Functional Neuroimaging with Multiple Modalities: Principles, Device and Applications

Yongxia Zhou, Ph.D.
New York University and Columbia University, New York, NY, USA
University of Pennsylvania, Columbia University and University of Southern California, CA, US

Series: Neuroscience Research Progress
BISAC: MED057000

Clear

$95.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

Searching for an objective and specific in vivo biomarker for normal physiology and early disease diagnosis has always been a major goal, but also one of the most challenging aspects in brain research. Possible earlier identification of the key pathological signature of diseases (for instance, Alzheimer’s disease (AD)) is critical for efficient treatment and disease prevention. The concept of combined imaging features is based on the recent accumulating evidence that neither PET nor MRI alone is enough for characterizing the earliest AD pathology. The results of this book will, for the first time, highlight in vivo the possibility to describe the early detection and multiple biomarkers based on combined imaging features using PET-MRI, which is the most ideal model for such studies. The newly-developed hybrid imaging technology combining PET and MRI (PET/MRI) for the past few years is emerging, and has drawn much attention in technical developments and clinical applications. PET-MRI opens new horizons in multi-parametric neuroimaging for clinical research that allows simultaneous imaging of multiple parametric changes, such as blood flow and metabolism at the same time. This integration significantly decreases the potential errors in image registration, the difficulty of interpreting underlying coexisting pathophysiological events, and most importantly, patient discomfort.

This book will provide the most up-to-date and current status of multiple neuroimaging techniques. The most intriguing application of multi-modality neuroimaging lies in simultaneous interpretation and unique information that each modality can offer. Therefore, this book will present some forefront and interesting examples for the first time in this field of research. This will hopefully trigger the interest of colleagues in this challenging field and help facilitate the applications of the neuroimaging techniques described.

Preface

Chapter 1. Coherent Neural Networks Demonstrated by the Monetary Incentive Delayed Task Using fMRI

Chapter 2. Monetary Incentive Delayed Task Using PET and Correlations with fMRI

Chapter 3. Simultaneous Voxel-wise Mapping of Oxygen Extraction Fraction, Blood Flow and Cerebral Metabolic Rate of Oxygen by Quantitative MRI

Chapter 4. MRI and PET Neuroimaging and Integrated PET/MRI Scanner: Introduction and Evaluations

Chapter 5. Quantitative Integrated PET/MRI Applications

Chapter 6. The Investigation of Memory Consolidation Mechanism Using Diffusion Tensor Imaging and Morphological Analysis in Early Alzheimer’s Disease

Chapter 7. Effects of Age, Gender and Apolipoprotein E Genotype on Structural Connectivity in Cognitively Normal Adults

Chapter 8. Effects of Age and Gender on Functional Connectivity in Cognitively Normal Adults

Chapter 9. PET/MRI in Characterizing Multiple Parametric Neuroimages - Differential Effects of PET Aâ Deposition and Apolipoprotein E Genotype on MRI Default Mode Network Functional Connectivity

Index

Chapter I

[1] Knutson B, Westdorp A, Kaiser E and Hommer D. FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage 2000; 12:20-27.
[2] Knutson B, Adams C M, Fong G W and Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 2001; 21:159-164.
[3] Knutson B, Taylor J, Kaufman M, Peterson R and Glover G. Distributed neural representation of expected value. J Neurosci 2005; 25 (19): 4806-4812.
[4] Bjork J M, Knutson B, Fong G W, Caggiano D M, Bennett S M and Hommer D W. Incentive-elicited brain activation in adolescents: similarities and differences from young adults. J Neurosci 2004; 24(8):1793-1802.
[5] Kay A, Lieberman J A and Tasman A. Psychiatry: Behavioral sciences and clinical essentials. W.B. Saunders (Philadelphia) 1999.
[6] Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang D-R, Huang Y, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: Amphetamine-induced dopamine release in the functional subdivisions of the striatum. J of Cerebral Blood Flow & Metabolism 2003; 23: 285-300.
[7] Abi-Dargham A, Simpson N, Kegeles L, Parsey R, Hwang D, Anjilvel S, et al. PET studies of binding competition between endogenous dopamine and the D1 radiotracer 11CNNC 756. Synapse 1999; 32(3): 93-109.
[8] Pearlson G D and Calhoun V. Structural and functional magnetic resonance imaging in psychiatric disorders. Canadian J of Psychiatry 2007; 52 (3), 158-166.
[9] Doeller C F, Ling J A and Burgess N. Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. PNAS 2008; 105 (15): 5915-5920.
[10] Martino A D, Scheres A, Margulies D S, Kelly AMC, Uddin LQ, Shehzad Z, et al. Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex 2008; 18(12): 2735-2747.
[11] Smith E E, Geva A, Jonides J, Miller A, Reuter-Lorenz P and Koeppe R. The neural basis of task- switching in working memory: effects of performance and aging. PNAS 2001; 98(4): 2095-2100.
[12] McClure S, Laibson D I, Loewenstein G and Cohen J D. Separate neural systems value immediate and delayed monetary rewards. Science 2004; 306(15): 503-507.
[13] Taylor S F, Welsh R C, Chen A C, Velander A J and Liberzon I. Medial frontal hyperactivity in reality distortion. NeuroImage 2004; 21: 1045-1054.
[14] Zhou Y, Dougherty JH, Hubner KF, Bai B, Cannon RL and Hutson RK. Abnormal connectivity by DTI in the posterior cingulate and hippocampus in early AD and MCI. Alzheimer's & Dementia 2008; 4:265-270.
[15] Moscarello J M, Ben-Shahar O and Ettenberg A. Dynamic interaction between medial prefrontal cortex and nucleus accumbens as a function of both motivational state and reinforcer magnitude: A c-Fos immunocytochemistry study. Brain Research 2007; 1169(12): 69-76.
[16] Gard D E, Gard M G, Kring A M and P J Oliver. Anticipatory and consummatory components of the experience of pleasure: a scale development study. J Research Personality 2006; 40: 1086-1102.
[17] Singh M, Sungkarat W, Jeong J and Zhou Y. Extraction of Temporal Information in Functional MRI. IEEE Transactions on Nuclear Science 2002; 49(5): 2284-2290.
[18] Pagnoni G, Zink C F, Montague P R and Berns G S. Activity in human ventral striatum locked to errors of reward prediction. Nature Neuroscience 2002: 97-98.
[19] Zhou Y. Dynamic Mixture Model to fMRI. Doctor of Philosophy Dissertation. University of Southern California 2004.
[20] McKeown M J, Makeig S, Brown G B, Jung T-B, Kindermann S S, Bell A J and Sejnowski T J. Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping 1998; 6:160-188.
[21] McKeown M J, Hansen L K and Sejnowski T J. Independent component analysis of functional MRI: what is signal and what is noise? Current Opinion in Neurobiology 2003;13(5):620-629.
[22] Jeong J. Localization of brain alpha activity using independent component analysis in fMRI and EEG, Doctor of Philosophy Dissertation, University of Southern California 2002.
[23] Calhoun V, Adali T, Hansen L K, Larsen J and Pekar J. ICA of functional MRI data: an overview. Fourth International Symposium on Independent Component Analysis and Blind Source Separation 2003; 281-288.
[24] Lee T-W, Girolami M and Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources, Neural Computation 1999; 11(2):417-441.
[25] Behrens T E J, Hunt L T and Rushworth M F S. The computation of social behavior. Science 2009; 324(5931): 1160-1164.
[26] Lanteaume L, Khalfa S, Regis J, Marguis P, Chauvel P and Bartolomei G. Emotion induction after direct intracerebral stimulations of human amygdala. Cerebral Cortex 2007; 17: 1307-1313.
[27] Greene J D, Sommerville R B, Nystrom L E, Darley J M and Cohen J D. An fMRI investigation of emotional engagement in moral judgement. Science 2001; 239 (14): 2105-2108.
[28] Cole M W and Schneider W. The cognitive control network: integrated cortical regions with dissociable functions. NeuroImage 2007; 37: 343-360.
[29] Dehaene S, Spelke E, Pinel P, Stanescu R and Tsivkin S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 1999; 284(5416): 970-974.
[30] Ridderinkhof K R, Ullsperger M, Crone E A and Nieuwenhuis S. The role of medical frontal cortex in cognitive control. Science 2004; 306(15): 443-447.
[31] Summerfield C, Egner T, Greene M, Koechlin E, Mangels J and Hirsch J. Predictive codes for forthcoming perception in the frontal cortex. Science 2006; 314(24): 1311-1314.
[32] Mobbs D, Yu R, Meyer M, Passamonti L, et al. A key role for similarity in vicarious reward. Science 2009; 324 (5): 900.
[33] O’Doherty J P, Dayan P, Friston K, Critchley H and Dolan R J. Temporal difference models and reward-related learning in the human brain. Neuron 2003; 28: 329-337.
[34] Bray S and O’Doherty J. Neural coding of reward-prediction error signals during classical conditioning with attractive faces. J Neurophysiol 2007; 97: 3036-3045.
[35] Ernst M, Nelson E E, McClure E B, Monk C S, Munson S, Eshel N, et al. Choice selection and reward anticipation: an fMRI study. Neuropsychologia 2004; 42: 1585-1597.
[36] Pearlson GD, Thomas AD, Meda SA, Hlton JL, Andres MM, Potenza M, et al. Abnormal reward circuitry in cocaine abusers-An fMRI based study. American College of Neuropsychopharmacology ACNP 2008.
[37] Walhovd K B and Fjell A M. White matter volume predicts reaction time instability. Neuropsychologia 2007; 45: 2277-2284.
[38] Pasupathy A and Miller EK. Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 2005; 433(24): 873-876.
[39] Galvan A, Hare T, Parra C E, Penn J, Voss H, Glover G, et al. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 2006; 26(25): 6885- 6892.
[40] Hare T A, Tottenham N, Galvan A, Voss H U, Glover G H and Casey B J. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biol Psychiatry 2008; 63: 927-934.
[41] Ball T, Rahm B, Elckhoff S B, Schulze-Bonhage A, Speck O and Mustchler I. Response properties of human amygdala subregions: evidence based on functional MRI combined with probabilistic anatomical maps. Plos ONE 2007; 2(3): e307 1-9.
[42] Lieberman JA, Stroup T S and Perkins D O. Textbook of Schizophrenia. American psychiatric publishing Inc (Washington DC) 2006; 167-185.

Chapter II

[1] Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J Neurosci

25, 4806-4812, doi:10.1523/ JNEUROSCI.0642-05.2005 (2005).
[2] Laruelle, M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab

20, 423-451, doi:10.1097/ 00004647-200003000-00001 (2000).
[3] Koepp, M. J. et al. Evidence for striatal dopamine release during a video game. Nature

393, 266-268, doi:10.1038/30498 (1998).
[4] Zald, D. H. et al. Dopamine transmission in the human striatum during monetary reward tasks. J Neurosci

24, 4105-4112, doi:10.1523/JNEUROSCI.4643-03.2004 (2004).
[5] Schott, B. H. et al. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci

28, 14311-14319, doi:10.1523/JNEUROSCI.2058-08.2008 (2008).
[6] Urban, N. B. et al. Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging. Psychopharmacology (Berl)

221, 67-77, doi:10.1007/s00213-011-2543-6 (2012).
[7] Martinez, D. et al. Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab

23, 285-300 (2003).
[8] Mawlawi, O. et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab

21, 1034-1057, doi:10.1097/00004647-200109000-00002 (2001).
[9] Hall, H. et al. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology

11, 245-256, doi:10.1038/sj.npp.1380111 (1994).
[10] Laruelle, M. et al. SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates: II. Equilibrium analysis of constant infusion experiments and correlation with in vitro parameters. J Cereb Blood Flow Metab

14, 453-465, doi:10.1038/jcbfm.1994.56 (1994).
[11] Urban N. B., Zhou Y., et al., Imaging reward function with PET and FMRI. International Conference of Society of Nuclear Medicine, Toronto, CA, June (2009).
[12] Urban N., Martinez D., Zhou Y., et al., New probes for imaging dopamine transmission in at risk subjects for alcoholism. NeuroImage 41:T143 (2008).

Chapter III

[1] Ances, B.M., Leontiev, O., Perthen, J.E., Liang, C., Lansing, A.E., Buxton, R.B., 2008. Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI. Neuroimage 39, 1510-1521.
[2] Blockley, N.P., Griffeth, V.E., Simon, A.B., Buxton, R.B., 2013. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. Nmr in Biomedicine 26, 987-1003.
[3] Brewer, K.D., Rioux, J.A., D'Arcy, R.C., Bowen, C.V., Beyea, S.D., 2009. Asymmetric spin-echo (ASE) spiral improves BOLD fMRI in inhomogeneous regions. Nmr in Biomedicine 22, 654-662.
[4] Buckner, R.L., Snyder, A.Z., Sanders, A.L., Raichle, M.E., Morris, J.C., 2000. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 12 Suppl 2, 24-34.
[5] Bulte, D.P., Drescher, K., Jezzard, P., 2009. Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI. Magn Reson Med 61, 391-398.
[6] Bulte, D.P., Kelly, M., Germuska, M., Xie, J., Chappell, M.A., Okell, T.W., Bright, M.G., Jezzard, P., 2012. Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 60, 582-591.
[7] Buxton, R.B., 2013. The physics of functional magnetic resonance imaging (fMRI). Rep Prog Phys 76, 096601.
[8] Buxton, R.B., Frank, L.R., Wong, E.C., Siewert, B., Warach, S., Edelman, R.R., 1998. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40, 383-396.
[9] Cai, H., Cong, W.N., Ji, S., Rothman, S., Maudsley, S., Martin, B., 2012. Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders. Curr Alzheimer Res 9, 5-17.
[10] Chalela, J.A., Alsop, D.C., Gonzalez-Atavales, J.B., Maldjian, J.A., Kasner, S.E., Detre, J.A., 2000. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31, 680-687.
[11] Ciris, P.A., Qiu, M., Constable, R.T., 2014. Non-invasive quantification of absolute cerebral blood volume during functional activation applicable to the whole human brain. Magn Reson Med 71, 580-590.
[12] Davis, T.L., Kwong, K.K., Weisskoff, R.M., Rosen, B.R., 1998. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95, 1834-1839.
[13] Fernandez-Seara, M.A., Wehrli, F.W., 2000. Postprocessing technique to correct for background gradients in image-based R*(2) measurements. Magn Reson Med 44, 358-366.
[14] He, X., Yablonskiy, D.A., 2007. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med 57, 115-126.
[15] Jain, V., Abdulmalik, O., Propert, K.J., Wehrli, F.W., 2012. Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magnetic Resonance in Medicine 68, 863-867.
[16] Jain, V., Langham, M.C., Floyd, T.F., Jain, G., Magland, J.F., Wehrli, F.W., 2011. Rapid magnetic resonance measurement of global cerebral metabolic rate of oxygen consumption in humans during rest and hypercapnia. J Cereb Blood Flow Metab 31, 1504-1512.
[17] Jain, V., Langham, M.C., Wehrli, F.W., 2010. MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab 30, 1598-1607.
[18] Jensen, J.H., Chandra, R., Ramani, A., Lu, H., Johnson, G., Lee, S.P., Kaczynski, K., Helpern, J.A., 2006. Magnetic field correlation imaging. Magn Reson Med 55, 1350-1361.
[19] Kalman, B., Laitinen, K., Komoly, S., 2007. The involvement of mitochondria in the pathogenesis of multiple sclerosis. J Neuroimmunol 188, 1-12.
[20] Kety, S.S., Schmidt, C.F., 1948. The Effects of Altered Arterial Tensions of Carbon Dioxide and Oxygen on Cerebral Blood Flow and Cerebral Oxygen Consumption of Normal Young Men. J Clin Invest 27, 484-492.
[21] Lin, A.L., Fox, P.T., Hardies, J., Duong, T.Q., Gao, J.H., 2010. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl Acad Sci U S A 107, 8446-8451.
[22] Lu, H., Ge, Y., 2008. Quantitative evaluation of oxygenation in venous vessels using T2-Relaxation-Under-Spin-Tagging MRI. Magn Reson Med 60, 357-363.
[23] Ma, J., Wehrli, F.W., 1996. Method for image-based measurement of the reversible and irreversible contribution to the transverse-relaxation rate. J Magn Reson B 111, 61-69.
[24] Magland, J.F., Li, C., Langham, M.C., Wehrli, F.W., 2015. Pulse sequence programming in a dynamic visual environment: SequenceTree. Magn Reson Med.
[25] Marchal, G., Rioux, P., Petit-Taboue, M.C., Sette, G., Travere, J.M., Le Poec, C., Courtheoux, P., Derlon, J.M., Baron, J.C., 1992. Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 49, 1013-1020.
[26] Marie, S.K., Shinjo, S.M., 2011. Metabolism and brain cancer. Clinics (Sao Paulo) 66 Suppl 1, 33-43.
[27] Mintun, M.A., Vlassenko, A.G., Rundle, M.M., Raichle, M.E., 2004. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci U S A 101, 659-664.
[28] Ni, W., Christen, T., Zun, Z., Zaharchuk, G., 2015. Comparison of R2' measurement methods in the normal brain at 3 tesla. Magn Reson Med 73, 1228-1236.
[29] Pauling, L., Coryell, C.D., 1936. The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22, 210-216.
[30] Pike, G.B., 2012. Quantitative functional MRI: concepts, issues and future challenges. Neuroimage 62, 1234-1240.
[31] Priest, A.N., Graves, M.J., Lomas, D.J., 2012. Non-contrast-enhanced vascular magnetic resonance imaging using flow-dependent preparation with subtraction. Magn Reson Med 67, 628-637.
[32] Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L., 2001. A default mode of brain function. Proc Natl Acad Sci U S A 98, 676-682.
[33] Rodgers, Z.B., Englund, E.K., Langham, M.C., Magland, J.F., Wehrli, F.W., 2015. Rapid T2- and susceptometry-based CMRO2 quantification with interleaved TRUST (iTRUST). Neuroimage 106, 441-450.
[34] Rodgers, Z.B., Jain, V., Englund, E.K., Langham, M.C., Wehrli, F.W., 2013. High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge. Journal of Cerebral Blood Flow and Metabolism.
[35] Schmid, S., Ghariq, E., Teeuwisse, W.M., Webb, A., van Osch, M.J., 2014. Acceleration-selective arterial spin labeling. Magn Reson Med 71, 191-199.
[36] Schmid, S. Heijtel, D. F., Mutsaerts, H. J., Boellaard, R., Lammertsma, A. A., Nederveen, A. J., van Osch, M. J. 2015. Comparison of velocity- and acceleration-selective arterial spin labeling with [15O]H2O positron emission tomography. J Cereb Blood Flow Metab

35, 1296-1303, doi:10.1038/jcbfm.2015.42.
[37] Wong, E.C., Cronin, M., Wu, W.C., Inglis, B., Frank, L.R., Liu, T.T., 2006. Velocity-selective arterial spin labeling. Magn Reson Med 55, 1334-1341.
[38] Wright, S.W., 1992. Conscious sedation in the emergency department: the value of capnography and pulse oximetry. Ann Emerg Med 21, 551-555.
[39] Xu, F., Ge, Y., Lu, H., 2009. Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 62, 141-148.
[40] Xu, F., Uh, J., Brier, M.R., Hart, J., Jr., Yezhuvath, U.S., Gu, H., Yang, Y., Lu, H., 2011. The influence of carbon dioxide on brain activity and metabolism in conscious humans. J Cereb Blood Flow Metab 31, 58-67.
[41] Yablonskiy, D.A., 1998. Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom study. Magn Reson Med 39, 417-428.
[42] Yablonskiy, D.A., Haacke, E.M., 1994. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32, 749-763.
[43] Yablonskiy, D.A., Sukstanskii, A.L., He, X., 2013. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches. Nmr in Biomedicine 26, 963-986.
[44] Zhou, Y., Rodgers, Z., Kuo, A.H., 2015. Cerebrovascular Reactivity Measured with Arterial Spin Labeling and Blood Oxygen Level Dependent Techniques. Magn Reson Imaging 33(5), 566-576.

Chapter IV

[1] Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Seminars in nuclear medicine. 2003;33(3):193-204.
[2] Wechalekar K, Sharma B, Cook G. PET/CT in oncology--a major advance. Clinical radiology. 2005;60(11):1143-55.
[3] Zhou Y. Editorial: Quantitative PET/MRI evaluation and application in dementia. Jacobs Journal of Medical Diagnosis and Medical Imaging 2015;1.
[4] Chandarana H, Heacock L, Rakhejia R, et al. Pulmonary nodules in Patients with Primary Malignancy: Comparison of Hybrid PET/MR and PET/CT Imaging. Radiology 2013;268(3):874-881.
[5] Wehrl HF, Judenhofer MS, Thielscher A, Martirosian P, Schick F, Pichler BJ. Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2011;65:269-79.
[6] Delso G, Ziegler S. PET/MRI system design. European journal of nuclear medicine and molecular imaging. 2009;36 Suppl 1:S86-92.
[7] Kolb A, Wehrl HF, Hofmann M, et al. Technical performance evaluation of a human brain PET/MRI system. European radiology. 2012;22(8):1776-88.
[8] Catana C, van der Kouwe A, Benner T, et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nuclear Medicine. 2010;51:1431-8.
[9] Bai B, Li Q, Leahy RM. Magnetic resonance-guided positron emission tomography image reconstruction. Seminars in nuclear medicine. 2013;43(1):30-44.
[10] Pichler BJ, Judenhofer MS, Wehrl HF. PET/MRI hybrid imaging: devices and initial results. European radiology. 2008;18(6):1077-86.
[11] Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153(1):189-94.
[12] Drzezga A, Souvatzoglou M, Eiber M, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nuclear Medicine. 2012;53:845-55.
[13] Hofmann M, Pichler B, Scholkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. European journal of nuclear medicine and molecular imaging. 2009;36 Suppl 1:S93-104.
[14] Eiber M, Martinez-Moller A, Souvatzoglou M, et al. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging. 2011;38:1691-701.
[15] Keereman V, Fierens Y, Broux T, Deene YD, Lonnneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. Journal of Nuclear Medicine. 2010;51(5):812-8.
[16] Law I, Iida H, Holm S, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 2000;20(8):1252-1263.
[17] Zhou Y, Lui YW. Small-World Properties in Mild Cognitive Impairment and Early Alzheimer's Disease: A Cortical Thickness MRI Study. ISRN Geriatr 2013;2013(542080).
[18] Wang Z, Aguirre GK, Rao H, et al. Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magnetic resonance imaging 2008;26(2):261-269.
[19] Asllani I, Borogovac A, Brown TR. Regression algorithms correcting for partial volume effects in arterial spin labeling MRI. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2008;60:1362-1371.
[20] Zhou Y, Rodgers Z, Kuo AH. Cerebrovascular Reactivity Measured with Arterial Spin Labeling and Blood Oxygen Level Dependent Techniques. Magn Reson Imaging. 2015; 33(5):566-576.
[21] Rusinek H, Brys M, Glodzik L, et al. Hippocampal blood flow in normal aging measured with arterial spin labeling at 3T. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2011;65(1):128-137.
[22] Souvatzoglou M, Eiber M, Takei T, et al. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging 2013.
[23] Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C. Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Transactions on Medical Imaging 2013;32(2):237-246.
[24] Berker Y, Franke J, Salomon A, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2012;53(5):796-804.
[25] Li C, Magland JF, Rad HS, Song HK, Wehrli FW. Comparison of optimized soft-tissue suppression schemes for ultrashort echo time MRI. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2012;68(3):680-9.
[26] Weiger M, Stampanoni M, Pruessmann KP. Direct depiction of bone microstructure using MRI with zero echo time. Bone 2013.
[27] Larson PE. et al. Ultrashort echo time and zero echo time MRI at 7T. MAGMA 2016;29(3): 359-370.
[28] Conti M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 2011;56(1):155-168.
[29] Catana C, Procissi D, Wu Y, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A. 2008;105(10):3705-10.
[30] Ng TSC, Bading JR, Park R, et al. Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J Nuclear Medicine. 2012;53:1102-9.
[31] Wang H, Fei B. An MR image-guided, voxel-based partial volume correction method for PET images. Medical Physics 2012;39(1):179-194.
[32] Zhou Y, Sojkova J, Resnick SM, Wong DF. Relative equilibrium plot improves graphical analysis and allows bias correction of standardized uptake value ratio in quantitative 11C-PiB PET studies. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2012;53(4):622-8.

Chapter V

[1] Bai B, Li Q, Leahy RM. Magnetic resonance-guided positron emission tomography image reconstruction. Seminars in nuclear medicine 2013;43(1):30-44.
[2] Bai, B. et al. MAP reconstruction for Fourier rebinned TOF-PET data. Phys Med Biol 59, 925-949, doi:10.1088/0031-9155/59/4/925 (2014).
[3] Burris, N. S. et al. Detection of Small Pulmonary Nodules with Ultrashort Echo Time Sequences in Oncology Patients by Using a PET/MR System. Radiology 278, 239-246, doi:10.1148/radiol.2015150489 (2016).
[4] Buxton RB. Dynamic models of BOLD contrast. Neuroimage 2012;62(2):953-961.
[5] Buxton RB. Introduction to Functional Magnetic Resonance Imaging - Principles & Techniques. Cambridge University Press. 2002.
[6] Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 1998;40(3):383-396.
[7] Catana, C. Motion correction options in PET/MRI. Semin Nucl Med 45, 212-223, doi:10.1053/j.semnuclmed.2015.01.001 (2015).
[8] Chao LL, Buckley ST, Kornak J, et al. ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer disease and associated disorders 2010;24(1):19-27.
[9] Delso, G. et al. Effect of Time-of-Flight Information on PET/MR Reconstruction Artifacts: Comparison of Free-breathing versus Breath-hold MR-based Attenuation Correction. Radiology, 152509, doi:10.1148/radiol.2016152509 (2016).
[10] Dutta, J., Huang, C., Li, Q. & El Fakhri, G. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR. Med Phys 42, 4227-4240, doi:10.1118/1.4921616 (2015).
[11] Frietsch T, Maurer MH, Vogel J, Gassmann M, Kuschinsky W, Waschke KF. Reduced cerebral blood flow but elevated cerebral glucose metabolic rate in erythropoietin overexpressing transgenic mice with excessive erythrocytosis. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 2007;27(3):469-476.
[12] Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988;241(4864):462-464.
[13] Hall, H. et al. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsycho-pharmacology 11, 245-256, doi:10.1038/sj.npp.1380111 (1994).
[14] Hitz, S. et al. Systematic Comparison of the Performance of Integrated Whole-Body PET/MR Imaging to Conventional PET/CT for (1)(8)F-FDG Brain Imaging in Patients Examined for Suspected Dementia. J Nucl Med 55, 923-931, doi:10.2967/jnumed. 113.126813 (2014).
[15] Hutterer et al. Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients. Neuro Oncology 17(6),784-00 (2015).
[16] Larson, P. E. et al. Ultrashort echo time and zero echo time MRI at 7T. MAGMA 29(3): 359-370 (2016).
[17] Laruelle, M. et al. SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates: I. Kinetic modeling of single bolus experiments. J Cereb Blood Flow Metab 14, 439-452, doi:10.1038/jcbfm.1994.55 (1994).
[18] Rusinek H, Endo Y, De Santi S, et al. Atrophy rate in medial temporal lobe during progression of Alzheimer disease. Neurology 2004;63(12):2354-2359.
[19] Lin AL, Fox PT, Hardies J, Duong TQ, Gao JH. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl Acad Sci U S A; 107(18):8446-8451.
[20] Musiek ES, Chen Y, Korczykowski M, et al. Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimer's & dementia: the journal of the Alzheimer's Association 2012;8(1):51-59.
[21] Sander CY, Hooker JM, Catana C, et al. Neurovascular coupling
to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proc Natl Acad Sci U S A 2013.
[22] Sekine T, Ter Voert EE, Warnock G, et al. Clinical evaluation of ZTE attenuation correction for brain FDG-PET/MR imaging-comparison with atlas attenuation correction. J Nucl Med 2016; June.
[23] Silverman DH, Small GW, Phelps ME. Clinical Value of Neuroimaging in the Diagnosis of Dementia. Sensitivity and Specificity of Regional Cerebral Metabolic and Other Parameters for Early Identification of Alzheimer's Disease. Clinical positron imaging: official journal of the Institute for Clinical PET 1999;2(3):119-130.
[24] Wang DJ, Chen Y, Fernandez-Seara MA, Detre JA. Potentials and challenges for arterial spin labeling in pharmacological magnetic resonance imaging. The Journal of pharmacology and experimental therapeutics 2011;337(2):359-366.
[25] Zhou Y, Dougherty JH, Jr., Hubner KF, Bai B, Cannon RL, Hutson RK. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment. Alzheimer's & dementia: the journal of the Alzheimer's Association 2008;4(4):265-270.

Chapter VI

[1] Aguirre GK, Detre JA, Alsop DC, D'Esposito M. (1996): The parahippocampus subserves topographical learning in man. Cereb Cortex 6(6):823-9.
[2] Akirav I, Richter-Levin G. (2002): Mechanisms of amygdala modulation of hippocampal plasticity. J Neurosci 22(22):9912-21.
[3] Alberini CM. (2005): Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci 28(1):51-6.
[4] Bakker A, Kirwan CB, Miller M, Stark CE. (2008): Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319(5870):1640-2.
[5] Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. (2007): Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34(1):144-55.
[6] Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM. (2003): Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750-7.
[7] Chiba AA, Kesner RP, Gibson CJ. (1997): Memory for temporal order of new and familiar spatial location sequences: role of the medial prefrontal cortex. Learn Mem 4(4):311-7.
[8] Cohen MX, Schoene-Bake JC, Elger CE, Weber B. (2009): Connectivity-based segregation of the human striatum predicts personality characteristics. Nat Neurosci 12(1):32-4.
[9] D'Argembeau A, Collette F, Van der Linden M, Laureys S, Del Fiore G, Degueldre C, Luxen A, Salmon E. (2005): Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage 25(2):616-24.
[10] Davachi L. (2006): Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16(6):693-700.
[11] Eisenberg M, Kobilo T, Berman DE, Dudai Y. (2003): Stability of retrieved memory: inverse correlation with trace dominance. Science 301(5636):1102-4.
[12] Eldridge LL, Engel SA, Zeineh MM, Bookheimer SY, Knowlton BJ. (2005): A dissociation of encoding and retrieval processes in the human hippocampus. J Neurosci 25(13):3280-6.
[13] Gabrieli JD, Brewer JB, Desmond JE, Glover GH. (1997): Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science 276(5310):264-6.
[14] Gais S, Born J. (2004): Declarative memory consolidation: mechanisms acting during human sleep. Learn Mem 11(6):679-85.
[15] Glabus MF, Horwitz B, Holt JL, Kohn PD, Gerton BK, Callicott JH, Meyer-Lindenberg A, Berman KF. (2003): Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory. Cereb Cortex 13(12):1352-61.
[16] Gutchess AH, Welsh RC, Hedden T, Bangert A, Minear M, Liu LL, Park DC. (2005): Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. J Cogn Neurosci 17(1):84-96.
[17] Hamsici OC, Martinez AM. (2009): Rotation invariant kernels and their application to shape analysis. IEEE Trans Pattern Anal Mach Intell 31(11):1985-99.
[18] Head D, Snyder AZ, Girton LE, Morris JC, Buckner RL. (2005): Frontal-hippocampal double dissociation between normal aging and Alzheimer's disease. Cereb Cortex 15(6):732-9.
[19] Hyafil A, Summerfield C, Koechlin E. (2009): Two mechanisms for task switching in the prefrontal cortex. J Neurosci 29(16):5135-42.
[20] Kandel ER, Dudai Y, Mayford MR. (2015): Learning and memory. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
[21] Kesner RP, Hopkins RO, Fineman B. (1994): Item and order dissociation in humans with prefrontal cortex damage. Neuropsychologia 32(8):881-91.
[22] Knopman DS, Boeve BF, Petersen RC. (2003): Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clin Proc 78(10):1290-308.
[23] Lee AC, Buckley MJ, Gaffan D, Emery T, Hodges JR, Graham KS. (2006): Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: a double dissociation in dementia. J Neurosci 26(19):5198-203.
[24] Lee JL, Everitt BJ, Thomas KL. (2004): Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304(5672):839-43.
[25] McGaugh JL. (2000): Memory--a century of consolidation. Science 287(5451):248-51.
[26] Milad MR, Quinn BT, Pitman RK, Orr SP, Fischl B, Rauch SL. (2005): Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc Natl Acad Sci U S A 102(30):10706-11.
[27] Powell HW, Guye M, Parker GJ, Symms MR, Boulby P, Koepp MJ, Barker GJ, Duncan JS. (2004): Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus. Neuroimage 22(2):740-7.
[28] Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TE. (2008): The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11(4):426-8.
[29] Rolls ET. (2007): An attractor network in the hippocampus: theory and neurophysiology. Learn Mem 14(11):714-31.
[30] Schmahmann and Pandya. Fiber pathways of the brain. Oxford University Press, 2009.
[31] Shankle WR, Romney AK, Hara J, Fortier D, Dick MB, Chen JM, Chan T, Sun X. (2005): Methods to improve the detection of mild cognitive impairment. Proc Natl Acad Sci U S A 102(13):4919-24.
[32] Singh M, Jeong J, Hwang D, Sungkarat W, Gruen P. (2010): Novel diffusion tensor imaging methodology to detect and quantify injured regions and affected brain pathways in traumatic brain injury. Magn Reson Imaging 28(1):22-40.
[33] Singh M, Wong CW. (2006): Recovery of multiple fibers per voxel by ICA in DTI tractography. Conf Proc IEEE Eng Med Biol Soc 1:735-8.
[34] Small SA, Tsai WY, DeLaPaz R, Mayeux R, Stern Y. (2002): Imaging hippocampal function across the human life span: is memory decline normal or not? Ann Neurol 51(3):290-5.
[35] Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE. (2006): Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487-505.
[36] Smith, S. M. et al. (2007). Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc

2, 499-503, doi:10.1038/nprot.2007.45
[37] Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW. (2004): Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24(38):8223-31.
[38] Stern Y. (2006): Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 20(2):112-7.
[39] Sybirska E, Davachi L, Goldman-Rakic PS. (2000): Prominence of direct entorhinal-CA1 pathway activation in sensorimotor and cognitive tasks revealed by 2-DG functional mapping in nonhuman primate. J Neurosci 20(15):5827-34.
[40] Tronson NC, Taylor JR. (2007): Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8(4):262-75.][41] Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A, Dale AM, Rosen BR, Buckner RL. (1998): Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281(5380):1188-91.
[42] Wang L, Goldstein FC, Veledar E, Levey AI, Lah JJ, Meltzer CC, Holder CA, Mao H. (2009): Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging. AJNR Am J Neuroradiol 30(5):893-9.
[43] Wang SH, Ostlund SB, Nader K, Balleine BW. (2005): Consolidation and reconsolidation of incentive learning in the amygdala. J Neurosci 25(4):830-5.
[44] Witter MP. (2007): Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity. Learn Mem 14(11):705-13.
[45] Witter MP, Van Hoesen GW, Amaral DG. (1989): Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci 9(1):216-28.
[46] Xie J, Alcantara D, Amenta N, Fletcher E, Martinez O, Persianinova M, DeCarli C, Carmichael O. (2009): Spatially localized hippocampal shape analysis in late-life cognitive decline. Hippocampus 19(6):526-32.
[47] Xie S, Xiao JX, Gong GL, Zang YF, Wang YH, Wu HK, Jiang XX. (2006): Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology 66(12):1845-9.
[48] Zhou Y, Bai B, Dougherty JH. (2009): Memory Connection Investigation using Diffusion Tensor Imaging. Alzheimer’s & Dementia 5(s4):55-56.
[49] Zhou Y, Dougherty JH, Jr., Hubner KF, Bai B, Cannon RL, Hutson RK. (2008): Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment. Alzheimers Dement 4(4):265-70.
[50] Zhou Y. (2016): Abnormal structural and functional hypothalamic connectivity in mild traumatic brain injury. J Magn Reson Imaging DOI: 10.1002/jmri.25413.

Chapter VII

[1] Zhou Y, Yu F, Duong TQ, Alzheimer's Disease Neuroimaging I. White matter lesion load is associated with resting state functional MRI activity and amyloid PET but not FDG in mild cognitive impairment and early Alzheimer's disease patients. Journal of magnetic resonance imaging: JMRI 2015;41:102-109.
[2] Bartzokis G, Lu PH, Mintz J. Human brain myelination and amyloid beta deposition in Alzheimer's disease. Alzheimer's & dementia: the journal of the Alzheimer's Association 2007;3:122-125.
[3] Genin E, Hannequin D, Wallon D, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular psychiatry 2011;16:903-907.
[4] Reinvang I, Espeseth T, Westlye LT. APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer's disease. Neuroscience and biobehavioral reviews 2013;37:1322-1335.
[5] Farfel JM, Yu L, De Jager PL, Schneider JA, Bennett DA. Association of APOE with tau-tangle pathology with and without beta-amyloid. Neurobiology of aging 2016;37:19-25.
[6] Horch RA, Gore JC, Does MD. Origins of the ultrashort-T2 1H NMR signals in myelinated nerve: a direct measure of myelin content? Magnetic resonance in medicine 2011;66:24-31.
[7] Huster D, Yao X, Hong M. Membrane protein topology probed by (1)H spin diffusion from lipids using solid-state NMR spectroscopy. Journal of the American Chemical Society 2002;124:874-883.
[8] Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in biomedicine 1995;8:333-344.
[9] Zhou XJ. Diffusion tensor imaging: techniques and clinical applications. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 2004;7:5223-5225.
[10] Thiessen JD, Zhang Y, Zhang H, et al. Quantitative MRI and ultrastructural examination of the cuprizone mouse model of demyelination. NMR in biomedicine 2013;26:1562-1581.
[11] Billiet T, Vandenbulcke M, Madler B, et al. Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiology of aging 2015;36:2107-2121.
[12] Bender AR, Volkle MC, Raz N. Differential aging of cerebral white matter in middle-aged and older adults: A seven-year follow-up. NeuroImage 2016;125:74-83.
[13] Gazes Y, Bowman FD, Razlighi QR, O'Shea D, Stern Y, Habeck C. White matter tract covariance patterns predict age-declining cognitive abilities. NeuroImage 2016;125:53-60.
[14] Sasson E, Doniger GM, Pasternak O, Tarrasch R, Assaf Y. Structural correlates of cognitive domains in normal aging with diffusion tensor imaging. Brain structure & function 2012;217:503-515.
[15] Agosta F, Dalla Libera D, Spinelli EG, et al. Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and Alzheimer disease. Annals of neurology 2014;76:813-825.
[16] Kochunov P, Glahn DC, Lancaster J, et al. Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. NeuroImage 2011;58:41-49.
[17] Bender AR, Raz N. Normal-appearing cerebral white matter in healthy adults: mean change over 2 years and individual differences in change. Neurobiology of aging 2015;36:1834-1848.
[18] Phillips OR, Clark KA, Luders E, et al. Superficial white matter: effects of age, gender, and hemisphere. Brain connectivity 2013;3:146-159.
[19] Kodiweera C, Alexander AL, Harezlak J, McAllister TW, Wu YC. Age effects and gender differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study. NeuroImage 2016;128:180-192.
[20] McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM. Gender differences in cognitive trajectories in clinically normal older adults. Psychology and aging 2016;31:166-175.
[21] Bartzokis G, Lu PH, Heydari P, et al. Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individuals. Biological psychiatry 2012;72:1026-1034.
[22] Adluru N, Destiche DJ, Lu SY, et al. White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease. NeuroImage Clinical 2014;4:730-742.
[23] Chiang GC, Zhan W, Schuff N, Weiner MW. White matter alterations in cognitively normal apoE epsilon2 carriers: insight into Alzheimer resistance? AJNR American journal of neuroradiology 2012;33:1392-1397.
[24] Westlye LT, Reinvang I, Rootwelt H, Espeseth T. Effects of APOE on brain white matter microstructure in healthy adults. Neurology 2012;79:1961-1969.
[25] Venkatraman VK, Gonzalez CE, Landman B, et al. Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths. NeuroImage 2015;119:406-416.
[26] Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiology of aging 2004;25:5-18; author reply 49-62.
[27] Scheinost D, Finn ES, Tokoglu F, et al. Gender differences in normal age trajectories of functional brain networks. Hum Brain Mapp 2015;36:1524-1535.
[28] Davatzikos C, Resnick SM. Gender differences in anatomic measures of interhemispheric connectivity: correlations with cognition in women but not men. Cerebral cortex 1998;8:635-640.
[29] Fouquet M, Besson FL, Gonneaud J, La Joie R, Chetelat G. Imaging brain effects of APOE4 in cognitively normal individuals across the lifespan. Neuropsychology review 2014;24:290-299.
[30] Small GW, Siddarth P, Burggren AC, et al. Influence of cognitive status, age, and APOE-4 genetic risk on brain FDDNP positron-emission tomography imaging in persons without dementia. Archives of general psychiatry 2009;66:81-87.
[31] Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harbor perspectives in medicine 2012;2:a006312.
[32] Jones DT, Knopman DS, Gunter JL, et al. Cascading network failure across the Alzheimer's disease spectrum. Brain: a journal of neurology 2015.
[33] Kljajevic V, Meyer P, Holzmann C, et al. The epsilon4 genotype of apolipoprotein E and white matter integrity in Alzheimer's disease. Alzheimer's & dementia: the journal of the Alzheimer's Association 2014;10:401-404.
[34] Kiddle SJ, Sattlecker M, Proitsi P, et al. Candidate blood proteome markers of Alzheimer's disease onset and progression: a systematic review and replication study. Journal of Alzheimer's disease: JAD 2014;38:515-531.

Chapter VIII

[1] Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. 2010. Functional-anatomic fractionation of the brain's default network. Neuron 65:550-562.
[2] Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL. 2007. Disruption of large-scale brain systems in advanced aging. Neuron 56:924-935.
[3] Beason-Held LL, Goh JO, An Y, Kraut MA, O'Brien RJ, Ferrucci L, Resnick SM. 2013. Changes in brain function occur years before the onset of cognitive impairment. J Neurosci 33:18008-18014.
[4] Betzel RF, Byrge L, He Y, Goni J, Zuo XN, Sporns O. 2014. Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage 102 Pt 2:345-357.
[5] Beydoun MA, Boueiz A, Abougergi MS, Kitner-Triolo MH, Beydoun HA, Resnick SM, O'Brien R, Zonderman AB. 2012. Gender differences in the association of the apolipoprotein E epsilon 4 allele with incidence of dementia, cognitive impairment, and decline. Neurobiol Aging 33:720-731 e724.
[6] Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541.
[7] Buckner RL. 2004. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44:195-208.
[8] Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA. 2005. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709-7717.
[9] Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SA. 2008. Reduced resting-state brain activity in the "default network" in normal aging. Cereb Cortex 18:1856-1864.
[10] Davatzikos C, Resnick SM. 1998. Gender differences in anatomic measures of interhemispheric connectivity: correlations with cognition in women but not men. Cereb Cortex 8:635-640.
[11] Diagnostic and Statistical Manual of Mental Disorders: Fourth Edition D-I. 1994. American Psychiatric Association.
[12] Ferreira LK, Regina AC, Kovacevic N, Martin MD, Santos PP, Carneiro CG, Kerr DS, Amaro E, Jr., McIntosh AR, Busatto GF. 2015. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders. Cereb Cortex.
[13] Fjell AM, Sneve MH, Storsve AB, Grydeland H, Yendiki A, Walhovd KB. 2016. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity. Cereb Cortex 26:1272-1286.
[14] Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700-711.
[15] Goh JO, An Y, Resnick SM. 2012. Differential trajectories of age-related changes in components of executive and memory processes. Psychol Aging 27:707-719.
[16] Jones DT, Knopman DS, Gunter JL, Graff-Radford J, Vemuri P, Boeve BF, Petersen RC, Weiner MW, Jack CR, Jr., Alzheimer's Disease Neuroimaging I. 2015. Cascading network failure across the Alzheimer's disease spectrum. Brain.
[17] Jovicich J, Minati L, Marizzoni M, Marchitelli R, Sala-Llonch R, Bartres-Faz D, Arnold J, Benninghoff J, Fiedler U, Roccatagliata L, Picco A, Nobili F, Blin O, Bombois S, Lopes R, Bordet R, Sein J, Ranjeva JP, Didic M, Gros-Dagnac H, Payoux P, Zoccatelli G, Alessandrini F, Beltramello A, Bargallo N, Ferretti A, Caulo M, Aiello M, Cavaliere C, Soricelli A, Parnetti L, Tarducci R, Floridi P, Tsolaki M, Constantinidis M, Drevelegas A, Rossini PM, Marra C, Schonknecht P, Hensch T, Hoffmann KT, Kuijer JP, Visser PJ, Barkhof F, Frisoni GB, PharmaCog C. 2016. Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: A multicentric resting-state fMRI study. Neuroimage 124:442-454.
[18] Kennedy KM, Rodrigue KM, Bischof GN, Hebrank AC, Reuter-Lorenz PA, Park DC. 2015. Age trajectories of functional activation under conditions of low and high processing demands: an adult lifespan fMRI study of the aging brain. Neuroimage 104:21-34.
[19] Kilpatrick LA, Zald DH, Pardo JV, Cahill LF. 2006. Gender-related differences in amygdala functional connectivity during resting conditions. Neuroimage 30:452-461.
[20] Knopman DS, Boeve BF, Petersen RC. 2003. Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clin Proc 78:1290-1308.
[21] La C, Mossahebi P, Nair VA, Bendlin BB, Birn R, Meyerand ME, Prabhakaran V. 2015. Age-Related Changes in Inter-Network Connectivity by Component Analysis. Front Aging Neurosci 7:237.
[22] Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IA, Farrell JA, Bogovic JA, Hua J, Chen M, Jarso S, Smith SA, Joel S, Mori S, Pekar JJ, Barker PB, Prince JL, van Zijl PC. 2011. Multi-parametric neuroimaging reproducibility: a 3-T resource study. Neuroimage 54:2854-2866.
[23] Legon W, Punzell S, Dowlati E, Adams SE, Stiles AB, Moran RJ. 2015. Altered Prefrontal Excitation/Inhibition Balance and Prefrontal Output: Markers of Aging in Human Memory Networks. Cereb Cortex.
[24] McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM. 2016. Gender differences in cognitive trajectories in clinically normal older adults. Psychol Aging 31:166-175.
[25] McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. 1984. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939-944.
[26] McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR. 2003. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15:394-408.
[27] Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. 1999. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303-308.
[28] Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142-2154.
[29] Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. 2001. A default mode of brain function. Proc Natl Acad Sci U S A 98:676-682.
[30] Resnick SM, Goldszal AF, Davatzikos C, Golski S, Kraut MA, Metter EJ, Bryan RN, Zonderman AB. 2000. One-year age changes in MRI brain volumes in older adults. Cereb Cortex 10:464-472.
[31] Sala-Llonch R, Bartres-Faz D, Junque C. 2015. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol 6:663.
[32] Sali AW, Courtney SM, Yantis S. 2016. Spontaneous Fluctuations in the Flexible Control of Covert Attention. The Journal of neuroscience: the official journal of the Society for Neuroscience 36:445-454.
[33] Satterthwaite TD, Wolf DH, Roalf DR, Ruparel K, Erus G, Vandekar S, Gennatas ED, Elliott MA, Smith A, Hakonarson H, Verma R, Davatzikos C, Gur RE, Gur RC. 2015. Linked Gender Differences in Cognition and Functional Connectivity in Youth. Cereb Cortex 25:2383-2394.
[34] Scheinost D, Finn ES, Tokoglu F, Shen X, Papademetris X, Hampson M, Constable RT. 2015. Gender differences in normal age trajectories of functional brain networks. Hum Brain Mapp 36:1524-1535.
[35] Stark DE, Margulies DS, Shehzad ZE, Reiss P, Kelly AM, Uddin LQ, Gee DG, Roy AK, Banich MT, Castellanos FX, Milham MP. 2008. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J Neurosci 28:13754-13764.
[36] Tomasi D, Volkow ND. 2012. Aging and functional brain networks. Mol Psychiatry 17:471, 549-458.
[37] Toussaint PJ, Maiz S, Coynel D, Doyon J, Messe A, de Souza LC, Sarazin M, Perlbarg V, Habert MO, Benali H. 2014. Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements. Neuroimage 101:778-786.
[38] Tsvetanov KA, Henson RN, Tyler LK, Razi A, Geerligs L, Ham TE, Rowe JB, Cambridge Centre for A, Neuroscience. 2016. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation. J Neurosci 36:3115-3126.
[39] Worthy DA, Davis T, Gorlick MA, Cooper JA, Bakkour A, Mumford JA, Poldrack RA, Todd Maddox W. 2015. Neural correlates of state-based decision-making in younger and older adults. Neuroimage 130:13-23.
[40] Zhou Y, Lui YW. 2013. Small-World Properties in Mild Cognitive Impairment and Early Alzheimer's Disease: A Cortical Thickness MRI Study. ISRN Geriatr 2013.
[41] Zhou Y, Lui YW, Zuo XN, Milham MP, Reaume J, Grossman RI, Ge Y. 2014. Characterization of thalamo-cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury. J Magn Reson Imaging 39:1558-1568.
[42] Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, Grossman RI, Ge Y. 2012. Default-mode network disruption in mild traumatic brain injury. Radiology 265:882-892.

Chapter IX

[1] Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711.
[2] Zhou J, Greicius MD, Gennatas ED, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain: a journal of neurology 2010;133:1352-1367.
[3] Sheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer's disease. Biological psychiatry 2013;74:340-347.
[4] Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain's default network. Neuron 2010;65:550-562.
[5] Scholl M, Lockhart SN, Schonhaut DR et al. PET Imaging of Tau Deposition in the Aging Human Brain. Neuron 2016;89(5):971-982.
[6] 6 Schwarz AJ, Yu P, Miller BB et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 2016; 139(Pt 5):1539-1550.
[7] Myers N, Pasquini L, Gottler J, et al. Within-patient correspondence of amyloid-beta and intrinsic network connectivity in Alzheimer's disease. Brain: a journal of neurology 2014;137:2052-2064.
[8] Sheline YI, Raichle ME, Snyder AZ, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biological psychiatry 2010;67:584-587.
[9] Bilgel M, Jedynak B, Wong DF, Resnick SM, Prince JL. Temporal Trajectory and Progression Score Estimation from Voxelwise Longitudinal Imaging Measures: Application to Amyloid Imaging. Information processing in medical imaging: proceedings of the conference 2015a;24:424-436.
[10] Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 2009;29(6):1860-73. PMCID: 2750039.
[11] Bookheimer S, Burggren A. APOE-4 genotype and neurophysiological vulnerability to Alzheimer's and cognitive aging. Annual review of clinical psychology 2009;5:343-362.
[12] Arenaza-Urquijo EM, Gonneaud J, Fouquet M, et al. Interaction between years of education and APOE epsilon4 status on frontal and temporal metabolism. Neurology 2015;85:1392-1399.
[13] Chetelat G, Fouquet M. Neuroimaging biomarkers for Alzheimer's disease in asymptomatic APOE4 carriers. Revue neurologique 2013;169:729-736.
[14] Reinvang I, Espeseth T, Westlye LT. APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer's disease. Neuroscience and biobehavioral reviews 2013;37:1322-1335.
[15] Brickman AM, Schupf N, Manly JJ, et al. APOE epsilon4 and risk for Alzheimer's disease: do regionally distributed white matter hyperintensities play a role? Alzheimer's & dementia: the journal of the Alzheimer's Association 2014;10:619-629.
[16] Burggren AC, Small GW, Sabb FW, Bookheimer SY. Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. The American journal of geriatric psychiatry: official journal of the American Association for Geriatric Psychiatry 2002;10:44-51.
[17] Bartzokis G, Lu PH, Heydari P, et al. Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individuals. Biological psychiatry 2012;72:1026-1034.
[18] Small GW, Siddarth P, Burggren AC, et al. Influence of cognitive status, age, and APOE-4 genetic risk on brain FDDNP positron-emission tomography imaging in persons without dementia. Archives of general psychiatry 2009;66:81-87.
[19] Thambisetty M, An Y, Tanaka T. Alzheimer's disease risk genes and the age-at-onset phenotype. Neurobiology of aging 2013;34:2696 e2691-2695.
[20] Fouquet M, Besson FL, Gonneaud J, La Joie R, Chetelat G. Imaging brain effects of APOE4 in cognitively normal individuals across the lifespan. Neuropsychology review 2014;24:290-299.
[21] Resnick SM, Bilgel M, Moghekar A, et al. Changes in Abeta biomarkers and associations with APOE genotype in 2 longitudinal cohorts. Neurobiology of aging 2015;36:2333-2339.
[22] Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 2009;44:893-905.
[23] Bilgel M, An Y, Zhou Y, et al. Individual estimates of age at detectable amyloid onset for risk factor assessment. Alzheimer's & dementia: the journal of the Alzheimer's Association 2015b.
[24] Shu, H. et al. Opposite Neural Trajectories of Apolipoprotein E 4 and 2 Alleles with Aging Associated with Different Risks of Alzheimer's Disease. Cereb Cortex

26, 1421-1429, doi:10.1093/cercor/bhu237 (2016).
[25] Kennedy, K. M. et al. Effects of beta-amyloid accumulation on neural function during encoding across the adult lifespan. Neuroimage

62, 1-8, doi:10.1016/j.neuroimage. 2012.03.077 (2012).
[26] Trachtenberg AJ, Filippini N, Ebmeier KP, Smith SM, Karpe F, Mackay CE. The effects of APOE on the functional architecture of the resting brain. NeuroImage 2012;59:565-572.
[27] Jones, D. T. et al. Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology

77, 1524-1531, doi:10.1212/WNL.0b013e318233 b33d (2011).
[28] Berlau, D. J. et al. Neocortical beta-amyloid area is associated with dementia and APOE in the oldest-old. Alzheimers Dement

9, 699-705, doi:10.1016/j.jalz. 2012.11.011 (2013).
[29] Westlye LT, Reinvang I, Rootwelt H, Espeseth T. Effects of APOE on brain white matter microstructure in healthy adults. Neurology 2012;79:1961-1969.
[30] Toledo JB, Toledo E, Weiner MW, et al. Cardiovascular risk factors, cortisol, and amyloid-beta deposition in Alzheimer's Disease Neuroimaging Initiative. Alzheimer's & dementia: the journal of the Alzheimer's Association 2012;8:483-489.
[31] Ward AM, Mormino EC, Huijbers W, Schultz AP, Hedden T, Sperling RA. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits. Neurobiology of aging 2015;36:265-272.

Audience: College to Post-graduate students, professionals including faculties in universities and scientists and other research and development staff interested in this topic.

You have not viewed any product yet.