Foundations of Iso-Differential Calculus. Volume 6: Theory of Iso-Functions of a Real Iso-Variable

Svetlin G. Georgiev
Sorbonne University, Paris, France
Faculty of Mathematics and Informatics, Department of Differential Equations, Sofia University, Sofia, Bulgaria

Series: Mathematics Research Developments
BISAC: SCI013000




Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:



This book is intended for readers who have had a course in theory of functions, isodifferential calculus and it can also be used for a senior undergraduate course. Chapter One deals with the infinite sets. We introduce the main operations on the sets. They are considered as the one-to-one correspondences, the denumerable sets and the nondenumerable sets, and their properties. Chapter Two introduces the point sets. They are defined as the limit points, the interior points, the open sets, and the closed sets. Also included are the structure of the bounded open and the closed sets, and an examination of some of their main properties. Chapter Three describes the measurable sets. They are defined and deducted as the main properties of the measure of a bounded open set, a bounded closed set, and the outer and the inner measures of a bounded set. Chapter Four is devoted to the theory of the measurable iso-functions. They are defined as the main classes of the measurable iso-functions and their associated properties are defined as well. In Chapter Five, the Lebesgue iso-integral of a bounded iso-function continue the discussion of the book. Their main properties are given. In Chapter Six the square iso-summable iso-functions, the iso-orthogonal systems, the iso-spaces ˆLp and ˆl p, p > 1 are studied. The Stieltjes iso-integral and its properties are investigated in Chapter Seven. (Imprint: Nova)


Chapter 1. Infinite Sets

Chapter 2. Point Sets

Chapter 3. Measurable Sets

Chapter 4. Measurable Iso-functions

Chapter 5. The Lebesgue Iso-integral of a Bounded Iso-function

Chapter 6. Square-iso-summable Iso-functions

Chapter 7. The Stieltjes Iso-integral

Chapter 8. Appendix


[1] S. Georgiev, Foundations of Iso-Differential Calculus, Vol. 1. Nova Science Publishers, Inc., 2014.
[2] I. Natanson, Theory of functions of a real variable, Vol. I, Frederick Ungar Publishing CO, New York, 1955.
[3] J. F. C. Kingman and S. J. Taylor, Introduction toMeasure and Probability,Cambridge University Press, 1966.
[4] Joseph L. Doob, Measure Theory, Springer-Verlag, New York, 1994.
[5] Bernard Gelbaum and John Olmstead, Counterexamples in Analysis, Holden- Day, San Francisco, 1964.
[6] Walter Rudin, Principles of Mathematical Analysis, 3rd Edition,McGraw- Hill, New York, 1976.
[7] H. S. Bear, A Primer of Lebesgue Integration, Academic Press, New York, 1995.
[8] Patrick Billingsley, Convergence of Probability Measures, 2nd Edition, John Wiley and Sons, New York, 1999.
[9] N. L. Carothers, Real Analysis, Cambridge University Press, 2000.
[10] Waclaw Sierpinski, General Topology, (Translated by C. Cecelia Krieger), Dover Publications,Mineola, New York, 2000 [originally published in 1956 by the University of Toronto Press].
[11] Serge Lang, Real Analysis, Second Edition, Addison-Wesley, Reading, Massachusetts, 1983.
[12] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, (Translated by Richard Silverman), Dover Publications, Mineola, New York, 1975 (originally published by the Moscow University Press in 1968).
[13] Jeffrey Rosenthal, A First Look at Rigorous Probability Theory,World Scientific, Singapore, 2000.

Chapter 21

[1] I. Sóvágó, K. Ősz, Dalton Trans. (2006) 3841-3854.
[2] I. Sóvágó, C. Kállay, K. Várnagy, Coord. Chem. Rev. 256 (2012) 2225-2233.
[3] H. Kozlowski, S. Potocki, M. Remelli, M. Rowinska-Zyrek, D. Valensin, Coord. Chem. Rev. 257 (2013) 2625-2638.
[4] H. Sigel, R. B. Martin, Chem. Rev. 82 (1982) 385-426.
[5] A. Jancsó, Z. Paksi, N. Jakab, B. Gyurcsik, A. Rockenbauer, T. Gajda, Dalton Trans. (2005) 3187-3194.
[6] D. R. Brown, H. Kozlowski, Dalton Trans. (2004) 1907-.
[7] D. Sanna, G. Micera, C. Kállay, V. Rigó, I. Sóvágó, Dalton Trans. (2004) 2702-2707.
[8] J. Brasuń, C. Gabbiani, M. Ginanneschi, L. Messori, M. Orfei, J. Swiatek-Kozlowska, J. Inorg. Biochem. 98 (2004) 2016-2021.
[9] G. Di Natale, G. Grasso, G. Impellizzeri, D. La Mendola, G. Micera, N. Mihala, Z. Nagy, K. Ősz, G. Pappalardo, V. Rigó, E. Rizzarelli, D. Sanna, I. Sóvágó, Inorg. Chem. 44 (2005) 7214-7225.
[10] S. D. Berry, G. A. Richard, M. J. Pushie, A. Rauk, Can. J. Chem. 87 (2009) 942.
[11] A. Sabljić, N. Trinajstić, Acta Pharm. 331 (1981) 189.
[12] B. Lučić, S. Nikolić, N. Trinajstić, Croat. Chem. Acta 68 (1995) 417-.
[13] B. Lučić, A. Miličević, S. Nikolić, N. Trinajstić, Croat. Chem. Acta 75 (2002) 847-868.
[14] N. Trinajstić, Chemical Graph Theory, 2nd ed. CRC Press, Boca Raton, FL, 1992.
[15] L. B. Hall, L. B. Kier, Eur. J. Med. Chem. 16 (1981) 399-407.
[16] N. Bošnjak, N. Adler, M. Perić, N. Trinajstić, On the structural origin of chromatographic retention data: alkanes and cycloalkanes, in: Z. B. Maksić (Ed.), Modeling of Structure and Propeties of Molecules, Willey, New York, 1987, p. 103.
[17] N. Raos, A. Miličević, Arh. Hig. Rada Toksikol. 60 (2009) 123-128.
[18] A. Miličević, N. Raos, Polyhedron 25 (2006) 2800-2808.
[19] A. Miličević, N. Raos, Acta Chim. Slov. 60 (2013) 120-123.
[20] A. Miličević, N. Raos, Arh. Hig. Rada Toksikol. 64 (2013) 539-545.
[21] A. Miličević, N. Raos, Cent. Eur. J. Chem. 12 (2014) 74-79.
[22] A. Miličević, N. Raos, Polyhedron 27 (2008) 887-892.
[23] A. Miličević, N. Raos, Croat. Chem. Acta 82 (2009) 633-639.
[24] A. Miličević, N. Raos, J. Coord. Chem., in press.
[25] N. Raos, G. Branica, A. Miličević, Croat. Chem. Acta 81 (2008) 511-517.
[26] A. Miličević, N. Raos, Acta Chim. Slov. 59 (2102) 194-198.
[27] M. Orfei, M. C. Alcaro, G. Marcon, M. Chelli, M. Ginanneschi, H. Kozlowski, J. Brasuń, L. Messori, J. Inorg. Chem. 97 (2003) 299-307.
[28] C. Kállay, I. Turi, S. Timári, Z. Nagy, D. Sanna, G. Pappalardo, P. de Bona, E. Rizzarelli, I. Sóvágó, Monatsh. Chem. 142 (2011) 411-419.
[29] I.V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V.A. Palyulin, E.V. Radchenko, N.S. Zefirov, A.S. Makarenko, V.Y. Tanchuk, V.V. Prokopenko. Aid. Mol. Des., 19 (2005) 453-463.
[30] VCCLAB, Virtual Computational Chemistry Laboratory, (2005).
[32] L.B. Kier, L.H. Hall. J. Pharm. Sci., 65 (1976) 1806-1809.
[33] L.B. Kier, L.H. Hall. Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[34] L.B. Kier, L.H. Hall. Molecular Connectivity in Structure-Activity Analysis, Willey, New York, 1986.
[35] M. Randić, MATCH Commun. Math. Comput. Chem. 59 (2008) 5-124.
[36] I. Gutman, Croat. Chem. Acta 86 (2013) 351-361.
[37] B. Lučić, N. Trinajstić. J. Chem. Inf. Comput. Sci. 39 (1999) 121-132.
[38] K. Popov, I. Pletnev, H. Wanner, A. Vendilo, The First International Proficiency Testing Conference, Sinaia, Romania, 11th - 13th October, 2007.

You have not viewed any product yet.