Dispersion Dynamics in the Hall Effect and Pair Bonds in HiTc

Antony J. Bourdillon
UHRL, San Jose, CA, USA

Series: Materials Science and Technologies
BISAC: SCI067000

Clear

$82.00

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

Dispersion dynamics are developed from the stable wave packet in wave mechanics. They are used first in a physical treatment of creation and annihilation, and then applied to measurements in high temperature superconductivity. The dynamics require that the negative energy solution to relativity equations implies negative rest mass in the antiparticle. Dirac’s positive mass for his first order equation is inconsistent with dispersion dynamics.

The processing of the ceramic cuprates links the superconductivity not to the isotope effect, as in low temperature superconductors, but to chemical holes in the planar HiTc ceramics. The Hall coefficient is negative in the former case, but positive in the latter – even though the Lorentz force can act on neither voids nor immobile ionic nuclei. Interpretation of the coefficient is an old anomaly. In fact, whether in metals, in p-type semiconductors or in HiTc ceramics, the carriers are all negatively charged. Dispersion dynamics show that the positive coefficient is a consequence of negative second derivatives in the dispersion of conduction bands in semiconductors, in certain metals and in high temperature superconductors.

Existing data from HiTc compounds, especially data from processing, are reinterpreted to show how chemical and physical holes are formed. The holes that are evident in the Hall effect at normal temperatures are readily available to bond with electron pairs at lower temperatures for superconductivity. Wave functions in dispersion dynamics show how the conduction is non-resistive. The book contrasts the two types of superconductivity while uniting the mechanism in them for non-resistive behavior. (Imprint: Novinka)

Preface

Acknowledgments

Chapter 1. Dispersion Dynamics in Free Particles

Chapter 2. The Lorentz Force Does Not Act on Voids

Chapter 3. Chemical Holes in Ceramic Superconductors

Chapter 4. Excitonic Boson Pairs

Appendices

Index

Chapter 1

[1] Bardeen J., Cooper L. N. and Schrieffer J. R., 1957, Phys. Rev. 108 1175.
[2] Bourdillon A. and Tan-Bourdillon N. X., High Temperature Superconductors: Processing and Science, Academic Press, N. Y., 1994, ISBN 0-12-117680-0, p. 33.
[3] Batlogg B., Cava R. J., Jayaraman A., van Dover R. B., Kourouklis G. A., Sunshine S., Murphy D. W., Rupp L. W., Chen H. S., White A., Short K. T., Mujsce A. M. and Rietman E. A., 1987, Phys. Rev. Lett. 58 2333.
[4] Rickaysen G., The Theory of Superconductivity, Interscience, Wiley, New York, 1965.
[5] Schrieffer J. R., Theory of Superconductivity, Benjamin, NewYork, 1964.
[6] deGennes P. G., Superconductivity of Metals and Alloys, Benjamin, New York, 1966.
[7] Dirac P. A. M., The principles of quantum mechanics, 4th ed. 1958, Clarendon.
[8] Harrison W. A., Solid State Theory, McGraw-Hill, 1970.
[9] Popper K. R., The logic of scientific discovery, 1983 Hutchinson.
[10] Popper K. R., Quantum theory and the schism in physics, 1982, Hutchinson.
[11] Bourdillon A. J., Journal of Modern Physics 2015 6 2011-2020.
[12] Bourdillon A. J., Journal of Modern Physics, 2012, 3 290-296; doi10.4236/jmp.2012.33041.
[13] Bourdillon A. J., Journal of Modern Physics, 2013, 4 705-711 (2013), doi:10.4236/jmp.2013.46097.
[14] Bourdillon A. J., 2014, Journal of Modern Physics, 5, [1] 23-28 (2014) doi:10.4236/jmp.2014.51003.
[15] Bourdillon A. J., Ultramicroscopy, 2000, 83 261-264 (2000) invited paper for commemorative issue in honour of Michael Stobbs.
[16] Pauling L and Bright Wilson E, Introduction to quantum mechanics, McGraw-Hill 1935, p. 139.
[17] Villata M. CPT symmetry and antimatter gravity in general relativity, EPL 94 (2) 2011.
[18] Khamehchi M. A., Khalid Hossain, Mossman M. E., Yongping Zhang, Busch Th., McNeil Forbes M., and Engels P., 2017, arXiv:1612.04055v2 [cond-mat.quant-gas].

Chapter 2

[1] [Bourdillon A. and Tan-Bourdillon N. X., High Temperature Superconductors: Processing and Science, Academic Press, N. Y., 1994, ISBN 0-12-117680-0, p. 10.
[2] Hurd C. M., 1972, The Hall effect in metals and alloys, Plenum.
[3] Harrison W. A., Solid State Theory, McGraw-Hill, 1970 p. 260.
[4] Landolt-Bornstein tables Vol II. 6 p. 161 (1959).
[5] Goodman JM, 1968, Phys. Rev. 171 641.
[6] Kittel C, Solid State Physics, 5th ed., (1976) p. 176.
[7] Segall B, 1962 Phys. Rev. 125 109
[8] Herman F., Kortum R. L., Kuglin C. D. and Shay J. L., in II-IV semiconducting compounds 1967 International conference, ed Thomas D. G., Benjamin 1967 New York.
[9] Segall B., 1961, Phys. Rev. 124 1797.
[10] LeBoeuf D., Doiron-Leyraud N., Levallois J., Daou R., Bonnemaison J. B., Hussey N. E., Balicas L., Ramshaw B. J., Liang R., Bonn D. A., Hardy W. N., Adachi S., Proust C. and Taillefer L. 2007, Nature 450 533-536.

Chapter 3

[1] Bourdillon A. and Tan Bourdillon N. X., 1994, High temperature superconductors, processing and science, Academic, p. 35.
[2] LeBoeuf D., Doiron-Leyraud N., Levallois J., Daou R., Bonnemaison J. B., Hussey N. E., Balicas L., Ramshaw B. J., Liang R., Bonn D. A., Hardy W. N., Adachi S., Proust C. and Taillefer L. 2007, Nature 450 533-536.
[3] Bourdillon A. J., 2015, Journal of Modern Physics, 2015, 6 [4] 463-471, DOI:10.4236/jmp.2015.64050.
[4] Bourdillon A. J., Journal of Modern Physics, 2015, 6 [14] 2011-2020.
[5] Maple M. B., 1998 https://arxiv.org/pdf/cond-mat/9802202.
[6] Lee P. A., Nagaosa N., and Wen X-G, (2006) Rev. Mod. Phys 78 17-8.
[7] Dagotto E., 1994, Rev. Mod. Phys. 66 763-840.
[8] Hoffman J. E., 2003, A search for alternative electronic order in the high temperature superconductor Bi2Sr2Ca2Cu2O8+d by scanning tunneling microscopy, PhD Thesis, UC Berkeley.
[9] Bardeen J., Cooper L. N. and Schrieffer J. R., 1957, Phys. Rev. 108 1175.
[10] Batlogg B., Cava R. J., Jayaraman A., van Dover R. B., Kourouklis G. A., Sunshine S., Murphy D. W., Rupp L. W., Chen H. S., White A., Short K. T., Mujsce A. M. and Rietman E. A., 1987, Phys. Rev. Lett. 58 2333.
[11] Tan N. X. and Bourdillon A. J., 1990, International Journal of Modern Physics B 4 517-524.
[12] Bourdillon A. J., Beaumont J. H. and Bordas J., 1977, J. Phys. C. 10 333-341 (journal later amalgamated to J. Phys:Condensed Matter by IOP science).
[13] Acrivos J. V., Chen L., Burch C. M., Metcalf P., Honig J. M., Liu R. S. and Singh K. K., 1994, Phys. Rev. B 50 13710-13723.
[14] Bourdillon A. J. 1976, Spectroscopy of ionic materials using synchrotron radiation, D. Phil thesis Oxford University.
[15] Kondo T., Khasanov R., Karpinski S., Zhigadlo N. D., Ohta H., Fretwell A. D., Palczewski A. D., Koll J. D., Mesot J., Rotenberg E., Keller H., and Kaminski A. (2006) arXiv:cond-matt/0609034v1 [cond-matt.supr-com] 2 Sep.
[16] Hu J, Robustness of s-wave pairing symmetry in iron-based superconductors and its implications to fundamentals on magnetically-driven high temperature superconductivity, arXiv:1506. 05791 (2015).
[17] Wuyts B., Moshchalkov V. V. and Bruynseraede Y., 1996, Phys. Rev. B 53 9418-9432.
[18] Harris J. M., Wu H, Ong N. P., Meng R. L. and Chu C. W., (1994) Phys. Rev. B 50, 3246-3249.
[19] Ando Y, Segawa K, Lavrov A. N. and Komiya S (2002) arXiv:cod-mat/0208096v1.

Chapter 4

[1] Bourdillon AJ, Journal of Modern Physics,

5, [1] 23-28 (2014) DOI: 10.4236/jmp.2014.51003.
[2] Bourdillon AJ, Journal of Modern Physics

8 483-499 (2017) 11DOI: https://doi.org/10.4236/jmp.2017.84031.

Appendix A.I.

[1] Bourdillon A and Tan-Bourdillon NX, High Temperature Superconductors: Processing and Science, Academic Press, N. Y., 1994, ISBN 0-12-117680-0.
[2] Tilley DR and Tilley J, Superfluidity and superconductivity, 1986, Hilger ISBN 0-85274-807-8.
[3] Lin JY, Gurvitch M, Tolpygo SK, Bourdillon A, Y. Hou SY and Phillips JM, Phys. Rev. B, 54 R12717- 20 (1996).

Appendix A.II

[1] Bourdillon A. J., 2014, Journal of Modern Physics, 5 23-28 doi: 10.4236/jmp.2014.51003.
[2] Villata M, 2011, EPL 94 20001 doi: 10. 1209-5075/ 0295/94/20001.
[3] Wu C. S., 1956, Phys. Rev. 104 254, doi:10.1103/PhysRev.104.254.

Appendix A.III.

[1] Khamehchi MA, Khalid Hossain, Mossman M. E., Yongping Zhang, Busch Th., McNeill Forbes M. and Engels P., 2017, Phys. Rev. Lett 118 155301.
[2] Ziman JM, Elements of advanced quantum theory, 1969, Cambridge.
[3] Bourdillon AJ, Journal of Modern Physics, 4 705-711 (2013), doi: 10.4236/jmp.2013.46097 http://www.scirp.org/journal/jmp.

You have not viewed any product yet.