 18, 29.
Adamson, R.H. & Clough, G. (1992). Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol, 445, 473-486.
Adamson, R.H., Sarai, R.K., Altangerel, A., Thirkill, T.L., Clark, J.F. & Curry, F.R. (2010). Sphingosine-1-phosphate modulation of basal permeability and acute inflammatory responses in rat venular microvessels. Cardiovascular research, 88, 344-351.
Aikawa, M., Rabkin, E., Okada, Y., Voglic, S.J., Clinton, S.K., Brinckerhoff, C.E., Sukhova, G.K. & Libby, P. (1998). Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation, 97, 2433-2444.
Amirbekian, V., Lipinski, M.J., Briley-Saebo, K.C., Amirbekian, S., Aguinaldo, J.G., Weinreb, D.B., Vucic, E., Frias, J.C., Hyafil, F., Mani, V., Fisher, E.A. & Fayad, Z.A. (2007). Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A, 104, 961-966.
Anzidei, M., Napoli, A., Geiger, D., Cavallo Marincola, B., Zini, C., Zaccagna, F., Di Paolo, P., Catalano, C. & Passariello, R. (2010). Preliminary experience with MRA in evaluating the degree of carotid stenosis and plaque morphology using high-resolution sequences after gadofosveset trisodium (Vasovist) administration: comparison with CTA and DSA. Radiol Med, 115, 634-647.
Arisaka, T., Mitsumata, M., Kawasumi, M., Tohjima, T., Hirose, S. & Yoshida, Y. (1995). Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Annals of the New York Academy of Sciences, 748, 543-554.
Awano, K., Yokoyama, M. & Fukuzaki, H. (1989). Role of serotonin, histamine, and thromboxane A2 in platelet-induced contractions of coronary arteries and aortae from rabbits. Journal of cardiovascular pharmacology, 13, 781-792.
Aziz, A. (2006). A study on immunopathogenetic mechanisms of atherosclerotic process caused by chronic infection of Chlamydia pneumoniae in rats (Ratus novergicus). Acta Med Indones, 38, 206-212.
Back, M., Weber, C. & Lutgens, E. (2015). Regulation of atherosclerotic plaque inflammation. J Intern Med, 278, 462-482.
Baggiolini, M. (2015). CXCL8 - The First Chemokine. Front Immunol, 6, 285.
Bai, K. & Wang, W. (2012). Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro. J R Soc Interface, 9, 2290-2298.
Becker, B.F., Chappell, D., Bruegger, D., Annecke, T. & Jacob, M. (2010a). Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovascular research, 87, 300-310.
Becker, B.F., Chappell, D. & Jacob, M. (2010b). Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol, 105, 687-701.
Beier, S., Ormiston, J., Webster, M., Cater, J., Norris, S., Medrano-Gracia, P., Young, A. & Cowan, B. (2016). Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations. Annals of biomedical engineering, 44, 315-329.
Bocan, T.M., Mueller, S.B., Mazur, M.J., Uhlendorf, P.D., Brown, E.Q. & Kieft, K.A. (1993). The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation. Atherosclerosis, 102, 9-22.
Bode, C., Sensken, S.C., Peest, U., Beutel, G., Thol, F., Levkau, B., Li, Z., Bittman, R., Huang, T., Tolle, M., Van Der Giet, M. & Graler, M.H. (2010). Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. Journal of cellular biochemistry, 109, 1232-1243.
Booth, R.F., Martin, J.F., Honey, A.C., Hassall, D.G., Beesley, J.E. & Moncada, S. (1989). Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis, 76, 257-268.
Brands, J., Van Teeffelen, J.W.G.E., Van Den Berg, B.M. & Vink, H. (2007). Role for glycocalyx perturbation in atherosclerosis development and associated microvascular dysfunction. Future Lipidology, 2, 527-534.
Broekhuizen, L.N., Lemkes, B.A., Mooij, H.L., Meuwese, M.C., Verberne, H., Holleman, F., Schlingemann, R.O., Nieuwdorp, M., Stroes, E.S. & Vink, H. (2010). Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia, 53, 2646-2655.
Brown, A.J., Teng, Z., Evans, P.C., Gillard, J.H., Samady, H. & Bennett, M.R. (2016). Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol, 13, 210-220.
Burke, A.P., Farb, A., Malcom, G.T., Liang, Y.H., Smialek, J. & Virmani, R. (1997). Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med, 336, 1276-1282.
Carey, D.J., Bendt, K.M. & Stahl, R.C. (1996). The cytoplasmic domain of syndecan-1 is required for cytoskeleton association but not detergent insolubility. Identification of essential cytoplasmic domain residues. J Biol Chem, 271, 15253-15260.
Carrizo, S., Xie, X., Peinado-Peinado, R., Sanchez-Recalde, A., Jimenez-Valero, S., Galeote-Garcia, G. & Moreno, R. (2014). Functional assessment of coronary artery disease by intravascular ultrasound and computational fluid dynamics simulation. Rev Port Cardiol, 33, 645 e641-644.
Carveth, H.J., Bohnsack, J.F., Mcintyre, T.M., Baggiolini, M., Prescott, S.M. & Zimmerman, G.A. (1989). Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to subendothelial matrix proteins. Biochem Biophys Res Commun, 162, 387-393.
Chakravarti, R., Sapountzi, V. & Adams, J.C. (2005). Functional role of syndecan-1 cytoplasmic V region in lamellipodial spreading, actin bundling, and cell migration. Molecular biology of the cell, 16, 3678-3691.
Chambers, R. & Zweifach, B.W. (1947). Intercellular cement and capillary permeability. Physiol Rev, 27, 436-463.
Chappell, D., Jacob, M., Paul, O., Rehm, M., Welsch, U., Stoeckelhuber, M., Conzen, P. & Becker, B.F. (2009). The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res, 104, 1313-1317.
Chatzizisis, Y.S., Jonas, M., Coskun, A.U., Beigel, R., Stone, B.V., Maynard, C., Gerrity, R.G., Daley, W., Rogers, C., Edelman, E.R., Feldman, C.L. & Stone, P.H. (2008). Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation, 117, 993-1002.
Chen, H., Wu, L., Liu, X., Chen, Y. & Wang, B. (2003). Effects of laminar shear stress on IL-8 mRNA expression in endothelial cells. Biorheology, 40, 53-58.
Chen, W.Q., Zhang, L., Liu, Y.F., Chen, L., Ji, X.P., Zhang, M., Zhao, Y.X., Yao, G.H., Zhang, C., Wang, X.L. & Zhang, Y. (2007). Prediction of atherosclerotic plaque ruptures with high-frequency ultrasound imaging and serum inflammatory markers. Am J Physiol Heart Circ Physiol, 293, H2836-2844.
Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol, 292, H1209-1224.
Chistiakov, D.A., Orekhov, A.N. & Bobryshev, Y.V. (2016). Effects of shear stress on endothelial cells: go with the flow. Acta physiologica (Oxford, England).
Chiu, J.J. & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev, 91, 327-387.
Chiu, J.J., Wung, B.S., Shyy, J.Y., Hsieh, H.J. & Wang, D.L. (1997). Reactive oxygen species are involved in shear stress-induced intercellular adhesion molecule-1 expression in endothelial cells. Arteriosclerosis, thrombosis, and vascular biology, 17, 3570-3577.
Christoffersen, C., Obinata, H., Kumaraswamy, S.B., Galvani, S., Ahnstrom, J., Sevvana, M., Egerer-Sieber, C., Muller, Y.A., Hla, T., Nielsen, L.B. & Dahlback, B. (2011). Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A, 108, 9613-9618.
Clough, G. & Moffitt, H. (1992). Immunoperoxidase labelling of albumin at the endothelial cell surface of frog mesenteric microvessels. International journal of microcirculation, clinical and experimental / sponsored by the European Society for Microcirculation, 11, 345-358.
Coll-Bonfill, N., De La Cruz-Thea, B., Pisano, M.V. & Musri, M.M. (2016). Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Arch, 468, 1071-1087.
Copley, A.L. (1974). Hemorheological aspects of the endothelium-plasma interface. Microvasc Res, 8, 192-212.
Corti, R., Osende, J.I., Fallon, J.T., Fuster, V., Mizsei, G., Jneid, H., Wright, S.D., Chaplin, W.F. & Badimon, J.J. (2004). The selective peroxisomal proliferator-activated receptor-gamma agonist has an additive effect on plaque regression in combination with simvastatin in experimental atherosclerosis: in vivo study by high-resolution magnetic resonance imaging. J Am Coll Cardiol, 43, 464-473.
Couchman, J.R. (2010). Transmembrane signaling proteoglycans. Annual review of cell and developmental biology, 26, 89-114.
Curry, F.E. & Adamson, R.H. (2011). Endothelial Glycocalyx: Permeability Barrier and Mechanosensor. Annals of biomedical engineering.
Curry, F.E. & Adamson, R.H. (2012). Endothelial glycocalyx: permeability barrier and mechanosensor. Annals of biomedical engineering, 40, 828-839.
Curry, F.E., Clark, J.F. & Adamson, R.H. (2012). Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels. Am J Physiol Heart Circ Physiol, 303, H825-834.
Curry, F.R. & Adamson, R.H. (2010). Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovascular research, 87, 218-229.
Curry, F.R. & Adamson, R.H. (2013). Tonic regulation of vascular permeability. Acta physiologica (Oxford, England), 207, 628-649.
Curry, F.R. & Noll, T. (2010). Spotlight on microvascular permeability. Cardiovascular research, 87, 195-197.
Danese, C., Vestri, A.R., D'alfonso, V., Deriu, G., Dispensa, S., Baldini, R., Ambrosino, M. & Colotto, M. (2006). Do hypertension and diabetes mellitus influence the site of atherosclerotic plaques? La Clinica terapeutica, 157, 9-13.
Davies, P.F. (2009). Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med, 6, 16-26.
De Haan, L. & Hirst, T.R. (2004). Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Molecular membrane biology, 21, 77-92.
Delvos, U., Preissner, K.T. & Muller-Berghaus, G. (1985). Binding of fibrinogen to cultured bovine endothelial cells. Thrombosis and haemostasis, 53, 26-31.
Den Uil, C.A., Klijn, E., Lagrand, W.K., Brugts, J.J., Ince, C., Spronk, P.E. & Simoons, M.L. (2008). The microcirculation in health and critical disease. Prog Cardiovasc Dis, 51, 161-170.
Dong, A., Sunkara, M., Panchatcharam, M., Salous, A., Selim, S., Morris, A.J. & Smyth, S.S. (2012). Synergistic effect of anemia and red blood cells transfusion on inflammation and lung injury. Advances in hematology, 2012, 924042.
Drake-Holland, A.J. & Noble, M.I. (2012). Update on the important new drug target in cardiovascular medicine - the vascular glycocalyx. Cardiovascular & hematological disorders drug targets, 12, 76-81.
Ebong, E., Lopez-Quintero, S., Rizzo, V., Spray, D. & Tarbell, J. (2014a). Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integrative biology: quantitative biosciences from nano to macro.
Ebong, E.E., Lopez-Quintero, S.V., Rizzo, V., Spray, D.C. & Tarbell, J.M. (2014b). Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integrative biology: quantitative biosciences from nano to macro, 6, 338-347.
Ebong, E.E., Macaluso, F.P., Spray, D.C. & Tarbell, J.M. (2011). Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arteriosclerosis, thrombosis, and vascular biology, 31, 1908-1915.
Eggli, P.S. & Graber, W. (1995). Association of hyaluronan with rat vascular endothelial and smooth muscle cells. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society, 43, 689-697.
Engers, R., Springer, E., Michiels, F., Collard, J.G. & Gabbert, H.E. (2001). Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem, 276, 41889-41897.
Eskens, B.J., Leurgans, T.M., Vink, H. & Vanteeffelen, J.W. (2014). Early impairment of skeletal muscle endothelial glycocalyx barrier properties in diet-induced obesity in mice. Physiological reports, 2, e00194.
Falk, E. (1992). Why do plaques rupture? Circulation, 86, III30-42.
Fihn, S.D., Gardin, J.M., Abrams, J., Berra, K., Blankenship, J.C., Dallas, A.P., Douglas, P.S., Foody, J.M., Gerber, T.C., Hinderliter, A.L., King, S.B., 3rd, Kligfield, P.D., Krumholz, H.M., Kwong, R.Y., Lim, M.J., Linderbaum, J.A., Mack, M.J., Munger, M.A., Prager, R.L., Sabik, J.F., Shaw, L.J., Sikkema, J.D., Smith, C.R., Jr., Smith, S.C., Jr., Spertus, J.A., Williams, S.V. & American College of Cardiology, F. (2012). 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation, 126, 3097-3137.
Filmus, J., Capurro, M. & Rast, J. (2008). Glypicans. Genome biology, 9, 224.
Finking, G. & Hanke, H. (1997). Nikolaj Nikolajewitsch Anitschkow (1885-1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis, 135, 1-7.
Florian, J.A., Kosky, J.R., Ainslie, K., Pang, Z., Dull, R.O. & Tarbell, J.M. (2003). Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circulation research, 93, e136-142.
Fransson, L.A., Belting, M., Cheng, F., Jonsson, M., Mani, K. & Sandgren, S. (2004). Novel aspects of glypican glycobiology. Cell Mol Life Sci, 61, 1016-1024.
Friden, V., Oveland, E., Tenstad, O., Ebefors, K., Nystrom, J., Nilsson, U.A. & Haraldsson, B. (2011). The glomerular endothelial cell coat is essential for glomerular filtration. Kidney international, 79, 1322-1330.
Fu, B.M. & Tarbell, J.M. (2013). Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley interdisciplinary reviews. Systems biology and medicine, 5, 381-390.
Furne, C., Corset, V., Herincs, Z., Cahuzac, N., Hueber, A.O. & Mehlen, P. (2006). The dependence receptor DCC requires lipid raft localization for cell death signaling. Proc Natl Acad Sci U S A, 103, 4128-4133.
Fuster, V., Badimon, L., Badimon, J.J. & Chesebro, J.H. (1992a). The pathogenesis of coronary artery disease and the acute coronary syndromes (1). The New England journal of medicine, 326, 242-250.
Fuster, V., Badimon, L., Badimon, J.J. & Chesebro, J.H. (1992b). The pathogenesis of coronary artery disease and the acute coronary syndromes (2). The New England journal of medicine, 326, 310-318.
Gales, D., Clark, C., Manne, U. & Samuel, T. (2013). The Chemokine CXCL8 in Carcinogenesis and Drug Response. ISRN Oncol, 2013, 859154.
Galkina, E. & Ley, K. (2009). Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol, 27, 165-197.
Garcia, J.G., Liu, F., Verin, A.D., Birukova, A., Dechert, M.A., Gerthoffer, W.T., Bamberg, J.R. & English, D. (2001). Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. The Journal of clinical investigation, 108, 689-701.
Getz, G.S. & Reardon, C.A. (2012). Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol, 32, 1104-1115.
Giantsos-Adams, K.M., Koo, A.J., Song, S., Sakai, J., Sankaran, J., Shin, J.H., Garcia-Cardena, G. & Dewey, C.F., Jr. (2013). Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation. Cell Mol Bioeng, 6, 160-174.
Giuffre, L., Cordey, A.S., Monai, N., Tardy, Y., Schapira, M. & Spertini, O. (1997). Monocyte adhesion to activated aortic endothelium: role of L-selectin and heparan sulfate proteoglycans. The Journal of cell biology, 136, 945-956.
Gotlieb, A.I. (1990). The endothelial cytoskeleton: organization in normal and regenerating endothelium. Toxicologic pathology, 18, 603-617.
Gouverneur, M., Spaan, J.A., Pannekoek, H., Fontijn, R.D. & Vink, H. (2006). Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol, 290, H458-452.
Granada, J.F., Kaluza, G.L., Wilensky, R.L., Biedermann, B.C., Schwartz, R.S. & Falk, E. (2009). Porcine models of coronary atherosclerosis and vulnerable plaque for imaging and interventional research. EuroIntervention, 5, 140-148.
Gretz, J.E. & Duling, B.R. (1995). Measurement uncertainties associated with the use of bright-field and fluorescence microscopy in the microcirculation. Microvasc Res, 49, 134-140.
Guo, X., Li, J., Pang, W., Zhao, M., Luo, Y., Sun, Y. & Hu, D. (2008). Sensitivity and specificity of ankle-brachial index for detecting angiographic stenosis of peripheral arteries. Circ J, 72, 605-610.
Haeren, R.H., Van De Ven, S.E., Van Zandvoort, M.A., Vink, H., Van Overbeeke, J.J., Hoogland, G. & Rijkers, K. (2016). Assessment and Imaging of the Cerebrovascular Glycocalyx. Curr Neurovasc Res.
Haidekker, M.A., L'heureux, N. & Frangos, J.A. (2000). Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol, 278, H1401-1406.
Haldenby, K.A., Chappell, D.C., Winlove, C.P., Parker, K.H. & Firth, J.A. (1994). Focal and regional variations in the composition of the glycocalyx of large vessel endothelium. J Vasc Res, 31, 2-9.
Hanel, P., Andreani, P. & Graler, M.H. (2007). Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 21, 1202-1209.
Henry, C.B. & Duling, B.R. (1999). Permeation of the luminal capillary glycocalyx is determined by hyaluronan. The American journal of physiology, 277, H508-514.
Henry, C.B. & Duling, B.R. (2000). TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol, 279, H2815-2823.
Hirata, K., Kojima, I. & Momomura, S. (2013). Noninvasive estimation of central blood pressure and the augmentation index in the seated position: a validation study of two commercially available methods. J Hypertens, 31, 508-515; discussion 515.
Hofmann-Kiefer, K.F., Kemming, G.I., Chappell, D., Flondor, M., Kisch-Wedel, H., Hauser, A., Pallivathukal, S., Conzen, P. & Rehm, M. (2009). Serum heparan sulfate levels are elevated in endotoxemia. European journal of medical research, 14, 526-531.
Hoogewerf, A.J., Kuschert, G.S., Proudfoot, A.E., Borlat, F., Clark-Lewis, I., Power, C.A. & Wells, T.N. (1997). Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry, 36, 13570-13578.
Huxley, V.H. & Williams, D.A. (2000). Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol Heart Circ Physiol, 278, H1177-1185.
Ibanez, B., Vilahur, G., Cimmino, G., Speidl, W.S., Pinero, A., Choi, B.G., Zafar, M.U., Santos-Gallego, C.G., Krause, B., Badimon, L., Fuster, V. & Badimon, J.J. (2008). Rapid change in plaque size, composition, and molecular footprint after recombinant apolipoprotein A-I Milano (ETC-216) administration: magnetic resonance imaging study in an experimental model of atherosclerosis. J Am Coll Cardiol, 51, 1104-1109.
Ichikawa, N., Iwabuchi, K., Kurihara, H., Ishii, K., Kobayashi, T., Sasaki, T., Hattori, N., Mizuno, Y., Hozumi, K., Yamada, Y. & Arikawa-Hirasawa, E. (2009). Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. Journal of cell science, 122, 289-299.
Illien-Junger, S., Grosjean, F., Laudier, D.M., Vlassara, H., Striker, G.E. & Iatridis, J.C. (2013). Combined anti-inflammatory and anti-AGE drug treatments have a protective effect on intervertebral discs in mice with diabetes. PLoS One, 8, e64302.
Janczyk, P., Hansen, S., Bahramsoltani, M. & Plendl, J. (2010). The glycocalyx of human, bovine and murine microvascular endothelial cells cultured in vitro. J Electron Microsc (Tokyo), 59, 291-298.
Johnson, J.L. & Jackson, C.L. (2001). Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis, 154, 399-406.
Joris, I., Zand, T., Nunnari, J.J., Krolikowski, F.J. & Majno, G. (1983). Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol, 113, 341-358.
Jung, B., Obinata, H., Galvani, S., Mendelson, K., Ding, B.S., Skoura, A., Kinzel, B., Brinkmann, V., Rafii, S., Evans, T. & Hla, T. (2012). Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Developmental cell, 23, 600-610.
Kamimura, R., Suzuki, S., Sakamoto, H., Miura, N., Misumi, K. & Miyahara, K. (1999). Development of atherosclerotic lesions in cholesterol-loaded rabbits. Exp Anim, 48, 1-7.
Kataoka, H., Ushiyama, A., Kawakami, H., Akimoto, Y., Matsubara, S. & Iijima, T. (2016). Fluorescent imaging of endothelial glycocalyx layer with wheat germ agglutinin using intravital microscopy. Microsc Res Tech, 79, 31-37.
Kim, J.S. & Bonovich, D. (2014). Research on intracranial atherosclerosis from the East and west: why are the results different? Journal of stroke, 16, 105-113.
Kipshidze, N., Dangas, G., Tsapenko, M., Moses, J., Leon, M.B., Kutryk, M. & Serruys, P. (2004). Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol, 44, 733-739.
Klitzman, B. & Duling, B.R. (1979). Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol, 237, H481-490.
Koenig, A., Norgard-Sumnicht, K., Linhardt, R. & Varki, A. (1998). Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. The Journal of clinical investigation, 101, 877-889.
Kokenyesi, R. & Bernfield, M. (1994). Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J Biol Chem, 269, 12304-12309.
Kolarova, H., Ambruzova, B., Svihalkova Sindlerova, L., Klinke, A. & Kubala, L. (2014). Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm, 2014, 694312.
Kolluru, G.K., Sinha, S., Majumder, S., Muley, A., Siamwala, J.H., Gupta, R. & Chatterjee, S. (2010). Shear stress promotes nitric oxide production in endothelial cells by sub-cellular delocalization of eNOS: A basis for shear stress mediated angiogenesis. Nitric oxide: biology and chemistry / official journal of the Nitric Oxide Society, 22, 304-315.
Kolodgie, F.D., Katocs, A.S., Jr., Largis, E.E., Wrenn, S.M., Cornhill, J.F., Herderick, E.E., Lee, S.J. & Virmani, R. (1996). Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type. Arterioscler Thromb Vasc Biol, 16, 1454-1464.
Kolset, S.O., Prydz, K. & Pejler, G. (2004). Intracellular proteoglycans. The Biochemical journal, 379, 217-227.
Koo, A., Dewey, C.F., Jr. & Garcia-Cardena, G. (2013). Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol, 304, C137-146.
Koo, A., Garc A-Carde A, G. & Dewey, C.F., Jr. (2011): Flow regulated endothelial glycocalyx expression and its function as a protective barrier against leukocyte adhesion. Annual meeting of biomedical engineering society. Harford, Connecticut.
Korn, A., Bender, B., Thomas, C., Danz, S., Fenchel, M., Nagele, T., Heuschmid, M., Ernemann, U. & Hauser, T.K. (2011). Dual energy CTA of the carotid bifurcation: advantage of plaque subtraction for assessment of grade of the stenosis and morphology. Eur J Radiol, 80, e120-125.
Koskinas, K.C., Feldman, C.L., Chatzizisis, Y.S., Coskun, A.U., Jonas, M., Maynard, C., Baker, A.B., Papafaklis, M.I., Edelman, E.R. & Stone, P.H. (2010). Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study. Circulation, 121, 2092-2101.
Kozar, R.A., Peng, Z., Zhang, R., Holcomb, J.B., Pati, S., Park, P., Ko, T.C. & Paredes, A. (2011). Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesthesia and analgesia, 112, 1289-1295.
Kuschert, G.S., Coulin, F., Power, C.A., Proudfoot, A.E., Hubbard, R.E., Hoogewerf, A.J. & Wells, T.N. (1999). Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry, 38, 12959-12968.
Kzhyshkowska, J., Neyen, C. & Gordon, S. (2012). Role of macrophage scavenger receptors in atherosclerosis. Immunobiology, 217, 492-502.
Lai, Y., Shen, Y., Liu, X.-H., Zhang, Y., Zeng, Y. & Liu, Y.-F. (2011). Interleukin-8 Induces the Endothelial Cell Migration through the Activation of Phosphoinositide 3-Kinase-Rac1/RhoA Pathway. International Journal of Biological Sciences, 7, 782-791.
Laurent, T.C. & Fraser, J.R. (1992). Hyaluronan. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 6, 2397-2404.
Lee, J.B., Hayashi, K., Hayashi, T., Sankawa, U. & Maeda, M. (1999). Antiviral activities against HSV-1, HCMV, and HIV-1 of rhamnan sulfate from Monostroma latissimum. Planta Med, 65, 439-441.
Lee, M.J., Thangada, S., Paik, J.H., Sapkota, G.P., Ancellin, N., Chae, S.S., Wu, M., Morales-Ruiz, M., Sessa, W.C., Alessi, D.R. & Hla, T. (2001). Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Molecular cell, 8, 693-704.
Lemkes, B.A., Nieuwdorp, M., Hoekstra, J.B. & Holleman, F. (2012). The glycocalyx and cardiovascular disease in diabetes: should we judge the endothelium by its cover? Diabetes technology & therapeutics, 14 Suppl 1, S3-10.
Leong, X.F., Ng, C.Y. & Jaarin, K. (2015). Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis. Biomed Res Int, 2015, 528757.
Levick, J.R. & Michel, C.C. (2010). Microvascular fluid exchange and the revised Starling principle. Cardiovascular research, 87, 198-210.
Lewis, J.C., Taylor, R.G., Jones, N.D., St Clair, R.W. & Cornhill, J.F. (1982). Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge. Lab Invest, 46, 123-138.
Li, Y.S., Haga, J.H. & Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of biomechanics, 38, 1949-1971.
Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868-874.
Libby, P. (2012). Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol, 32, 2045-2051.
Libby, P., Ridker, P.M. & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105, 1135-1143.
Lima, L.C., Porto, M.L., Campagnaro, B.P., Tonini, C.L., Nogueira, B.V., Pereira, T.M., Vasquez, E.C. & Meyrelles, S.S. (2012). Mononuclear cell therapy reverts cuff-induced thrombosis in apolipoprotein E-deficient mice. Lipids Health Dis, 11, 96.
Lin, J., Kakkar, V. & Lu, X. (2014). Impact of matrix metalloproteinases on atherosclerosis. Current drug targets, 15, 442-453.
Lindner, R. & Naim, H.Y. (2009). Domains in biological membranes. Experimental cell research, 315, 2871-2878.
Lingwood, D. & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327, 46-50.
Linton, M.F., Yancey, P.G., Davies, S.S., Jerome, W.G.J., Linton, E.F. & Vickers, K.C. (2000): The Role of Lipids and Lipoproteins in Atherosclerosis. In: De Groot, L.J., Beck-Peccoz, P., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Koch, C., Mclachlan, R., New, M., Rebar, R., Singer, F., Vinik, A. & Weickert, M.O. (eds.): Endotext. South Dartmouth (MA).
Lipowsky, H.H. (2011). Protease Activity and the Role of the Endothelial Glycocalyx in Inflammation. Drug discovery today. Disease models, 8, 57-62.
Lipowsky, H.H. (2012). The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Annals of biomedical engineering, 40, 840-848.
Lipowsky, H.H., Gao, L. & Lescanic, A. (2011). Shedding of the endothelial glycocalyx in arterioles, capillaries, and venules and its effect on capillary hemodynamics during inflammation. American journal of physiology. Heart and circulatory physiology, 301, H2235-2245.
Lippi, G., Franchini, M. & Targher, G. (2011). Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol, 8, 502-512.
Lisanti, M.P., Scherer, P.E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Y.H., Cook, R.F. & Sargiacomo, M. (1994). Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. The Journal of cell biology, 126, 111-126.
Lopez-Quintero, S.V., Cancel, L.M., Pierides, A., Antonetti, D., Spray, D.C. & Tarbell, J.M. (2013). High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx. PLoS One, 8, e78954.
Luft, J.H. (1966). Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc, 25, 1773-1783.
Luster, A.D., Greenberg, S.M. & Leder, P. (1995). The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med, 182, 219-231.
Mahtouk, K., Hose, D., Raynaud, P., Hundemer, M., Jourdan, M., Jourdan, E., Pantesco, V., Baudard, M., De Vos, J., Larroque, M., Moehler, T., Rossi, J.F., Reme, T., Goldschmidt, H. & Klein, B. (2007). Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood, 109, 4914-4923.
Malek, A.M. & Izumo, S. (1996). Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. Journal of cell science, 109 ( Pt 4), 713-726.
Marnane, M., Prendeville, S., Mcdonnell, C., Noone, I., Barry, M., Crowe, M., Mulligan, N. & Kelly, P.J. (2014). Plaque inflammation and unstable morphology are associated with early stroke recurrence in symptomatic carotid stenosis. Stroke, 45, 801-806.
Masola, V., Zaza, G., Onisto, M., Lupo, A. & Gambaro, G. (2014). Glycosaminoglycans, proteoglycans and sulodexide and the endothelium: biological roles and pharmacological effects. Int Angiol, 33, 243-254.
Megens, R.T., Reitsma, S., Schiffers, P.H., Hilgers, R.H., De Mey, J.G., Slaaf, D.W., Oude Egbrink, M.G. & Van Zandvoort, M.A. (2007). Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res, 44, 87-98.
Meyer Zu Heringdorf, D. & Jakobs, K.H. (2007). Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochimica et biophysica acta, 1768, 923-940.
Michel, C.C. & Curry, F.E. (1999). Microvascular permeability. Physiological reviews, 79, 703-761.
Michel, C.C., Phillips, M.E. & Turner, M.R. (1985). The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. J Physiol, 360, 333-346.
Middleton, J., Neil, S., Wintle, J., Clark-Lewis, I., Moore, H., Lam, C., Auer, M., Hub, E. & Rot, A. (1997). Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell, 91, 385-395.
Milei, J., Parodi, J.C., Fernandez Alonso, G., Barone, A., Beigelman, R., Ferreira, L.M., Arrigoni, G. & Matturri, L. (1996). Carotid atherosclerosis. Immunocytochemical analysis of the vascular and cellular composition in endarterectomies. Cardiologia, 41, 535-542.
Milei, J., Parodi, J.C., Ferreira, M., Barrone, A., Grana, D.R. & Matturri, L. (2003). Atherosclerotic plaque rupture and intraplaque hemorrhage do not correlate with symptoms in carotid artery stenosis. Journal of vascular surgery, 38, 1241-1247.
Millon, A., Sigovan, M., Boussel, L., Mathevet, J.L., Louzier, V., Paquet, C., Geloen, A., Provost, N., Majd, Z., Patsouris, D., Serusclat, A. & Canet-Soulas, E. (2015). Low WSS Induces Intimal Thickening, while Large WSS Variation and Inflammation Induce Medial Thinning, in an Animal Model of Atherosclerosis. PLoS One, 10, e0141880.
Miranda, S., Armengol, G., Le Besnerais, M., Levesque, H. & Benhamou, Y. (2015). New insights into systemic sclerosis related microcirculatory dysfunction by assessment of sublingual micr\ocirculation and vascular glycocalyx layer. Results from a preliminary study. Microvasc Res, 99, 72-77.
Moon, J.J., Matsumoto, M., Patel, S., Lee, L., Guan, J.L. & Li, S. (2005). Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. J Cell Physiol, 203, 166-176.
Moore, K.J. & Freeman, M.W. (2006). Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol, 26, 1702-1711.
Naghavi, M., Falk, E., Hecht, H.S., Jamieson, M.J., Kaul, S., Berman, D., Fayad, Z., Budoff, M.J., Rumberger, J., Naqvi, T.Z., Shaw, L.J., Faergeman, O., Cohn, J., Bahr, R., Koenig, W., Demirovic, J., Arking, D., Herrera, V.L., Badimon, J., Goldstein, J.A., Rudy, Y., Airaksinen, J., Schwartz, R.S., Riley, W.A., Mendes, R.A., Douglas, P., Shah, P.K. & Force, S.T. (2006). From vulnerable plaque to vulnerable patient--Part III: Executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am J Cardiol, 98, 2H-15H.
Naghavi, M., Libby, P., Falk, E., Casscells, S.W., Litovsky, S., Rumberger, J., Badimon, J.J., Stefanadis, C., Moreno, P., Pasterkamp, G., Fayad, Z., Stone, P.H., Waxman, S., Raggi, P., Madjid, M., Zarrabi, A., Burke, A., Yuan, C., Fitzgerald, P.J., Siscovick, D.S., De Korte, C.L., Aikawa, M., Airaksinen, K.E., Assmann, G., Becker, C.R., Chesebro, J.H., Farb, A., Galis, Z.S., Jackson, C., Jang, I.K., Koenig, W., Lodder, R.A., March, K., Demirovic, J., Navab, M., Priori, S.G., Rekhter, M.D., Bahr, R., Grundy, S.M., Mehran, R., Colombo, A., Boerwinkle, E., Ballantyne, C., Insull, W., Jr., Schwartz, R.S., Vogel, R., Serruys, P.W., Hansson, G.K., Faxon, D.P., Kaul, S., Drexler, H., Greenland, P., Muller, J.E., Virmani, R., Ridker, P.M., Zipes, D.P., Shah, P.K. & Willerson, J.T. (2003a). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation, 108, 1772-1778.
Naghavi, M., Libby, P., Falk, E., Casscells, S.W., Litovsky, S., Rumberger, J., Badimon, J.J., Stefanadis, C., Moreno, P., Pasterkamp, G., Fayad, Z., Stone, P.H., Waxman, S., Raggi, P., Madjid, M., Zarrabi, A., Burke, A., Yuan, C., Fitzgerald, P.J., Siscovick, D.S., De Korte, C.L., Aikawa, M., Juhani Airaksinen, K.E., Assmann, G., Becker, C.R., Chesebro, J.H., Farb, A., Galis, Z.S., Jackson, C., Jang, I.K., Koenig, W., Lodder, R.A., March, K., Demirovic, J., Navab, M., Priori, S.G., Rekhter, M.D., Bahr, R., Grundy, S.M., Mehran, R., Colombo, A., Boerwinkle, E., Ballantyne, C., Insull, W., Jr., Schwartz, R.S., Vogel, R., Serruys, P.W., Hansson, G.K., Faxon, D.P., Kaul, S., Drexler, H., Greenland, P., Muller, J.E., Virmani, R., Ridker, P.M., Zipes, D.P., Shah, P.K. & Willerson, J.T. (2003b). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 108, 1664-1672.
Nam, D., Ni, C.W., Rezvan, A., Suo, J., Budzyn, K., Llanos, A., Harrison, D., Giddens, D. & Jo, H. (2009). Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol, 297, H1535-1543.
National Center For Cardiovascular Diseases, C. (2014): Report on cardiovascular diseases in China, Encyclopedia of China publishing house.
Navarro, A., Anand-Apte, B. & Parat, M.O. (2004). A role for caveolae in cell migration. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 18, 1801-1811.
Nieuwdorp, M., Meuwese, M.C., Mooij, H.L., Ince, C., Broekhuizen, L.N., Kastelein, J.J., Stroes, E.S. & Vink, H. (2008). Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol (1985), 104, 845-852.
Nobes, C.D. & Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81, 53-62.
Norgard-Sumnicht, K. & Varki, A. (1995). Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J Biol Chem, 270, 12012-12024.
Nus, M. & Mallat, Z. (2016). Immune-mediated mechanisms of atherosclerosis and implications for the clinic. Expert review of clinical immunology, 1-21.
Nussbaum, C., Haberer, A., Tiefenthaller, A., Januszewska, K., Chappell, D., Brettner, F., Mayer, P., Dalla Pozza, R. & Genzel-Boroviczeny, O. (2015). Perturbation of the microvascular glycocalyx and perfusion in infants after cardiopulmonary bypass. The Journal of thoracic and cardiovascular surgery, 150, 1474-1481.e1471.
O'callaghan, R., Job, K.M., Dull, R.O. & Hlady, V. (2011). Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy. Am J Physiol Lung Cell Mol Physiol, 301, L353-360.
Oberleithner, H., Peters, W., Kusche-Vihrog, K., Korte, S., Schillers, H., Kliche, K. & Oberleithner, K. (2011). Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch, 462, 519-528.
Ohkawa, R., Nakamura, K., Okubo, S., Hosogaya, S., Ozaki, Y., Tozuka, M., Osima, N., Yokota, H., Ikeda, H. & Yatomi, Y. (2008). Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters. Annals of clinical biochemistry, 45, 356-363.
Ohlson, M., Sorensson, J. & Haraldsson, B. (2001). A gel-membrane model of glomerular charge and size selectivity in series. American journal of physiology. Renal physiology, 280, F396-405.
Olivon, V.C., Fraga-Silva, R.A., Segers, D., Demougeot, C., De Oliveira, A.M., Savergnini, S.S., Berthelot, A., De Crom, R., Krams, R., Stergiopulos, N. & Da Silva, R.F. (2013). Arginase inhibition prevents the low shear stress-induced development of vulnerable atherosclerotic plaques in ApoE-/- mice. Atherosclerosis, 227, 236-243.
Oo, M.L., Chang, S.H., Thangada, S., Wu, M.T., Rezaul, K., Blaho, V., Hwang, S.I., Han, D.K. & Hla, T. (2011). Engagement of S1P(1)-degradative mechanisms leads to vascular leak in mice. The Journal of clinical investigation, 121, 2290-2300.
Oohira, A., Wight, T.N. & Bornstein, P. (1983). Sulfated proteoglycans synthesized by vascular endothelial cells in culture. J Biol Chem, 258, 2014-2021.
Ostrowski, S.R. & Johansson, P.I. (2012). Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. The journal of trauma and acute care surgery, 73, 60-66.
Padberg, J.S., Wiesinger, A., Di Marco, G.S., Reuter, S., Grabner, A., Kentrup, D., Lukasz, A., Oberleithner, H., Pavenstadt, H., Brand, M. & Kumpers, P. (2014). Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis, 234, 335-343.
Pahakis, M.Y., Kosky, J.R., Dull, R.O. & Tarbell, J.M. (2007). The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun, 355, 228-233.
Pang, J., Xu, Q., Xu, X., Yin, H., Xu, R., Guo, S., Hao, W., Wang, L., Chen, C. & Cao, J.M. (2010). Hexarelin suppresses high lipid diet and vitamin D3-induced atherosclerosis in the rat. Peptides, 31, 630-638.
Pappu, R., Schwab, S.R., Cornelissen, I., Pereira, J.P., Regard, J.B., Xu, Y., Camerer, E., Zheng, Y.W., Huang, Y., Cyster, J.G. & Coughlin, S.R. (2007). Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science (New York, N.Y.), 316, 295-298.
Park, J.B., Choi, G., Chun, E.J., Kim, H.J., Park, J., Jung, J.H., Lee, M.H., Otake, H., Doh, J.H., Nam, C.W., Shin, E.S., De Bruyne, B., Taylor, C.A. & Koo, B.K. (2016). Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics. Heart.
Parton, R.G. (1994). Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society, 42, 155-166.
Parton, R.G. & Del Pozo, M.A. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nature reviews. Molecular cell biology, 14, 98-112.
Parton, R.G. & Simons, K. (2007). The multiple faces of caveolae. Nature reviews. Molecular cell biology, 8, 185-194.
Pedersen, M.E., Snieckute, G., Kagias, K., Nehammer, C., Multhaupt, H.A., Couchman, J.R. & Pocock, R. (2013). An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state. Science, 341, 1404-1408.
Peters, W., Druppel, V., Kusche-Vihrog, K., Schubert, C. & Oberleithner, H. (2012). Nanomechanics and sodium permeability of endothelial surface layer modulated by hawthorn extract WS 1442. PLoS One, 7, e29972.
Pichert, A., Samsonov, S.A., Theisgen, S., Thomas, L., Baumann, L., Schiller, J., Beck-Sickinger, A.G., Huster, D. & Pisabarro, M.T. (2012a). Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Glycobiology, 22, 134-145.
Pichert, A., Schlorke, D., Franz, S. & Arnhold, J. (2012b). Functional aspects of the interaction between interleukin-8 and sulfated glycosaminoglycans. Biomatter, 2, 142-148.
Pipp, F., Boehm, S., Cai, W.J., Adili, F., Ziegler, B., Karanovic, G., Ritter, R., Balzer, J., Scheler, C., Schaper, W. & Schmitz-Rixen, T. (2004). Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arteriosclerosis, thrombosis, and vascular biology, 24, 1664-1668.
Poti, F., Gualtieri, F., Sacchi, S., Weissen-Plenz, G., Varga, G., Brodde, M., Weber, C., Simoni, M. & Nofer, J.R. (2013). KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice. Arteriosclerosis, thrombosis, and vascular biology, 33, 1505-1512.
Potter, D.R. & Damiano, E.R. (2008). The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res, 102, 770-776.
Potter, D.R., Jiang, J. & Damiano, E.R. (2009). The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro. Circ Res, 104, 1318-1325.
Pries, A.R., Secomb, T.W. & Gaehtgens, P. (2000). The endothelial surface layer. Pflugers Arch, 440, 653-666.
Proudfoot, A.E. (2006). The biological relevance of chemokine-proteoglycan interactions. Biochem Soc Trans, 34, 422-426.
Qin, W., Lu, Y., Zhan, C., Shen, T., Dou, L., Man, Y., Wang, S., Xiao, C., Bian, Y. & Li, J. (2012). Simvastatin suppresses apoptosis in vulnerable atherosclerotic plaques through regulating the expression of p(53), Bcl-2 and Bcl-xL. Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy, 26, 23-30.
Qiu, W., Kass, D.A., Hu, Q. & Ziegelstein, R.C. (2001). Determinants of shear stress-stimulated endothelial nitric oxide production assessed in real-time by 4,5-diaminofluorescein fluorescence. Biochem Biophys Res Commun, 286, 328-335.
Quillard, T., Araujo, H.A., Franck, G., Tesmenitsky, Y. & Libby, P. (2014). Matrix metalloproteinase-13 predominates over matrix metalloproteinase-8 as the functional interstitial collagenase in mouse atheromata. Arterioscler Thromb Vasc Biol, 34, 1179-1186.
Rajendran, L. & Simons, K. (2005). Lipid rafts and membrane dynamics. Journal of cell science, 118, 1099-1102.
Ramani, V.C., Pruett, P.S., Thompson, C.A., Delucas, L.D. & Sanderson, R.D. (2012). Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem, 287, 9952-9961.
Rapraeger, A. (1989). Transforming growth factor (type beta) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia. The Journal of cell biology, 109, 2509-2518.
Razani, B., Woodman, S.E. & Lisanti, M.P. (2002). Caveolae: from cell biology to animal physiology. Pharmacological reviews, 54, 431-467.
Rehm, M., Bruegger, D., Christ, F., Conzen, P., Thiel, M., Jacob, M., Chappell, D., Stoeckelhuber, M., Welsch, U., Reichart, B., Peter, K. & Becker, B.F. (2007). Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation, 116, 1896-1906.
Reitsma, S., Oude Egbrink, M.G., Heijnen, V.V., Megens, R.T., Engels, W., Vink, H., Slaaf, D.W. & Van Zandvoort, M.A. (2011a). Endothelial glycocalyx thickness and platelet-vessel wall interactions during atherogenesis. Thromb Haemost, 106, 939-946.
Reitsma, S., Oude Egbrink, M.G., Vink, H., Van Den Berg, B.M., Passos, V.L., Engels, W., Slaaf, D.W. & Van Zandvoort, M.A. (2011b). Endothelial glycocalyx structure in the intact carotid artery: a two-photon laser scanning microscopy study. Journal of vascular research, 48, 297-306.
Reitsma, S., Slaaf, D.W., Vink, H., Van Zandvoort, M.A. & Oude Egbrink, M.G. (2007). The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch, 454, 345-359.
Rekhter, M.D., Hicks, G.W., Brammer, D.W., Work, C.W., Kim, J.S., Gordon, D., Keiser, J.A. & Ryan, M.J. (1998). Animal model that mimics atherosclerotic plaque rupture. Circ Res, 83, 705-713.
Ribatti, D., Levi-Schaffer, F. & Kovanen, P.T. (2008). Inflammatory angiogenesis in atherogenesis--a double-edged sword. Annals of medicine, 40, 606-621.
Rink, C. & Khanna, S. (2011). MicroRNA in ischemic stroke etiology and pathology. Physiological genomics, 43, 521-528.
Rizzo, V., Morton, C., Depaola, N., Schnitzer, J.E. & Davies, P.F. (2003). Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol, 285, H1720-1729.
Ro Du, H., Lee, D.Y., Moon, H.J., Kim, J.H., Lee, K.M. & Kim, S.J. (2013a). Peripheral arterial disease assessment with photoplethysmography and continuous-wave Doppler ultrasound in addition to ankle-brachial index may loss time and funds. Angiology, 64, 322.
Ro Du, H., Moon, H.J., Kim, J.H., Lee, K.M., Kim, S.J. & Lee, D.Y. (2013b). Photoplethysmography and continuous-wave Doppler ultrasound as a complementary test to ankle-brachial index in detection of stenotic peripheral arterial disease. Angiology, 64, 314-320.
Rodriguez-Menocal, L., St-Pierre, M., Wei, Y., Khan, S., Mateu, D., Calfa, M., Rahnemai-Azar, A.A., Striker, G., Pham, S.M. & Vazquez-Padron, R.I. (2009). The origin of post-injury neointimal cells in the rat balloon injury model. Cardiovasc Res, 81, 46-53.
Roduit, C., Van Der Goot, F.G., De Los Rios, P., Yersin, A., Steiner, P., Dietler, G., Catsicas, S., Lafont, F. & Kasas, S. (2008). Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains. Biophysical journal, 94, 1521-1532.
Rondeau, P. & Bourdon, E. (2011). The glycation of albumin: structural and functional impacts. Biochimie, 93, 645-658.
Rosenfeld, M.E., Polinsky, P., Virmani, R., Kauser, K., Rubanyi, G. & Schwartz, S.M. (2000). Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol, 20, 2587-2592.
Ross, R. (1999a). Atherosclerosis--an inflammatory disease. N Engl J Med, 340, 115-126.
Ross, R. (1999b). Atherosclerosis is an inflammatory disease. Am Heart J, 138, S419-420.
Rostgaard, J. & Qvortrup, K. (1997). Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res, 53, 1-13.
Salmon, A.H., Ferguson, J.K., Burford, J.L., Gevorgyan, H., Nakano, D., Harper, S.J., Bates, D.O. & Peti-Peterdi, J. (2012). Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol, 23, 1339-1350.
Sanger, J.M. & Sanger, J.W. (1980). Banding and polarity of actin filaments in interphase and cleaving cells. The Journal of cell biology, 86, 568-575.
Satcher, R., Dewey, C.F., Jr. & Hartwig, J.H. (1997). Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow. Microcirculation, 4, 439-453.
Schmitz, G. & Grandl, M. (2007). Role of redox regulation and lipid rafts in macrophages during Ox-LDL-mediated foam cell formation. Antioxid Redox Signal, 9, 1499-1518.
Schnitzer, J.E., Mcintosh, D.P., Dvorak, A.M., Liu, J. & Oh, P. (1995a). Separation of caveolae from associated microdomains of GPI-anchored proteins. Science, 269, 1435-1439.
Schnitzer, J.E., Oh, P., Jacobson, B.S. & Dvorak, A.M. (1995b). Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proc Natl Acad Sci U S A, 92, 1759-1763.
Schraufstatter, I.U., Chung, J. & Burger, M. (2001). IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Physiol Lung Cell Mol Physiol, 280, L1094-1103.
Segers, D., Helderman, F., Cheng, C., Van Damme, L.C., Tempel, D., Boersma, E., Serruys, P.W., De Crom, R., Van Der Steen, A.F., Holvoet, P. & Krams, R. (2007). Gelatinolytic activity in atherosclerotic plaques is highly localized and is associated with both macrophages and smooth muscle cells in vivo. Circulation, 115, 609-616.
Sha, T., Qi, C., Fu, W., Hao, J.I., Gong, L., Wu, H. & Zhang, Q. (2016). Experimental study of USPIO-enhanced MRI in the detection of atherosclerotic plaque and the intervention of atorvastatin. Exp Ther Med, 12, 141-146.
Shi, Z.D. & Tarbell, J.M. (2011). Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Annals of biomedical engineering, 39, 1608-1619.
Shim, J., Al-Mashhadi, R.H., Sorensen, C.B. & Bentzon, J.F. (2016). Large animal models of atherosclerosis--new tools for persistent problems in cardiovascular medicine. J Pathol, 238, 257-266.
Shiomi, M. & Ito, T. (2009). The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: a tribute to the late Dr. Yoshio Watanabe. Atherosclerosis, 207, 1-7.
Silver, F.H. & Siperko, L.M. (2003). Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix? Critical reviews in biomedical engineering, 31, 255-331.
Simard, J.R., Zunszain, P.A., Hamilton, J.A. & Curry, S. (2006). Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. Journal of molecular biology, 361, 336-351.
Simmons, R.D., Kumar, S. & Jo, H. (2016). The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Archives of biochemistry and biophysics, 591, 111-131.
Simons, K. & Sampaio, J.L. (2011). Membrane organization and lipid rafts. Cold Spring Harbor perspectives in biology, 3, a004697.
Singh, A., Friden, V., Dasgupta, I., Foster, R.R., Welsh, G.I., Tooke, J.E., Haraldsson, B., Mathieson, P.W. & Satchell, S.C. (2011). High glucose causes dysfunction of the human glomerular endothelial glycocalyx. American journal of physiology. Renal physiology, 300, F40-48.
Singleton, P.A., Dudek, S.M., Chiang, E.T. & Garcia, J.G. (2005). Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 19, 1646-1656.
Smith, J.C., Watkins, G.E., Smith, D.C., Palmer, E.W., Abou-Zamzam, A.M., Zhao, C.X. & Zhang, W.W. (2012). Accuracy of digital subtraction angiography, computed tomography angiography, and magnetic resonance angiography in grading of carotid artery stenosis in comparison with actual measurement in an in vitro model. Ann Vasc Surg, 26, 338-343.
Smith, M.L., Long, D.S., Damiano, E.R. & Ley, K. (2003). Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J, 85, 637-645.
Smith, S.M. & Brady, J.M. (1997). Susan—A new approach to low level image processing. International journal of computer vision, 23, 45-78.
Sorensson, J., Ohlson, M. & Haraldsson, B. (2001). A quantitative analysis of the glomerular charge barrier in the rat. American journal of physiology. Renal physiology, 280, F646-656.
Sorensson, J., Ohlson, M., Lindstrom, K. & Haraldsson, B. (1998). Glomerular charge selectivity for horseradish peroxidase and albumin at low and normal ionic strengths. Acta physiologica Scandinavica, 163, 83-91.
Squire, J.M., Chew, M., Nneji, G., Neal, C., Barry, J. & Michel, C. (2001). Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? Journal of structural biology, 136, 239-255.
Stary, H.C., Chandler, A.B., Dinsmore, R.E., Fuster, V., Glagov, S., Insull, W., Jr., Rosenfeld, M.E., Schwartz, C.J., Wagner, W.D. & Wissler, R.W. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 92, 1355-1374.
Sun, Z. & Xu, L. (2014). Computational fluid dynamics in coronary artery disease. Comput Med Imaging Graph, 38, 651-663.
Svennevig, K., Hoel, T., Thiara, A., Kolset, S., Castelheim, A., Mollnes, T., Brosstad, F., Fosse, E. & Svennevig, J. (2008). Syndecan-1 plasma levels during coronary artery bypass surgery with and without cardiopulmonary bypass. Perfusion, 23, 165-171.
Tabas, I. (2010). Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol, 10, 36-46.
Takaya, N., Yuan, C., Chu, B., Saam, T., Underhill, H., Cai, J., Tran, N., Polissar, N.L., Isaac, C., Ferguson, M.S., Garden, G.A., Cramer, S.C., Maravilla, K.R., Hashimoto, B. & Hatsukami, T.S. (2006). Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI--initial results. Stroke; a journal of cerebral circulation, 37, 818-823.
Tarbell, J.M. (2010). Shear stress and the endothelial transport barrier. Cardiovascular research, 87, 320-330.
Tarbell, J.M. & Cancel, L.M. (2016). The glycocalyx and its significance in human medicine. J Intern Med.
Tarbell, J.M. & Ebong, E.E. (2008). The endothelial glycocalyx: a mechano-sensor and -transducer. Science signaling, 1, pt8.
Tarbell, J.M. & Pahakis, M.Y. (2006). Mechanotransduction and the glycocalyx. J Intern Med, 259, 339-350.
Tarbell, J.M., Shi, Z.D., Dunn, J. & Jo, H. (2014a). Fluid Mechanics, Arterial Disease, and Gene Expression. Annual review of fluid mechanics, 46, 591-614.
Tarbell, J.M., Simon, S.I. & Curry, F.R. (2014b). Mechanosensing at the vascular interface. Annual review of biomedical engineering, 16, 505-532.
Thi, M.M., Tarbell, J.M., Weinbaum, S. & Spray, D.C. (2004). The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proceedings of the National Academy of Sciences of the United States of America, 101, 16483-16488.
Thomas J. Kindt, Barbara A. Osborne & Goldsby, R.A. (2007): Kuby Immunology, W. H. Freeman & Company, New York.
Thomsen, P., Roepstorff, K., Stahlhut, M. & Van Deurs, B. (2002). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Molecular biology of the cell, 13, 238-250.
Thondapu, V., Bourantas, C.V., Foin, N., Jang, I.K., Serruys, P.W. & Barlis, P. (2016). Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J.
Torres Filho, I., Torres, L.N., Sondeen, J.L., Polykratis, I.A. & Dubick, M.A. (2013). In vivo evaluation of venular glycocalyx during hemorrhagic shock in rats using intravital microscopy. Microvasc Res, 85, 128-133.
Valizadeh, G.A., Zareie, S., Manafi, A. & Nikfarjam, K. (2015). Stenosis level, plaque morphology and intima-media thickness of internal carotid artery in chronic stable angina and acute coronary syndrome; a comparative study. Iran Red Crescent Med J, 17, e10162.
Van Den Berg, B.M., Spaan, J.A., Rolf, T.M. & Vink, H. (2006). Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol, 290, H915-920.
Van Den Berg, B.M., Spaan, J.A. & Vink, H. (2009). Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Archiv: European journal of physiology, 457, 1199-1206.
Van Den Berg, B.M., Vink, H. & Spaan, J.A. (2003). The endothelial glycocalyx protects against myocardial edema. Circulation research, 92, 592-594.
Van Der Wal, A.C., Becker, A.E., Van Der Loos, C.M. & Das, P.K. (1994). Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation, 89, 36-44.
Van Zandvoort, M., Engels, W., Douma, K., Beckers, L., Oude Egbrink, M., Daemen, M. & Slaaf, D.W. (2004). Two-photon microscopy for imaging of the (atherosclerotic) vascular wall: a proof of concept study. J Vasc Res, 41, 54-63.
Venkataraman, K., Lee, Y.M., Michaud, J., Thangada, S., Ai, Y., Bonkovsky, H.L., Parikh, N.S., Habrukowich, C. & Hla, T. (2008). Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circulation research, 102, 669-676.
Vicente-Manzanares, M., Webb, D.J. & Horwitz, A.R. (2005). Cell migration at a glance. Journal of cell science, 118, 4917-4919.
Vink, H. & Duling, B.R. (1996). Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res, 79, 581-589.
Virmani, R., Burke, A. & Farb, A. (1998). Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. Eur Heart J, 19, 678-680.
Virmani, R., Burke, A.P., Farb, A. & Kolodgie, F.D. (2006). Pathology of the vulnerable plaque. J Am Coll Cardiol, 47, C13-18.
Virmani, R., Burke, A.P., Kolodgie, F.D. & Farb, A. (2002). Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol, 15, 439-446.
Vogel, J., Sperandio, M., Pries, A.R., Linderkamp, O., Gaehtgens, P. & Kuschinsky, W. (2000). Influence of the endothelial glycocalyx on cerebral blood flow in mice. J Cereb Blood Flow Metab, 20, 1571-1578.
Vogl-Willis, C.A. & Edwards, I.J. (2004). High-glucose-induced structural changes in the heparan sulfate proteoglycan, perlecan, of cultured human aortic endothelial cells. Biochimica et biophysica acta, 1672, 36-45.
Von Der Thusen, J.H., Van Berkel, T.J. & Biessen, E.A. (2001). Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation, 103, 1164-1170.
Von Der Thusen, J.H., Van Vlijmen, B.J., Hoeben, R.C., Kockx, M.M., Havekes, L.M., Van Berkel, T.J. & Biessen, E.A. (2002). Induction of atherosclerotic plaque rupture in apolipoprotein E-/- mice after adenovirus-mediated transfer of p53. Circulation, 105, 2064-2070.
Walkoff, L., Brinjikji, W., Rouchaud, A., Caroff, J. & Kallmes, D.F. (2016). Comparing magnetic resonance angiography (MRA) and computed tomography angiography (CTA) with conventional angiography in the detection of distal territory cerebral mycotic and oncotic aneurysms. Interv Neuroradiol.
Wang, H.W., Liu, P.Y., Oyama, N., Rikitake, Y., Kitamoto, S., Gitlin, J., Liao, J.K. & Boisvert, W.A. (2008a). Deficiency of ROCK1 in bone marrow-derived cells protects against atherosclerosis in LDLR-/- mice. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 22, 3561-3570.
Wang, W., Hu, S.S., Kong, L.Z., Gao, R.L., Zhu, M.L., Wang, W.Y., Wu, Z.S., Chen, W.W., Yang, J.G., Ma, L.Y., Liu, M.B. & Editorial, B. (2014). Summary of report on cardiovascular diseases in China, 2012. Biomed Environ Sci, 27, 552-558.
Wang, Y., Shyy, J.Y. & Chien, S. (2008b). Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annual review of biomedical engineering, 10, 1-38.
Warboys, C.M., Eric Berson, R., Mann, G.E., Pearson, J.D. & Weinberg, P.D. (2010). Acute and chronic exposure to shear stress have opposite effects on endothelial permeability to macromolecules. Am J Physiol Heart Circ Physiol, 298, H1850-1856.
Warn-Cramer, B.J. & Rapaport, S.I. (1993). Studies of factor Xa/phospholipid-induced intravascular coagulation in rabbits. Effects of immunodepletion of tissue factor pathway inhibitor. Arteriosclerosis and thrombosis: a journal of vascular biology / American Heart Association, 13, 1551-1557.
Weinbaum, S., Tarbell, J.M. & Damiano, E.R. (2007). The structure and function of the endothelial glycocalyx layer. Annual review of biomedical engineering, 9, 121-167.
Weinbaum, S., Zhang, X., Han, Y., Vink, H. & Cowin, S.C. (2003). Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A, 100, 7988-7995.
Weinstein, T., Evron, Z., Trebicz-Geffen, M., Aviv, M., Robinson, D., Kollander, Y. & Nevo, Z. (2012). beta-D-xylosides stimulate GAG synthesis in chondrocyte cultures due to elevation of the extracellular GAG domains, accompanied by the depletion of the intra-pericellular GAG pools, with alterations in the GAG profiles. Connect Tissue Res, 53, 169-179.
White, C.R. & Frangos, J.A. (2007). The shear stress of it all: the cell membrane and mechanochemical transduction. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 362, 1459-1467.
Williams, H., Johnson, J.L., Carson, K.G. & Jackson, C.L. (2002). Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol, 22, 788-792.
Witt, D.P. & Lander, A.D. (1994). Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol, 4, 394-400.
Witte, S. (1988). The influence of the fibrinolytic system on the affinity of fibrinogen for the endothelial-plasma interface. Thromb Res, 52, 111-117.
World Bank (2012): China 2030, World bank, Washington, USA.
Wu, G.F., Du, Z.M., Hu, C.H., Zheng, Z.S., Zhan, C.Y., Ma, H., Fang, D.Q., Hui, J.C. & Lawson, W.E. (2005). Microvessel angiogenesis: a possible cardioprotective mechanism of external counterpulsation for canine myocardial infarction. Chinese medical journal, 118, 1182-1189.
Xu, M., Xia, M., Li, X.X., Han, W.Q., Boini, K.M., Zhang, F., Zhang, Y., Ritter, J.K. & Li, P.L. (2012). Requirement of translocated lysosomal V1 H(+)-ATPase for activation of membrane acid sphingomyelinase and raft clustering in coronary endothelial cells. Molecular biology of the cell, 23, 1546-1557.
Yan, Z., Liu, J., Xie, L., Liu, X. & Zeng, Y. (2016). Role of heparan sulfate in mediating CXCL8-induced endothelial cell migration. PeerJ, 4, e1669.
Yang, Y., Macleod, V., Miao, H.Q., Theus, A., Zhan, F., Shaughnessy, J.D., Jr., Sawyer, J., Li, J.P., Zcharia, E., Vlodavsky, I. & Sanderson, R.D. (2007). Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem, 282, 13326-13333.
Yao, Y., Rabodzey, A. & Dewey, C.F., Jr. (2007). Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol, 293, H1023-1030.
Yeang, C., Cotter, B. & Tsimikas, S. (2016). Experimental Animal Models Evaluating the Causal Role of Lipoprotein(a) in Atherosclerosis and Aortic Stenosis. Cardiovasc Drugs Ther, 30, 75-85.
Yen, W.Y., Cai, B., Zeng, M., Tarbell, J.M. & Fu, B.M. (2012a). Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvascular research.
Yen, W.Y., Cai, B., Zeng, M., Tarbell, J.M. & Fu, B.M. (2012b). Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvascular research, 83, 337-346.
Yoshioka, K., Nakamori, S. & Itoh, K. (1999). Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Res, 59, 2004-2010.
Yoshizaki, F., Nakayama, H., Iwahara, C., Takamori, K., Ogawa, H. & Iwabuchi, K. (2008). Role of glycosphingolipid-enriched microdomains in innate immunity: microdomain-dependent phagocytic cell functions. Biochimica et biophysica acta, 1780, 383-392.
You, Y., Hao, Q., Leung, T., Mok, V., Chen, X., Lau, A., Leung, H. & Wong, K.S. (2010). Detection of the siphon internal carotid artery stenosis: transcranial Doppler versus digital subtraction angiography. J Neuroimaging, 20, 234-239.
Yu, J., Bergaya, S., Murata, T., Alp, I.F., Bauer, M.P., Lin, M.I., Drab, M., Kurzchalia, T.V., Stan, R.V. & Sessa, W.C. (2006). Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. The Journal of clinical investigation, 116, 1284-1291.
Zahnd, G., Schrauwen, J., Karanasos, A., Regar, E., Niessen, W., Van Walsum, T. & Gijsen, F. (2016). Fusion of fibrous cap thickness and wall shear stress to assess plaque vulnerability in coronary arteries: a pilot study. Int J Comput Assist Radiol Surg.
Zeng, Y., Adamson, R.H., Curry, F.R. & Tarbell, J.M. (2014a). Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol, 306, H363-372.
Zeng, Y., Adamson, R.H., Curry, F.R. & Tarbell, J.M. (2014b). Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. American journal of physiology. Heart and circulatory physiology, 306, H363-372.
Zeng, Y., Ebong, E.E., Fu, B.M. & Tarbell, J.M. (2012a). The structural stability of the endothelial glycocalyx after enzymatic removal of glycosaminoglycans. PLoS One, 7, e43168.
Zeng, Y., Liu, J.X., Yan, Z.P., Yao, X.H. & Liu, X.H. (2015a). Potential microRNA biomarkers for acute ischemic stroke. International journal of molecular medicine, 36, 1639-1647.
Zeng, Y., Liu, X.H., Shen, Y., Lai, Y. & Liu, X.J. (2011a). Laminar shear stress promotes endothelial cell migration and inhibits cell apoptosis in the presence of hydroxyurea. Cellular and molecular biology (Noisy-le-Grand, France), 57 Suppl, OL1550-1557.
Zeng, Y., Liu, X.H., Tarbell, J. & Fu, B. (2015b). Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells. Experimental cell research, 339, 90-95.
Zeng, Y., Liu, X.H., Tarbell, J. & Fu, B. (2015c). Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells. Exp Cell Res, 339, 90-95.
Zeng, Y., Shen, Y., Huang, X.L., Liu, X.J. & Liu, X.H. (2012b). Roles of mechanical force and CXCR1/CXCR2 in shear-stress-induced endothelial cell migration. Eur Biophys J, 41, 13-25.
Zeng, Y., Shen, Y., Huang, X.L., Liu, X.J. & Liu, X.H. (2012c). Roles of mechanical force and CXCR1/CXCR2 in shear-stress-induced endothelial cell migration. European biophysics journal: EBJ, 41, 13-25.
Zeng, Y., Sun, H.R., Yu, C., Lai, Y., Liu, X.J., Wu, J., Chen, H.Q. & Liu, X.H. (2011b). CXCR1 and CXCR2 are novel mechano-sensors mediating laminar shear stress-induced endothelial cell migration. Cytokine, 53, 42-51.
Zeng, Y. & Tarbell, J.M. (2014). The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress. PLoS One, 9, e86249.
Zeng, Y., Waters, M., Andrews, A., Honarmandi, P., Ebong, E., Rizzo, V. & Tarbell, J.M. (2013a). Fluid Shear Stress induces the Clustering of Heparan Sulfate via Mobility of Glypican-1 in Lipid Rafts. Am J Physiol Heart Circ Physiol.
Zeng, Y., Waters, M., Andrews, A., Honarmandi, P., Ebong, E.E., Rizzo, V. & Tarbell, J.M. (2013b). Fluid shear stress induces the clustering of heparan sulfate via mobility of glypican-1 in lipid rafts. American journal of physiology. Heart and circulatory physiology, 305, H811-820.
Zeng, Y., Waters, M., Andrews, A., Honarmandi, P., Ebong, E.E., Rizzo, V. & Tarbell, J.M. (2013c). Fluid shear stress induces the clustering of heparan sulfate via mobility of glypican-1 in lipid rafts. Am J Physiol Heart Circ Physiol, 305, H811-820.
Zhang, G., Xu, S., Qian, Y. & He, P. (2010a). Sphingosine-1-phosphate prevents permeability increases via activation of endothelial sphingosine-1-phosphate receptor 1 in rat venules. Am J Physiol Heart Circ Physiol, 299, H1494-1504.
Zhang, J. & Friedman, M.H. (2012). Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude. Am J Physiol Heart Circ Physiol, 302, H983-991.
Zhang, J.M., Zhong, L., Su, B., Wan, M., Yap, J.S., Tham, J.P., Chua, L.P., Ghista, D.N. & Tan, R.S. (2014a). Perspective on CFD studies of coronary artery disease lesions and hemodynamics: a review. Int J Numer Method Biomed Eng, 30, 659-680.
Zhang, S.H., Reddick, R.L., Piedrahita, J.A. & Maeda, N. (1992). Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science, 258, 468-471.
Zhang, W., Qian, Y., Lin, J., Lv, P., Karunanithi, K. & Zeng, M. (2014b). Hemodynamic analysis of renal artery stenosis using computational fluid dynamics technology based on unenhanced steady-state free precession magnetic resonance angiography: preliminary results. Int J Cardiovasc Imaging, 30, 367-375.
Zhang, X., Zhu, X. & Chen, B. (2010b). Inhibition of collar-induced carotid atherosclerosis by recombinant apoA-I cysteine mutants in apoE-deficient mice. J Lipid Res, 51, 3434-3442.
Zhang, Y., Furusawa, T., Sia, S.F., Umezu, M. & Qian, Y. (2013). Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation. Comput Methods Biomech Biomed Engin, 16, 488-494.
Zhang, Y.J., Bai, D.N., Du, J.X., Jin, L., Ma, J., Yang, J.L., Cai, W.B., Feng, Y., Xing, C.Y., Yuan, L.J. & Duan, Y.Y. (2016). Ultrasound-guided imaging of junctional adhesion molecule-A-targeted microbubbles identifies vulnerable plaque in rabbits. Biomaterials, 94, 20-30.
Zhao, J., Singleton, P.A., Brown, M.E., Dudek, S.M. & Garcia, J.G. (2009). Phosphotyrosine protein dynamics in cell membrane rafts of sphingosine-1-phosphate-stimulated human endothelium: role in barrier enhancement. Cellular signalling, 21, 1945-1960.
Zheng, Z.J., Sharrett, A.R., Chambless, L.E., Rosamond, W.D., Nieto, F.J., Sheps, D.S., Dobs, A., Evans, G.W. & Heiss, G. (1997). Associations of ankle-brachial index with clinical coronary heart disease, stroke and preclinical carotid and popliteal atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis, 131, 115-125.
Zhou, J., Li, Y.S. & Chien, S. (2014). Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol, 34, 2191-2198.
Zuurbier, C.J., Demirci, C., Koeman, A., Vink, H. & Ince, C. (2005). Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. Journal of applied physiology, 99, 1471-1476.

You have not viewed any product yet.