Functional Algebra and Hypercalculus in Infinite Dimensions: Hyperintegrals, Hyperfunctionals and Hyperderivatives

Mark Burgin
UCLA, California, USA

Series: Theoretical and Applied Mathematics
BISAC: MAT003000, MAT002000

Clear

$230.00

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

The theory of hypernumbers and extrafunctions is further development in distribution theory inspired by contemporary physics and influenced by problems in mathematical physics. It makes more functions differentiable and provides new kinds of derivatives and hyperderivatives aimed at solving more differential and operator equations than ever before possible.

In the book, extrafunctions are extended to hyperfunctionals and hyperoperators in infinite-dimensional vector spaces. Due to its development, many problems in contemporary physics, as well as in modern linear and nonlinear analysis have an infinite-dimensional nature, and the infinite-dimensional theory of extrafunctions, hyperfunctionals and hyperoperators provides new tools for solving many of these problems.

The book describes new mathematical structures such as hyperderivatives and hyperintegrals of real and complex functions, hyperprobability and hyperexpectation of random processes and some others, essentially increasing power of functional analysis and probability applications. It presents the key parts of calculus – number systems, function spaces, the differential calculus and the integral calculus – in the setting of hypernumbers, extrafunctions, hyperfunctionals and hyperoperators in finite-dimensional and infinite-dimensional vector spaces. In addition, functional algebra, which employs algebraic operations with extrafunctions, hyperfunctionals and hyperoperators is developed. New relations between hyperdifferentiation and continuity of functions and operators are explicated. As differentiation and integration are special cases of hyperdifferentiation and hyperintegration, respectively, hypercalculus includes calculus as its part or subtheory.

It is possible to use this book for enhancing traditional courses of calculus for undergraduates, as well as for teaching separate courses for graduate and undergraduate students at colleges and universities. To achieve these goals, exposition in the book goes from simple topics to more and more advanced topics, while proof of some statements are left as exercises for the students. (Imprint: Nova)

Preface

Chapter 1. Introduction: Challenges of Infinity

Chapter 2. Number Hyperspaces over Normed Fields

Chapter 3. Hyperfunctionals and Hyperoperators as Extrafunctions

Chapter 4. Hyperdifferentiation as a Hyperoperator

Chapter 5. Hyperintegration as a Hyperfunctional

Chapter 6. Hyperprobability as a Comprehensive Characteristic of Random Phenomena

Chapter 7. Conclusion: New Opportunities

Appendix: Notation and Rudimentary Constructions

References

Index

Abian, A. The Theory of Sets and Transfinite Arithmetic, W. B. Saunders Company, Philadelphia/London, 1965.
Abramsky, S. and Brandenburger, A. (2014) An operational interpretation of negative probabilities and no-signalling models, in Horizons of the Mind. A Tribute to Prakash Panangaden, Lecture Notes in Computer Science, v. 8464, pp. 59–75.
Aczel, A. D. The Mystery of the Aleph: Mathematics, the Kabbalah, and the Search for Infinity, Pocket Books, New York, 2001.
Aczél, J. (1961) Über die Begrundung der Additions- und Multlpllkatlonsformeln von bedingten Wahrscheinlichkeiten, Magyar Tudományos Akadémla Matematlkal Kutató Int. Kozleményel, v. 6, pp. 110-122.
Aczél, J. Lectures on functional equations and their applications, Academic Press, New York, 1966.
Agrawal, D. P. Ancient Jaina Mathematics: an Introduction, Infinity Foundation, 2000 (http://www.infinityfoundation.com/mandala/t_es/t_es_agraw_jaina_frameset.htm).
Ahmavaara, Y. (1965) The Structure of Space and the Formalism of Relativistic Quantum Theory, Journal of Mathematical Physics, v. 6, pp. 87-93.
Albeverio, S. (Ed) Infinite-dimensional Analysis: Stochastic Processes, Research notes in mathematics, Pitman, Boston/London/Melbourne, 1985.
Albeverio, S. and Høegh-Krohn, R. J. Mathematical theory of Feynman path integrals, Lecture Notes in Math., 523, Springer, 1976.
Albeverio, S. Hoegh-Krohn, R. and Mazzucchi, S. Mathematical Theory of Feynman Path Integral, Lecture Notes in Mathematics 523, Springer-Verlag, New York, 2008.
Aleksandroff, P. S. (1925) Zur Begrundung der n-dimensionale mengentheoretischen Topologie, Math Ann., v. 94, pp. 415–422.
Alexandroff, P. Elementary Concepts of Topology, Dover Publications, New York, 1961.
Aliprantis, C. D. and Border, K. C. Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer, New York, 2006.
Alkhazaleh, S. and Salleh, A. R. (2012) Fuzzy Soft Multiset Theory, Abstract and Applied Analysis, article ID 350600, 20 p.
Alkhazaleh, S., Salleh, A. R. and Hassan, N. (2011) Soft Multisets Theory, Applied Mathematical Sciences, v. 5, No. 72, pp. 3561–3573.
Allahverdyan, A. E. and Galstyan, A. (2014) Opinion Dynamics with Confirmation Bias, PLoS ONE, v. 9, No. 7, e99557.
Allen, G. D. The History of Infinity, 2012 (www.math.tamu.edu/~dallen/history/
infinity.pdf).
Andrews, B. and Hopper, C. The Ricci Flow in Riemannian Geometry, Springer, Berlin, 2011.
Anger, B. and Portenier, C. Radon Integrals: An abstract approach to integration and Riesz representation through function cones, Series: Progress in Mathematics, v. 103, Birkhäuser, Boston, 1992.
Antosik, P., Mikulinski, J. and Sikorski, R. Theory of Distributions, Elsevier, Amsterdam, 1973.
Arrow, K. J. and Kurz, M. (1969) Optimal Consumer Allocation over an Infinite Horizon, J. Econ. Theory, v. 1, pp. 68-91.
Arbogast, L. F. A. Du calcul des derivations, Levrault, Strasbourg, 1800.
Arnauld, A. and Lancelot, C. The Port-Royal Grammar, Mouton, The Hague, 1660/1975.
Asplund, E. (1968) Fréchet differentiability of convex functions, Acta Math., v. 121, pp. 31-47.
Atanassov, K. T. (1983) Intuitionistic fuzzy sets, VII ITKR's Session, Sofia (deposited in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
Atanasov, K. (1986) Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, v. 20, No. 1, pp. 87–96.
Atiyah, M. (1988) Topological quantum field theories, Publ. Math. de l'IHÉS, v. 68, pp. 175–186.
Averbuh, V. I. and Smolyanov, O. G. The theory of differentiation in linear topological spaces, Russian Mathematical Surveys, v. 22, No. 6, pp. 201-258.
Averbuh, V. I., Smolyanov, O. G. and Fomin, S. V. (1971) Generalized functions and differential equations in linear spaces. 1. Differentiable measures, Tr. Moscow Math. Soc., v. 24, pp. 133-174 (in Russian).
Averbuh, V. I., Smolyanov, O. G. and Fomin, S. V. (1972) Generalized functions and differential equations in linear spaces. 2. Differential operators and their Fourier transforms, Tr. Moscow Math. Soc., v. 27, pp. 255-270 (in Russian).
Bacelar Valente, M. The renormalization of charge and temporality in quantum electrodynamics, Preprint, PhilSci Archive, 2008 (http://philsci-archive.pitt.edu/
3991/1/charge_renormalization_and_temporality_in_QED.pdf).
Bachet de Méziriac, C. G. Problèmes plaisants & délectables qui se font par les nombres, Pierre Rigaud & Associates, Lyons, France, 1624.
Badino, M. The Concept of Infinity in Modern Cosmology. Preprint, PhilSci-Archive, 2004 http://philsci-archive.pitt.edu/1756/.
Baker, G. A. (1958) Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space, Phys. Rev., v. 109, 2198.
Banach, S. Théory de opérations linéares, Monografie Matematyczne, v. 1, Instytut Matematyczny Polskiej Akademii Nauk, Warszawa, 1932.
Banon, G. (1981) Distinction between several subsets of fuzzy measures, Fuzzy Sets and Systems, v. 5, pp. 291-305.
Barabashev, A. G. (Ed.) Infinity in Mathematics, Yanus-K, Moscow, 1997 (in Russian).
Barrow, J. D. The Infinite Book: A Short Guide to the Boundless, Timeless and Endless, Vintage Books, New York, 2006.
Bartle, R. G. A Modern Theory of Integration, Amer. Math. Soc., Providence, Rhode Island, 2001.
Barwise, J. (1975) Infinitary Logics, in Modern Logic: A Survey, (E. Agazzi; ed.), Reidel, Dordrecht, pp. 93-112.
Basti, G. Infinity, in INTERSInterdisciplinary Encyclopedia of Religion and Science, edited by G. Tanzella-Nitti and A. Strumia, (www.inters.org) 2002.
Batterman, R. W. Emergence, Singularities, and Symmetry Breaking, Preprint, PhilSci-Archive (2009) http://philsci-archive.pitt.edu/4934/.
Bayes, T. and Price, R. (1763) An Essay towards solving a Problem in the Doctrine of Chance. By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S, Philosophical Transactions of the Royal Society of London, v. 53, pp. 370–418.
Bednorz, A. and Belzig, W. (2009) On the problem of negative probabilities in time-resolved full counting statistics, 25th International Conference on Low Temperature Physics (LT25), Journal of Physics, Conference Series, v. 150, 022005.
Belinskii, A. V. (1994) How could you measure a negative probability? JETP letters, v. 59, pp. 301-311.
Benardette, J. Infinity: An Essay in Metaphysics, Clarendon Press, Oxford, 1964.
Bennett, A. B. (1916) Newton's method in general analysis, Proc. Nat. Acad. Sci. USA, v. 2, pp. 592–598.
Bentkus, V. K. Yu. (1976) Partial differential equations with constant coefficients for generalized measures in an infinite-dimensional half-space, Differential equations and their application, v. 16, Vilnius, pp. 9-40 (In Russian).
Berezansky, Yu. M. and Kondratjev, Yu. G. Spectral methods in infinite-dimensional analysis, Kluwer Academic Publishers, Dordrecht, 1995.
Bernido, C. C. and Carpio-Bernido, M. V. Stochastic and Infinite Dimensional Analysis, Trends in Mathematics, Birkhauser, Boston, 2016.
Bernstein, S. N. (1917) On the axiomatic foundation of probability theory, Soob. Khark. ob-va, v. 15, pp. 209-274 (in Russian).
Bers, L. Topology, Courant Institute of Mathematical Sciences, New York, 1957.
Bézout, É. Théorie générale des équations algébriques, Paris, France, 1779.
Bichteler, K. IntegrationA Functional Approach, Birkhäuser, Boston, 1998.
Birkhoff, G. and Kreyszig, E. (1984) The Establishment of Functional Analysis, Historia Mathematica, v. 11, pp. 258-321.
Bjorken, J. D. and Drell, S. Relativistic Quantum Fields, Preface, McGraw-Hill, New York, 1965.
Blascovich, J. and Bailenson, J. Infinity Reality: Avatars, Eternal Life, New Worlds, and the Dawn of the Virtual Revolution, Harper Collins, New York, 2011.
Bleistein, N. and Handelsman, R. A. Asymptotic Expansions of Integrals, Dover Publications, New York, 1986.
Blizard, W. D. (1989) Real-valued Multisets and Fuzzy Sets, Fuzzy Sets and Systems, v. 33, pp. 77–97.
Bogachev, V. I. Differentiable Measures and the Malliavin Calculus, Mathematical Surveys and Monographs, v. 164, 2010.
Bogachev, V. I. and Smolyanov, O. G. (1990) Analytic properties of infinite-dimensional distributions, Russian Math. Surveys, v. 45, No. 3, pp. 1-104.
Bolzano, B. Paradoxien des Unendlichen, Leipzig, 1851 (English translation: Paradoxes of the infinite, Routledge & Kegan Paul, London, 1950).
Boole, G. An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities, Walton and Maberly, London, 1854.
Borel, E. Leçons sur la Théorie des Fonctions, Gauthier-Villars, Paris, 1927.
Borel, E. Les Nombre Inaccessible, Gauthier-Villiars, Paris, 1952.
Borel, E. Probabilité et Certitude, Presses Universitaires de France, Paris, 1956.
Bottazzini, U. The higher calculus: A history of real and complex analysis from Euler to Weierstras, Springer, New York, 1986.
Bourbaki, N. Topologie Générale, Hermann, Paris, 1949.
Bourbaki, N. Topological Vector Spaces, Elements of mathematics, Springer-Verlag, Berlin, 1987.
Boyle, P. P. (1986) Option Valuation Using a Three Jump Process, International Options Journal, v. 3, pp. 7–12.
Bray, W. O. and Stanojevic, C. V. Analysis of Divergence: Control and Management of Divergent Processes, Birkhäuser, Boston, 1998.
Brezis, H. and Browder, F. (1998) Partial Differential Equations in the 20th Century, Advances in Mathematics, v. 135, pp. 76-144.
Brown, J. G. (1971) A Note on Fuzzy Sets, Information and Control, v. 18, pp. 32–39.
Brown, C. J. (1989) Redefining Divergence, Phys. Essays, v. 2, No. 3, pp. 270-274.
Buckley, J. J. and Yunxia, Q. (1991) On Fuzzy Complex Analysis, I, Differentiation, Fuzzy Sets and Systems, v. 41, pp. 269-284.
Burgin, M. (1990) Hypermeasures and hyperintegration, Notices of the National Academy of Sciences of Ukraine, No. 6, pp. 10-13 (in Russian and Ukrainian).
Burgin M. (1990a) Theory of Named Sets as a Foundational Basis for Mathematics, in Structures in Mathematical Theories, San Sebastian, pp. 417-420 (http://www.blogg.
org/blog-30140-date-2005-10-26.html).
Burgin M. (1991) On the Han-Banach theorem for hyperfunctionals, Notices of the National Academy of Sciences of Ukraine, No.

7, pp. 9-14 (in Russian and Ukrainian).
Burgin, M. (1992) Infinite in finite or metaphysics and dialectics of scientific abstractions, Philosophical and Sociological Thought, v. 8, pp. 21-32 (in Russian and Ukrainian).
Burgin, M. (1993) Differential calculus for extrafunctions, Notices of the National Academy of Sciences of Ukraine, No. 11, pp. 7-11.
Burgin, M. (1995) Integral calculus for extrafunctions, Notices of the National Academy of Sciences of Ukraine, No. 11, pp. 14-17.
Burgin, M. (1997) Hypernormed spaces and algebras, International Algebraic Conference dedicated to the Memory of Prof. L. M. Gluskin, Kharkov, Ukraine, pp. 97-98.
Burgin, M. Fundamental Structures of Knowledge and Information, Ukrainian Academy of Information Sciences, Kiev, 1997a (in Russian).
Burgin, M. (1997b) Approaches to the Concept of the Actual Infinity in Mathematics, in Infinity in Mathematics, Yanus-K, Moscow, pp. 97-107 (in Russian).
Burgin, M. Non-Diophantine Arithmetics or is it Possible that 2+2 is not Equal to 4? Ukrainian Academy of Information Sciences, Kiev, 1997c (in Russian).
Burgin, M. (1998) Finite and Infinite, in On the Nature and Essence of Mathematics, Appendix, Ukrainian Academy of Information Sciences, Kiev, pp. 97-10 (in Russian).
Burgin, M. (2001) Uncertainty and Imprecision in Analytical Context: Fuzzy Limits and Fuzzy Derivatives, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, v. 9, No. 5, pp. 563-685.
Burgin, M. Extrafunctions, Distributions, and Nonsmooth Analysis, University of California, Los Angeles, Mathematics Report Series, MRS Report 01-02, 2001a, 47 p.
Burgin, M. Diophantine and Non-Diophantine Aritmetics: Operations with Numbers in Science and Everyday Life, LANL, Preprint Mathematics GM/0108149, 2001b (electronic edition: http://arXiv.org).
Burgin, M. (2002) Theory of hypernumbers and extrafunctions: functional spaces and differentiation, Discrete Dyn. Nat. Soc., v. 7, pp.

201-212.
Burgin, M. (2004) Hyperfunctionals and generalized distributions, in Stochastic Processes and Functional Analysis, A Dekker Series of Lecture Notes in Pure and Applied Mathematics, v. 238, pp. 81 – 119.
Burgin, M. (2004a) Fuzzy Optimization of Real Functions, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, v. 12, No. 4, pp. 471-497.
Burgin, M. Unified Foundations of Mathematics, Preprint Mathematics LO/0403186, 2004b, 39 p. (electronic edition: http://arXiv.org).
Burgin, M. (2005) Hypermeasures in general spaces, International Journal of Pure and Applied Mathematics, v. 24, pp. 299-323.
Burgin, M. Super-recursive Algorithms, Springer, New York/Heidelberg/Berlin, 2005a.
Burgin, M. (2005b) Topology in nonlinear extensions of hypernumbers, Discrete Dyn. Nat. Soc., v. 10, No. 2, pp. 145-170.
Burgin, M. Fuzzy Continuity in Scalable Topology, Preprint in Mathematics,

math/0512627 (subjects: math.GN; math-ph), 2005c, 30 p. (electronic edition: http://arXiv.org).
Burgin, M. (2005d) Recurrent Points of Fuzzy Dynamical Systems, Journal of Dynamical Systems and Geometric Theories, v. 3, No. 1, pp.1-14.
Burgin, M. (2006) Scalable Topological Spaces, 5th Annual International Conference on Statistics, Mathematics and Related Fields, 2006 Conference Proceedings, Honolulu, Hawaii, pp. 1865-1896.
Burgin, M. (2007) Elements of Non-Diophantine Arithmetics, 6th Annual International Conference on Statistics, Mathematics and Related Fields, 2007 Conference Proceedings, Honolulu, Hawaii, January, pp. 190-203.
Burgin, M. Neoclassical Analysis: Calculus closer to the Real World, Nova Science Publishers, New York, 2008.
Burgin, M. (2008a) Inequalities in series and summation in hypernumbers, in Advances in Inequalities for Series, Nova Science Publishers, New York, pp. 89-120.
Burgin, M. (2008b) Hyperintegration approach to the Feynman integral, Integration: Mathematical Theory and Applications, v. 1, pp. 59-104.
Burgin, M. Extended Probabilities: Mathematical Foundations, Preprint in Physics,

math-ph/0912.4767, 2009 (electronic edition: http://arXiv.org).
Burgin, M. (2010) Nonlinear partial differential equations in extrafunctions, Integration: Mathematical Theory and Applications , v. 2, pp. 17-50.
Burgin, M. (2010a) Integration in Bundles with a Hyperspace Base: Indefinite Integration, Integration: Mathematical Theory and Applications, v. 2, pp. 395 – 435.
Burgin, M. Introduction to Projective Arithmetics, Preprint in Mathematics,

math.GM/1010.3287, 2010b, 21 p. (electronic edition: http://arXiv.org).
Burgin, M. Interpretations of Negative Probabilities, Preprint in Quantum Physics,

quant-ph/1008.1287, 2010c, 17 p. (electronic edition: http://arXiv.org).
Burgin, M. Theory of Named Sets, Nova Science Publishers, New York, 2011.
Burgin, M. Differentiation in Bundles with a Hyperspace Base, Preprint in Mathematics,

math.CA/1112.3421 (2011a) (electronic edition: http://arXiv.org).
Burgin, M. Hypernumbers and Extrafunctions: Extending the Classical Calculus, Springer, New York, 2012.
Burgin, M. (2012a) Integration in Bundles with a Hyperspace Base: Definite Integration, Integration: Mathematical Theory and Applications, v. 3, No. 1, pp. 1 – 54.
Burgin, M. (2012b) Functional integrals, path integrals and the theory of hyperintegration, Integration: Mathematical Theory and Applications, v. 3, No. 2, pp. 269-304.
Burgin, M. Structural Reality, Nova Science Publishers, New York, 2012c.
Burgin, M. (2012d) Integrating random properties and the concept of probability, Integration: Mathematical Theory and Applications, v. 3, No. 2, pp. 137 – 181.
Burgin, M. (2013) Nonlinear Cauchy-Kowalewski Theorem in Extrafunctions, in Topics in Integration Research, Nova Science Publishers, New York, pp. 167-202.
Burgin, M. (2013a) Fuzzy Continuity of Almost Linear Operators, International Journal of Fuzzy System Applications (IJFSA), v. 3, No. 1, pp. 140-150.
Burgin, M. (2013b) Semitopological Vector Spaces and Hyperseminorms, Theory and Applications of Mathematics and Computer Science, v. 3, No. 2, pp. 1 – 35.
Burgin, M. (2013c) Neoclassical Analysis as a Tool for Optimization, in Recent Advances in Mathematics, Proceedings of the 19th WSEAS American Conference on Applied Mathematics (AMERICAN-MATH’13), Cambridge, MA, USA, pp. 16 - 17, 46 – 51.
Burgin, M. (2015) Picturesque Diversity of Probability, in Functional Analysis and Probability, Nova Science Publishers, New York, pp. 301 – 354.
Burgin, M. (2016) Axiomatizing negative probability, Journal of Advanced Research in Applied Mathematics and Statistics, v. 1, No. 1, pp. 1 – 17.
Burgin, M. (2016a) Probability Theory in Relational Structures, Journal of Advanced Research in Applied Mathematics and Statistics, v. 1, No. 3&4, pp. 19 – 29.
Burgin, M. (2017) Semitopological Vector Spaces: Hypernorms, Hyperseminorms and Operators, Apple Academic Press, Toronto, Canada, 2017.
Burgin, M. (2017a) An Introduction to Symmetric Inflated Probabilities, in Quantum Interaction (de Barros, J. A., Coecke, B. and Pothos, E., Eds.),Theoretical Computer Science and General Issues, v. 10106, Springer, pp.206-223.
Burgin, M. and Chunihin, A. (1997) Named Sets in the Analysis of Uncertainty, in Methodological and Theoretical Problems of Mathematics and Information Sciences, Ukrainian Academy of Information Sciences, Kiev, pp. 72‑85 (in Russian).
Burgin, M. and Dantsker, A. M. (1995) A method of solving operator equations of mechanics with the theory of Hypernumbers, Notices of the National Academy of Sciences of Ukraine, No. 8, pp. 27-30 (in Russian).
Burgin, M. and Dantsker, A. M. (2015) Real-Time Inverse Modeling of Control Systems Using Hypernumbers, in Functional Analysis and Probability, Chapter 17, Nova Science Publishers, New York, 439 – 456.
Burgin, M., Dantsker, A. M. and Esterhuysen, K. (2012) Lithium Battery Temperature Prediction, Integration: Mathematical Theory and Applications, v. 3, No. 4, pp. 319 – 331
Burgin, M. and Kharlamov, M. A.

(1979) Preclosures and closures of relations, in Problems of optimal algorithm realization, Institute of Cybernetics, Kiev, 19-35 (in Russian).
Burgin, M. and Krinik, A. C. (2009) Probabilities and hyperprobabilities, 8th Annual International Conference on Statistics, Mathematics and Related Fields, Conference Proceedings, Honolulu, Hawaii, pp. 351-367.
Burgin, M. and Krinik, A. C. (2010) Introduction to Conditional Hyperprobabilities, Integration: Mathematical Theory and Applications, v. 2, pp. 285 – 304.
Burgin, M. and Krinik, A. C. (2012) Hyperexpectations of random variables without expectations, Integration: Mathematical Theory and Applications, v. 3, pp. 245-267.
Burgin, M. and Krinik, A. C. (2013) Properties of Conditional Hyperprobabilities, in Topics in Integration Research, Chapter 15, Nova Science Publishers, New York, pp. 265-288.
Burgin, M. and Krinik, A. C. (2015) Hyperexpectation in Axiomatic and Constructive Settings, in Functional Analysis and Probability, Chapter 12, Nova Science Publishers, New York, pp. 259 – 288.
Burgin, M. and Meissner, G. (2010) Negative Probabilities in Modeling Random Financial Processes, Integration: Mathematical Theory and Applications, v. 2, No. 3, pp. 305 – 322.
Burgin, M. and Meissner, G. (2012) Negative Probabilities in Financial Modeling, Wilmott Magazine, pp. 60 – 65.
Burgin, M. and Meissner, G. (2012a) Larger than One Probabilities in Mathematical and Practical Finance, Review of Economics & Finance, v. 2, No 4, 2012, pp. 1-13.
Burgin, M. and Meissner, G. (2017) 1 + 1 = 3: Synergy Arithmetic in Economics, Applied Mathematics, v.8, No.2, pp. 133 – 144.
Burgin, M. and Ralston, J. (2004) PDE and Extrafunctions, Rocky Mountain Journal of Mathematics, v. 34, pp. 849-867.
Burioni, R., Cassi, D. and Vezzani, A. (2001) Random walks and physical models on infinite graphs: An introduction, in Random Walks and Geometry, de Gruyter, Berlin, pp. 35–71.
Burova, I. N. The development of the problem of infinity in the history of science, Nauka, Moscow, 1987 (in Russian).
Busemeyer, J. R. and Bruza, P. D. Quantum models of cognition and decision, Cambridge University Press, Cambridge, 2012.
Callier, B. (2011) Totality and Infinity, Alterity, and Relation: From Levinas to Glissant, Journal of Francophone Philosophy, v. 19, No. 1, pp. 135-151.
Calude, C. S. Information and Randomness: An Algorithmic Perspective, Texts in Theoretical Computer Science. An EATCS Series, Springer-Verlag, Berlin, 2002.
Cameron, R. H. (1960) A Family of Integrals Serving to Connect Wiener and Feynman Integrals, J. Math. Phys., v. 39, pp. 126–140.
Carmona, R. and Tehranchi, M. R. Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective, Springer Finance, Springer, New York, 2006.
Carnap, R. Logical Foundations for Probability, University Chicago Press, Chicago, 1950.
Cameron, R. H. (1960) A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. Phys. Sci., v. 39, pp. 126–140.
Cantor, G. Grundlagen einer allgemeinen Mannigfaltigkeitslehre: Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen, Teubner, Leipzig, 1883.
Cantor, G. (1886-7) Über die verschiedenenAnsichten in Bezug auf die actualunendlichen Zahlen, Bihang till Kongl, SvenskaVetenskaps-Akademien Handlingar, Bd. 11, article 19. P. A. Norstedt&Sôner, Stockholm, 1887.
Cantor, G. Gesammelte Abhandlungen Mathematischen und Philosophischen Inhalts, Springer, Berlin, 1932.
Cao, T. Y. and Schweber, S. S. (1993)The conceptual foundations and philosophical aspects of renormalization theory, Synthese, v. 97, pp. 33-108.
Capleton, B. Structures and Morphisms: Mathematical Structures from Bounded Infinity, Amarilli Books, 2017.
Carnap, R. Logical Foundations for Probability, University Chicago Press, Chicago, 1950.
Cartan, H. Differential Calculus, Hermann, Paris, 1971.
Cereceda, J. L. Local hidden-variable models and negative-probability measures, Preprint in Quantum Physics, quant-ph/0010091, 2000 (electronic edition: http://arXiv.org).
Chapin, E. W. (1974) Set-valued Set Theory, I, Notre Dame J. Formal Logic, v. 15, pp. 619–634.
Chapin, E. W. (1975) Set-valued Set Theory, II, Notre Dame J. Formal Logic, v. 16, pp. 255–267.
Cheney, E. W. Analysis for Applied Mathematics, Springer, New York, 2001
Cheng, E. Beyond Infinity: An Expedition to the Outer Limits of Mathematics, Basic Books, New York, 2017.
Chomsky, N. (1991) Linguistics and Cognitive Science: Problems and Mysteries, in (Asa Kasher, Ed.), The Chomskyan Turn, Blackwell, Oxford, pp. 26-53.
Chow, C. C. and Buice, M. A. Path Integral Methods for Stochastic Differential Equations, Preprint in Nonlinear Sciences, nlin.AO, 2012 (arXiv:1009.5966).
Christov, C. I. and Todorov, T. D. (1974) Asymptotic numbers: algebraic operations with them, Serdica, Bulgaricae Mathematicae Publicationes, v. 2, pp. 87–102.
Church, A. (1940) On the concept of a random sequence, Bull. Amer. Math. Soc., v. 46, No. 2, pp. 130-135.
Church, A. Introduction to Mathematical Logic, Princeton University Press, Princeton, 1956.
Chwistek, L. The Limits of Science: Outline of Logic and Methodology of Science, Ksiaznica-Atlas, Lwöw-Warszawa, 1935.
Clark F. H. Optimization and Nonsmooth Analysis, John Willy & Sons, New York, 1983.
Close, F. The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe, Basic Books, New York, 2011.
Cohen, L. W. and Ehrlich, G. The Structure of the Real Number System, Robert E. Krieger P. C., Huntington, New York, 1977.
Collins, J. C. Renormalization, Cambridge University Press, Cambridge, 1984.
Connor, J. N. L. (1990) Practical methods for the uniform asymptotic evaluation of oscillating integrals with several coalescing saddle points, in Asymptotic and Computational Analysis Dekker, New York, pp. 137–173.
Connor, J. N. L. and Hobbs, C. A. (2004) Numerical evaluation of cuspoid and bessoid oscillating integrals for applications in chemical physics, Russian Journal of Physical Chemistry, v. 23, No. 2, pp. 13-19.
Conway, J. H. On Numbers and Games, Academic Press, London/ New York, 1976.
Cornelis, C., De Cock, M. and Kerre, E. E. (2003) Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge, Expert Systems, v. 20, No. 5, pp. 260–270.
Costabel, P. (1985) Descartes et la mathématique de l'infini, Historia Sci. No. , v. 29, pp. 37-49.
Cotsakis, S. (2013) Structure of infinity in cosmology, Int. J. Mod. Phys. D22, 1330003.
Covitz, P. A. (2003) Multiplication by Infinity: Fractals and Human Biology, OMICS: A Journal of Integrative Biology, v. 7, No.1, pp. 21-22.
Cox, R. T. The Algebra of Probable Inference, Johns Hopkins University Press, Baltimore, MD, 1961.
Cutland, N. Nonstandard Analysis and its Applications, London Mathematical Society, London, 1988.
Da Prato, G. An Introduction to Infinite-Dimensional Analysis, Universitext, Springer-Verlag, New York/Berlin, 2006.
Da Prato, G. and Zabczyk, J. Ergodicity for Infinite Dimensional Systems, Lecture Notes Series, London Mathematical Society, 1996.
Dalecky, Yu. L. and Fomin, S. V. Measures and Differential Equations in Infinite-Dimensional Space, Kluwer Academic Publishers, Dordrecht, 1991.
Dalecky, Yu. L. and B. D. Maryanin, (1985) Smooth measures on infinite-dimensional manifolds, Soviet Math. Dokl., v. 285, pp. 863-866.
Daletskii, Yu. L. and Fomin, S. V. (1972) Generalized measures in Hilbert space and Kolmogorov's forward equation, Soviet Math. Dokl., v. 13, pp. 993-997.
Daniell, P. J. (1918) A general form of integral, Annals of Mathematics, v. 19, pp. 279–294.
Daniell, P. J. (1919) Integrals in an Infinite Number of Dimensions, Annals of Mathematics, Second Series, v. 20, No. 4, pp. 281–288.
Daniell, P. J. (1920) Further properties of the general integral, Annals of Mathematics, v. 21, pp. 203–220.
Dao-Xing, X. Measure and integration theory on infinite-dimensional spaces: Abstract harmonic analysis, Pure and Applied Mathematics, v. 48, Academic Press, London/ New York, 1972.
Dauben, J. W. Georg Cantor, His Mathematics and Philosophy of the Infinite, Princeton University Press, Princeton, New Jersey, 1979.
Davidson, S. and Perpich, D. (Eds) Totality and Infinity at 50, Duquesne University Press, Pittsburg, PA, 2012.
de Barros, A. (2012) Quantum-like model of behavioral response computation using neural oscillators. Biosystems, v. 110, No. 3, pp. 171–182.
de Barros, A. (2012a) Joint probabilities and quantum cognition, in Quantum Theory: Reconsideration of Foundations, AIP Publishing, (AIP Conference Proceedings / Mathematical and Statistical Phsyics) v. 6, pp. 98–107.
de Barros, A. and Oas, G. Negative probabilities and counter-factual reasoning in quantum cognition, arXiv: 1404.3921 [physics.data-an], 2014.
de Barros, A., Oas, G. and Suppes, P. Negative probabilities and Counterfactual Reasoning on the double-slit Experiment, Preprint in Quantum Physics, 2014, arXiv:1412.4888 [quant-ph].
De Finetti, B., (1937) La Prévision: Ses Lois Logiques, Ses Sources Subjectives, Annales de l”Institut Henri Poincaré, v. 7, 1-68 (English translation: Foresight. Its Logical Laws, Its Subjective Sources, in Studies in Subjective Probability, H. E. Kyburg, Jr. and H. E. Smokler (eds.), Robert E. Krieger Publishing Company, 1980).
de Finetti, B. Theory of Probability: A Critical Introductory Treatment, John Wiley & Sons, New York, NY, 1990.
Deligne, P., Etingof, P., Freed, D. S., Jeffrey, L. C., Kazhdan, D., Morgan, J. W., Morrison, D. R. and Witten, E. (Eds.) Quantum Fields and Strings: A Course for Mathematicians, Amer. Math. Soc., Providence, RI, 1999.
Demirci, M. (1999) Genuine Sets, Fuzzy Sets and Systems, v. 105, pp. 377–384.
De Morgan, A. On Infinity: And on the Sign of Equality, Cambridge University Press, Cambridge, 1865.
Dempster, P. (1967)

Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, v. 38, pp. 325-339.
Derrida, J. De la grammatologie, Les Éditions de Minuit, Paris, 1967.
Derrida, J. On the Name, Stanford University Press, Stanford, 1995.
Deschrijver, G. and Kerre, E. E. (2003) On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, v. 133, pp. 227–235.
Deser, S. (1957) General Relativity and the Divergence Problem in Quantum Field Theory, Rev. Mod. Phys. v. 29, 417.
Deutsch, D. The Beginning of Infinity: Explanations that Transform the World, Penguin Books, New York, 2011.
Dineen, S. Complex Analysis on Infinite Dimensional Spaces, Springer Monographs in Mathematics, Springer, New York, 1999.
Dieudonne, J. Foundations of Modern Analysis, Academic Press Inc., New York, 1960.
Dieudonné, J. History of functional analysis, North-Holland Studies, v. 49, Amsterdam/New York/Oxford, 1981.
Dijkgraaf, R. The Unreasonable Effectiveness of Quantum Physics in Modern Mathematics, Perimeter Institute for Theoretical Physics. March 5th, 2014 (https://www.youtube.com/watch?v=6oWLIVNI6VA).
Dineen, S. Complex Analysis on Infinite Dimensional Spaces, Springer Monographs in Mathematics, Springer-Verlag, New York, 1999.
Dirac, P. A. M. (1933) The Lagrangian in theoretical physics, in Phys. Z. Sovietunion, v. 3, pp. 64–72.
Dirac, P. A. M. (1963) The evolution of the physicist's picture of nature, Scientific American, v. 208, No. 5, pp. 45-53.
Dirac, P. A. M. (1968) Methods in theoretical physics, in Unification of Fundamental Forces, Cambridge University Press, Cambridge, 1990, pp. 125–143.
Dirac, P. A. M. Directions in Physics, John Wiley & Sons, New York, NY, 1978.
Dirichlet, P. G. L. (1829) Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données, Journal für die Reine und Angewandte Mathematik, v. 3, pp. 157–169.
Domotor, Z. Probabilistic relational structures and their applications, Tech. Rep. 144, Stanford Unlversity, Instltute for Mathematlcal Studles m the Social Sclences, Stanford, CA, 1969.
Donald, M. J. Finitary and Infinitary Mathematics, the Possibility of Possibilities and the Definition of Probabilities, preprint in Quantum Physics (quant-ph), 2003 (arXiv:quant-ph/0306201).
Dosi, A. (2011) Local operator algebras, fractional positivity and the quantum moment problem, Transactions of the American Mathematical Society, v. 363, No.2, pp. 801–856.
Döring, A. and Isham, C. J. (2008) A topos foundation for theories of physics: I. Formal languages for physics, Journal of Mathematical Physics, v. 49, 053515.
Dowden, B. The Infinite, The Internet Encyclopedia of Philosophy, IEP, 2010 (http://www.iep.utm.edu/infinite/).
Du Bois-Reymond, P. (1870/1871) Sur la grandeur relative des infinis des fonctions, Annali di matematica pura ed applicata, v. 4, pp. 338-353.
Duda, R. (2004) On the origins of functional analysis and the Lvov School, Annales Societatis Mathematicae Polonae, Serie I, pp. 5–45.
Duffie D. and Singleton, K. (1999) Modeling Term Structures of Defaultable Bonds, Review of Financial Studies, v. 12, pp.687-720.
Dugac, P. (1990) La théorie des fonctions analytiques de Lagrange et la notion d'infini, in Konzepte des mathematisch Unendlichen im 19. Jahrhundert, Göttingen, pp. 34-46.
Dunford, N. and Schwartz, J. Linear Operators, Interscience Publishers, New York, 1958.
Dyson, F. J. (1952) Divergence of Perturbation Theory in Quantum Electrodynamics, Phys. Rev., v. 85, pp. 631-632.
Dyson, F. Infinite in All Directions, Harper Collins, New York, 1988.
Dyson, F. Selected Papers of Freeman Dyson with Commentary, Amer. Math. Soc., Providence, RI, 1996.
Estrada, R. and Kanwal, R. P. Asymptotic Analysis, a Distributional Approach, Birkhauser, Boston, 1994.
Edwards, C. H. and Penney, D. E. Calculus, Early Transcendentals,

Prentice Hall, Englewood Cliffs, New Jersey, 2002.
Edzawa H. and Zuneto T. (Eds.) Quantum Physics Perspectives, Iwanami Shoten, Tokio, 1977.
Efremovich, V. A. (1951) Infinitesimal spaces, Dokl. Akad. Nauk SSSR , v. 76, pp. 341–343 (In Russian).
Egorov, Yu. V. (1990) A contribution to the theory of generalized functions, Russian Math. Surveys, v. 45, pp. 1-49 (translated from Russian).
Egorov, Yu. V. (1990a) On generalized functions and linear differential equations, Vestnik Moscow Univ., Ser. 1, v. 2, pp. 96 – 99 (in Russian).
Ehrlich, P. (1982) Negative, Infinite, and Hotter Than Infinite Temperatures, Synthese, v. 50, No.

2, pp. 233 – 277
Ehrlich, P. (1994) All numbers great and small, in Real Numbers, Generalizations of the Reals, and Theories of Continua, Kluwer Academic Publishers, Dordrecht, pp. 239-258.
Ehrlich, P. (2001) Number systems with simplicity hierarchies: A generalization of Conway’s theory of surreal numbers, The Journal of Symbolic Logic, v. 66, pp. 1231-1258.
Ehrlich, P. (2012) The Absolute Arithmetic Continuum and the Unification of All Numbers Great and Small, Bulletin of Symbolic Logic, v. 18, pp. 1-45.
Eldredge, N. Analysis and Probability on Infinite-Dimensional Spaces, Preprint in Probability, arXiv:1607.03591 [math.PR], 2016.
Euler, L. Introduction to Analysis of the Infinite, Book I, Springer-Verlag New York, 1988.
Euler, L. Introduction to Analysis of the Infinite, Book II, Springer-Verlag New York, 1990.
Eves, H. A Survey of Geometry, Allyn and Bacon, Inc., Boston, 1972.
Eves, H. An Introduction to the History of Mathematics, Saunders College Publishing, Philadelphia, 1990.
Exner, P. Open Quantum Systems and Feynman Integrals. Reidel, Dordrecht, 1985.
Gawedzki, K. (1974), Construction of Quantum-Mechanical Dynamics by Means of Path Integrals in Path Space, Rep. Math. Phys., v. 6, pp. 327–342.
Fabian, M., Habala, P., Hajek, P., Montesinos Santalucia, V., Pelant, J., and Zizler, V. Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Mathematics, Springer-Verlag, New York/Berlin, 2001.
Fabian, M., Habala, P., Hajek, P., Montesinos, V., and Zizler, V. Banach Space Theory: The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer, 2011.
Fabian, M., Habala, P. and Hájek, P. Banach Space Theory: The Basis for Linear and Nonlinear Analysis, Springer, New York, 2010.
Fairchild, W. W. and Ionescu Tulcea, C. Topology, W. B. Saunders Co., Philadelphia/London/Toronto, 1971.
Faticoni, T. G. The Mathematics of Infinity: A Guide to Great Ideas, John Wiley & Sons, New Jersey, 2006.
Feferman, S. (2012) And so on . . . : Reasoning with Infinite Diagrams, Synthese , v. 186, No. 1, pp. 371-386.
Feller, W. An introduction to probability theory and its applications, Willey, New York, 1957.
Feng F. (2010) Generalized Rough Fuzzy Sets Based on Soft Sets, Soft Computing, v. 14, No. 9, pp. 899–911.
Fenstad, J. E. (1988) Infinities in mathematics and the natural sciences, in Methods and applications of mathematical logic, Campinas, 1985, Contemp. Math., v. 69, Providence, RI, pp. 79-92.
Feynman, R. P. (1948) Space–time approach to non–relativistic quantum mechanics, Rev. Mod. Phys., v. 20, pp. 367–387.
Feynman, R. P. QED, The Strange Theory of Light and Matter, Penguin Books, London, 1985.
Feynman, R. P. and Hibbs, A. R. Quantum Mechanics and Path Integrals

, McGraw-Hill Companies, New York, 1965.
Field, J. V. The Invention of Infinity: Mathematics and Art in the Renaissance, Oxford University Press, 1997.
Finkelstein, D. Quantum time, 2010 (electronic edition: https://www.physics.gatech.edu/
files/u9/publications/quantumtime.pdf).
Flanigan, F. J. and Kazdan, J. Calculus Two: Linear and Nonlinear Functions, Prentice Hall, Englewood Cliffs, New Jersey, 1971.
Fleron, J. F., Hotchkiss, P. K., Ecke, V. and von Renesse, C. The Infinite, Discovering the Art of Mathematics, 2015 (https://www.artofmathematics.org/books/the-infinite).
Fomin, S. V. (1968) Generalized functions of infinite-dimensional argument and their Fourier transforms, Uspehi Mat. Nauk, v. 23 No. 2, pp. 215-216.
Forsyth, P. A., Vetzal, K. R. and Zvan, R. (2001) Negative Coefficients in Two Factor Option Pricing Models, Working Paper (electronic edition: http://citeseer.ist.psu.edu/
435337.html).
Fréchet, M. (1904) Sur les opérations linéaires, Transactions of the American Mathematical Society, v. 5, pp. 493–499.
Fréchet, M. (1905) Sur les opérations linéaires, Transactions of the American Mathematical Society, v. 6, pp. 134–140.
Fréchet, M. (1906) Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, v. 22, pp. 1–74.
Fréchet, M. (1907) Sur les Opérations linéaires, Transactions of the American Mathematical Society, v. 8, pp. 433–446.
Fréchet, M. Les Espaces Abstraits et Leur Théorie Considérée comme Introduction à l’Analyse Générale, Gauthier-Villars et Cie, Paris, 1928.
Freiberger, M. and Thomas, R.

The problem with infinity, +Plus magazine, 2013 (https://plus.maths.org/content/problem-infinity).
Fraenkel, A. A. and Bar-Hillel, Y. Foundations of Set Theory, North Holland P. C., Amsterdam, 1958.
Fremlin, D. (1994) Integration of Vector-Valued Functions, Sem. Mat. Univ. Modena, v. 42, pp. 205-211.
Fremlin, D. (1994a) The Henstock and McShane Integrals of Vector-Valued Functions, Illinois J. Math., v. 38, pp. 471-479.
Fremlin, D. (1995) The Generalized McShane Integral, Illinois J. Math., v. 39, pp. 39-67.
Fremlin, D. and Mendoza, J. (1994) On the Integration of Vector-Valued Functions, Illinois J. Math., v. 38, pp. 127-147.
Fubini, G. (1907) Sugli integrali multipli, Rom. Acc. L. Rend., v. 16, No. 1, pp. 608–614.
Fuchs, L. Partially Ordered Algebraic Systems, Pergamon Press, Oxford/London/New York, 1963.
Galileo, Discorsi e dimostrazioni matematiche, intorno à due nuove scienze, v. 213, Leida, Appresso gli Elsevirii (Louis Elsevier, Leiden) 1638 (Mathematical discourses and demonstrations, relating to Two New Sciences, English translation by Henry Crew and Alfonso de Salvio, 1914).
Galvao, E. F. (2005) Discrete Wigner functions and quantum computational speedup, Phys. Rev. A, v. 71, 04230.
Gamow, G. One, Two, Three . . . Infinity: Facts and Speculations of Science, Dover Books on Mathematics, New York, 1947.
Gardiner, A. Understanding Infinity: The Mathematics of Infinite Processes, Dover Books on Mathematics, New York, 1982.
Gâteaux, R. (1913) Sur les fonctionnelles continues et les fonctionnelles analytiques, Comptes rendus de l'Académie des sciences, Paris, v. 157, pp. 325–327.
Gâteaux, R. (1919) Sur la notion d'intégrale dans le domaine fonctionnel et sur la théorie du potential, Bulletin de la Société Mathématique de France, v. 47, pp. 47–70.
Gâteaux, R. (1922) Sur diverses questions du calcul fonctionnel, Bulletin de la Société Mathématique de France, v. 50, pp. 1–37.
Gelbaum, B. R. and Olmsted, J. M. H. Counterexamples in Analysis, Holden-Day, San Fransisco/London/Amsterdam, 1964.
Gelfand, I. M. (1936) Sur unlemme de la theorie des espaceslineaires, Comm. Inst. Sci. Math. DeKharko, no. 4, vol. 13, pp. 35-40.
Gelfand I. M. and Yaglom, A. M. (1960) Integration in functional spaces and its application in quantum mechanics, J. Math. Phys., v. 1, pp. 48–69.
Gell-Mann, M. and Hartle, J. B. Decoherent Histories Quantum Mechanics with One 'Real' Fine-Grained History, Preprint in Quantum Physics, quant-ph/1106.0767, 2011 (electronic edition: http://arXiv.org).
Gemignani, M. Introduction to Real Analysis, W. B. Saunders Co., Philadelphia/London/Toronto, 1971.
Gentilhomme, Y. (1968) Les ensembles flous en linguistique, Cahiers Linguistique Theoretique Appliqee, v. 5, pp. 47–63.
Gillman, L. (1993) An Axiomatic Approach to the Integral, American Mathematical Monthly, v. 100, No. 1, pp. 16-25.
Glimm, J. and Jaffe, A. Quantum physics: A functional integral point of view, Springer-Verlag, New York-Heidelberg-Berlin, 1981.
Goetschel, R. and Voxman, W. (1986) Elementary Fuzzy Calculus, Fuzzy Sets and Systems, 18, pp. 31-43.
Gogen, J. A. (1967) L-fuzzy Sets, Journal Math. Analysis Appl., v. 18, pp. 145–174.
Gold, L., Brody, E., Heilig, J. and Singer, B. (2002) One, Two, Infinity: Genomes Filled with Aptamers, Chemistry & Biology, v. 9, No. 12, pp. 1259–1264.
Goldsmith, M. From Zero to Infinity and Beyond: Cool Maths Stuff You Need to Know, Michael O'Mara Books, London, 2012.
Gonshor, H. An Introduction to the Theory of Surreal Numbers, Cambridge University Press, Cambridge, England, 1986.
Goossens, M. An Introduction to Plasma Astrophysics and Magnetohydrodynamics, Springer, Netherlands, 2003.
Gordon, R. (1990) The McShane Integral of Banach-Valued Functions, Illinois J. Math., v. 34, pp. 557-567.
Gordon, R. A. The integrals of Lebesgue, Denjoy, Perron, and Henstock, Providence, American Mathematical Society, 1994.
Gough, W. C. The Mysterious Zero/Infinity, 2002 (http://www.fmbr.org/editoral/
edit01_02/edit6_mar02.htm).
Gouvêa, F. Q. p-adic Numbers: An Introduction, Springer-Verlag, New York, 1997.
Grabisch, M., Murofushi, T. and Sugeno, M. (eds). Fuzzy Measures and Integrals - Theory and Applications. Physica Verlag, 2000.
Graham, L. and. Kantor, J. M. Naming Infinity: A True Story of Religious Mysticism and Mathematical Creativity, Belknap Press of Harvard University Press, 2009.
Grattan-Guinness, I. (1975) Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik. Grundladen Math., v. 22, pp. 149–160.
Grauert, H. (1990) Die Unendlichkeit in der Mathematik, Math. Semesterber, v. 37, No. 2, pp. 153-156.
Groes, E., Jacobsen, H. J., Sloth, B. and Tranæs, T. (1998) Axiomatic Characterizations of the Choquet Integral, Economic Theory, v. 12, No. 2, pp. 441-448.
Gross, D. (2006) Hudson's theorem for finite-dimensional quantum systems, J. Math. Phys., v. 47, pp. 122-107.
Gribbin, J. In Search of Schrödinger's Cat:

Quantum Physics and Reality, Bantam Books, New York, 1984.
Groenewold, H. J. (1946) On the Principles of elementary quantum mechanics, Physica, v. 12 pp. 405-460.
Grzymala-Busse, J. (1987) Learning from examples based on rough multisets, in Proceedings of the 2nd International Symposium on Methodologies for Intelligent Systems, Charlotte, NC, USA, pp. 325–332.
Gudder, S. (1984) Probability Manifolds, J. Math. Phys., v. 25, pp. 2397–2401.
Gudder, S. P. (2000) What Is Fuzzy Probability Theory? Foundations of Physics, v. 30, No. 10, pp. 1663-1678.
Gudder, S. P. (2000a) Combinations of Observables, International Journal of Theoretical Physics, v. 39, No. 3, pp. 695-704.
Guillemot, M. and Daumas, D. (1997) En route for infinity, in History of mathematics: History of problems Paris, pp. 7-32.
Guillen, M. Bridges to Infinity: The Human Side of Mathematics, Tarcher, New York, 1983.
Gupta, S. N. (1950) Theory of Longitudinal Photons in Quantum Electrodymanics, Proc. Phys. Soc., v. A63, No. 267, pp. 681–691.
Gupta, S. N. (1957) Quantum Mechanics with an Indefinite Metric, Canadian Journal of Physics, v. 35, pp. 961-968.
Gwiazda, J. (2012) On Infinite Number and Distance, Constructivist Foundations, v. 7, No. 2, pp. 126-130.
Gylys, R. P. (1994) Quantal sets and sheaves over quantales, Liet. Matem. Rink., v. 34, No. 1, pp. 9–31.
Habil, E. D. and Nasr, T. Z. (2002) On Fuzzy Probability Theory, International Journal of Theoretical Physics, v. 41, No. 4, pp. 791-810.
Hadamard, J. (1903) Sur les opérations fonctionnelles, Comptes rendus hebdomadaires des séances de l’académie des sciences, pp. 351–354.
Hagar, A. Discrete or Continuous? The Quest for Fundamental Length in Modern Physics, Cambridge University Press, Cambridge, 2014.
Hailperin, T. (2011) Logic Semantics with the Potential Infinite, History and Philosophy of Logic, v. 31, No. 2, pp. 145-159.
Hájek, A. Interpretations of Probability, Stanford Encyclopedia of Philisophy, 2012 .
Hájek, A. and Smithson M. (2012) Rationality and Indeterminate Probabilities, Synthese, v. 187, No. 1, pp. 33-48.
Hallet, M. Cantorian Set Theory and Limitation of Size, Oxford University Press, Oxford, 1984.
Halmos, P. Measure theory, Van Nostrand Reinhold Co., New York, NY, 1950.
Halpern J. Y. and Fagin, R. (1990) Two views of belief: belief as generalized probability and belief as evidence. Proceedings of the National Conference on Artificial Intelligence, Boston, MA, pp. 112-119.
Han, Y. D., Hwang, W. Y. and Koh, I. G. (1996) Explicit solutions for negative-probability measures for all entangled states, Physics Letters A, v. 221, No. 5, pp. 283-286.
Hardy, G. H. (1907) On certain oscillating series, Quart. J. Pure Appl. Math. v. 38, pp. 269–288.
Hardy, G. H. Orders of Infinity: The “Infinitärcalcül” of Paul Du Bois-Reymond, Cambridge University Press, Cambridge, 1910.
Hardy, G. H. Divergent Series, Oxford University Press, Oxford, 1949.
Harpham, G. G. (2005) Derrida, Said, and Infinity, Journal for Cultural and Religious Theory, v. 6, No. 3, pp. 24-29
Harries, K. Infinity and Perspective, MIT Press, Cambridge, 2001.
Hartle, J. B. (2008) Quantum Mechanics with Extended Probabilities, Phys. Rev. A, 78, 012108.
Hasper, P. S. Aristotle on Infinity, Kolloquium-Vorlesung, University of Groningen, 2008 (http://webcache.googleusercontent.com/search?q=cache:nMUiIHv3NfgJ:www.philosophie.uni-muenchen.de/lehreinheiten/philosophie_3/personen/hasper/verg_sem/lv_
sose_2011/unendlichkeit/hasper_aris_infin.pdf+&cd=1&hl=en&ct=clnk&gl=us).
Hausdorff, F. Grundzüge der Mengenlehre, Veit and Company, Leipzig, 1914.
Haven, E. and Khrennikov, A. Quantum Social Science, Cambridge University Press, Cambridge, 2013.
Heaviside, O. (1893) On Operators in Physical Mathematics, I, Proc. Roy. Soc., London, v. 52, pp. 504–529.
Heaviside, O. (1894) On Operators in Physical Mathematics, II, Proc. Roy. Soc., London, v. 54, pp. 105–143.
Hegel, G. W. F. Science of Logic, Allen & Unwin, London, 1969.
Heine E. (1870) Ueber trigonometrische Reihen, Journal für die reine und angewandte Mathematik, v. 71, pp. 353–365.
Helemski, A. Ya. The Homology of Banach and Topological Algebras, Kluwer Academic Publishers, Dordrecht, 1989.
Heller, ‎M. and Woodin, W. H. (Eds) Infinity: New Research Frontiers, Cambridge University Press, Cambridge, 2011.
Hellman, G. (1978) Randomness and Reality, Proc. of the Biennial Meeting of the PSA, v. 2, pp. 79-97.
Henle, J. M. (1999) Non-nonstandard analysis: Real infinitesimals, The Mathematical Intelligencer, v. 21, No. 1, pp. 67-73.
Henle, J. M. and Kleinberg, E. M. Infinitesimal Calculus, MIT Press, Cambridge, MA, 1979.
Henstock, R. Lectures on the Theory of Integration, Series in Real Analysis, v. 1, World Scientific, New Jersey/London/Singapore, 1988.
Herrlich, H. (2011) The Finite and the Infinite, Applied Categorical Structures, v. 19, No. 2, pp. 455–468.
Hersh, P. and Davis, P. The Mathematical Experience, Mariner Books, 1999.
Hervé, M. Analyticity in Infinite Dimensional Spaces, de Gruyter Studies in Mathematics, de Gruyter, Berlin/New York, 1989.
Hida, T., Kuo, H. H., Potthoff, J. and Streit, L. White Noise: An infinite dimensional calculus, Kluwer, Dordrecht, 1993.
Hilbert, D. (1926) Über das Unendliche, Mathematische Annalen, v. 95, No. 1, pp. 161-190.
Holland, R. E., Lynch, F. J., Perlow, G. J. and Hanna, S. S. (1960) Time Spectra of Filtered Resonance Radiation of Fe57, Phys. Rev Let., v. 4, pp. 181-182.
Holtsmark, J. (1971) The concept of infinity from Aristotle to the scholastics, Phys. Norveg., v. 5, No. 3-4, pp. 311-318.
Home, D., Lepore, V. L. and Selleri, F. (1991) Local realistic models and non-physical probabilities, Phys. Lett., A v. 158, pp. 357-360.
’t Hooft, G. In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge, 1997.
Houser, J. J. (1982) Estimation of A∝ [infinity] in reaction-rate studies, J. Chem. Educ., v. 59, No.

9, p. 776.
Howes, N. R. Modern Analysis and Topology, Springer, New York, 1995.
Huemer, M. Approaching Infinity, Palgrave McMillan, London, 2016.
Hugly, P. and Sayward, C. (1986) What is an Infinite Expression? Philosophia, v. 16, No. 1, pp. 45-60.
von Humboldt, W. On Language, Translated by Peter Heath and edited by Michael Losonsky, Cambridge University Press, Cambridge, 1836/1999.
Huygens, C. De ratiociniis in ludoaleae (Dutch: Van reeckening in spelen van geluck, translated by Frans van Schooten), Lugd. Batav., Ex officinal Johannis Elsevirii, 1657.
Isham, C. J., Salam, A. and Strathdee, J. (1972) Infinity Suppression Gravity Modified Quantum Electrodynamics, Phys. Rev., D5, 2548.
Itô, K. (1944) On a stochastic integral equation, Proceedings of the Imperial Academy of Tokyo, v. 20, pp. 519–524.
Itô, K. (1966), Generalized Uniform Complex Measures in the Hilbertian Metric Space with their Application to the Feynman Integral, in Proceedings of the 5th Berkley Symposium on Statistcs and Probability, v. II, part 1, pp. 145–161.
Jacquette, D. David Hume's Critique of Infinity, Brill's Studies in Intellectual History, BRILL, Leiden/Boston/Singapore, 2000.
Jackiw, R. (1999) The unreasonable effectiveness of quantum field theory, in Conceptual Foundations of Quantum Field Theory, Cambridge University Press, Cambridge, pp. 148-159.
Jahn, K. U. (1975) Intervall-wertige Mengen, Math.Nach., v. 68, pp. 115–132.
Jain, P. and Agogino, A. M. (1990) Stochastic sensitivity analysis using fuzzy influence diagrams, in Uncertainty in Artificial Intelligence, v. 4. North-Holland, Amsterdam, pp. 79–92.
Janiš, V. (1999) Nearness Derivatives and Fuzzy Differentiability, Fuzzy Sets and Systems, v. 105, No. 2, pp. 99-102.
Jarrow, R. and Turnbull, S. (1995) Pricing Derivatives on Financial Securities Subject to Credit Risk, Journal of Finance, v. L, No. 1, pp.53-85.
Jarvinen, R. D. Finite and Infinite Dimensional Linear Spaces, Pure and Applied Mathematics, Academic Press, London/ New York, 1981.
Jarvis, P. D., Bashford, J. D. and Sumner, J. G. Path integral formulation and Feynman rules for phylogenetic branching models, q-bio.PE (arXiv:q-bio/0411047) (2004).
Jaynes, E. T. Probability Theory: The Logic of Science, Cambridge University Press, Cambridge, 2003.
Jech, T. Set theory, Springer, New York, 2002.
Jha, G. S. (1981) Concept of infinity in Hindu mathematics, Math. Ed. (Siwan), v. 15, No. 1, B13-B19.
Johnson, N. L. and Kotz, S. Continuous Univariate Distributions-1, Houghton Mifflin Company, 1970.
Johnson, G. W. and Lapidus, M. L. The Feynman Integral and Feynman's Operational Calculus, Oxford Mathematical Monographs, Oxford University Press, Oxford and New York, 2002.
Jordan, P., Wigner, E. and von Neumann, J. (1934) On an algebraic generalization of the quantum mechanical formalism, Ann. Math., v. 35, pp. 29–64.
Joseph, G. G. A passage to infinity: Medieval Indian Mathematics from Kerala and its impact, Sage Publications, Thousand Oaks, CA, 2010.
Kajiwara, J., Li, Z. and Shon, K. H. (Eds) Finite or Infinite Dimensional Complex Analysis, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 2000.
Kalina, M. (1997) Derivatives of Fuzzy Functions and Fuzzy Derivatives, Tatra Mountains Math. Publ., v. 12, pp. 27-34.
Kaplan, R. and Kaplan, E. The Art of the Infinite: The Pleasures of Mathematics, Oxford University Press, 2003.
Karmin, A. S. Cognition of the Infinite, Mysl’, Moscow, 1981 (in Russian).
Kashiwa, T. Path Integral Methods, Oxford Univ. Press, Oxford and New York, 1997.
Kauffman, L. (2001) Quantum Fields and Strings: A Course for Mathematicians, by Deligne et al, Bull. Amer. Math. Soc., v. 38, pp. 489-494.
Kecs, W. and Teodorescu, P. P. Introducere in Teoria Distributhlor cu Aplicath in Tehnica, Editura Tehnica, Bucuresti, 1975 (in Romanian).
Kelly, J. L. General Topology, Van Nostrand Co., Princeton/New York, 1955.
Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T. and Ueda, N. (2006) Learning Systems of Concepts with an Infinite Relational Model, AAAI'06 Proceedings of the 21st International conference on Artificial intelligence, v. 1, pp. 381-388.
Kerre, E. E. (2001) A first view on the alternatives of fuzzy set theory, in Computational Intelligence in Theory and Practice, Physica-Verlag, Heidelberg, pp. 55–72.
Keynes, J. M. A Treatise on Probability, Macmillan and Co., London, 1921.
Khrennikov, A. Y. Non-Kolmogorovian theories of probability and quantum physics, Nauka, Fizmatlit, Moscow 2003 (in Russian).
Khrennikov, A. Generalized probabilities taking values in non-Archimedian fields and topological groups, Preprint in Mathematics,

math.PR/0512427, 2005 (electronic edition: http://arXiv.org).
Khrennikov, A. Ubiquitous quantum structure: From psychology to finance, Springer, New York, 2010.
Kiruthika, R. and Umarani, R. An Exploration of Count-to-Infinity Problem in Networks, International Journal of Engineering Science and Technology, v. 2, No. 12, pp. 7155-7159.
Kittel, C. and Kroemer, H. Thermal Physics, W. H. Freeman Company, San Francisco, 1980.
Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific Publishing Co., New York/London/Singapore, 2006.
Kline, M. Mathematics: The Loss of Certainty, Oxford University Press, New York, 1980.
Klir, G. J. and Wang, Z. Fuzzy Measure Theory, Kluwer Academic Publishers, Dordrecht, 1993.
Knobloch, E. (1999) Galileo and Leibniz: different approaches to infinity, Arch. Hist. Exact Sci., v. 54, No. 2, pp. 87-99.
Knorr, W. R. (1982) Infinity and continuity: the interaction of mathematics and philosophy in antiquity, in Infinity and Continuity in Ancient and Medieval Thought, Cornell University Press, pp. 112-145.
Knuth, D. E. Surreal Numbers: How two ex-students turned on to pure mathematics and found total happiness, Reading, Addison-Wesley, Massachusetts, 1974.
Knuth, D. The Art of Computer Programming, v.2: Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1997.
Kohn, J. J. and Nirenberg, L. (1965) An algebra of pseudodifferential operators, Comm. Pure and Applied Math., v. 18, No. 1/2, pp. 269-305.
Kolmogoroff, A. N. (1925) La définition axiomatique l'intégrale, C. R. Acad. Sci. Paris, v. 180, pp. 110-111.
Kolmogoroff, A. N. (1930) Untersuchungen über integralbegriff, Math. Ann., v. 103, pp. 654-696.
Kolmogorov, A. N. Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse Der Mathematik, 1933 (English translation: Foundations of the Theory of Probability, Chelsea P. C., 1950).
Kolmogorov, A. N. (1961) Automata and Life, in Knowledge is Power, No. 10, pp. 16-19; No. 11, pp. 30-33 (in Russian).
Kolmogorov, A. N. (1965) Three approaches to the definition of the quantity of information, Problems of Information Transmission, No. 1, pp.3-11.
Kolmogorov, A. N. and Fomin, S. V. Elements of the Theory of Functions and Functional Analysis, Dover Publications, New York, 1999.
Kondratiev, Yu. G. (1980) Nuclear spaces of entire functions in problems of infinite dimensional analysis, Soviet Math. Dokl., v. 22, pp. 588-592.
Kondratiev, Yu. G. and Samoilenko, Yu. S. (1978), Spaces of trial and generalized functions of an infinite number of variables, Rep. Math. Phys., v. 14, No. 3, pp. 325-350.
Konig, H. Measure and Integration: An Advanced Course in Basic Procedures and Applications, Lecture Notes in Mathematics, Springer, 2009.
Kragh, H. Dirac: A Scientific Biography, Cambridge University Press, Cambridge, 1990.
Krantz, D. H., Luce, R. D., Suppes, P. and Tversky, A. Foundations of Measurement, v. 1, Academic Press, New York, 1971.
Krischer, T. (1985) Mathematische Unendlichkeit und Induktion bei Platon und Aristoteles, in Aristoteles. Werk und Wirkung , v. 1, Berlin, pp. 518-542.
Kristensen, P., Mejlbo, L., and Poulsen, E. T. (1965), Tempered Distributions in Infinitely Many Dimensions, I, Canonical Field Operators, Commun. math. Phys., v. 1, pp. 175–214.
Kronz, F. M. (2006) A Non-Monontonic Probability Theory for Spin-1/2 Systems, International Journal of Theoretical Physics, v. 44, pp. 1963-1976.
Kronz, F. M. (2007) A Non-Monontonic Probability Theory for Photon Polarization States, Journal for Philosophical Logic, v. 36, pp. 449-472.
Kronz, F. (2009) Actual and Virtual Events in the Quantum Domain, Ontology Studies, v. 9, pp. 209-220.
Kronz, F. and Lupher, T. (2012) Quantum Theory: von Neumann vs. Dirac, The Stanford Encyclopedia of Philosophy, (E. N. Zalta, Ed.) archives/sum2012/entries/qt-nvd/>.
Kuratowski, K. (1922) Sur l'operation A de l'analysis situs, Fund. Math., v. 3, pp. 182-199.
Kuratowski, K. Topology, Academic Press, Warszawa, v. 1, 1966; v. 2, 1968.
Kuratowski, K. and Mostowski, A. Set Theory, North Holland P. C., Amsterdam, 1967.
Kurosh, A. G.

Lectures on General Algebra, Chelsea P. C., New York, 1963.
Kurtz, D. S. and Swartz, C. W. Theories of the Integration, World Scientific, New York/London/Singapore, 2010.
Kurzweil, J. Integration between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Locally Convex Vector Spaces, Series in Real Analysis, v. 8, World Scientific, New Jersey/London/Singapore, 2002.
Kuznetsov, V. P. (1991) Interval Statistical Models, Radio i Svyaz Publ., Moscow, Russia (in Rus.sian)
Lake, J. (1976) Sets, fuzzy sets, multisets and functions, J. London Math. Soc., II Ser., v. 12, pp. 323–326.Lao-Tzu's Taoteching, Translated by Porter, B. (aka Red Pine), Copper Canyon Press, Port Townsend, WA, 1996.
Laplace, P. (1774) Mémoire sur la probabilité des causes par les événements, Mémoires de l'Académie royale des Sciences de MI (Savants étrangers), v. 4, pp. 621–656.
Laplace, P. (1785) Mémoire sur les approximations des formules qui sont fonctions de très grands nombres, Mémoires de l'Académie royale des Sciences de Paris, pp. 423–467.
Laugwitz, D. (1960) Anwendungen unendlich kleiner Zahlen, I, J. Reine Angew. Math., v. 207, pp. 53–60.
Laugwitz, D. (1961) Anwendungen unendlich kleiner Zahlen, II, J. Reine Angew. Math.,

v. 208, pp. 22–34.
Laugwitz, D. Zahlen und Kontinuum: Eine Einfuhrung in die Infinitesimalmathematik, Lehrbucher und Monographien zur Didaktik der Mathematik, Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
Lavine, S. Understanding the Infinite, Harvard University Press, Cambridge, MA, 1994.
Le Couteur, K. J. (1949) The Indefinite Metric in Relativistic Quantum Mechanics, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, v. 196, No. 1045, pp. 251-272.
Lebesgue, H. Leçons sur l’intégration et la recherche des fonctions primitives, Gauthier Villars, Paris, 1904.
Lee, T. D. (1954) Some Special Examples in Renormalizable Field Theory, Phys. Rev., v. 95, pp. 1329-1334.
Lee, Y. J. (1989), Generalized Functions of Infinite Dimensional Spaces and its Application to White Noise Calculus, J. Funct. Anal., v. 82, pp. 429–464.
LeGac, B. and Móricz, F. (2005) The classical monotone convergence theorem of Beppo Levi fails in noncommutative L2-spaces, Proceedings of the American Mathematical Society, v. 133, No. 9, pp. 2559–2567.
Leibniz, G. (1702) Letter to Varignon, with a note on the 'Justification of the Infinitesimal Calculus by that of Ordinary Algebra,’ in Leibniz Philosophical Papers and Letters (translated by Leroy E.) D. Reidel Publishing Company, Dordrecht, 1969, pp. 542-546.
Leifer, M. S. Mathematics is Physics, Preprint in Physics,

arXiv:1508.02770v1 [physics.hist-ph] 11 Aug 2015.
Lerner, V. S. Information Path Functional and Informational Macrodynamics, Nova Science Publishers, New York, 2010.
Lerner, V. S. (2012) The information path functional approach to solution of a controllable stochastic problem, Integration, v. 3, No. 1, pp. 55-110.
Levi, I. (2000) Imprecise and Indeterminate Probabilities, Risk, Decision and Policy, v. 5, pp. 111-122.
Levinas, E. Totalitéet Infini, Martinus Nijhoff, The Hague, 1961.
Levinas, E. Totality and Infinity: An Essay on Exteriority, Duquesne University Press, Pittsburgh, 1969.
Levinas, E. (1987) Philosophy and the Idea of Infinity, Collection Fondée par H. L. van Breda et Publiée sous le Patronage des Centres d’Archives-Husserl, v. 100 of the series Phaenomenologica, pp 47-59.
Lewy, H. (1957) An example of a smooth linear partial differential equation without solution, Ann. of Math., v. 66, pp. 155-158.
Limkumnerd, S. (2014) Random walk on lattices: Graph-theoretic approach to simulating long-range diffusion-attachment growth models, Phys. Rev. E 89, 032402.
Lindström, J. On the origin and early history of functional analysis, Department of Mathematics, Uppsala University, U.U.D.M. Project Report 2008:1.
Linetsky, V. (1998) The Path Integral Approach to Financial Modeling and Options Pricing, Computational Economics, v. 11, pp. 129–163.
Liverman, T. P. G. Generalized Functions and Direct Operational Methods, Prentice Hall, Englewood Cliffs, New Jersey, 1964.
Loeb, D. (1992) Sets with a negative numbers of elements, Advances in Mathematics, v. 91, pp. 64-74.
Loeb, P. A. Real Analysis, Birkhäuser -Springer, Boston, 2016.
Loeb, P. A. and Talvila, E. (2001) Covering theorems and Lebesgue integration, Scientiae Mathematicae Japonicae, v. 53, pp. 209-221.
Loeb, P. A. and Talvila, E. (2004) Lusin's theorem and Bochner integration, Scientiae Mathematicae Japonicae, v. 60, pp. 113-120.
Loeb, D. E. and Rota, G. C. (1989) Formal Power Series of Logarithmic Type, Advances in Math., v. 75, pp. 1-118.
Lorentz, G..G. (1948) A contribution to the theory of divergent sequences, Acta Math., v. 80, pp. 167-190.
Loveland, D. (1966) A new interpretation of the von Mises concept of random sequence, Trans. Amer. Math. Soc., v. 125, No. 3, pp. 497-510.
Lowe, D. Machine Learning, Uncertain Information, and the Inevitability of Negative `Probabilities', Machine Learning Workshop 2004, Sheffield, England, 2004/2007 (http://videolectures.net/mlws04_lowe_mluii/).
Luce, R. D. (1968) On the numerical representation of qualitative conditional probability, Ann. Math. Statist., v. 39, pp. 481-491.
Luo, Z. H. and Bao-Zhu Guo, B. Z. Stability and Stabilization of Infinite Dimensional Systems with Applications, Communications and Control Engineering, Springer-Verlag, New York/Berlin, 1999.
Luu, D. Hyperprobabilities of Nonstationary Markov Chains, Thesis, California State Polytechnic University, Pomona, 2011.
Lynch, F. J., Holland, R. E. and Hamermesh, M. (1960) Time dependence of resonantly filtered gamma rays from Fe57, Phys. Rev., v. 120, pp. 513- 520.
Mack, T. Schadenversicherungsmathematik, Verlag Versicherungswirtschaft, Karlsruhe, 2002.
Maheshwari, K. Mathematics of the Vedas, Hindupedia, 2015 (http://www.hindupedia.
com/en/Mathematics_of_the_Vedas#Yajur_Veda).
Mailath, G. and Samuelson, L. Repeated games and reputations: long-run relationships, Oxford University Press, New York, 2006.
Mamedov, M. A., Saunders, G. W. and Yearwood, J. (2004) A fuzzy derivative approach to classification of outcomes from the ADRAC database, International Transactions in Operational Research, v. 11, No. 2, pp. 169-180.
Mamedov, M. A. and Yearwood, J. (2002) An Induction Algorithm with Selection Significance Based on a Fuzzy Derivative, in Proceedings of the Advances in Soft Computing, Physica-Verlag, pp. 223-235.
Mammadov, M. A. (2001) Fuzzy Derivative and Its Application to Data Classification, in Proc. of The 10-th IEEE International Conference on Fuzzy Systems, Melbourne, pp. 416-419.
Mancosu, P. (2009) Measuring the Size of Infinite Collections of Natural Numbers: Was Cantor's Theory of Infinite Number Inevitable? Review of Symbolic Logic, v. 2, No. 4, pp. 612-646.
Maor, E. To Infinity and Beyond: A Cultural History of the Infinite, Princeton University Press, Princeton, 1991.
Marciniec, J. (1997) Infinite Set Unification with Application to Categorial Grammar. Studia Logica, v. 58, No. 3, pp. 339-355.
Marsden, J. and Weinsten, A. Calculus Unlimited, The Benjamin/Cummings P.C., London/Amsterdam, 1981.
Martin-Löf, P. (1966) The definition of random sequence, Information and Control, v. 9, No. 6, pp. 602-619.
Martin-Löf, P. (1970) On the notion of randomness, in Intuitionism and Proof Theory, North Holland, Amsterdam, pp. 73-78.
Maslov, V. P. Complex Markov chains and a Feynman path integral for nonlinear equations, Nauka, Moscow, 1976 (in Russian).
Matloka, M. (1987) On fuzzy integral, in Proceedings of the Polish Symposium on Interval & Fuzzy Mathematics'86, Poznan, pp. 163-170.
Maxwell, J. C. (1870) Mathematical and Physical Science, Section A (Mathematical and Physical Sciences) of the British Association, Liverpool, Nature, v. 2, pp. 419-422.
McGuire, J. E. (1983) Space, geometrical objects and infinity: Newton and Descartes on extension, in Nature mathematized I, Montreal, Que., 1980, Dordrecht, Boston, Mass., pp. 69-112.
McLeod, R. The Generalized Riemann Integral, Math. Assoc. Amer., Providence, 1980.
McShane, E. J. Unified Integration, Academic Press, New York, 1983.
Meng, D., Zhang, X. and Qin, K. (2011) Soft rough fuzzy sets and soft fuzzy rough sets, Computers & Mathematics with Applications, v. 62, No. 12, pp. 4635–4645.
Milburn, K. Is Infinity Ruining Physics? 2016 (http://www.femitheist.net/2016/03/
infinity-and-physics.html).
Miyamoto, S. (2001) Fuzzy Multisets and their Generalizations, in Multiset Processing, LNCS 2235, pp. 225–235.
Molodtsov, O. (1999) Soft set theory – first results, Computers & Mathematics with Applications, v. 37, No. 4/5, pp. 19–31.
Monnoyeur, F. Infini des mathématiciens, infini des philosophers, Paris, 1997.
Monna, A. F. Functional analysis in historical perspective, Ultrecht, Oosthoek, 1973.
Monton, B. Design Inferences in an Infinite Universe, in Oxford Studies in Philosophy of Religion, v. 2, Oxford University Press, Oxford, 2009.
Moore, R. E. Interval Analysis, Prentice-Hall, New York, 1966.
Moore, A. W. (1995) A brief history of infinity, Sci. Amer., v. 272, No.4, pp. 112-116.
Moore, A. W. (1997) Taming the infinite, Foundations of Science, v. 2, No. 1, pp. 53-56.
Moore, A. W. The Infinite, Routledge, New York, 2001.
Moore, G. On the role of six dimensional (2,0) theories in recent developments in Physical Mathematics, 2011 http://www.physics.uu.se/external/strings2011/
presentations/3.
Moore, G. W. Felix Klein Lectures: “Applications of the Six-dimensional (2,0) Theory to Physical Mathematics,” October 1 - 11, 2012 at the Hausdorff Insitute for Mathematics, Bonn http://www.physics.rutgers.edu/_gmoore/FelixKleinLecture
Notes.
Moore, G. W. Physical Mathematics and the Future, 2014 http://www.physics.rutgers.
edu/~gmoore/PhysicalMathematicsAndFuture.pdf.
Moretto, A. Hegel e la “matematica dell'infinito,” Trento, 1984.
Moyal, J. E. (1949) Quantum mechanics as a statistical theory, Proceedings of the Cambridge Philosophical Society, v. 45, pp. 99-124.
Mückenheim, W. (1982) A resolution of the Einstein-Podolsky-Rosen paradox, Lettere al Nuovo Cimento v. 35, No. 9, pp. 300-304.
Mückenheim, W. (1986) A review of extended probabilities, Physics Reports, v. 133, No. 6, pp. 337-401.
Mückenheim, W. (1988) An extended-probability response to the Einstein-Podolsky-Rosen argument, in Quantum mechanics versus local realism: The Einstein-Podolsky-Rosen paradox, Plenum Press, New York, pp. 345-364.
Muldowney, P. A General theory of integration in function spaces, including Wiener and Feynman integration, Pitman Research Notes in Mathematics Series, v.153, Longman, Harlow, 1987.
Mursaleen, (1979) A. On infinite matrices and invariant means, Indian J. Pure Appl. Math., v. 10, No. 4, pp. 457-460.
Mycielski, J. (1981) Analysis without Actual Infinity, J. Symbolic Logic, v. 46, No. 3, pp. 625—633.
Mycielski, J. (1986) Locally finite theories, J. Symbolic Logic, v. 51, No. 1, pp. 59-62.
Naert, E. (1985) Double infinité chez Pascal et Monade, Studia Leibnitiana, v. 17, No. 1, pp. 44-51.
Nakamura, A. (1988) Fuzzy rough sets, Notes on Multiple-valued Logic in Japan, v. 9, pp. 1–8.
Narinyani, A. S. Underdetermined Sets – A new datatype for knowledge representation, Preprint 232, Project VOSTOK, No. 4, Novosibirsk, Computing Center, USSR Academy of Sciences, 1980.
Nash, C. Topology and Physics – a Historical Essay, LANL, Preprint hep-th/9709135, 1997 (electronic edition: http://arXiv.org).
Netz, R. Working with Infinity, NOVA (http://www.pbs.org/wgbh/nova/physics/working-with-infinity.html).
Netz, R., Saito, K. and Tchernetska, N. (2001) A new reading of Method Proposition 14: preliminary evidence from the Archimedes palimpsest. I, SCIAMVS, v. 2, pp. 9-29.
Nica, A. and Speicher, R. Lectures on the Combinatorics of Free Probability, Cambridge University Press, Cambridge, 2006.
Oas, G., de Barros, J. A., and Carvalhaes, C. (2014) Exploring non-signalling polytopes with negative probability, Physica Scripta, T163, 014034.
Oberguggenberger, M. Multiplication of Distributions and Applications to Partial Differential Equations, Longman Scientific & Technical, UK, 1992.
Oberguggenberger, M., Todorov, T. (1998) An embedding of Schwartz distributions in the algebra of asymptotic functions, International J. Math. & Math. Sci., v. 21, pp. 417-428.
Oppy, G. Philosophical Perspectives on Infinity, Cambridge University Press, Cambridge, 2006.
Owen, H. P. (1967) Infinity in Theology and Metaphysics, in The Encyclopedia of Philosophy, v. 4, pp. 190-193.
Page, C. H. Physical Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J., 1985.
Pataut, F. Truth, Objects, Infinity: New Perspectives on the Philosophy of Paul Benacerraf, Springer, New York, 2016.
Pauli, W. (1943) On Dirac's New Method of Field Quantization, Reviews of Modern Physics, v. 15, No. 3, pp. 175-207.
Pauli, W. (1956) Remarks on problems connected with the renormalization of quantized fields, Il Nuovo Cimento, v. 4, Suppl. No. 2, 703-710.
Pedrycz, W. (1998) Shadowed sets: representing and processing fuzzy sets, IEEE Transactions on System, Man, and Cybernetics, Part B, v. 28, pp. 103-109.
Penot, J. P. Calculus without Derivatives, Graduate Texts in Mathematics 266, Springer, New York, 2013.
Péte, R. Playing with Infinity: Mathematical Explorations and Excursions, Dover Publications, New York, 1971.
Peterson, I. Fragments of Infinity: A Kaleidoscope of Math and Art, John Wiley & Sons, New York, NY, 2001.
Pettis, B. J. (1938) On Integration in Vector Spaces, Trans. of AMS, v. 44, No. 2, pp. 277-304.
Pickover C. A. Keys to infinity, John Wiley & Sons, New York, NY, 1995.
Piech, M. A. (1977) Smooth functions on Banach spaces, J. Math. Anal, and Appl., v, 57, pp. 56-67.
Pietsch, A. History of Banach spaces and linear operators, Birkhäuser, Boston, 2007.
Pincherle, S. Mémoire sur le calcul fonctionnel distributive, Bologne, 1897.
Poincaré, H. Scince et Méthode, Flamarion, Paris, 1908.
Popper, K. R. (1938) A Set of Independent Axioms for Probability, Mind, v. 47, No. 186, pp. 275–277.
Popper, K. R. (1955) Two Autonomous Axiom Systems for the Calculus of Probabilities. The British Journal for the Philosophy of Science, v. 6, No. 21, pp. 51–57.
Popper, K. R. The Logic of Scientific Discovery, Basic Books, New York, 1959.
Popper, K. R. (1959) The propensity interpretation of probability, The British Journal for the Philosophy of Science, v. 10, No. 37, pp. 25–42.
Potter, M. (1996) Taming the infinite, British Journal for the Philosophy of Science, v. 47, No. 4, pp. 609-619.
Protter, P. E. Stochastic Integration and Differential Equations, Springer, New York/Berlin/Heidelberg, 2004.
Purcell, L. S. (2012) Two Paths to Infinite Thought:Alain Badiou and Jacques Derrida on thequestion of the whole, Cosmos and History: The Journal of Natural and Social Philosophy, v. 8, No. 1, pp. 151-176.
Quine, W. V. The Philosophy of W. V. Quine, (Eds: L. E. Hahn and P. A. Schilpp), Open Court, LaSalle, Illinois, 1986.
Radecki, T. (1977) Level Fuzzy Sets, Journal of Cybernetics, v. 7, No. 3-4.
Radzikowska, A. M. and Kerre, E. E. (2004) On L-Fuzzy Rough Sets, in Proceedings of 7th International Conference on Artificial Intelligence and Soft Computing - ICAISC 2004, Zakopane, Poland.
Ramsey, N. (1956) Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures, Physical Review, v. 103, No. 1, pp. 20–28.
Randolph, J. F. Basic Real and Abstract Analysis, Academic Press, New York/London, 1968.
Rao, K. P. S. B. and Rao, M. B. Theory of Charges, Academic Press, N.Y., 1983.
Reid, C. From Zero to Infinity: What Makes Numbers Interesting, A K Peters, Ltd., Natick, Massachusetts, 2006.
Rényi, A. (1955) On a new axiomatic theory of probability, Acta Mathematica Hungarica, v. 6, No. 3-4, pp. 285-335.
Riesz, F. (1909) Stetigkeitsbegriff und abstrakte Mengen, Internat. Congress Mathematicians IV (Rome), v. 2, R. Accad. Lincei, Rome, pp. 18–24.
Riordan, M. (2012) Tackling Infinity. Review of the book The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe. Frank Close. xii + 435 pp. Basic Books, American Scientist, v. 100, No. 1, pp. 86-89.
Robinson, A. (1961) Non-standard analysis, Indagationes Mathematicae, v. 23, pp. 432-440.
Robinson, A. Non-Standard Analysis, Studies of Logic and Foundations of Mathematics, North-Holland, New York, 1966.
Rogers, L. The History of Negative Numbers, in Enriching Mathematics (http://Enrich.maths.org/5961).
Romm, J. J. (1989) Infinite in some directions, Bulletin of the Atomic Scientists, v. 45, No. 8, pp. 35–36.
Ross, K. A. Elementary Analysis: The Theory of Calculus, Springer, New York/Berlin/Heidelberg, 1996.
Rotman, B. and Kneebone, T. T. The Theory of Sets and Transfinite Numbers, Oldbourne, London, 1966.
Rothman, T. and Sudarshan, E. C. G. Hidden Variables or Positive Probabilities? 2000 (electronic edition: http://xxx.lanl.gov/abs/quant-ph/0004109).
Rucker, R. (1980) The actual infinite, Speculations in Science and Technology, v. 3, pp. 197-208.
Rucker, R. Infinity and the Mind: The Science and Philosophy of the Infinite, Princeton University Press, Princeton, New Jersey, 2005.
Rucker, R. (2016) Infinity, in Encyclopedia Britannica (https://www.britannica.com/
topic/infinity-mathematics).
Rudin, W. Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.
Rudin, W. Functional Analysis, McGrow-Hill, New York, 1991.
Russell, B. Our Knowledge of the External World as a Field for Scientific Method in Philosophy, Open Court Publishing Co., Chicago, 1914.
Ryder, L. Quantum Field Theory, Cambridge University Press, Cambridge, 1996.
Saks, S. Theory of the Integral, Dover Publications, New York, 1964.
Salmon, W. (Ed) Zeno's Paradoxes, The Bobbs-Merrill Company, Inc., Indianapolis, 1970.
Sambuc, R. Fonctions φ-floues: Application al'aide au diagnostic enpathologie-thyroidienne, Ph. D. Thesis Univ. Marseille, France, 1975.
Saperstone, S. H. Semidynamical Systems in Infinite Dimensional Spaces, Applied Mathematical Sciences, Springer-Verlag, New York/Berlin, 2013.
Sauer, T. Numerical Analysis, Pearson/Addison Wesley, Boston/San Francisco/New York, 2006.
Savage, L. J. The Foundations of Statistics, Dover Publications, New York, NY, 1972.
Sayward, C. (1988) Is English Infinite? Philosophical Papers, v. 17, No. 2, pp. 141-151.
Schelling, F. W. J. Friedrich Wilhelm Joseph von Schellings sämmtliche Werke. 1st division (Abteilung): 10 vols. (= I–X); 2nd division: 4 vols. (= XI–XIV), Stuttgart/Augsburg, 1856–1861.
Schelling, F. W. J. System of Transcendental Idealism, University Press of Virginia, Charlottesville, 1978.
Schmeidler, D. (1989) Subjective probability and expected utility without additivity, Econometrica, v. 57, pp. 571–587.
Schmieden, C. and Laugwitz, D. (1958) Eine Erweiterung der Infinitesimalrechnung, Math. Zeitschr. V. 69, pp. 1–39.
Schmid, A. J. and Steigner, C. (1998) A solution for the counting to infinity problem of distance vector routing, in Proc. of the 2nd IASTED International Conference on Parallel and Distributed Computing and Networks, Brisbane, Queensland, Australia, pp. 471-477.
Schmid, A. J. and Steigner, C. (2002) Avoiding Counting to Infinity in Distance Vector Routing, Telecommunication Systems, v. 19, No, 3-4, pp. 497-514.
Schneider, D. R. (2005-2007) Bell's Theorem and Negative Probabilities,

2005-2007 (electronic edition: http://drchinese.com/David/Bell_Theorem_Negative_
Probabilities.htm).
Schwartz, L. (1945) Généralisation de la notion de fonction, de dérivation, de transformation de Fourier et applications mathématiques et physiques, Annales Univ. Grenoble, v. 21, pp. 57-74.
Schwartz, L. Théorie des Distributions, Vol. I-II, Hermann, Paris, 1950/1951.
Schwinger, J. (1982) Quantum electrodynamics — An individual view, J. Physique¸v. 43, Colloque C-8, supplement, No. 12, pp. 409–421.
Scully, M. O., Walther, H. and Schleich, W. (1994) Feynman's approach to negative probability in quantum mechanics, Phys. Rev. A49, 1562.
Seppänen, J. (2000) Infinity - an outline of conceptions in mythology, cosmology and natural philosophy. Finite versus infinite, Discrete Math. Theoret. Comput. Sci. , pp. 257-283.
Shafer, G. A mathematical theory of evidence, Princeton University Press, Princeton, NJ, 1976.
Sharma, A. (Ed) Fragments of Infinity: Essays in Religion and Philosophy, A Festschrift in Honour of Professor Huston Smith, Prism Press, Bridport, Dorset, UK, 1991.
Shell, K. (1971) Notes on the Economics of Infinity, Journal of Political Economy, v. 79, No. 5, pp. 1002-1011.
Shen, A. and Vereshchagin, N. K. Computable Functions, AMS, Providence, RI, 2003.
Shenitzer, A. and Steprāns, J. (1994) The evolution of integration, The American Mathematical Monthly, v. 101, No. 1, pp. 66–72.
Shilov, G. E. (1963) Integration in infinite dimensional spaces and the Wiener integral, Uspekhi Mat. Nauk, v. 18, No. 2 (110), pp. 99–120 (Russian Math. Surveys, v. 18 No. 2, pp. 97–118).
Shilov, G. E. and Gurevich, B. L. Integral, Measure, and Derivative, Prentice-Hall, 1966.
Shilov, G. E. and Tin, F. D. Integral, Measure, and Derivative on Linear Spaces, Nauka, Moscow, 1967 (in Russian).
Siegel, W. Introduction to String Field Theory, World Scientific, Singapore, 1988.
Siegmund-Schultze, R. (2003) The origins of functional analysis, in A history of analysis, (H. N. Jahnke, Ed.) AMS, Providence (Rhode Island), USA, v. 24, pp. 385–407.
Sjöstrand, T. (2007) Monte Carlo Generators, in 2006 European School of High-Energy Physics, ed. R. Fleischer, CERN-2007-005, pp. 51-73.
Skorokhod, A. V. Integration in Hilbert space, Springer-Verlag, New York/Berlin/Heidelberg, 1974.
Smith, C. A. B. (1961) Consistency in statistical inference and decision, Journal of the Royal Statistical Society, Series B, v. 23, pp. 1-25.
Smith, C. A treatise on algebra, Macmillan, London, 1892.
Smith, R. Variational Methods in Optimization, Dover, New York, 1998.
Smith, Q. (1987) Infinity and the Past, Philosophy of Science, v. 54, No. 1, pp. 63-75.
Smith, N. J. J. (2004) Vagueness and blurry sets, J. of Phil. Logic, v. 33, pp. 165–235.
Smolyanov, O. G. Analysis on linear topological spaces and its applications, Moscow Gos. Univ., Moscow, 1979 (in Russian).
Smolyanov, O. G. and Fomin, S. V. (1976) Measures on topological linear spaces, Uspehi Mat. Nauk, v. 31 No. 4, pp. 3-56 (in Russian).
Smolyanov, O. G. and Shavgulidze, E. T. Continuum Integrals, Moscow State University Press, Moscow, 1990 (in Russian).
Smolyanov, O. G. and von Weizsäcker, H. (2009) Change of variable formulas for integrals over superspaces, Doklady Mathematics, v. 80, No. 3, pp. 897-900.
Soboleff, S. L. (1935) Le probléme de Cauchy dans l'espace des fonctionnelles, C. R. Acad. Sci. URSS, v. 3, No. 7, pp. 291-294.
Sobolev S. L. (1936) Méthode nouvelle а résoudre le probléme de Cauchy pour les equations linéaires hyperboliques, Sbornik, v. 1, No. 1, pp. 39-70.
Sokolovski, D. (2007) Weak values, “negative probability,” and the uncertainty principle, Phys. Rev. A 76, 042125.
Sokolovski, D. and Connor, J. N. L. (1991) Negative probability and the distributions of dwell, transmission, and reflection times for quantum tunneling, Phys. Rev. A, v. 44, pp. 1500–1504.Sondheimer, E. and Rogerson, A. Numbers and Infinity: A Historical Account of Mathematical Concepts, Dover Books on Mathematics, Dover Publications, New York, 1981.
Sotnak, E. (1999) The Kalam Cosmological Argument and the Possibility of an Actually Infinite Future, Philo, v. 2, No. 2, pp. 41-52.
Spalt, D. D. (1990) Die Unendlichkeiten bei Bernard Bolzano, in Konzepte des mathematisch Unendlichen im 19. Jahrhundert, Göttingen, pp. 189-218.
Spechner, D. A. Elements of real analysis, Academic Press, New York/London, 1970.
Spinoza, B. The Complete Works, Edited by Morgan, M. L. and translated by Shirley, S. Hackett, Indianapolis, 2002.
Stern, A. W. (1952) Space, Field, and Ether in Contemporary Physics, Science, v. 116, pp. 493-496.
Stewart, I. Visions of Infinity: The Great Mathematical Problems, Basic Books, New York 2013.
Stewart, I. From Here to Infinity: A Guide to Today's Mathematics, Oxford University Press, Oxford, 1996.
Stewart, J. Calculus: Early Transcendentals, Brooks/Cole P. C., Pacific Grove, California, 2003.
Stillwell, J. Roads to Infinity:

The Mathematics of Truth and Proof

, John A K Peters/CRC Press 2010.
Stone, M. H. (1948) The Generalized Weierstrass Approximation Theorem, Mathematics Magazine, v. 21, No. 4, pp. 167–184; v. 21, No. 5, pp. 237–254.
Strogatz, S. The Joy of X: A Guided Tour of Math, From One to Infinity, Houghton Mifflin Harcourt, 2013.
Stroock, D. W. A concise introduction to the theory of integration, Series in
Pure Mathematics 12. World Scientific Publishing Co., New Jersey/
London/Singapore, 1990.
Studdert-Kennedy, M. and Goldstein, L. (2003) Launching Language: The Gestural Origin of Discrete Infinity, in Language Evolution, in Language Evolution (Christiansen, M. H. and Kirby, S. (Eds) Oxford University Press, Oxford, pp. 235-254.
Suber, P. (1998) Infinite Reflections, St. John's Review, v. XLIV, pp. 2 1-59.
Sudarshan, E. C. G. (1961) Quantum Mechanical Systems with Indefinite Metric, I, Phys. Rev., v. 123, No. 6, pp. 2183–2193.
Sudbury, A. (1976) Scientific laws that are neither deterministic nor probabilistic, The British Journal of the Philosophy of Science, v. 27, No. 4, pp. 307-315.
Sugeno, M. (1977) Fuzzy measures and fuzzy integrals - a survey, in Fuzzy Automata and Decision Processes, North-Holland, New York, pp. 89-102.
Suppes, P. (1973) New foundations of objective probability: Axioms for propensities, in Proceedings of the 4th International Congress for Logic, Methodology and Philosophy of Science, Bucharest, 1971, pp 515-529.
Suppes, P. and Zanotti, M. (1982) Necessary and sufficient qualitative axioms for conditional probability, Z. Wahrschelnllchkeltstheorle verw. Gebiete, b. 60, No. 2, s. 163-169.
Sutherland, R. I. (2008) Causally Symmetric Bohm Model, Studies in History and Philosophy of Science Part B, v. 39, No. 4, pp. 782-805.
Swaminathan, S. and Sundaresan, K. Differential Analysis in Infinite Dimensional Spaces, Contemporary Mathematics, American Mathematical Society, Providence, RI, 1986.
Swartz, C. (1997) Beppo Levi’s Theorem for the Vector-Valued McShane Integral and Applications, Bull. Belg. Math. Soc., v. 4, pp. 589-599.
Swartz, C. W. and Kurtz, D. S. Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane. Series in Real Analysis, v. 9, World Scientific, New Jersey/London/Singapore, 2004.
Swetz, F. (Ed.) From Five Fingers to Infinity: A Journey Through the History of Mathematics, Open Court, Chicago, 1994.
Szabo, L. E. (2007) Objective probability-like things with and without objective indeterminism, Studies in History and Philosophy of Modern Physics, v. 38, pp. 626-634.
Szabo, L. E. (2010) What remains of probability? in The present Situation in the Philosophy of Science, Springer, New York, pp. 373-379.
Székely, G. J. (2005) Half of a coin: negative probabilities in finance, Wilmott Magazine, pp. 66-68.
Tall, D. O. (1980) The notion of infinite measuring number and its relevance in the intuition of infinity, Educational Studies in Mathematics v. 11, pp. 271-284.
Tarozzi, M. Finite Infinity, 2012 (http://apeironcentre.org/reflections/finite-infinity-65#.WTDNKo02z5o).
Tarski, A. (1924) Sur les Ensembles Finis, Fundamenta Mathematicae, v. 6, pp. 45-95.
Tatarskii, V. I. (1983) The Wigner representation of quantum mechanics, Sov. Phys. Usp., v. 26, pp. 311–327.
Taylor, A. E. (1982) A study of Maurice Fréchet. I. His early work on point set theory and the theory of functionals, Archive for History of Exact Sciences, v. 27, pp. 233–295.
Taylor, A. E. (1985) A study of Maurice Fréchet. II. Mainly about his work on general topology, 1909–1928. Archive for History of Exact Sciences, v. 334, pp. 279–380.
Taylor, A. E. (1987) A study of Maurice Fréchet. III. Fréchet as analyst, 1909–1930, Archive for History of Exact Sciences, v. 37, pp. 25–76.
Tegmark, M. Everything in the Universe Is Made of Math – Including You, Discover Magazine, November 4, 2013 (http://discovermagazine.com/2013/dec/13-math-made-flesh).
Tegmark, M. Infinity Is a Beautiful Concept – And It’s Ruining Physics, Discover Magazine, February 20, 2015 (http://blogs.discovermagazine.com/crux/2015/
02/20/infinity-ruining-physics/#.Vr0a4_k9671).
Teller, P. (1988) Three problems of renormalization, in Philosophical foundations of quantum field theory (H. R. Brown, & R. Harré, Eds.), Clarendon Press, Oxford, pp. 73-89.
Teller, P. (1989) Infinite renormalization, Philosophy of Science, v. 56, No. 2, pp. 238-257.
Thomas, K. V. and Nair, L. S. (2011) Rough intuitionistic fuzzy sets in a lattice, International Mathematical Forum, v. 6, No. 27, pp. 1327 – 1335.
Tijms, H. (2007) Negative Probabilities at Work in the M/D/1 Queue, Probability in the Engineering and Informational Sciences, v. 21, pp. 67–76.
Tignol, J. P. Galois' Theory of Algebraic Equations, World Scientific, Singapore, 2001.
Todorov, T. (1999) Pointwise values and fundamental theorem in the algebra of asymptotic functions, in Non-Linear Theory of Generalized Functions, Chapman & Hall/CRC Research Notes in Mathematics, v. 401, pp. 369-383.
Tolstov, G. P. (1965) Derivative and integral (the axiomatic approach), Mat. Sb. (N.S.), v. 66(108), No. 4, pp. 608–630.
Tremblay, A. M. (1975) Comment on Negative Kelvin temperatures: some anomalies and a speculation, American Journal of Physics, v. 44, No. 10, pp. 994–995.
Trion S .E. (1992)‎ On the Generalizations of a Theorem of Beppo Levi, Studies in Applied Mathematics, v. 87, No. 3, pp. 195–211.
van Hemmen, J. L. (2002) On the verge of new mathematics, NAW, v. 5/3, No. 3, pp. 255-259.
van Mill, J. The Infinite-Dimensional Topology of Function Spaces, North-Holland Mathematical Library, v. 64, North-Holland, Amsterdam/New York/Oxford, 2001.
Varadhan, S. R. S. Probability Theory, AMS, Providence, RI, 2001.
Venter G. (2007) Generalized Linear Models Beyond the Exponential Family with Loss Reserve Applications, Astin Bulletin, v. 37, No. 2, pp. 345-364.
Vernon, J. and Calcagno, A. (Eds.), Badiou and Hegel: Infinity, Dialectics, Subjectivity, Lexington Books, 2015.
Vigier, J. P. and Terletski, Ya. P. (1961) On the physical meaning of negative probabilities, JFTP, v. 13, pp. 356-365.
Vilenkin, N. Y. In search of infinity, Birkhäuser, Boston, MA, 1995.
Voiculescu, D. (1985) Symmetries of some reduced free product C*-algebras, Operator Algebras and Their Connections with Topology and Ergodic Theory (Busteni, 1983), Lecture Notes in Mathematics, v. 1132, Springer-Verlag, pp. 556-588.
Voiculescu, D. (2005) Free probability and the von Neumann algebras of free groups, Rep. Math. Phys., v. 55, No.1, pp. 127-133.
Voiculescu, D. V., Dykema, K. J. and Nica, A. Free Random Variables, CRM Monograph Series, v. 1, American Mathematical Society, Providence, RI, 1992.
von Mises, R. (1919) Grundlagen der Wahrscheilichkeitsrechnung, Math. Zeitschrift, b. 5, s. 52 – 99.
von Mises, R. Probability, Statistics, and Truth, Allen and Unwin, London, 1957.
von Neumann, J. (1929) Zur Algebra der Funktionaloperatoren und Theorie der normalen Operatoren, Math. Ann., v. 102, pp. 370–427.
von Neumann, J. (1936) On algebraic generalization of the quantum mechanical formalism (Part I), Matem. Sbor., v. 1, pp. 415–484.
von Neumann, J. Quantum Mechanics of Infinite Systems, Institute for Advanced Study, Princeton, NJ, 1937.
von Neumann, J. (1938) On Infinite Direct Products, Compositio Mathematica, v. 6, pp. 1–77.
von Neumann, J. Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, NJ, 1955.
von Westerkamp, W. Recent Results in Infinite Dimensional Analysis and Applications to Feynman Integrals, preprint in physics, 2003 (arXiv:math-ph/0302066).
Vopenka, P. (1985) Infinity, sets and possibility in the sense of B Bolzano, Wiadom. Mat., v. 26, No. 2, pp. 171-204 (in Polish).
Wallace, D. F. Everything and More: A Compact History of Infinity, W. W. Norton & Company, New York/London, 2003.
Walley, P. Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, 1991.
Wang, R. Asymptotic Approximations of Integrals, Academic Press, Inc., Boston/San Diego/New York, 1989.
Waterhouse, W. C. (1979) Gauss on infinity, Historia Math., v. 6, No. 4, pp. 430-436.
Watson, S. R. and Buede, D. M. Decision Synthesis: The Principles and Practice of Decision Analysis, Cambridge University Press, Cambridge, UK, 1987.
Weichselberger, K. (2000) The theory of interval probability as a unifying concept for uncertainty, International Journal of Approximate Reasoning, v. 24, No. 2–3, pp. 149–170.
Weichselberger, K. Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I - Intervallwahrscheinlichkeit als umfassendes Konzept, Physica , Heidelberg, Germany, 2001.
Weil, A. (1927) Sur calcolo funzionale lineare, Rendiconti della R. Accademia dei Lincei, v. 6, pp. 773–777.
Weil, A. (1937) Sur les espaces à structure uniforme et sur la topologie générale, Act. Sci. Ind., 551, Paris.
Weinzierl, S. Introduction to Feynman Integral, Preprint in Physics, hep-hp/1005, 2010 (electronic edition: http://arXiv.org).
Weierstrass, K. (1885) Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, (II), Erste Mitteilung (part 1) pp. 633–639, Zweite Mitteilung (part 2) pp. 789–805.
Weisskopf, V. and Wigner, E. (1930) Berechnung der nat urlichen Linienbreite auf Grund der Diracschen Lichttheorie, Z. Phys., v. 63, pp. 54-73.
Weyl, H. (1925–1927) Die heutige Erkenntnislage in der Mathematik, Symposion, v. 1, pp. 1–32.
Weyl, H. (1927) Quantenmechanik und Gruppentheorie, Z. Phys., v. 46, pp. 1-46.Weyl, H. Levels of Infinity: Selected Writings on Mathematics and Philosophy, Dover Books on Mathematics, Dover Publications, New York, 2012.
Whittle, P. Probability Via Expectation, Springer, New York, 2000.
Wiener, N. (1920) The Mean of a Functional of Arbitrary Elements, Annals of Mathematics, v. 22, pp. 66-72.
Wiener, N. (1921) The average of an analytical functional, Proc. Nat. Acad. Sci. USA, v.

7, pp. 253-260.
Wiener, W. (1921a) The average of an analytical functional and the Brownian movement, Proc. Nat. Acad. Sci. USA, v. 7, pp. 294-298.
Wiener, N. Collected Works with Commentaries, MIT Press, Cambridge, Mass., 1976.
Wiewiora, E. W. Modeling Probability Distributions with Predictive State Representations, Dissertation, University of California, San Diego, 2008.
Wigner, E. P. (1932) On the quantum correction for thermodynamic equilibrium, Phys. Rev. v. 40, pp. 749-759.
Williams, R. R. (2010) Hegel's Concept of the True Infinite, The Owl of Minerva, v. 42, No. 1-2, pp. 89-122.
Witten, E. (1988) Geometry and quantum field theory, in Proceedings AMS Centennial Symposium, pp. 479-491.
Wolchover, N. To Settle Infinity Dispute, a New Law of Logic, Quanta Magazine, November 26, 2013 (https://www.quantamagazine.org/20131126-to-settle-infinity-question-a-new-law-of-logic/).
Wootters, W. K. (1986) Quantum mechanics without probability amplitudes, Foundations of Physics, v. 16, No. 4, pp. 391-405.
Wu, C. S., Lee, Y. K., Benczer-Koller, N. and Simms, P. (1960) Frequency Distribution of Resonance Line Versus Delay Time, Physical Review Letters, v. 5, No. 9, pp. 432-435.
Xu, Y. Concepts of Infinity in Chinese Mathematics, Ph.D. dissertation, Ph.D. Program in History, The Graduate Center, City University of New York, 2005.
Yager, R. R. (1986) On the Theory of Bags, International Journal of General Systems, v. 13, pp. 23–37.
Yamasaki, Y. Measures on Infinite Dimensional Spaces, World Scientific Series on Directions in Condensed Matter Physics, World Scientific, New Jersey/London/
Singapore, 1985.
Yao, Y. Y. (1997) Combination of rough and fuzzy sets based on α-level sets, in Rough Sets and Data Mining: Analysis for Imprecise Data, (Lin, T.Y. and Cercone, N. Eds.), Kluwer Academic Publishers, Boston, pp. 301–321.
Yeh, J. Stochastic Processes and the Wiener Integral, Pure and Applied Mathematics, v. 13, Marcel Dekker, Inc., New York, 1973.
Youssef, S. (1994) Quantum Mechanics as Complex Probability Theory, Mod. Phys. Lett. A9, 2571.
Youssef, S. (1995) Is Quantum Mechanics an Exotic Probability Theory?, in Fundamental Problems in Quantum Theory, Conference in Honor of Professor John A. Wheeler, Annals of the New York Academy of Sciences, v. 755, pp. 904-905.
Youssef, S. Physics with exotic probability theory, Preprint hep-th/0110253, 2001 (electronic edition: http://arXiv.org).
Zadeh, L. (1965) Fuzzy Sets, Information and Control, v. 8, No. 3, pp. 338-353.
Zadeh, L. A. The Concept of a Linguistic Variable and its Application to Approximate Reasoning, Memorandum ERL-M 411, Berkeley, 1973.
Zadeh, L. (1975) The concept of a linguistic variable and its application to approximate reasoning – I, Inform. Sci., v. 8, pp. 199–249.
Zadeh, L. (1984) Fuzzy probabilities, Information Processing and Management, v. 20, pp. 363–372.
Zenkin, A. (2004) Logic of Actual Infinity and G. Cantor's Diagonal Proof of the Uncountability of the Continuum, The Review of Modern Logic, v. 9, No. 30, pp. 27–80.
Zhai, K. and Boyd-Graber, J. (2013) Online Topic Models with Infinite Vocabulary, International Conference on Machine Learning (ICML 2013) Atlanta, Georgia, USA, v. 28, pp. 561-569.
Zhenyuan, W. and Guoli, Z. (1988) Fuzzy Integral on Fuzzy Set,

Busefal

, No. 36, pp. 30-38.
Zimmermann, H. J. Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers, Boston, MA, 2001.
Zippin, L. Uses of Infinity, New Mathematical Library, Dover Publications, New York, 2000.
Žižek, S., Crockett, C. and Davis, C. (Eds.), Hegel and the Infinite: Religion, Politics, and Dialectic, Columbia University Press, 2011.

You have not viewed any product yet.