Fiber-Based Optical Trapping and Manipulation


Baojun Li and Hongbao Xin
Institute of Nanophotonics, Jinan University, Guangzhou, China

Series: Nanotechnology Science and Technology
BISAC: TEC027000

Since its first report in 1970 by A. Ashkin, optical trapping and manipulation has been widely used in the interdisciplines of micro- and nano-photonics, biophotonics, biomedicine, etc. A conventional tool for optical trapping and manipulation is the conventional optical tweezer (COT), the core part of which is a free-space focused laser beam. However, manipulation with COTs has some limitations such as manipulation inflexibility, bulky structure, diffraction limitation for nanoparticles, and limited integration functions. The introduction of optical fiber-based optical trapping and manipulation has solved these limitations. Using optical fibers with different configurations, optical trapping and manipulation with multiple functions can be realized with high flexibility, precision, and integration. By launching laser beams with different wavelengths into the fiber, both the photothermal effect and optical force can be used for optical trapping and manipulation. For the optical force manipulation, both evanescent fields at the surface of a subwavelength optical fiber and light output from a fiber end can be used for optical manipulation. The manipulation with light output from a fiber end can be divided into dual fiber tweezers and single fiber tweezers. For single fiber tweezers, one can realize the stable trapping of single particles both in a contact and non-contact manner for further applications. In addition, single fiber tweezers can also be used for multiple particle trapping and cell assembly, which can further be used for the assembly of biophotonic components and devices. Furthermore, by placing microparticles, which act as microlens at the end facet of an optical fiber, the microlens can be served as a photonic nanojet. This fiber supported photonic nanojet can be easily used for the trapping and detection of nanoparticles and biomolecules. Optical fiber-based optical trapping and manipulation have the advantages of easy fabrication, compact configuration, flexible manipulation, easy integration, wide applicability, etc., which provides for a wide application of prospects in micro- and nano-photonics, biophotonics, and biomedicine. (Imprint: Nova)

Table of Contents

Table of Contents


Chapter 1. Photothermal Trapping and Manipulation

Chapter 2. Evanescent Field-Based Trapping and Manipulation

Chapter 3. Dual Fiber Tweezers for Single Nanoparticle Trapping and Manipulation

Chapter 4. Single Fiber Tweezers for Single Particle Trapping and Manipulation

Chapter 5. Single Fiber Tweezers for Multiple Particle/Cell Trapping and Assembly

Chapter 6. Optical Fiber-Supported Photonic Nanojet for Nanoparticle and Biomolecule Trapping and Detection


About the Authors



[1] C. Orr, Jr., and E. Y. H. Keng, “Photophoretic effects in the stratosphere,” J. Atmos. Sci. 21, 475–478 (1964).
[2] C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18, 2168–2182 (2010).
[3] S. Duhr, and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97, 038103 (2006).
[4] H. Lei, Y. Zhang, X. Li, and B. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11, 2241-2246 (2011).
[5] H. Lei, Y. Zhang, and B. Li, “Particle separation in fluidic flow by optical fiber,” Opt. Express 20, 1292-1300 (2012).
[6] Y. Zhang, H. Lei, Y. Li, and B. Li, “Microbe removal using a micrometer-sized optical fiber,” Lab Chip 12, 1302-1308 (2012).
[7] H. Xin, H. Lei, Y. Zhang, X. Li, and B. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19, 2711-2719 (2011).
[8] H. Xin, X. Li, and B. Li, “Massive photothermal trapping and migration of particles by a tapered optical fiber,” Opt. Express 19, 17065-17074 (2011).
[9] H. Xin, D. Bao, F. Zhong, and B. Li, “Photophoretic separation of particles using two tapered optical fibers,” Laser Phys. Lett. 10, 036004 (2013).

[10] D. Liao, H. Yu, Y. Zhang, and B. Li, “Photothermal delivery of microscopic objects via convection flows induced by laser beam from fiber tip,” Appl. Optics 50, 3711-3716 (2011).
[11] R. Xu, H. Xin, and B. Li, “Photothermal formation of vortex flows by 1.55 µm light,” AIP Advances 3, 052120 (2013).
[12] R. Xu, H. Xin, and B. Li, “Massive assembly and migration of nanoparticles by laser-induced vortex flows,” Appl. Phys. Lett. 103, 014102(2013).
[13] R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101, 054103 (2012).
[14] P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. 49, 2238-2241 (2010).
[15] G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368-373 (2006).
[16] T. Frommelt, M. Kostur, M. Wenzel-Schäfer, P. Talkner, P. Hänggi, and A. Wixforth, “Microfluidic mixing via acoustically driven chaotic advection,” Phys. Rev. Lett. 100, 034502 (2008).
[17] M. Hagiwara, T. Kawahara, and F. Arai, “Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations,” Appl. Phys. Lett. 101, 074102 (2012).
[18] T. J. T. P. van den Berg, and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37, 249-253 (1997).
[19] N. Garnier, R. O. Grigoriev, and M. F. Schatz, “Optical manipulation of microscale fluid flow,” Phys. Rev. Lett. 91, 054501 (2003).
[20] W. J. Xie, C. D. Cao, Y. J. Lü, Z. Y. Hong, and B. Wei, “Acoustic method for levitation of small living animals,” Appl. Phys. Lett. 89, 214102 (2006).
[21] S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Anal. Chem. 74, 6392-6396 (2002).
[22] R. Dijkink, and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8, 1676-1681 (2008).
[23] S. Le Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, “Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement,” Lab Chip 7, 1666-1672 (2007).
[24] Z. F. Cui, S. Chang, and A. G. Fane, “The use of gas bubbling to enhance membrane processes,” J. Memb. Sci. 221, 1-35 (2003).
[25] P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip 6, 207-212 (2006).
[26] S. Kawata, and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772-774 (1992).
[27] L. Ng, B. Luff, M. Zervas, and J. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208, 117-124 (2002).
[28] K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9, 2623-2629 (2009).
[29] K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10, 3506-3511 (2010).
[30] T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[31] B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18, 21053-21061 (2010).
[32] J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14, 1426-1436 (2014).
[33] O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12, 3436-3440 (2012).
[34] G. Brambilla, G. S. Murugan, J. Wilkinson, and D. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041-3043 (2007).
[35] G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys. 47, 6716–6718 (2008).
[36] F.-W. Sheu, H.-Y. Wu, and S.-H. Chen, “Using a slightly tapered optical fiber to attract and transport microparticles,” Opt. Express 18, 5574-5579 (2010).
[37] L. Xu, Y. Li, and B. Li, “Size-dependent trapping and delivery of submicro-spheres using a submicrofibre,” New J. Phys. 14, 033020 (2012).
[38] Y. Li, L.n Xu, and B. Li, “Optical delivery of nanospheres using arbitrary bending nanofibers,” J. Nanopart. Res. 14, 799 (2012).
[39] H. Xin, C. Cheng, and B. Li, “Trapping and delivery of Escherichia coli in a microfluidic channel using an optical nanofiber,” Nanoscale 5, 6720-6724 (2013).
[40] C. Xu, H. Lei, Y. Zhang, and B. Li, “Backward transport of nanoparticles in fluidic flow,” Opt. Express 20, 1930-1938 (2012).
[41] H. Xin, and B. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Express 19, 13285-13290 (2011).
[42] H. Xin, and B. Li, “Multi-destination release of nanoparticles using an optical nanofiber assisted by a barrier,” AIP Advances 2, 012166 (2012).
[43] L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett. 101, 074103 (2012).
[44] H. Lei, C. Xu, Y. Zhang, and B. Li, “Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber,” Nanoscale 4, 6707-6709 (2012).
[45] Y. Zhang, and B. Li, “Particle sorting using a subwavelength optical fiber,” Laser Photonics Rev. 7, 289-296 (2013).
[46] Y. Zhang, H. Lei, and B. Li, “Refractive-index-based sorting of colloidal particles using a subwavelength optical fiber in a static fluid,” Appl. Phys. Express 6, 072001 (2013).
[47] Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett. 101, 053118 (2012).
[48] C. Cheng, X. Xu, H. Lei, and B. Li, “Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber,” Sci. Rep. 6, 20433 (2016).
[49] M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. N. Chormaic, “Selective particle trapping and optical binding in the evanescent field of an optical nanofiber,” Opt. Express 22, 16322-16334 (2014).
[50] A. Mainaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. N. Chormaic, “Higher order microfibre modes for dielectric particle trapping and propulsion,” Sci. Rep. 5, 9077 (2015).
[51] V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).

[52] G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99, 163602 (2007).
[53] C. F. Phelan, T. Hennessy, and T. Busch, “Shaping the evanescent field of optical nanofibers for cold atom trapping,” Opt. Express 21, 27093-27101 (2013).
[54] M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, and S. N. Chormaic, “Nanostructured optical nanofibres for atom trapping,” New J. Phys. 16, 053052 (2014).
[55] R. Kumar, V. Gokhroo, and S. N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[56] T. Nieddu, V. Gokhroo, and S. N. Chormaic, “Optical nanofibres and neutral atoms,” J. Opt. 18, 053001 (2016).
[57] D. Zhang, X.-C. Yuan, S. C. Tjin, and S. Krishnan, “Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping,” Opt. Express 12, 2220-2230 (2004).
[58] S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408-2411 (2010).
[59] B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,”Opt. Express 15, 14322-14334 (2007).
[60] F. M. Fazal, and S. M. Block, “Optical tweezers study life under tension,” Nature Photon. 2011,

5, 318-321.
[61] P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[62] A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip 8, 1116–1120 (2008).
[63] S. J. Hart, A. V. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78, 3221–3225 (2006).
[64] W. L. Barnes, A. Dereus, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[65] M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nature Photon. 5, 349-356 (2011).
[66] Y. Li, Y. J. Hu, and Q. Wu, “Nanofiber-excited plasmonic manipulation of polystyrene nanospheres,” RSC Adv. 5, 76202-76205 (2015).
[67] Y. Li, and Y. Hu, “Localized surface plasmon-enhanced propulsion of gold nanospheres,” Appl. Phys. Lett. 102, 133103 (2013).
[68] R. S. Taylor, and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95, 8444 (2004).
[69] W. Q. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99, 094103 (2011).
[70] D. Wu, Y. Y. Duan, and Z. Yang, “Thermodynamic model for heterogeneous bubble nucleation in a temperature gradient,” Appl. Phys. Lett. 97, 081911 (2010).
[71] Y. J. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. X. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11, 3816-3820 (2011).
[72] H. Xu, and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[73] J. Li, W. Zhang, Q. Li, and B. Li, “Excitation of surface plasmons from silver nanowires embedded in polymer nanofibers,” Nanoscale

7, 2889–2893 (2015).
[74] P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
[75] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
[76] K. C. Neuman, and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004).
[77] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[78] A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of fiber-optical light-force trap,” Opt. Lett. 18, 1867-1869 (1993).
[79] W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced mcirobeads in a fiber-optical trap,” J. Opt. Soc. Am. B 20, 1568-1574.

[80] C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, “Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap,” Opt. Express 13, 2634-2642 (2005).
[81] P. R. T. Jess, V. Garcés-Cháves, D. Smith, M. Mazilu, L. P aterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779-5791 (2006).
[82] E. R. Lyons, and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584-1586 (1995).
[83] K. Taguchi, H. Ueno, and M. Ikeda, “Rotational manipulation of a yeast cell using optical fibers,” Electron. Lett. 33, 1249-1250 (1997).
[84] K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176, 43-47 (2000).
[85] X. Xu, C. Cheng, H. Xin, H. Lei, and B. Li, “Controllable orientation of single silver nanowire using two fiber probes,” Sci. Rep. 4, 3989 (2014).
[86] Z. Yan, J. E. Jurellert, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12,

5155−5161 (2012).
[87] P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370−4379 (1972).
[88] F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Radiation torque on nonspherical particles in the transition matrix formalism,” Opt. Express 14,

9508−9521 (2006).
[89] A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser trapping of colloidal metal nanoparticles,” ACS nano 9, 34533469 (2015).
[90] C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 7 (2013).
[91] X. Xu, C. Cheng, Y. Zhang, H. Lei, and B. Li, “Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures,” Sci. Rep. 6, 20433 (2016).
[92] K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionest, N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15, 1201712029 (2007).
[93] G. Michael, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. Abajo, F. Koppens, R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175179 (2013).
[94] D. B. Phillips, M. J. Padgett, S. Hanna, Y.-L. D. Ho, D. M. Carberry, M. J. Miles, S. H. Simpson, “Shape-induced force fields in optical trapping,” Nat. Photonics 8, 400405 (2014).
[95] A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragó, D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18, 822830 (2010).
[96] S. Broersma, “Viscous force and torque constants for a cylinder,” J. Chem. Phys. 74, 6989 (1981).
[97] J. Leach, H. Mushfigue, S. Keen, R. Di Leonardo, G. Ruocco, M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[98] X. Xu, C. Cheng, Y. Zhang, H. Lei, and B. Li, “Scattering and extinction torques: How plasmon resonances affect the orientation behavior of a nanorod in linearly polarized light,” J. Phys. Chem. Lett. 7, 314-319 (2016).
[99] Z. Hu, J. Wang, and J. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express 12, 4123-4128 (2004).
[100] Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14, 12510-12516 (2006).
[101] L. Yuan, Z. Liu, and J. Yang, “Measurement approach of Brownian motion force by an abrupt tapered fiber optical tweezers,” Appl. Phys. Lett. 91, 054101 (2007).
[102] Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “A non-contact single optical fiber multi-optical tweezers probe: design and fabrication,” Opt. Commun. 285, 4068-4071 (2012).
[103] K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92, 151113 (2008).
[104] S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13, 054049 (2008).

[105] C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nature Photon. 1, 723-727 (2007).
[106] C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3. 1258 (2013).
[107] J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nature Nanotech. 9, 295-299 (2014).
[108] R. S. R. Ribeiro, O. Soppera, A. G. Oliva, A. Guerreiro, and P. A. S. Jorge. “New trends on optical fiber tweezers,” J. Lightwave Technol. 33, 3394-3405 (2015).
[109] H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818 (2012).
[110] H. Xin, R. Xu, and B. Li, “Optical manipulation of particles and cells using a tapered fibre probe,” Protocol Exchange, DOI:10.1038/protex.2012.053 (2012).
[111] X. Liu, J. Huang, H. Xin, Y. Zhang, and B. Li, “Optically controlled circling of particles with a particle-decorated fiber probe,” RSC Adv. 4, 7688-7693 (2014).
[112] H. Xin, Y. Li, L. Li, R. Xu, and B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abrupt tapered optical fiber,” Appl. Phys. Lett. 103, 033703 (2013).
[113] H. Xin, Q. Liu, and B. Li, “Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation,” Sci. Rep. 4, 6576 (2014).
[114] C. Cheng, X. Xu, H. Lei, and B. Li, “Manipulation of ZnO nanowires using a tapered fiber probe,” RSC Adv. 4, 21593-21598 (2014).
[115] H. Xin, and B. Li, “Optical orientation and shift of a single multiwalled carbon nanotube,” Light: Sci. Appl. 3, e205 (2014).
[116] S. Lindström and H. Andersson-Svahn, “Overview of single-cell analyses: microdevices and applications,” Lab Chip 10, 3363-3372 (2010).
[117] Y. Gong, W. Huang, Q.-F. Liu, Y. Wu, Y. Rao, G.-D. Peng, J. Lang, and K. Zhang, “Graded-index optical fiber tweezers with long manipulation length,” Opt. Express 22, 25267-25275 (2014).

[118] Y. Gong, C. Zhang, Q.-F. Liu, Y. Wu, H. Wu, Y. Rao, and G.-D. Peng, “Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity,” Opt. Express, 23, 3762-3769 (2015).
[119] M. F. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, “Carbon nanotubes: present and future commercial applications,” Science 339, 535–539 (2013).
[120] S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.

4, 1415-1419 (2004).
[121] C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998-3003 (2008).
[122] P. Kang, X. Serey, Y.-F. Chen, and D. Erickson, “Angular orientation of nanorods using nanophotonic tweezers,” Nano Lett. 12, 6400-6407 (2012).
[123] M. Koch, and A. Rohrbach, “Object-adapted optical trapping and shape-tracking of energy-switching helical bacteria,” Nature Photon. 6, 680-686 (2012).
[124] P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95, 113104 (2009).
[125] X. Ding, J. Shi, S.-C. S. Lin, S. Yazdi, B. Kiraly, and T. J. Huang, “Tunable patterning of microparticles and cells using standing surface acoustic waves,” Lab Chip 12, 2491-2497 (2012).
[126] F. Guo, P. Li, J. B. French, Z. Mao, H. Zhao, S. Li, N. Nama, J. R. Fick, S. J. Benkovic, and T. J. Huang, “Controlling cell-cell interactions using surface acoustic waves,” Proc Natl Acad Sci USA 112, 43-48 (2015).
[127] A. Tourovskaia, X. Figueroa-Masot, and A. Folch, “Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies,” Lab Chip 5, 14-19 (2005).
[128] D. B. Wheeler, A. E. Carpenter, and D. M. Sabatini, “Cell microarrays and RNA interference chip away at gene function,” Nat. Genet. 37, S25-S30 (2005).
[129] D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[130] C.-T. Ho, R.-Z. Lin, W.-Y. Chang, H.-Y. Chang, and C.-H. Liu, “Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap,” Lab Chip 6, 724–734 (2006).

[131] H. Xin, R. Xu, and B. Li, “Optical formation and manipulation of particle and cell patterns using a tapered optical fiber,” Laser Photonics Rev. 7, 801-809 (2013).
[132] Y. Li, H. Xin, X. Liu, and B. Li. “Non-contact intracellular binding of chloroplasts in vivo,” Sci. Rep. 5, 10925 (2015).
[133] Y. Li, H. Xin, C. Cheng, Y. Zhang, and B. Li. “Optical separation and controllable delivery of cells from particle and cell mixture,” Nanophotonics 4, 353-360 (2015).
[134] H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fibre,” Sci. Rep. 3, 1993 (2013).
[135] X. Liu, J. Huang, Y. Zhang, and B. Li, “Optical regulation of cell chain,” Sci. Rep. 5, 11578 (2015).
[136] J. Huang, X. Liu, Y. Zhang, and B. Li, “Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes,” Photon. Res. 3, 308-312 (2015).
[137] H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-based biophotonic waveguides,” Nano Lett. 13, 3408-3413 (2013).
[138] H. Xin, Y. Li, and B. Li, “Controllable patterning of different cells via optical assembly of one-dimensional periodic cell structures,” Adv. Funct. Mater. 25, 2816-2823 (2015).
[139] H. Xin, Y. Li, and B. Li, “Bacteria-based branched structures for bionanophotonics,” Laser Photonics Rev. 9, 554-563 (2015).
[140] K. Dholakia, and P. Zemanek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[141] M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96,143902 (2006).
[142] S. Tatarkova, A. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89, 283901 (2002).
[143] N. Metzger, E. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14, 3677–3687 (2006).
[144] N. Metzger, K. Dholakia, and E. Wright, “Observation of bistability and hysteresis in optical binding of two dielectric spheres,” Phys. Rev. Lett. 96, 68102 (2006).

[145] Y. C. Tan, K. Hettiarachchi, M. Siu, Y. R. Pan, and A. P. Lee, “Controlled microfluidic rncapsulation of cells, proteins, and microbeads in lipid vesicles,” J. Am. Chem. Soc. 128, 5656–5658 (2006).
[146] M. Wada, T. Kagawa, and Y. Sato, “Chloroplast movement,” Annu. Rev. Plant Biol. 54,

455 (2003).
[147] A. R. Kose, B. Fischer, L. Mao, and H. Koser, “Label-free cellular manipulation and sorting via biocompatible ferrofluids,” Proc Nat Acad Sci USA 106, 21478–83 (2009).
[148] W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603-1608 (2011).
[149] J. Bigeon, N. Huby, J.-L. Duvail, and B. Bêche, “Injection and waveguiding properties in SU8 nanotubes for sub-wavelength regime propagation and nanophotonics integration,” Nanoscale 6, 5309-5314 (2014).
[150] F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods

5, 591–596 (2008).
[151] B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. USA 111, 14657–14662 (2014).
[152] O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[153] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.

7, 442–453 (2008).
[154] L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[155] R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev.

2, 47–57 (2008).
[156] D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[157] S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2009).

[158] J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8, 9035–9043 (2014).
[159] J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “A Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–5910 (2015).
[160] K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[161] Y. Li, H. Xin, H. Lei, L. Liu, Y. Li, Y. Zhang, and B. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light: Sci. Appl. 5, e16176 (2016).
[162] Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10, 5800–5808 (2016).
[163] H. Yang, M. Cornaglia, and M. A. Gijs, “Photonic nanojet array for fast detection of single nanoparticles in a flow,” Nano Lett. 15, 1730–1735 (2015).
[164] Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
[165] A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Zhang, Y. “Nanometric optical tweezers based on nanostructured substrates,” Nature Photon. 2, 365–370 (2008).
[166] K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[167] S. F., Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[168] M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nature Phys. 5, 915–919 (2009).
[169] A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).

[170] Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, L. Zhu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[171] I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Adv. 4, 38152–38158 (2014).
[172] J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nature Nanotech. 5, 127–132 (2010).
[173] H. Lei, Y. Zhang, C. Xu, and B. Li, “Photophoretic assembly of two-dimensional crystals from microparticle suspensions,” J. Opt. 14, 035603 (2012).
[174] D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. G. Parajo, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8, 512–516 (2013).
[175] R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Nat. Acad. Sci. USA 106, 19227–19232 (2009).
[176] R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
[177] P. Gagni, M. Cretich, L. Benussi, E. Tonoli, M. Ciani, R. Ghidoni, B. Santini, E. Galbiati, D. Prosperi, and M. Chiari, “Combined mass quantitation and phenotyping of intact extracellular vesicles by a microarray platform,” Anal. Chim. Acta. 902, 160–167 (2016).


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!