Table of Contents
Table of Contents
Preface
Chapter 1. Mixed Convective Boundary Layer Flow over a Vertical Wedge Embedded in a Porous Medium Saturated with a Nanofluid
Rama Subba Reddy Gorla and Mahesh Kumari
Chapter 2. Flow and Heat Transfer of Two Micropolar Fluids Separated by a Viscous Fluid Layer
J.C. Umavathi, Ali J. Chamkha, and M. Shekar
Chapter 3. Investigation of an Aluminium-Copper-Clad Metal Baseplate for Liquid Cooling: Experimental Characterization and Thermal Modelling
Matt Reeves, Jesus Moreno, Peter Beucher, Sy-Jenq Loong and David Bono
Chapter 4. Unsteady MHD Free Convection Flow Past an Exponentially Accelerated Vertical Plate with Mass Transfer, Chemical Reaction and Thermal Radiation
A.J. Chamkha, M.C. Raju, T. Sudhakar Reddy and S.V.K. Varma
Chapter 5. Heat transfer enhancement studies of water dispersed with multi walled carbon nano tubes in a cross flow radiator
V. Srinivas, CH. V. K. N. S. N. Moorthy and P. K. Sarma
Chapter 6. Evaluation of correlations for supercritical CO2 cooling convective heat transfer and pressure drop in macro- and micro-scale tubes
Lixin Cheng
Chapter 7. Mixed convection flow in a vertical channel filled with a fluid-saturated porous medium divided by a perfectly conductive baffle
J. C. Umavathi, I. C. Liu, and Ali J. Chamkha
Chapter 8. Heat Transfer of Ferrofluids: A Review
Yongqing He, Qincheng Bi, and Tingkuan Chen
Chapter 9. A Review of Studies on the Flow Patterns of Gas-Liquid Two-Phase Flow in Verical Tubes
Yuqing Xue, Huixiong Li, Liangxing Li, and Tingkuan Chen
Chapter 10. Flow Boiling Heat Transfer and Critical Heat Flux Phenomena of Nanofluids in Microscale Channels
Lixin Cheng
Chapter 11. Investigation on the Flow and Heat-Transfer Characteristics under Safety Injection in Pressurized Water Reactor at Xi’an Jiaotong University
Hongfang Gu, Donghua Lu, Shijie Wang, Haijun Wang, Yushan Luo, and Tingkuan Chen
Chapter 12. Effect of a Polymeric Additive on Non-Boiling Heat Transfer and Pressure Drop of Upward Gas-Liquid Two Phase Flow in a Vertical Smooth Tube
Lei Liu and Lixin Cheng
Chapter 13. Pressure-Wave Propagation Technique for Blockage Detection in Subsea Flowlines
Xianghui Chen, Ying Tsang, Hong-Quan Zhang, and Tom X. Chen
Chapter 14. Entropy Generation in Thermally Fully Developed Electro-Osmotic Flow in Circular Microtubes
Rama Subba Reddy Gorla
Chapter 15. Effect of Melting on Mixed Convective Boundary Layer Flow over a Vertical Wedge Embedded in a Porous Medium Saturated with a Nanofluid
Rama Subba Reddy Gorla and Mahesh Kumari
Index
References
[1] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L.J. Thompson, “Anomalously Increased Effective Thermal Conductivities Containing Copper Nanoparticles,” Applied Physics Letters, 78 (2001) 718-720.
[2] S. U. S. Choi, Z. G. Zhang, W. Yu, F.E. Lockwood, E. A. Grulke, “Anomalous Thermal Conductivity Enhancement on Nanotube Suspensions,” Applied Physics Letters, 79 (2001) 2252-2254.
[3] H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran, B. George and T. Pradeep, “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects,” Applied Physics Letters, 83 (2003) 2931-2933.
[4] S. M. You, J. H. Kim and K.H. Kim, “Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer,” Applied Physics Letters, 83 (2003) 3374-3376.
[5] P. Vassallo, R. Kumar and S. D’Amico, “Pool Boiling Heat Transfer Experiments in Silica-Water Nonofluids,” International Journal of Heat and Mass Transfer, 47 (2004) 407-411.
[6] P. Cheng and W.J. Minkowycz, Free convection about a vertical flat plate embedded in a saturated porous medium with applications to heat transfer from a dike, J. Geophysics. Res., 82 (1977) 2040-2044.
[7] R.S.R. Gorla and R. Tornabene, “Free convection from a Vertical Plate With Nonuniform Surface Heat Flux and Embedded in a Porous Medium,” Transport in Porous Media Journal, 3 (1988) 95-106.
[8] R.S.R. Gorla and A. Zinolabedini, “Free Convection From a Vertical Plate With Nonuniform Surface Temperature and Embedded in a Porous Medium,” Transactions of ASME, Journal of Energy Resources Technology, 109 (1987) 26-30.
[9] W.J. Minkowycz, P. Cheng and C.H. Chang, “Mixed Convection About a Nonisothermal Cylinder and Sphere in a Porous Medium,” Numerical Heat Transfer, 8 (1985) 349-359.
[10] P. Ranganathan and R. Viskanta, “Mixed Convection Boundary Layer Flow Along a Vertical Surface in a Porous Medium,” Numerical Heat Transfer, 7 (1984) 305-317.
[11] R.S.R. Gorla and M. Kumari, “Combined Convection in Power-Law Fluids Along a Vertical Wedge Embedded in a Porous Medium,” Applied Mechanics and Engineering, 2 (1997) 457-473.
[12] D. A. Nield and A.V. Kuznetsov, “The Cheng-Minkowycz Problem for Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid,” International Journal of Heat and Mass Transfer, 52 (2009) 5792-5795.
[13] D. A. Nield and A.V. Kuznetsov, “Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid,” International Journal of Heat and Mass Transfer, 52 (2009) 5796-5801.
[14] A. V. Kuznetsov and D. A. Nield, “Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model,” Transport in Porous Media Journal, 81 (2010) 409-422.
[15] A. V. Kuznetsov and D.A. Nield, “Effect of Local Thermal Non-Equilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid,” Transport in Porous Media Journal, 83 (2010) 425-436.
[16] A. V. Kuznetsov and D. A. Nield, “The Onset of Double-Diffusive Nanofluid Convection in a Layer of a Saturated Porous Medium,” Transport in Porous Media Journal, 85 (2010) 941-951.
[17] D. A. Nield and A. V. Kuznetsov, “The Cheng-Minkowycz Problem for the Double-Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid,” International Journal of Heat and Mass Transfer, 54 (2011) 374-378.
[18] S. Ahmad and I. Pop., “Mixed Convection Boundary Layer Flow From a Vertical Plate Embedded in a Porous Medium Filled with Nanofluids,” Int. Comm. Heat Mass Transfer, 37(2010) 987-991.
[19] R. Nazar, L. Tham, I. Pop and D.B. Ingham, “Mixed Convection Boundary Layer Flow over a Horizontal Circular Cylinder Embedded in a Porous Medium Filled with a Nanofluid,” Transport in Porous Media Journal, 86 (2011) 374-378.
[20] F. G. Blottner, “Finite-difference methods of solution of the boundary-layer equations“, AIAA Journal, 8 (1970) 193-205.
[21] P. Cheng, T. Le and I. Pop, “Natural Convection of a Darcian Fluid About a Wedge,” Int. Comm. Heat Mass Transfer, 12 (1985) 705-717.
[22] J. C. Hsieh, T. S. Chen and B. F. Armaly, “Mixed Convection Along a Nonisothermal Vertical Plate Embedded in a Porous Medium: The Entire Regime,” Int. J. Heat Mass Transfer, 36 (1993) 1819-1825.
[23] P. A. Lakshmi Narayana, P.V.S.N. Murthy and R.S.R. Gorla, “Soret-driven thermosolutal convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium,” Journal of Fluid Mechanics, 612 (2008) 1-19.
Chapter 2
[1] A. C. Eringen. Theory of micropolar continua. In: Proceedings of the Ninth Midwestern Mechanics Conference, 1965, pp. 23.
[2] A. C. Eringen, Simple microfluids, Int. J. Eng. Sci. 2 (1964) 205–217.
[3] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966) 1–18.
[4] M. M. Khonsari, D. Brew, On the performance of finite journal bearing lubricated with micropolar fluids, ASLE Tribology Trans. 32 (1989) 155–160.
[5] M. M. Khonsari, On the self-excited whirl orbits of a journal in a sleeve bearing lubricated with micropolar fluids, Acta Mech. 81(1990) 235–244.
[6] B. Hadimoto, T. Tokioka, Two-dimensional shear flows of linear micropolar fluids, Int. J. Eng. Sci. 7 (1969) 515–522.
[7] J. D. Lee, A.C. Eringen, Boundary effects of orientation of nematic liquid crystals, J. Chem. Phys. 55 (1971) 4509–4512.
[8] F. Lockwood, M. Benchaitra, S. Friberg, Study of polyotropic liquid crystals in viscometric flow and clastohydrodynamic contact, ASLE Tribology Trans. 30 (1987) 539–548.
[9] T. Ariman, M.A. Turk, N.D. Sylvester, Microcontinuum fluid mechanics–a review, Int. J. Eng. Sci. 11 (1973) 905–930.
[10] T. Ariman, M.A. Turk, N.D. Sylvester, Application of microcontinum fluid mechanics, Int. J. Eng. Sci. 12 (1974) 273–293.
[11] G. Lukaszewicz, Micropolar Fluids: Theory and Application, Birkhäuser, Basel, 1999.
[12] A. C. Eringen, Microcontinum Field Theories, II: Fluent Media, Springer, New York, 2001.
[13] J. C. Umavathi, Jaweriya Sultana, Mixed convection of a micropolar fluid in a vertical channel with boundary conditions of third kind, Int. J. Engng. Sci. Tech. 3(4) (2011) 213-224.
[14] M. M. Rashidi, S.A. Mohimanian Pour, S. Abbasbandy, Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 1874–1889.
[15] Md. Ziaul Haque, Md. Mahmud Alam, M. Ferdows, A. Postelnicu, Micropolar fluid behaviors on steady MHD free convection and mass transfer flow with constant heat and mass fluxes, joule heating and viscous dissipation, J. King Saud University – Eng. Sci. 24 (2012) 71–84.
[16] S.I. Bakhtiyarov, D.A. Siginer. A note on the laminar coreannular flow of two immiscible fluids in a horizontal tube. In: Proceedings of international symposium on liquid–liquid two phase flow and transport phenomena, Begell house, Inc., Santa Barbara, 1997, pp 107–111.
[17] A. J. Chamkha, Oscillatory flow and heat transfer in two immiscible fluids, Int. J. Fluid Mech. Res. 31 (2004) 13–36.
[18] A. J. Chamkha, Flow of two-immiscible fluids in porous and nonporous channels, J. Fluids Eng. 122 (2000) 117–124.
[19] J. C. Umavathi, A.J. Chamkha, M.H. Manjula, A. Al-Mudhaf. Flow and heat transfer of a couple stress fluid sandwiched between viscous fluid layers, Can. J. Phys. 83 (2005) 705-720.
[20] J. C. Umavathi, J. Prathap Kumar, A.J. Chamkha, Flow and heat transfer of a couple-stress fluid sandwiched between viscous fluid layers, Can. J. Phys. 86 (2008) 961–973.
[21] Md. A. Ikbal, S. Chakravarty, P.K. Mandal, Two-layered micropolar fluid flow through stenosed artery: Effect of peripheral layer thickness, Comp. Math. Appl. 58 (2009) 1328-1339.
[22] J. C. Umavathi, M. Shekar, Mixed convective flow of two immiscible viscous fluids in a vertical wavy channel with traveling thermal waves, Heat Transfer Asian Research 40(8) (2011) 721-743.
[23] J. C. Umavathi, I.C. Liu, M. Shekar, Unsteady mixed convective heat transfer of two immiscible fluids confined between a long vertical wavy wall and a parallel flat wall, Appl. Math. Mech. 33(7) (2012a) 931–950.
[24] J. C. Umavathi, J. Prathap Kumar, M. Shekar, Convective flow between a corrugated and a smooth wall, J. Porous Media, 15(10) (2012b) 975-988.
[25] J. C. Umavathi, I.C. Liu, J. Prathap-Kumar, D. Shaik-Meera, Unsteady flow and heat transfer of porous media sandwiched between viscous fluids, Appl. Math, Mech. 31 (2010) 1497-1516.
[26] M. S. Malashetty J.C. Umavathi, J. Prathap Kumar, Flow and heat transfer in an inclined channel containing a fluid layer sandwiched between two porous layers, J. Porous Media 8(5) (2005) 443-453.
[27] M. S. Malashetty, J.C. Umavathi, J. Prathap Kumar, Magnetoconvection of two-immiscible fluids in a vertical enclosure, Heat Mass Transfer, 42(11) (2006) 977-993.
[28] J. Prathap Kumar, J.C. Umavathi, Ali J. Chamkha, Ioan Pop, Fully-developed free-convective flow of micropolar and viscous fluids in a vertical channel, Appl. Math. Modelling 34 (2010) 1175–1186.
[29] K. Zhou, Differential transformation and its applications for electrical circuits, Huazhong Univ. Press; 1986. (in Chinese)
[30] C. K. Chen, S.H. Ho, Solving partial differential equations by two dimensional differential transform method, Appl. Math. Comput. 106 (1999) 171–179.
[31] F. Ayaz, Solutions of the systems of differential equations by differential transform method, Appl. Math. Comput. 147 (2004) 547–567.
[32] I. H. Abdel-Halim Hassan, Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos, Solitons and Fractals 36 (2008) 53–65.
[33] A. S. V. Ravi Kanth, K. Aruna, Solution of singular two-point boundary value problems using differential transformation method, Physics Letters A 372 (2008) 4671–4673.
[34] D. D. Ganji, H. Bararnia, S. Soleimani, E. Ghasemi, Analytical solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet, Modern Physics Lett. B 23 (2009) 2541–2556.
[35] A. A. Joneidi, D.D. Ganji, M. Babaelahi, Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, Int. Commun. Heat Mass Transf. 36 (2009) 757–762.
[36] M. M Rashidi, The modified differential transform method for solving MHD boundary-layer equations, Comp. Phys. Commun. 180 (2009) 2210–2217.
[37] M. M. Rashidi, S.A. Mohimanian Pour, A novel analytical solution of heat transfer of a micropolar fluid through a porous medium with radiation by DTM-Padé, Heat Transfer—Asian Research, 39(8) (2010) 575-589.
[38] M. J. Jang, Y.L. Yeh, C.L. Chen, W.C. Yeh, Differential transformation approach to thermal conductive problems with discontinuous boundary condition, Appl. Math. Compu. 216 (2010) 2339–2350.
[39] M. Keimanesha, M.M. Rashidi, Ali J. Chamkha, R. Jafari, Study of a third grade non-Newtonian fluid flow between two parallel plates using the multi-step differential transform method, Comp. Math. Appl. 62 (2011) 2871–2891.
[40] H. Yaghoobi, M. Torabi, The application of differential transformation method to nonlinear equations arising in heat transfer, Int. Comm. Heat and Mass Transfer 38 (2011) 815–820.
[41] D. A. S. Rees, A.P. Bassom. The Blasius boundary-layer flow of a micropolar fluid, Int. J. Eng. Sci. 34, 113 (1996).
Chapter 3
[1] M. Reeves, J. Moreno, P. Beucher, S.-J. Loong, D. Brown, Investigation on the impact on Thermal Performances of new pin and fin geometries applied to liquid cooling of power Electronics, Proceedings PCIM Europe 2011, pp.772-778.
[2] Uhleman, A. Herbrandt, A new base plate concept on the basis of aluminum-copper clad materials, Proceedings PCIM Europe 2012, pp.680-685.
[3] M. Reeves, J. Moreno, P. Beucher, S.-J. Loong, D. Bono, Pushing the limits of liquid cooling: Design and analysis of a direct liquid cooling system for power modules, Proceedings PCIM Euro– pe 2012, pp.519-524.
[4] K. Moores, Y. Joshi, G. Schiroky, Thermal characterization of a liquid cooled AlSiC baseplate with integrated pin fins, IEEE Trans. Compon. Packag. Technol. 24 (2) (2001) 213-219.
[5] W. A. Khan, J. R. Culham, M. M. Yovanovich, G. Schiroky, The role of fin geometry in heat sink performance, J. Electron. Packag. 128 (2006) 324-33.
Chapter 4
[1] A. S. Gupta, I. Pop, V. M. Soundalgekar, Free convection effects on the flow past an accelerated vertical plate in an incompressible dissipative fluid, Rev. Roum. Sci. Techn. -Mec. Apl. 24 (1979) 561-568.
[2] N. G. Kafoussias, A. A. Raptis, Mass transfer and free convection effects on the flow past an accelerated vertical infinite plate with variable suction or injection, Rev. Roum. Sci. Techn.- Mec. Apl. 26 (1981) 11-22.
[3] A. K.Singh, N.Kumar, Free convection flow past an exponentially accelerated vertical plate, Astrophysics and Space science. 98(2000), 245-258.
[4] V. M. Soundalgekar, N.S. Birajdar, V.K. Darwhekar, Mass transfer effects on the flow past an impulsively started infinite vertical plate with variable temperature or constant heat flux, Astrophysics and Space Science, 100(1984), 159-164.
[5] M. A. Hossain, L.K. Shayo, The Skin friction in the unsteady free convection flow past an accelerated plate, Astrophysics and Space Science 125(1986) 315-324.
[6] B. K. Jha, R.Prasad, S. Rai, Mass transfer effects on the flow past an exponentially accelerated vertical plate with constant heat flux, Astrophysics and Space Science, 181(1991),125-134.
[7] R. Muthucumaraswamy, K.E. Sathappan, R. Natarajan, Mass transfer effects on exponentially accelerated isothermal vertical plate, Int. J. of Appl. Math. and Mech., 4(6) (2008) 19-25.
[8] V. Rajesh, S.V.K.Varma, Effects of radiation and mass transfer effects on MHD free convection flow past an exponentially accelerated vertical plate with variable temperature, APRN J. of Enng. Appl. Sci. 8 (2009) 20-26.
[9] R. Muthucumaraswamy, M. Muralidharan, Thermal radiation on linearly accelerated vertical plate with variable temperature and uniform mass flux, Int. J. of Sci. and Tech. 3 (4) (2010) 398-401.
[10] V. Rajesh, S. V. K. Varma, Thermal diffusion and radiation effects on MHD flow past an impulsively started infinite vertical plate with variable temperature and mass diffusion, JP Journal of Heat and Mass Transfer 3(2009) 72-39.
[11] U.S. Rajput, P.S. Sahu, Effects of rotation and magnetic field on the flow past an exponentially accelerated vertical plate with constant temperature, Int. J. of Math. and Archive 2(12) (2011) 2831-2834.
[12] R. Muthucumaraswamy, V. Visalakshi, Radiative flow past an exponentially accelerated vertical plate with variable temperature and mass diffusion, Int. J. of Enng. Annals. of Faculty Engineering Hunedoara. Tom IX, Fascicule 2 (2008) 137-140.
[13] U.S. Rajput, S. Kumar, Radiation effects on MHD flow past an impulsively started vertical plate with variable heat and mass transfer, Int. J. of Appl. Math. and Mech. 8(1) (2012) 66-85.
[14] P. L. Chambre, J.D. Young, On the diffusion of chemically reactive species in a laminal flow, The Physcics of Fluids, 1(1958) 48-54.
[15] U.N. Das, R.K. Deka, V.M. Soundalgekar, The effect of homogeneous first order chemical reaction on the flow past impulsively started vertical plate with uniform heat flux and mass transfer, Foushung im ingenieurwesen 60(1994) 284-287.
[16] U.N. Das, R.K. Deka, V.M. Soundalgekar, The mass transfer effects on moving isothermal vertical plate in the presence of chemical reaction, The Bulliten GUMA 5 (1999) 13-20.
[17] A. G. V. Kumar, S. V. K. Varma, Thermal diffusion and radiation effects on unsteady MHD flow past an impulsively started exponentially accelerated vertical plate with variable temperature and variable mass diffusion, Int. J. Appl. Math. Anlys. and appl. 6(2011) 191-214.
[18] J. Y. Kim, Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction, Int. Journ. Engg. Sci. 38 (2000) 833-845.
[19] A. J. Chamkha, A.R. Khaled, Hydromagnetic combined heat and mass transfer by natural convection from a permeable surface embedded in fluid saturated porous medium, Int. J. of Num. Meth. Heat and Fluid Flow. 10(5) (2000) 455-476.
[20] A. J. Chamkha, Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink, Int. Jour. Engg. Sci. 38 (2000) 1699-1712.
[21] R. Kandasamy, K. Periasamy, K.K.S. Prabhu, Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects, Int. Jour. Heat and Mass Trans. 48 (2005) 4557–4561.
[22] S. Srinivas, R. Muthuraj, MHD flow with slip effects and temperature-dependent heat source in a vertical wavy porous space, Chem. Eng. Comm., 197, 1387–1403, 2010.
[23] M. C. Raju, S.V.K. Varma, P.V. Reddy, S. Suman, Soret effects due to natural convection between heated inclined plates with Magnetic field, J. of Mechanical Engg. 39 (2008) 43-48.
[24] M. C. Raju, S. V. K. Varma, R.R.K. Rao, Unsteady MHD free convection and chemically reactive flow past an infinite vertical porous plate, i-manager Journal of Future Engg. and Tech. 8 (3) (2013), 35-40.
[25] V. Ravikumar, M. C. Raju, G.S.S. Raju, A. J. Chamkha, MHD double diffusive and chemically reactive flow through porous medium bounded by two vertical plates, Int. Jour. of Energy and Techn. 5 (4) (2013), 1–8.
[26] T. S. Reddy, M. C.Raju and S.V.K. Varma, Unsteady MHD radiative and chemically reactive free convection flow near a moving vertical plate in porous medium, JAFM, 6 (3) (2013), 443-451.
[27] M. C. Raju, S.V.K Varma, N. Ananda Reddy, Radiation and mass transfer effects on a free convection flow through a porous medium bounded by a vertical surface, J. Future Engg. and Tech. 7 (2) (2012) 7-12.
Chapter 5
[1] S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, American Society of Mechanical Engineers (ASME) Transactions Journal of Heat Transfer 125 (2003) 567–574.
[2] E. Patel. Hrishikesh, T. Sundararajan, and Sarit K. Das, An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids, Journal of Nanoparticle Research 12 (2010) 1015–1031.
[3] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, Anomalous Thermal Conductivity Enhancement in nanotube Suspensions, Applied Physics Letters 79 (2001) 2252– 2254.
[4] S. Ozerinc, S. Kakac, A. Guvenc, and Yazicioglu, Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Journal of Microfluidics and Nanofluidics 8 (2010) 145–170.
[5] M. Chopkar, S. Sudarshan, P.K. Das, and I. Manna, Effect of Particle Size on Thermal Conductivity of Nanofluid, The Journal of the Minerals, Metals and Materials Society and ASM International 39 (2008) 1535-1542.
[6] S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles Developments and Applications of Non-Newtonian Flows, American Society of Mechanical Engineers (ASME) 231(1995) 99 – 105.
[7] S. Lee, S.U.S. Choi, S. Li, and J.A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Journal of Heat Transfer 121 (1999) 280 – 289.
[8] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles, Applied Physics Letters 78 (2001) 718 – 720.
[9] K.S. Hong, T.K. Hong, and H.S. Yang, Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles, Applied Physics Letters 88 (2006) 031901 – 031901-3.
[10] S. Sarkar, and R.P. Selvam, Molecular Dynamics Simulation of Effective Thermal Conductivity and Studey of Enhanced Thermal Transport mechanism in Nanofluids, Journal of Applied Physics 102 (2007) 074302.
[11] B. C. Pak, and Y.I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Journal of Experimental Heat Transfer 11 (1998) 151-170.
[12] R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids, Applied Physics Letters, 89 (2006) 143119.
[13] W. Y. Lai, P.E. Phelan, S. Vinod, and Ravi Prasher. Convective Heat Transfer For Water-Based Alumina Nanofluids In A Single 1.02-Mm Tube, IEEE (2008) 970-978.
[14] X-Q. Wang, and A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences 46 (2007) 1–19.
[15] D. H. Kumar, H.E. Patel, V.R.R. Kumar, T. Pradeep, and S.K. Das, Model for Heat Conduction in Nanofluids, Physics Review Letters 93 (2004) 144301.
[16] J. Eapen, W.C. Williams, J. Buongiorno, W.L. Hu, and S. Yip, Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction, Physics Review Letters 99 (2007) 095901.
[17] P. Keblinski, J.A. Eastman, and D.G. Cahill, Nanofluids for Thermal Transport, Materials Today 8 (2005) 36-44.
[18] M. J. Assael, C.F. Chen, I. Metaxa, and W.A. Wakeham, Thermal Conductivity of Suspensions of Carbon Nanotubes in Water, International Journal of Thermophysics 25 (2004) 971-985.
[19] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, Anomalous Thermal Conductivity Enhancement in nanotube Suspensions, Applied Physics Letters 79 (2001) 2252– 2254.
[20] S. K. Das, S.U.S. Choi, and H.E. Patel, Heat Transfer in Nanofluids – A Review, Journal of Heat Transfer Engineering 27 (2006) 3-19.
[21] X. Q. Wang, and A.S. Mujumdar, Heat Transfer Characteristics of Nanofluids – a Review, International Journal of Thermal Sciences 46 (2007) 1-19.
[22] Y. Xuan, and Q. Li, Investigation on Convective Heat Transfer and Flow Features of Nanofluids, Journal of Heat Transfer 125(2003) 151-155.
[23] D. Wen, and Y. Ding, Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions, International Journal of Heat and Mass Transfer 47 (2004) 5181-5188.
[24] Y. Ding, H. Alias, D. Wen, and R.A. Williams, Heat Transfer of Aqueous of Carbon Nanotubes (CNT Nanofluids), International Journal of Heat and Mass Transfer 49 (2006) 240-250.
[25] Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, and G. Wu, Heat Transfer Properties of Nano particle -in-Fluid Dispersions (Nanofluids) in Laminar Flow, International Journal of Heat and Mass Transfer 48 (2005) 1107-1116.
[26] S. Z. Heris, M.N. Esfahany, and G. Etemad, Investigation of CuO/Water Nano fluid Laminar Convective Heat Transfer through a Circular Tube, Journal of Enhanced Heat Transfer 13 (2006) 279-289.
[27] S. Z. Heris, M.N. Esfahany, and S.Gh. Etemad, Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nano fluid in Circular Tube, International Journal of Heat and Fluid Flow 28 (2007) 203-210.
[28] W. Williams, J. Buongiorno, L.W. Hu, Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes, Journal of Heat Transfer 130(2008) 042412.
[29] F. D. S. Marquis, and L.P.F. Chibante, Improving the Heat Transfer of Nanofluids and Nanolubricants with Carbon Nanotubes, Journal of Materials 57(2005) 32-43.
[30] Tun-Ping Teng, Chao-Chieh, and Yu. Heat dissipation performance of MWCNTs nano-coolant for vehicle Experimental, Thermal and Fluid Science 49 (2013) 22–30.
[31] P. X. Hou, S. Bai, Q.H. Yang, C. Liu, and H.M. Cheng, Multi-step purification of carbon nanotubes, Carbon 40 (2002) 81–85.
[32] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenio, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotisa, Chemical oxidation of multiwalled carbon nanotubes, Carbon 46 (2008) 833 –840.
[33] I. D. Rosca, F. Watari, M. Uo, and T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon 43 (2005) 3124–3131.
[34] X. H. Chen, C.S. Chen, Q. Chen, F.Q. Cheng, G. Zhang, and Z.Z. Chen, Non-destructive purification of multi-walled carbon nanotube produced by catalyzed CVD, Materials Letters 57 (2002) 734– 738.
[35] Y-C. Chiang, W-H. Lin, and Y-C. Chang, The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation, Applied Surface Engineering 257 (2011) 2401-2410.
[36] M. Vesali Naseh, A.A. Khodadadi, Y. Mortazavi, O. Alizadeh Sahraei, F. Pourfayaz, S. Mosadegh Sedghi, Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma World Academy of Science, Engineering and Technology 49 (2009).
[37] L. Vaisman, H. Daniel Wagner, and G. Marom, The role of surfactants in dispersion of carbon nanotubes, Advances in Colloid and Interface Science 128–130 (2006), 37–46.
[38] F. P. Incropera, and D.P. DeWitt, Fundamentals of Heat and Mass Transfer; John Wiley and Sons, New York, 1996.
[39] W. M. Kays, and M.E. Crawford, Convective Heat and Mass Transfer, McGraw-Hill Inc., 1993.
Chapter 6
[1] L. Cheng, G. Ribatski, J.R. Thome, Analysis of supercritical CO2 cooling in macro- and micro channels, In. J. Refrigeration 31 (2008) 1301-1316.
[2] L. Cheng, J.R. Thome, Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: preliminary analysis and performance comparison, Appl. Therm. Eng. 29 (2009) 2426-2432.
[3] L. Cheng, L., Ribatski, G., Wojtan, L., and Thome, J.R., New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes, Int. J. Heat Mass Transfer 49 (2006) 4082-4094.
[4] L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, Erratum to: New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes, [Heat Mass Transfer 49 (21-22) (2006) 4082-4094], Int. J. Heat Mass Transfer 50 (2007) 391.
[5] L. Cheng, G. Ribatski, J. Moreno Quibén, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: Part I A general two-phase flow pattern map and development of a phenomenological model of two-phase flow frictional pressure drop, Int. J. Heat Mass Transfer 51 (2008) 111-124.
[6] L. Cheng, G. Ribatski, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: Part II A general flow boiling heat transfer model based on flow patterns, Int. J. Heat Mass Transfer 51 (2008) 125-135.
[7] REFPROP. NIST Refrigerant Properties Database 23, Gaithersburg, MD, 2002, Version 7.0.
[8] F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of tubular type, University of California Publications of Engineering 2 (1930) 443-461.
[9] C. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Eng. 16 (2) (1976) 359-368.
[10] S. S. Pitla, E.A. Groll, S. Ramadhyani, New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2, Int. J. Refri. 25 (2002) 887-895.
[11] X. Fang, C.W. Bullard, P.S. Hrnjak, Modeling and analysis of gas coolers, ASHRAE Trans. 107 (1) (2001) 4-13.
[12] S. H. Yoon, J.H., Kim, Y.W. Hwang, M.S. Kim, K. Min, K., Y. Kim, Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region, In. J. Refri. 26 (230) 857-864.
[13] C. H., Son, S.J. Park, An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube, Int. J. Refri. 29 (2006) 539-546.
[14] S. M. Liao, T.S. Zhao, Measurement of heat transfer coefficient from supercritical carbon dioxide flowing in horizontal mini/micro channels, J. Heat Transfer 124 (2002) 413-420.
[15] X. L. Huai, S. Koyama, T.S. Zhao, An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions, Chem. Eng. Sci. 60 (2005) 3337-3345.
[16] X. Huai, S. Koyama, Heat transfer characteristics of supercritical CO2 flow in small-channeled structures, Exp. Heat Transfer 20 (2007) 19-33.
[17] N. E. Moody, Friction factors for pipe flow, Trans. ASME (1944) 671-684.
[18] C. F. Colebrook, C.M. White, Experiments with fluid friction in roughened pipes, Proc Roy Soc (A) 161 (1937) 367.
[19] P. K. Swamee, A.K. Jain, Explicit equations for pipe-flow problems, J. Hydraulic Division 102 (1976) 657-664.
[20] S.W. Churchill, Friction factor equation spans all fluid flow regimes, Chem. Eng. 7 (1977) 91-92.
[21] X. Fang, C.B. Bullard, P.S. Hrnjak, Heat transfer and pressure drop of gas coolers, ASHRAE Trans.107 (1) (2001) 255-266.
[22] S. S. Pitla, M. Robinson, E.A.G. Groll, S. Ramadhyani, Heat transfer from supercritical carbon dioxide in tube flow: A critical review, Int. J. HVACR 4 (3) (1998) 281-301.
[23] C. Dang, E. Hihara, In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement, Int. J. Refrig., 27 (2004) 736-747.
[24] J. Pettersen, R. Rieberer, S.T. Munkejord, Heat transfer and pressure drop for flow of supercritical and subcritical CO2 in microchannel tubes, Final Technical report for United States Army, European Research Office of The U.S. Army, London, England, Contract-No. N68171-99-M-5674, 2000.
[25] R. Yun, Y. Hwang, R. Radermacher, Convective gas cooling heat transfer and pressure drop characteristics of supercritical CO2/oil mixture in a minichannel tube, Int. J. Heat Mass Transfer 50 (2007) 4796-4804.
[26] L. Cheng, G. Ribatski, J.R. Thome, Gas-liquid two-phase flow patterns and flow pattern maps: fundamentals and applications, ASME Appl. Mech. Rev. 61 (2008) 050802-1-050802-28.
[27] L. Cheng, D. Mewes, Review of two-phase flow and flow boiling of mixtures in small and mini channels, Int. J. Multiphase Flow 32 (2006) 183-207.
Chapter 7
[1] A. E. Bergles, Applications of Heat Transfer Augmentation, In: S. Kakac, A.E. Bergles, F. Mayinger, Editors, Heat Exchangers: Thermal–Hydraulic Fundamentals and Design, Hemisphere, New York, pp. 883-911, 1981.
[2] J. P. Gupta, Fundamentals of Heat Exchanger and Pressure Vessel Technology, Hemisphere, New York, pp. 22-33, 1986.
[3] R. L. Webb, Principles of Enhanced Heat Transfer, Hemisphere, New York, pp. 3-11 1994.
[4] Z. Y. Guo, D.Y. Li, B.X. Wang, A novel concept for convective heat transfer enhancement, Int. J. Heat Mass Transfer 41 (1998) 2221-2225.
[5] C. P. Tso, S.P. Mahulikar, The use of Brinkman number for single phase forced convective heat transfer in microchannels, Int. J. Heat Mass Transfer 41 (1998) 1759-1769.
[6] C. H. Cheng, H.S. Kuo, W.H. Huang, Laminar fully developed forced-convection flow within an asymmetric heated horizontal double-passage channel, Appl. Energy 33 (1989) 265-286.
[7] M. M. Salah El-Din, Fully developed laminar convection in a vertical double-passage channel, Appl. Energy 47 (1994) 69-75.
[8] Z. Y. Guo, D.Y. Li, B.X. Wang, A novel concept for convective heat transfer enhancement, Int. J. Heat Mass Transfer 41 (1998) 2221-2225.
[9] Z. D. Chen, J.J.J. Chen, Local heat transfer for oscillatory flow in the presence of a single baffle within a channel, Chem. Eng. Sci. 53 (1998) 3177-3180.
[10] K. Shiina, S. Nakamura, S. Matsumura, Enhancement of shell side forced convective heat transfer in the shell tube-type heat exchanger using thin plate-type supports, Heat Transfer-Asian Research 32 (2003) 455-471.
[11] T. S. Chang, Y.H. Shiau, Flow pulsation and baffle’s effects on the opposing mixed convection in a vertical channel, Int. J. Heat Mass Transfer 48 (2005) 4190-4204.
[12] P. Dutta, A. Hossain, Internal cooling augmentation in rectangular channel using two inclined baffles, Int. J. Heat Fluid Flow 26 (2005) 223-232.
[13] M. M. Salah El-Din, Effect of viscous dissipation on fully developed laminar mixed convection in a vertical double-passage channel, Int. J. Therm. Sci. 41 (2002) 253-259.
[14] C. L. Tien, K. Vafai, Convective and radiative heat transfer in porous media, Adv. Appl. Mech. 27 (1989) 225-281.
[15] A. Amiri, K. Vafai, Effects of boundary conditions on non-Darcian heat transfer through porous media and experimental comparisons, Num. Heat Transfer 27 (1995) 651-664.
[16] P. D. Weidman, A. Medina, Porous media convection between vertical walls: continuum of solutions from capped to open ends, Acta Mech. 199 (2008) 209-216.
[17] D. A. Nield, A. Bejan, Convection in Porous Media, 3rd ed., Springer, New York, 2006.
[18] K. R. Rajagopal, M. Ruzicka, A.R. Srinivasa, On the Oberbeck-Boussinesq approximation, Math. Meth. Appl. Mech. 6 (1996) 1157-1167.
[19] A. Barletta, Laminar mixed convection with viscous dissipation in a vertical channel, Int. J. Heat Mass Transfer 41 (1998) 3501-3513.
[20] R. C. Gilver, S.A. Altobelli, A determination of effective viscosity for the Brinkman- Forchheimer flow model, J. Fluid. Mech. 258 (1994) 355–370.
[21] A. Barletta, E. Zanchini, On the choice of the reference temperature for fully-developed mixed convection in a vertical channel, Int. J. Heat Mass Transfer 42 (1999) 3169-3181.
[22] W. Aung, G. Worku, Theory of fully developed, combined convection including flow reversal, J. Heat Transfer 108 (1986) 485-488.
Chapter 8
[1] R. E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, New York, 1985: republished by Dover Publications, New York, 1997.
[2] B. Berkovski, V. Bashtovoy (Eds.), Magnetic fluids and applications, Begell House, New York, 1996.
[3] B. M. Berkovsky, V. F. Medvedev, M.S. Krakov, Magnetic fluids engineering applications, Oxford University Press, Oxford, 1993.
[4] E. Blums, A. Cebers, M. M. Maiorov, Magnetic fluids, Walter de Gruyter, Berlin, 1997.
[5] C. Rinaldi, A. Chaves, S. Elboraivv, X. He, M. Zahn, Magnetic fluid rheology and flows, Curr. Opin. Colloid Interface Sci. 10 (2005) 141-157.
[6] S. Odenbach, Magnetic fluids – suspensions of magnetic dipoles and their magnetic control, J. Phys.: Condens. Matter 15 (2003) S1497-S1508.
[7] S. Odenbach, Recent progress in magnetic fluid research, J. Phys.: Condens. Matter 16 (2004) S1135-S1150.
[8] E. Blums, Heat and mass transfer phenomena, Lecture Notes in Physics, Springer, Vol. 594, 2002, pp. 124-139.
[9] R. L. Bailey, Lesser known applications of ferrofluids, J. Magn. Magn. Mater. 39 (1-2) (1983) 178-182.
[10] R. E. Rosensweig, Fluid dynamics and science of magnetic liquids, in: L. Martod (Ed.), Advance in Electronics and Electron Physics, Academic press, New York, Vol.48, 1979, pp. 103-199.
[11] C. Rinaldi, T. Franklin, M. Zahn, T. Cader, Magnetic nanoparticles in fluid suspension: ferrofluid application, Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, New York, 2004, pp. 1731-1748.
[12] R. Ganguly, A. P. Gaind, S. Sen, I. K. Puri, Analyzing ferrofluid transport for magnetic drug targeting, J. Magn. Magn. Mater. 289 (2005) 331-334.
[13] Y. Sahoo, A. Goodarzi, M. T. Swihart, T. Y. Ohulchanskyy, N. Kaur, E. P. Furlani, P.N. Prasad, Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control, J. Phys. Chem. B 109 (9) (2005) 3879-3885.
[14] F. Bertorelle, C. Wilhelm, J. Roger, F. Gazeau, C. Ménager, V. Cabuil, Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging, Langmuir 22 (12) (2006) 5385-5391.
[15] R. Müller, R. Hergt, M. Zeisberger, W. Gawalek, Preparation of magnetic nanoparticles with large specific loss power for heating applications, J. Magn. Magn. Mater. 289 (2005) 13-16.
[16] A. R. Kose, B. Fischer, L. Mao, H. Koser, Label-free cellular manipulation and sorting via biocompatible ferrofluids, Proc. Natl. Acad. Sci. 106 (51) (2009) 21478-21483.
[17] D. B. Hathaway, Use of ferrofluid in moving-coil loudspeaker, DB-Sound Engineering Magazine 13 (2) (1979) 42-44.
[18] V. Segal, K. Raj, An investigation of power transformer cooling with magnetic fluids, Indian J. Eng. Mater. Sci. 5 (6) (1998) 416-422.
[19] E. L. Resler Jr., R. E. Rosensweig, Magnetocaloric Power, AIAA J. 2 (8) (1964) 1418-1422.
[20] M. R. Perry, B.M. Berkovky, Thermomechanics of magnetic fluids, Hemisphere Press, Washington D.C., 1978, pp. 224-225.
[21] H. Matsuki, K. Yamasawa, K. Murakami, Experimental considerations on a new automatic cooling device using temperature-sensitive magnetic fluid, IEEE Trans. Magn. 13 (5) (1977) 1143-1145.
[22] H. Matsuki, K. Murakami, Performance of an automatic cooling device using a temperature sensitive magnetic fluid, J. Magn. Magn. Mater. 65 (2-3) (1987) 363-365.
[23] S. Kamiyama, T. Kamiya, H. Izu, Boiling two-phase flow characteristics of a magnetic fluid in a nonuniform magnetic field, Trans. JSME B 57 (537) (1991) 1617-1622 (in Japanese).
[24] S. Kamiyama, M. Okubo, F. Fujisawa, Recent developments of technology in magnetic fluid experiments, Exp. Therm. Fluid Sci. 5 (5) (1992) 641-651.
[25] S. Kamiyama, Pipe flow problems of magnetic fluids, JSME Int. J. Series Ⅱ35 (2) (1992) 131-137.
[26] S. Kamiyama, J. Ishimoto, Boiling two-phase flows of magnetic fluid in a non-uniform magnetic field, J. Magn. Magn. Mater. 149 (1-2) (1995) 125-131.
[27] H. Yamaguchi, I. Kobori, Y. Ishigaki, Study for magnetically controlled heat transport device using magnetic fluid, Trans. Trans. JSME B 64 (617) (1998) 85-91 (in Japanese).
[28] H. Yamaguchi, I. Kobori, N. Kobayashi, Numerical study of flow state for a magnetic fluid heat transport device, J. Magn. Magn. Mater. 201 (1-3) (1999) 260-263.
[29] H. Yamaguchi, I. Kobori, N. Kobayashi, Characteristics of a magnetic fluid heat transport device part 1: numerical simulation of flow and heat transport phenomena, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 214 (4) (2000) 549-561.
[30] K. Nakatsuka, B. Jeyadevan, S. Neveu, H. Koganezawa, The magnetic fluid for heat transfer applications, J. Magn. Magn. Mater. 252 (2002) 360-362.
[31] S. Shuchi, T. Mori, H. Yamaguchi, Flow boiling heat transfer of binary mixed magnetic fluid, IEEE Trans. Magn. 38 (5) (2002) 3234-3236.
[32] S. Shuchi, K. Sakatani, H. Yamaguchi, An application of a binary mixture of magnetic fluid for heat transport devices, J. Magn. Magn. Mater. 289 (2005) 257-259.
[33] J. Ishimoto, M. Okubo, H. Nishiyama, S. Kamiyama, Basic study on an energy conversion system using gas-liquid two-phase flows of magnetic fluid (analysis on the mechanism of pressure rise), Trans. JSME B 59 (566) (1993) 3071-3077 (in Japanese).
[34] J. Ishimoto, M. Okubo, S. Kamiyama, Basic study on an energy conversion system using gas-liquid two-phase flows of temperature-sensitive magnetic fluid (theoretical analysis based on thermal nonequilibrium model and flow visualization using ultrasonic echo), Trans. JSME B 61 (581) (1995) 157-165 (in Japanese).
[35] M. Zahn, Magnetic fluid and nanoparticle applications to nanotechnology, J. Nanopart. Res. 3 (1) (2001) 73-78.
[36] L. Mao, H. Koser, Towards ferrofluidics for μ-TAS and lab on-a-chip applications, Nanotechnology 17 (2006) S34-S47.
[37] K. Fumoto, H. Yamagishi, M. Ikegawa, A mini heat transport device based on thermo- sensitive magnetic fluid, Nanosc. Microsc. Therm. 11 (1) (2007) 201-210.
[38] J. L. Neuringer, R.E. Rosensweig, Ferrohydrodynamics, Phys. Fluids 7 (12) (1964) 1927-1937.
[39] H. W. Müller, M. Liu, Structure of ferrofluid dynamics, Phys. Rev. E 64 (2001) 061405.
[40] M. I. Shliomis, Magnetic fluids, Soviet Physics Uspekhi 17 (2) (1974) 153-169.
[41] R. E. Rosensweig, “Negative viscosity” in a magnetic fluid, Science 271 (5294) (1996) 614-615.
[42] S. Elborai, D.-K. Kim, X. He, S.-H. Lee, S. Rhodes, M. Zahn, Self-forming, quasi-two-dimensional, magnetic-fluid patterns with applied in-plane-rotating and dc-axial magnetic fields, J. Appl. Phys. 97 (2005) 10Q303.
[43] S. Rhodes, X. He, S. Elborai, S.-H. Lee, M. Zahn, Magnetic fluid behavior in uniform DC, AC, and rotating magnetic fields, J. Electrost. 64 (7-9) (2006) 513-519.
[44] Available from: http://www.ferrofluidics.de/en/htmls/fluid.data.php.
[45] Einstein, On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat. Annalen der Physik 17, pp. 549; 19, pp. 371; 34, pp. 591 (1906, 1911). English translation: In A. Einstein: Investigations on the theory of the Brownian movement, R. Furth, Ed. Dover Publications, New York, 1956.
[46] G. K. Batchelor, An introduction to fluid dynamics, Cambridge University Press, Cambridge, UK, 1970.
[47] S. Odenbach, Magnetoviscous effects in ferrofluids, Springer Press, Berlin, 2002.
[48] J. P. McTague, Magnetoviscosity of magnetic colloids, J. Chem. Phys. 51 (1) (1969) 133-136.
[49] S. Kamiyama, T. Oyama, K. Mokuya, On the flow of a ferromagnetic fluid in a circular pipe: 4th report, experiment study of the flow in a nonuniform transverse magnetic field. Trans. JSME B 47 (424) (1981) 2299-2305 (in Japanese).
[50] H. M. Hamedani, L. R. Davis, An experimental investigation of the properties of magnetic fluid in thermal rejection applications, in: Proceedings of Intersociety Energy Conversion Engineering Conference, ASME, New York, 1988, pp. 359-364.
[51] Q. Li, Y. M. Xuan, J. Wang, Experimental investigations on transport properties of magnetic fluids, Exp. Therm Fluid Sci. 30 (2) (2005) 109-116.
[52] V. V. Gogosov, Hydrodynamics of magnetic fluids, J. Magn. Magn. Mater. 65 (2-3) (1987) 301-306.
[53] M. I. Shliomis, Effective viscosity of magnetic suspensions, Soviet Physics JETP. 34 (6) (1972) 1291-1294.
[54] M. I. Shliomis, K. I. Morozov, Negative viscosity of ferrofluid under alternating magnetic field, Phys. Fluids 6 (8) (1994) 2855-2861.
[55] J.-C. Bacri, R. Perzynski, M. I. Shliomis, G. I. Burde, “Negative-viscosity” effect in a magnetic fluid, Phys. Rev. Lett. 75 (11) (1995) 2128-2131.
[56] F. Gazeau, C. Baravian, J.-C. Bacri, R. Perzynski, M. I. Shliomis, Energy conversion in ferrofluids: Magnetic nanoparticles as motors or generators, Phys. Rev. E 56 (1) (1997) 614-618.
[57] Zeuner, R. Richter, I. Rehberg, Experiments on negative and positive magnetoviscosity in an alternating magnetic field, Phys. Rev. E 58 (2) (1998) 6287-6293.
[58] M. Zahn, L.L. Pioch, Ferrofluid flows in AC and traveling wave magnetic fields with effective positive, zero or negative dynamic viscosity, J. Magn. Magn. Mater. 201 (1-3) (1999) 144-148.
[59] Zeuner, R. Richter, I. Rehberg, On the consistency of the standard model for Magneto-viscosity in an alternating magnetic field, J. Magn. Magn. Mater. 201 (1-3) (1999) 191-194.
[60] H. Morimoto, T. Maekawa, Y. Matsumoto, Nonequilibrium Brownian dynamics analysis of negative viscosity induced in a magnetic fluid subjected to both ac magnetic and shear flow fields, Phys. Rev. E 65 (6) (2002) 061508.
[61] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, FED-vol. 231/MD-vol.66, 1995, pp. 99-105.
[62] J. A. Eastman, S.U.S Choi, S. Li, W. Yu, L. J. Thompson, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (6) (2001) 718-720.
[63] S.U.S Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, Anomalous thermal conductivity enhancement in nano-tube suspensions, Appl. Phys. Lett. 79 (14) (2001) 2252- 2254.
[64] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys. 91 (7) (2002) 4568-4572.
[65] M. Biercuk, M. Llaguno, M. Radosavljevic, J. Hyun, A. Johnson, J. Fischer, Carbon nanotube composites for thermal management, Appl. Phys. Lett. 80 (15) (2002) 2767-2769.
[66] J. H. Perry, Chemical engineer’s handbook, 4th. ed., McGraw-Hill Press, New York, 1963.
[67] V. E. Fertman, L. E. Golovicher, N. P. Matusevich, Thermal conductivity of magnetite magnetic fluids, J. Magn. Magn. Mater. 65 (2-3) (1987) 211-214.
[68] J. Popplewell, A. Al-Qenaie, Thermal conductivity measurements on ferrofluids containing metallic cobalt and iron particles, J. Magn. Magn. Mater. 65 (2-3) (1987) 215-218.
[69] E. Takegoshi, T. Shibata, Y. Hirasawa, A. Kosaka, A study on thermal conductivity of magnetic fluid, Netsu Bussei 14 (2) (2000) 97-100 (in Japanese).
[70] T. K. Hong, H. S. Yang, C. J. Choi, Study of the enhanced thermal conductivity of Fe nanofluids, J. Appl. Phys. 97 (7) (2005) 064311.
[71] G. E. Kronkalns, Measuring the thermal conductivity and the electrical conductivity of a ferrofluid in a magnetic field, Magnetohydrodynamics 13 (3) (1978) 371-373.
[72] J. Popplewell, A. Al-Qenaie, S.W. Charles, R. Moskowitz, K. Raj, Thermal conductivity measurements on ferrofluids, Colloid Polym. Sci. 260 (3) (1982) 333-338.
[73] J. Philip, P. D. Shima, B. Raj, Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures, J. Appl. Phys. 91 (2007) 203108.
[74] J. Philip, P. D. Shima, B. Raj, Nanofluid with tunable thermal properties, Appl. Phys. Lett. 92 (2008) 043108.
[75] B.A. Finlayson, Convective instability of ferromagnetic fluids, J. Fluid Mech. 40 (1970) 753-767.
[76] L. Schwab, U. Hildebrandt, K. Stierstadt, Magnetic Bénard convection, J. Magn. Magn. Mater. 39 (1-2) (1983) 113-114.
[77] L. Schwab, K. Stierstadt, Field-induced wavevector-selection by magnetic Bénard-convection, J. Magn. Magn. Mater. 65 (2-3) (1987) 315-316.
[78] L. Schwab, Thermal convection in ferrofluids under a free surface, J. Magn. Magn. Mater. 85 (1-3) (1990) 199-202.
[79] W. L. Luo, T. Du, J. Huang, Novel convective instability in a magnetic fluid, Phys. Rev. Lett. 82 (20) (1999) 4134-4137.
[80] K. Nakatsuka, Y. Hama, J. Takahashi, Heat transfer in temperature-sensitive magnetic fluids, J. Magn. Magn. Mater. 85 (1-3) (1990) 207-209.
[81] J. Huang, B.F. Edwards, D. D. Gray, Thermoconvective instability of paramagnetic fluids in a uniform magnetic field, Phys. Fluids 9 (6) (1997) 1819-1825.
[82] J. Huang, B.F. Edwards, D. D. Gray, Magnetic control of convection in nonconducting paramagnetic fluids, Phys. Rev. E 57 (1) (1998) R29-R31.
[83] J. Huang, D. D. Gray, B.F. Edwards, Thermoconvective instability of paramagnetic fluids in a nonuniform magnetic field, Phys. Rev. E 57 (5) (1998) 5564-5571.
[84] D. P. Lalas, S. Carmi, Thermoconvective stability of ferrofluids, Phys. Fluids 14 (2) (1971) 436-438.
[85] M. I. Shliomis, Convective instability of a ferrofluid, Fluid Dynamics 8 (6) (1973) 957-961.
[86] K. Gotoh, M. Yamada, Thermal convection in a horizontal layer of magnetic fluids, J. Phy. Soc. Japan 51 (9) (1982) 3042-3048.
[87] P. J. Stiles, M. Kagan, Thermoconvective instability of a ferrofluid in a strong magnetic field, J. Colloid Interface Sci. 134 (2) (1990) 435-448.
[88] P. J. Stiles, M. Kagan, Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field, J. Magn. Magn. Mater. 85 (1-3) (1990) 196-198.
[89] P. J. Blennerhassett, F. Lin, P. J. Stiles, Heat transfer through strongly magnetized ferrofluids, Proc. R. Soc. A 433 (1991) 165-177.
[90] Zebib, Thermal convection in a magnetic fluid. J. Fluid Mech. 321 (1996) 121-136.
[91] D. Braithwaite, E. Beaugnon, Magnetically controlled convection in a paramagnetic fluid, Nature, 354 (6349) (2001) 134-136.
[92] M. S. Krakov, I. V. Nikiforov, To the influence of uniform magnetic field on thermomagnetic convection in square cavity, J. Magn. Magn. Mater. 252 (2002) 209-211.
[93] R. Ganguly, S. Sen, I. K. Puri, Thermomagnetic convection in a square enclosure using a line dipole, Phys. Fluids 16 (7) (2004) 2228-2236.
[94] R. Ganguly, S. Sen, I. K. Puri, Heat transfer augmentation using a magnetic fluid under the influence of a line dipole, J. Magn. Magn. Mater. 271 (2004) 63-73.
[95] V. G. Bashtovoy, S. V. Isayev, M. P. Pavlinov, V. K. Polevikov, V. E. Fertman, Thermal convection in a ferromagnetic fluid in an inhomogeneous magnetic field, Heat Transfer Soviet Research 10 (1978) 5-9.
[96] B. M. Berkovsky, A. N. Vislovich, Certain problems of convective heat transfer in ferromagnetic fluids, Heat Transfer Soviet Research 10 (1978) 160-168.
[97] B. M. Berkovsky, V. E Fertman, V. K. Polevikov, S. V. Isayev, Specific features of natural convection heat transfer in magnetic fluids, 6th International Heat Transfer Conference, Toronto, Canada, 1978, pp. 147-151.
[98] H. Kikura, T. Sawada, T. Tanahashi, Natural convection of a magnetic fluid in a cubic enclosure, J. Magn. Magn. Mater. 122 (1-3) (1993) 315-318.
[99] T. Sawada, H. Kikura, A. Saito, T. Tanahashi, Natural convection of a magnetic fluid in concentric horizontal annuli under nonuniform magnetic fields, Exp. Therm Fluid Sci. 7 (3) (1993) 212-220.
[100] C. Tangthieng, B. A. Finlayson, J. Maulbetsch, and T. Cader, Heat transfer enhancement in ferrofluids subjected to steady magnetic fields, J. Magn. Magn. Mater. 201 (1-3) (1999) 252-255.
[101] H. Yamaguchi, I. Kobori, Y. Uehata, and K. Shimada, Natural convection of magnetic fluid in a rectangular box, J. Magn. Magn. Mater. 201 (1-3) (1999) 264-267.
[102] H. Yamaguchi, I. Kobori, and Y. Uehata, Heat transfer in natural convection of magnetic fluids, J. Thermophys Heat Transfer 13 (4) (1999) 501-507.
[103] H. Yamaguchi, Z. Zhang, S. Shuchi, K. Shimada, Heat transfer characteristics of magnetic fluid in a partitioned rectangular box, J. Magn. Magn. Mater. 252 (2002) 203-205.
[104] M. S. Krakov, I. V. Nikiforov, Thermomagnetic convection in a porous enclosure in the presence of outer uniform magnetic field, J. Magn. Magn. Mater. 289 (2005) 278-280.
Chapter 9
[1] Hurlbert, K. M., et al., Scaling two-phase flows to Mars and Moon gravity conditions. International Journal of Multiphase Flow, 2004. 30(4): p. 351-368.
[2] Ohnuki, A. and H. Akimoto, An experimental study on developing air-water two-phase flow along a large vertical pipe: effect of air injection method. International Journal of Multiphase Flow, 1996. 22(6): p. 1143-1154.
[3] Szalinski, L., et al., Comparative study of gas–oil and gas–water two-phase flow in a vertical pipe. Chemical Engineering Science, 2010. 65(12): p. 3836-3848.
[4] Oriol, J., et al., Characterization of the two-phase flow regimes and liquid dispersion in horizontal and vertical tubes by using coloured tracer and non-intrusive optical detector. Chemical Engineering Science, 2008. 63(1): p. 24-34.
[5] Wulff, W., Critical review of conservation equations for two-phase flow in the U.S. NRC TRACE code. Nuclear Engineering and Design, 2011. 241(10): p. 4237-4260.
[6] Lazar, I., I. G. Petrisor, and T. E. Yen, Microbial enhanced oil recovery (MEOR). Petroleum Science and Technology, 2007. 25(11-12): p. 1353-1366.
[7] Usui, K., Vertically Downward Two-Phase Flow, (II). Journal of Nuclear Science and Technology, 1989. 26(11): p. 1013-1022.
[8] Da Hlaing, N., et al., Vertical two-phase flow regimes and pressure gradients: Effect of viscosity. Experimental Thermal and Fluid Science, 2007. 31(6): p. 567-577.
[9] Duangprasert, T., et al., Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant. Experimental Thermal and Fluid Science, 2008. 32(3): p. 808-817.
[10] Parvareh, A., et al., CFD and ERT investigations on two-phase flow regimes in vertical and horizontal tubes. International Communications in Heat and Mass Transfer, 2010. 37(3): p. 304-311.
[11] Kashinsky, O. N., et al., Experimental and numerical study of downward bubbly flow in a pipe. International Journal of Heat and Mass Transfer, 2006. 49(19–20): p. 3717-3727.
[12] Usui, K. and K. Sato, Vertically Downward Two-Phase Flow, (I). Journal of Nuclear Science and Technology, 1989. 26(7): p. 670-680.
[13] Wang, S.K., et al., 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. International Journal of Multiphase Flow, 1987. 13(3): p. 327-343.
[14] Hibiki, T., et al., Structure of vertical downward bubbly flow. International Journal of Heat and Mass Transfer, 2004. 47(8–9): p. 1847-1862.
[15] Hibiki, T., et al., Experimental study on interfacial area transport of a vertical downward bubbly flow. Experiments in Fluids, 2003. 35(1): p. 100-111.
[16] Kim, S., et al. Interfacial structures and regime transition in co-current downward bubbly flow. in 4th ASME/JSME Joint Fluids Engineering Conference, July 6, 2003 – July 10, 2003. 2003. Honolulu, HI, United states: American Society of Mechanical Engineers.
[17] Lee, J. Y., N. S. Kim, and M. Ishii, Flow regime identification using chaotic characteristics of two-phase flow. Nuclear Engineering and Design, 2008. 238(4): p. 945-957.
[18] Canière, H., et al., Probabilistic mapping of adiabatic horizontal two-phase flow by capacitance signal feature clustering. International Journal of Multiphase Flow, 2009. 35(7): p. 650-660.
[19] Sun, B. J. and D. C. Yan, The Transition Mechanism of the Flow Regimes and Its Control of Gas- liquid Two-phase Flow in Vertical Pipes. Acta Scientiarum Naturalium Universitatis Pekinensis, 2000. 36(3): p. 382-388.
[20] Jia, Z. H., G. Niu, and J. Wang, Flow Regime Identification in Two-phase Flow by Using Neural Network. Journal of Chemical Engineering of Chinese Universities, 2005. 19(3): p. 368-372.
[21] Zhou, Y. L., et al., PSD Characteristics of Gas-liquid Two-phase Flow Pattern in Inclined Downward Tube. Journal of Thermal Science and Technology, 2004. 3(2): p. 129-132.
[22] Zhou, Y.L. and B. Sun, Identification method of gas-liquid two-phase flow patterns based on neural network and D2S evidential theory. Journal of Chemical Industry and Engineering (China) 2006. 57(3): p. 607-613.
[23] Zhou, Y. L., F. Chen, and B. Sun, Identification eethod of gas-liquid two-phase flow regime based onimage wavelet packet information entropy and genetic neural network. Nuclear Power Engineering, 2008. 29(1): p. 115-120.
[24] Shi, L.L., J. H. Cai, and Z. K. Zhou, Gas-liquid two-phase flow pattern identification based on image processing. Jo urnal of Zhejiang University (Engineer ing Science), 2005. 39(8): p. 1128-1131.
[25] Harvel, G. D., et al., Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques. Flow Measurement and Instrumentation, 1999. 10(4): p. 259-266.
[26] Ali, S.F. and H. Yeung, Two-phase flow patterns in large diameter vertical pipes. Asia-Pacific Journal of Chemical Engineering, 2014. 9(1): p. 105-116.
[27] Chunguo, J. and B. Qiuguo. Flow regime identification of gas/liquid two-phase flow in vertical pipe using RBF neural networks. in 2009 Chinese Control and Decision Conference, CCDC 2009, June 17, 2009 – June 19, 2009. 2009. Guilin, China: IEEE Computer Society.
[28] Spedding, P., et al., Vertical Two-Phase Flow: Part I: Flow Regimes. Chemical Engineering Research and Design, 1998. 76(5): p. 612-619.
[29] Lee, J. Y., M. Ishii, and N. S. Kim, Instantaneous and objective flow regime identification method for the vertical upward and downward co-current two-phase flow. International Journal of Heat and Mass Transfer, 2008. 51(13–14): p. 3442-3459.
[30] Bhagwat, S. M. and A. J. Ghajar, Similarities and differences in the flow patterns and void fraction in vertical upward and downward two phase flow. Experimental Thermal and Fluid Science, 2012. 39: p. 213-227.
[31] Bhagwat, S. M. and A. J. Ghajar, A flow pattern independent drift flux model based void fraction correlation for a wide range of gas–liquid two phase flow. International Journal of Multiphase Flow, 2014. 59: p. 186-205.
[32] Troniewski, L. and W. Spisak, Flow patterns in two-phase downflow of gas and very viscous liquid. International Journal of Multiphase Flow, 1987. 13(2): p. 257-260.
[33] Oshinowo, T. and M.E. Charles, Vertical two-phase flow part I. Flow pattern correlations. The Canadian Journal of Chemical Engineering, 1974. 52(1): p. 25-35.
[34] Hewitt, G. F., et al., Studies of Two-Phase Flow Patterns by Simultaneous X-Ray and Flash Photography. 1969: Defense Technical Information Center.
[35] Barnea, D., O. Shoham, and Y. Taitel, Flow pattern transition for vertical downward two phase flow. Chemical Engineering Science, 1982. 37(5): p. 741-744.
[36] Crawford, T., C. Weinberger, and J. Weisman, Two-phase flow patterns and void fractions in downward flow Part I: Steady-state flow patterns. International journal of multiphase flow, 1985. 11(6): p. 761-782.
[37] Gamio, J. C., et al., Visualisation of gas–oil two-phase flows in pressurised pipes using electrical capacitance tomography. Flow Measurement and Instrumentation, 2005. 16(2–3): p. 129-134.
[38] Spedding, P. L., et al., Flow Pattern, Holdup and Pressure Drop in Vertical and Near Vertical Two- and Three-Phase Upflow. Chemical Engineering Research and Design, 2000. 78(3): p. 404-418.
[39] Ishii, M., et al., Interfacial structures and interfacial area transport in downward two-phase bubbly flow. International Journal of Multiphase Flow, 2004. 30(7–8): p. 779-801.
[40] WILKES, J. O., Fluid Mechanics for Chemical Engineers. 1998, New York: Prentice Hall Professional Technical Reference. 624.
[41] Shen, X., K. Mishima, and H. Nakamura, Two-phase phase distribution in a vertical large diameter pipe. International Journal of Heat and Mass Transfer, 2005. 48(1): p. 211-225.
[42] Chen, L., Y. S. Tian, and T. G. Karayiannis, The effect of tube diameter on vertical two-phase flow regimes in small tubes. International Journal of Heat and Mass Transfer, 2006. 49(21–22): p. 4220-4230.
[43] Omebere-Iyari, N. K., B. J. Azzopardi, and Y. Ladam, Two-phase flow patterns in large diameter vertical pipes at high pressures. AIChE Journal, 2007. 53(10): p. 2493-2504.
[44] Zhao, J. F., A Review of Two-phase Gas-Liquid Flow Patterns Under Microgravity Conditions. Advances in Mechanics, 1999. 29(3): p. 369-382.
[45] Yamazaki, Y. and K. Yamaguchi, Characteristics of Cocurrent Two-Phase Downflow in Tubes. Journal of Nuclear Science and Technology, 1979. 16(4): p. 245-255.
[46] Kaichiro, M. and M. Ishii, Flow regime transition criteria for upward two-phase flow in vertical tubes. International Journal of Heat and Mass Transfer, 1984. 27(5): p. 723-737.
[47] Jiang, Y. and K. S. Rezkallah, A Study on Void Fraction in Vertical Co-Current Upward and Downward Two-Phase Gas-Liquid Flow—I: Experimental Results. Chemical Engineering Communications, 1993. 126(1): p. 221-243.
[48] Lowe, D.C. and K. S. Rezkallah, Flow regime identification in microgravity two-phase flows using void fraction signals. International Journal of Multiphase Flow, 1999. 25(3): p. 433-457.
[49] Zhao, L. and K. S. Rezkallah, Gas-liquid flow patterns at microgravity conditions. International Journal of Multiphase Flow, 1993. 19(5): p. 751-763.
[50] Bousman, W. S., J. B. McQuillen, and L.C. Witte, Gas-liquid flow patterns in microgravity: Effects of tube diameter, liquid viscosity and surface tension. International Journal of Multiphase Flow, 1996. 22(6): p. 1035-1053.
[51] Rezkallah, K. S., Weber number based flow-pattern maps for liquid-gas flows at microgravity. International Journal of Multiphase Flow, 1996. 22(6): p. 1265-1270.
[52] Takata, Y., et al. Axial development of local flow parameters in bubbly two-phase flow in normal and microgravity conditions. in 17th International Conference on Nuclear Engineering, ICONE17, July 12, 2009 – July 16, 2009. 2009. Brussels, Belgium: American Society of Mechanical Engineers.
[53] Zhou, Y. L., et al., An Experimental Study on Flow Pattern and Frictional Pressure Drop For Gas-liquid Two-phase Downward Flow in an Inclined Tube. Chinese Journal of Nuclear Science and Engineering, 1996. 16(1): p. 9-17.
[54] Wang, S. Z., et al., Flow Pattern Transition for Vertical Downward Two-phase Flow of High Viscosity Liquid. Journal of Xi’an Jiaotong University, 1998. 32(8): p. 28-30, 56.
[55] Wang, S. Z., Z. H. Lin, and Y. W. Wang, Flow patterns and Its Translation of Two phase flow under the Effect of Liuid Viscosity in the Downward Flow Pipes. Chinese Journal of Applied Mechanics, 1998. 15(3): p. 25-29.
[56] Spedding, P. L. and D. R. Spence, Flow regimes in two-phase gas-liquid flow. International Journal of Multiphase Flow, 1993. 19(2): p. 245-280.
[57] Owen, D.G., An Experimental and Theoretical Analysis of Equilibrium Annular Flows. 1986.
[58] McQuillan, K. W. and P. B. Whalley, Flow patterns in vertical two-phase flow. International Journal of Multiphase Flow, 1985. 11(2): p. 161-175.
[59] Crawford, T.J., C. B. Weinberger, and J. Weisman, Two-phase flow patterns and void fractions in downward flow. Part II: Void fractions and transient flow patterns. International Journal of Multiphase Flow, 1986. 12(2): p. 219-236.
[60] Jassim, E.W., T. A. Newell, and J.C. Chato, Prediction of refrigerant void fraction in horizontal tubes using probabilistic flow regime maps. Experimental Thermal and Fluid Science, 2008. 32(5): p. 1141-1155.
[61] Jassim, E. W. and T. A. Newell, Prediction of two-phase pressure drop and void fraction in microchannels using probabilistic flow regime mapping. International Journal of Heat and Mass Transfer, 2006. 49(15–16): p. 2446-2457.
Chapter 10
[1] L. Cheng, Microscale and Nanoscale Thermal and Fluid Transport Phenomena: Rapidly Developing Research Fields, Int. J. Microscale Nanoscale Thermal and Fluid Transport Phenomena, 1 (2010), pp. 3-6.
[2] J. R. Thome, The new frontier in heat transfer: microscale and nanoscale technologies, Heat Transfer Eng. 27(9) (2006) 1-3.
[3] L. Cheng, D. Mewes, Review of two-phase flow and flow boiling of mixtures in small and mini channels, Int. J. Multiphase Flow 32 (2006) 183-207.
[4] L. Cheng and L. Liu, Analysis and Evaluation of Gas-Liquid Two-Phase Frictional Pressure Drop Prediction Methods for Microscale Channels, Int. J. Microscale Nanoscale Thermal and Fluid Transport Phenomena, Vol. 2, Issue 4 (2011) 259-280.
[5] L. Cheng, H. Zou, Evaluation of Flow Boiling Heat Transfer Correlations with Experimental Data of R134a, R22, R410A and R245fa in Microscale Channels, Int. J. Microscale Nanoscale Thermal and Fluid Transport Phenomena Vol.1, Issue 4 (2010) 363-380.
[6] L. Cheng, Fundamental issues of critical heat flux phenomena during flow boiling in microscale-channels and nucleate pool boiling in confined spaces, Heat Transfer Eng. 34 (2013) 1011-1043.
[7] L. Cheng, Critical heat flux in microscale channels and confined spaces: A review on experimental studies and prediction methods, Russian J. General Chemistry Vol. 82 (2012) 2116-2131.
[8] J. R. Thome, Boiling in microchannels: a review of experiment and theory, Int. J. Heat Fluid Flow 25 (2004) 128-139.
[9] L. Cheng, G. Ribatski, J. R. Thome, Gas-liquid two-phase flow patterns and flow pattern maps: fundamentals and applications, ASME Appl. Mech. Rev. 61 (2008) 050802-1-050802-28.
[10] L. Cheng, J.R. Thome, Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: preliminary analysis and performance comparison, Appl. Therm. Eng. 29 (2009) 2426-2432.
[11] L. Cheng, D. Mewes, A. Luke, Boiling phenomena with surfactants and polymeric additives: a state-of-the-art review, Int. J. Heat Mass Transfer 50 (2007) 2744-2771.
[12] L. Cheng, E. P. Bandarra Filho, J. R. Thome, Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges, J. Nanosci. Nanotech. 8 (2008) 3315-3332.
[13] L. Cheng, L. Liu, Boiling and two phase flow phenomena of refrigerant-based nanofluids: Fundamentals, applications and challenges, Int. J. Refrigeration 36 (2013) 421-446.
[14] L. Cheng, Nanofluid heat transfer technologies, Recent Patents Eng. 3(1) (2009) 1-7.
[15] L. Liu, L. Cheng, Effect of a polymer additive on heat transfer and pressure drop behaviors of upward air-water flow in an inclined smooth circular tube, Heat Transfer Eng. 34 (13) (2013) 1099-1111.
[16] X. Zhang, L. Liu, L. Cheng, Q. Guo and N. Zhang, Experimental study on heat transfer and pressure drop characteristics of air-water two-phase flow with the effect of polyacrylamide additive in a horizontal smooth circular tube, Int. J. Heat Mass Transfer 58 (2013) 427-440.
[17] S. P. Jang, S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett. 84 (2004) 219-246.
[18] S. Lee, S.U.S. Choi, S. Li, J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer 121 (1999) 280-289.
[19] J. A. Eastman, S.U.S. Choi, S. Li, W. Yu and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett.
78 (2001) 718–720.
[20] T. K. Hong, H.-S. Yang, C. J. Choi, Study of the enhanced thermal conductivity of Fe nanafluids, J. Appl. Phys. 97 (6) (2005) 1-4.
[21] S. K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer 125 (2003) 567-574.
[22] J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus and Z.F. Ren, Superplastic single-walled carbon nanotubes, Nature
439 (2006) 281.
[23] J. Hone, M. Whitney and A. Zettl, Thermal conductivity of single-walled carbon nanotubes, Synth. Met.
103 (1999) 2498–2499.
[24] S. Berber, Y. K. Kwon and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett.
84 (2000) 4613–4616.
[25] S.U.S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett.
79 (2001) 2252–2254.
[26] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, Carbon nanotube composites for thermal management, Appl. Phys. Lett.
80 (2002) 2767–2769.
[27] H. Xie, H. Lee, W. Youn and M. Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, J. Appl. Phys.
94 (2003) 4967–4971.
[28] M. S. Liu, M. C. C. Lin, I. T. Huang and C. C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids, Int. Comm. Heat Mass Transfer
32 (2005) 1202–1210.
[29] Y. Ding, H. Alias, D. Wen and R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes, Int. J. Heat Mass Transfer
49 (2005) 240–250.
[30] S. K. Das, N. Putra, W. Roetzel, Pool boiling characteristics of nanofluids, Int. J. Heat Mass Transfer 46 (2003) 851-862.
[31] S. K. Das, N. Putra, W. Roetzel, Pool boiling characteristics of nanofluids on horizontal narrow tubes, Int. J. Multiphase Flow 29 (2003) 1237-1247.
[32] I. C. Bang and S. H. Chang, Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool, Int. J. Heat Mass Transfer
48 (2005) 2407–2419.
[33] P. Vassallo, R. Kumar and S. D’Amico, Pool boiling heat transfer experiments in silica-water nano-fluids, Int. J. Heat Mass Transfer
47 (2004) 407–411.
[34] S. M. You, J. H. Kim and K. H. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett.
83 (2003) 3374–3376.
[35] H. Kim, J. Kim, M. H. Kim, Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids, Int. J. Heat Mass Transfer 49 (2006) 5070-5074.
[36] K. J. Park, D. Jung, Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning, Energ. Buildings 39 (2007) 1061-1064.
[37] S. Khandekar, Y. M. Joshi, B. Mehta, Thermal performance of closed two-phase thermosyphon using nanofluids, Int. J. Therm. Sci. 47 (2008) 659-667.
[38] E. V. Timofeeva, D. S. Smith, W. Yu, D.M. France, D. Singh, J.L. Routbort, Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids, Nanotechnol. 21 (2010) 215703.
[39] K. B. Rana, A. K. Rajvanshi, G. D. Agrawal, A visualization study of flow boiling heat transfer with nanofluids, J. Vis. 16 (2013) 133-143.
[40] K. Henderson, Y.-G Park, L. Liu, A.M. Jacobi, Flow boiling heat transfer of R-134a-based nanofluids in a horizontal tube, Int. J. Heat Mass Transfer 53 (2010) 944-951.
[41] T. I. Kim, W. J. Chang, S. H. Chang, Flow boiling CHF enhancement using Al2O3 nanofluid and an Al2O3 nanoparticle deposited tube, Int. J. Heat Mass Transfer 54 (2011) 2021-2025.
[42] K. J. Park, D. Jung, S.E. Shim, Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes, Int. J. Multiphase Flow 35 (2009) 525-532.
[43] J. Lee, I. Mudawar, Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, Int. J. Heat Mass Transfer 50 (2007) 452-463.
[44] S. Vafaei, D. Wen, Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel, J. Heat Transfer 132 (2010) 1-7.
[45] S. Vafaei, D. Wen, Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles, J, Nanoparticle Res.13 (2011) 1063-1073.
[46] H. S. Ahn, M. H. Kim, The effect of micro/nanoscale structures on CHF enhancement, Nucl. Eng. Technol. 43 (2011) 205-216.
[47] H. S. Ahn, S. H. Kang, M. H. Kim, Visualized effect of alumina nanoparticles surface deposition on water flow boiling heat transfer, Exp. Therm. Fluid Sci. 37 (2012) 154-163.
[48] S. W. Lee, S. D. Park, S. Kang, S. M. Kim, H. Seo, D.W. Lee and I.C. Bang, Critical heat flux enhancement in flow boiling of Al2O3 and SiC nanofluids under low pressure and low flow conditions, Nucl. Eng. Technol. 44 (2012) 429-436.
[49] S. J. Kim, T. McKrell, J. Buongiorno, L. W. Hu, Experimental study of flow critical heat flux in alumina-water, zinc-oxide-water, and diamond-water nanofluids, J. Heat Transfer 131 (4) (2009) 1-7.
[50] S. J. Kim, T. McKrell, J. Buongiorno, L. W. Hu, Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nucl. Eng. Des. 240 (2010) 1186-1194.
[51] H. S. Ahn, H. Kim, H. Jo, S. Kang, W. Chang, M.H. Kim, Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, Int. J. Multiphase Flow 36 (2010) 375-384.
[52] H. S. Ahn, S. Kang, H. Jo, H. Kim, M. H. Kim, Visualization study of the effects of nanoparticles surface deposition on convective flow boiling CHF from a short heated wall, Int. J. Multiphase Flow 37 (2011) 215-228.
[53] M. Boudouh, H. L. Gualous, M. De Labachelerie, Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels, Appl. Therm. Eng. 30 (2010) 2619-2631.
[54] K. Stephen, M. Abdelsalam, Heat transfer correlation for natural convection boiling, Int. J. Heat Mass Transfer23 (1980) 73-87.
[55] J. H. Lienhard, V. K. Dhir, Peak pool boiling heat-flux measurements on finite horizontal flat plates, ASME J. Heat Transfer 95 (1973), 477-482.
[56] N. Kattan, J. R. Thome, D. Favrat, Flow boiling in horizontal tubes: Part 3. heat transfer model based on flow pattern, ASME J. Heat Transfer 120 (1998) 156-165.
[57] L. Wojtan, R. Revellin, J. R. Thome, Investigation of critical heat flux in single, uniformly heated microchannels, Exp. Therm. Fluid Sci. 30 (2006) 765-774.
Chapter 11
[1] F. Parras, M. Bosser, D. Milan, et al., Heat transfer in pressurized water reactor components most often subject to thermal shock, Nuclear Technology 47(1980) 125-151.
[2] S. Chapuliot, C. Gourdina, T. Payenb, et al., Hydro-thermal-mechanical analysis of thermal fatigue in a mixing tee, Nuclear Engineering and Design 235 (2005) 575-596.
[3] O. Braillard, Y. Jarny, G. Balmigere, Thermal load determination in the mixing tee impacted by a turbulent flow generated by two fluids at large gap of temperature, Proc. 13th International Conference on Nuclear Engineering, Beijing, China, 2008.
[4] O. Braillard, P. Quemere, V. Lorch, Thermal fatigue in the mixing tees impacted by turbulent flows at large gap of temperature: the FATHER experiment and the numerical simulation, Proc. 15th international Conference on Nuclear Engineering. Nagoya, Japan, 2007.
[5] Fissolo, A. Forestier, S. Chapuliot, et al., Advances in thermal fatigue investigations performed in CEA for French PWR piping, Proc. 3rd International Conference on Fatigue of Reactor Components, Seville, Spain, 2004, pp. 49-51
[6] F. Curtit, INTHERPOL thermal fatigue test, NEA/CSNI/R, Proc. 3rd International Conference on Fatigue of Reactor Components, Seville, Spain, 2004, pp.47-49.
[7] E. Paffumi, K.F. Nilsson, N. Taylor, et al., Crack Initiation, Propagation, and Arrest in 316L Model Pipe Components under Thermal Fatigue, Journal of ASTM International 5 (2005) 1-18.
[8] K. Calonius,J. Solin, Case study on thermal fatigue potential in a T-Joint, Proc. 3rd International Conference on Fatigue of Reactor Components, Seville, Spain, 2004, pp.37-39.
[9] L. Wolf, W. Häfner, K. Fischer, et al., Application of engineering and multi-dimensional finite difference codes to HDR thermal mixing experiments TEMB, Nuclear Engineering and Design 108 (1988) 137–165.
[10] L. Wolf, U. Schygulla, W. Haeffner, et al., Results of thermal mixing tests at the HDR-facility and comparison with best-estimate and simple codes, Nuclear Engineering and Design 99 (1985) 287–304.
[11] W. Häfner, L. Wolf, Derivation of mixing parameters from the HDR-thermal mixing experiments, Int. J. Pressure and Vessel Piping 33 (1988) 41–57.
[12] T. G. Theofanous, Cool down aspects of the TMI-2 accident, Nuclear Engineering and Design 105 (1988) 373–391.
[13] B. Chexal, J. Chao, R. Nickell, et al., Simple mixing model for pressurized thermal shock applications, Nuclear Engineering and Design 74 (1983) 193–197.
[14] K. Y. Choi, H. S. Park, S. Cho, et al., Experimental simulation of a direct vessel injection line break of the APR1400 with the ATLAS, Nuclear Engineering and Design 41 (2009) 655–676.
[15] D. W. Lee, H. C. No, H. G. Kim, et al., An experimental study of thermal hydraulic phenomena in the downcomer with a direct vessel injection system of APR1400 during the LBLOCA reflood phase, J. Nuclear and Science Technology 41 (2004) 440–447.
[16] S. H. Yoon, G. Jong, K. Y. Suh, Direct vessel inclined injection system for reduction of emergency core coolant direct bypass in advanced reactors, Nuclear Engineering and Design 236 (2006) 2329–2342.
[17] D. H. Lu, H. J. Wang, J. Chen, et al., Flow and heat transfer experiment in a RPV with direct safety injection, Nuclear Engineering and Design 261 (2013) 212– 224.
Chapter 12
[1] L. Cheng, L. Liu, D. Mewes, Drag reduction with surfactants and polymeric additives in multiphase flow, In: Advs. Multiphase Flow Heat Transfer (Cheng, L., Mewes, D., Ed.) ¤ (2012) 149-174.
[2] L. Cheng, D. Mewes, A. Luke, Boiling phenomena with surfactants and polymeric additives: a state-of-the-art review, Int. J. Heat Mass Transfer 50 (2007) 2744-2771.
[3] L. Cheng, E. P. Bandarra Filho, J.R. Thome, Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges, J. Nanosci. Nanotech. 8 (2008) 3315-3332.
[4] L. Cheng, L. Liu, Boiling and two phase flow phenomena of refrigerant-based nanofluids: Fundamentals, applications and challenges, Int. J. Refrigeration 36 (2013) 421-446.
[5] L. Cheng, Nanofluid heat transfer technologies, Recent Patents Eng. 3(1) (2009) 1-7.
[6] L. Liu, L. Cheng, Effect of a polymer additive on heat transfer and pressure drop behaviors of upward air-water flow in an inclined smooth circular tube, Heat Transfer Eng. 34 (13) (2013) 1099-1111.
[7] X. Zhang, L. Liu, L. Cheng, Q. Guo and N. Zhang, Experimental study on heat transfer and pressure drop characteristics of air-water two-phase flow with the effect of polyacrylamide additive in a horizontal smooth circular Tube, Int. J. Heat Mass Transfer 58 (2013) 427-440.
[8] B. A. Toms, Some observation on the flow of linear polymer solution through straight tube at large Reynolds number, In: Proc. 1st Int. Congr. Rheology, North Holland, Amsterdam, vol. 2 (1948) pp. 135-141.
[9] P.S. Virk, Drag reduction fundamentals. AIChE J. 21 (1975) 625-656.
[10] G. C. Liaw, J. L. Zakin, G. K. Patterson, Effect of molecular characteristics of polymer on drag reduction, AIChE J. 17 (1971) 391-397.
[11] L. Cheng, T. Chen, Flow boiling heat transfer in a vertical spirally internally ribbed tube, Heat Mass Transfer 37 (1) (2001) 229-236.
[12] L. Cheng, T. Chen, Study of flow boiling heat transfer in a tube with axial microgrooves, Exp. Heat Transfer 14 (1) (2001) 59-73.
[13] L. Cheng, T. Chen, Enhanced heat transfer characteristics of upward flow boiling of kerosene in a vertical spirally internally ribbed tube, Chem. Eng. Tech. 29 (10) (2006) 1233-1241.
[14] L. Cheng, T. Chen, Study of single phase flow heat transfer and friction pressure drop in a spirally internally ribbed tube, Chem. Eng. Tech. 29 (5) (2006) 588-595.
[15] L. Cheng, T. Chen, Study of vapor liquid two-phase frictional pressure arop in a vertical heated spirally internally ribbed tube, Chem. Eng. Sci. 62 (2007) 783-792.
[16] L. Cheng, D. Mewes, Review of two-phase flow and flow boiling of mixtures in small and mini channels, Int. J. Multiphase Flow 32 (2006) 183-207.
[17] L. Cheng, G. Ribatski, L. Wojtan, J. R. Thome, New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, Int. J. Heat Mass Transfer 49 (2006) 4082-4094.
[18] L. Cheng, G. Ribatski, J. R. Thome, Gas-liquid two-phase flow patterns and flow pattern maps: fundamentals and applications, ASME Appl. Mech. Rev. 61 (2008) 050802.
[19] J. Moreno Quibén, L. Cheng, R. J. da Silva Lima, J. R. Thome, Flow boiling in horizontal flattened tubes: Part I Two-phase frictional pressure drop results and model, Int. J. Heat Mass Transfer 52 (2009) 3634-3644.
[20] J. Moreno Quibén, L. Cheng, R.J. da Silva Lima, J.R. Thome, Flow boiling in horizontal flattened tubes: Part II Flow boiling heat transfer results and model, Int. J. Heat Mass Transfer 52 (2009) 3645-3653.
[21] B. Lu, X. Li, J. L. Zakin, Y. Talmon, A non-viscoelastic drag reducing cationic surfactant system, J. Non-Newtonian Fluid Mech. 71 (1997) 59-72.
[22] G. Hetsroni, J. L. Zakin, A. Mosyak, Low-speed streaks in drag-reduced turbulent flow, Phys. Fluids 9 (1997) 2397-2404.
[23] Al-Sarkhi, A. Soleimani, Effect of drag-reducing polymer two-phase gas-liquid flows in a horizontal pipe, Trans. IChemE, Part A 30 (2004) 1583-1588.
[24] R. L. Fernandes, B. A. Fleck, T. R. Heidrick, L. Torres, M. G. Rodriguez, Experimental study of DRA for vertical two-phase annular flow, J. Energy Resour. Technl. 131 (2009) 023002-1-023002-5.
[25] E. J. Greskovich, A.L. Shrier, Drag reduction in two-phase flows, Ind. Eng. Chem. Fundam.10 (1971) 646-648.
[26] C. Kang, R.M. Vancko Jr., A. S. Green, H. Kerr, W. P. Jepson, Effect of drag-reducing agents in multiphase flow pipelines, J. Energy Resour. Technol. 120 (1998) 15-19.
[27] D. Mowla, A. Naderi, Experimental study of drag reduction by a polymeric additive in slug two-phase flow of crude oil and air in horizontal pipes, Chem. Eng. Sci. 61 (2006) 1549-1554.
[28] R. G. Rosehart, D. S. Scott, E. Rhodes, Gas-liquid slug flow with drag-reducing polymer solutions, AIChE J. 18 (1972) 744-750.
[29] Soleimani, A. Al-Sarkhi, J. T. Hanratty, Effect of drag-reducing polymers on pseudo-slugs-interfacial drag and transition to slug flow, Int. J. Multiphase Flow 28 (2002) 1911-1927.
[30] P. L. Spedding, N.P. Hand, A review analysis of the effect of surfactants on two-phase phenomena in horizontal air-water pipe flow, Dev. Chem. Eng. Proc. 5 (1997) 267-279.
[31] N.D. Sylvester, J.P. Brill, Drag reduction in two-phase annular mist flow of air and water, AIChE J. 22 (1976) 615-617.
[32] S. J. Kline, F. A. McClintock, Descriping uncertainties in single-sample experiments. Mechanical Eng. 57 (1953) 3-8.
[33] F. W. Dittus, L. M. K. Boelter, Heat transfer in automobile radiator of the tubular type, Univ. Calif. Publ. Eng. 2 (1930) 443–461.
[34] W.M. Rohsenhow, J.P. Hartnett, E.N. Ganić, Handbook of Heat Transfer Fundamentals (2nd ed.), McGraw–Hill Book Company, 1985.
[35] J. Zhang, R. M. Manglik, Nucleate pool boiling of aqueous polymer solutions on a cylindrical heater, J. Non-Newtonian Fluid Mech. 125 (2005) 185-196.
Chapter 13
[1] Liu, L. J., and Scott, S. L.: “A New Method to Locate Partial Blockages in Subsea Flowlines,” paper SPE 71548, presented at the 2001 SPE Annual Technical Conference and Exhibition, New Orleans, Sept. 30 – Oct. 3.
[2] Chen, X. T., Butler, T., Volk, M., and Brill, J.P.: “Techniques for Measuring Wax Thickness during Single and Multiphase Flow,” paper SPE 38733, presented at the 1997 SPE Annual Technical Conference and Exhibition, San Antonio, Oct. 5-8.
[3] Scott, S. L., and Satterwhite, L.A.: “Evaluation of the Backpressure Technique for Blockage Detection in Gas Flowlines”, Journal of Energy Resources Technology (1998) 120, 27.
[4] Scott, S.L., and Yi, J.: “Flow Testing Methods to Detect and Characterize Partial Blockages in Looped Subsea Flowlines”, Journal of Energy Resources Technology (1999) 121, 154.
[5] Hasan, A. R., Kouba, G. E., and Wang, X.: “Transient Analysis to Locate and Characterize Plugs in Gas Wells,” paper SPE 36553, presented at the 1998 SPE Annual Technical Conference and Exhibition, Denver, Oct. 6-9.
[6] Zhou, J.Y, and Adewumi, M.A.: “Simulation of Transients in Natural Gas Pipelines”, SPE Production and Facilities (1996) 11, 204.
[7] Adewumi, M. A., Eltohami E. S., and Ahmed, W. H.: “Pressure Transients cross Constrictions”, Journal of Energy Resources Technology (2000) 122, 34.
[8] Adewumi, M. A., Eltohami, E. S., and Solaja, A.: “Possible Detection of Multiple Blockages Using Transients”, Journal of Energy Resources Technology (2003) 125, 154.
[9] Vítkovský, J., Stephens, M., Lee, P., Simpson, A., and Lambert, M.: “Leakagea and Blockage Detection via Impulse Response Method”, Pumps, Electromechanical Devices and System Applied to Urban Water Management (2003) 1, 423.
[10] Harten, A.: “High Resolution Schemes for Hyperbolic Conservation Laws”, Journal of Computational Physics (1983) 49, 357.
[11] Zhang, H.Q., Wang, Q., Sarica, C., and Brill, J:“Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics. Part 1. Model Development”, Journal of Energy Resources Technology (2003) 125, 266.
[12] Zhang, H. Q., Wang, Q., Sarica, C., and Brill, J.: “Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics. Part 2. Model Validation,” Journal of Energy Resources Technology (2003) 125, 274.
[13] Bhatia, A. B.: “Ultrasonic Absorption”, Oxford University Press (1967).
Chapter 14
[1] P. Gravensen, J. Branebjerg, O.S. Jensen, “Microfluidics-A review,” J. Micromech. Microeng. 3, (1993), 168-182.
[2] L. Bousse, C. Cohen, T. Nikiforov, A. Chow, A. R. KopffiSill, R. Dubrow, J.W. Parce, “Electrokinetically controlled microfluidic analysis systems,” Annu. Rev. Biophys. Bio-mol. Struct. 29, (2000), 155-181.
[3] P. K. Dasgupta, L. Shaorong, “Electroosmosis: a reliable fluid propulsion system for flow injection analysis,” Anal. Chem.,66, (1994), 1792-1798.
[4] S. Arulanandam, L. Dongqing, “Liquid transport in rectangular microchannels by electro-osmotic pumping Coloids,” Surf. A.,161, (2000), 89-102.
[5] F. F. Reuss, “Charge-induced flow,” Proc. Imp. Soc. Natural. Moscow, 3, (1809), 327-344.
[6] R. F. Probstein, “Physicochemical Hydrodynamics,” second ed., Wiley, New York, 1994.
[7] C. Yang, D. Li, “Analysis of electrokinetic effects on the liquid flow in rectangular microchannels,” Colloids Surf. 143, (1998), 339-353.
[8] L. N. Tao, On some laminar forced-convection problems, ASME J. Heat Transfer, 83, (1961), 466-472.
[9] J. H. Knox, “Thermal effects and band spreading in capillary electro-separation,”Chromatographia,26, (1998), 329-337.
[10] D. Maynes, B. Webb, “Fully developed electro-osmotic heat transfer inmicrochannel,” International Journal of Heat and Mass Transfer 46, (2003), 1359–1369.
[11] D. Maynes, B. Webb, “Fully developed thermal transport in combined pressure and electro-osmotic driven flow in microchannels,” in: Proceedings of the 6th ASME – JSME Thermal Engineering Joint Conference, Paper TED-AJ03-343, 2003.
[12] C. J. Tranter, “Bessel functions with some physical applications,” first ed., Hart Publishing Company, New York City, 1969.
Chapter 15
[1] V. M. Falkner, S. W. Skan, Some approximate solutions of the boundary layer equation, Phil. Mag. 12 (1931) 865-896.
[2] F. M. Hady, I. A. Hassanien, Effect of transverse magnetic field and porosity on the Falkner-Skan flows of a non-Newtonian fluid, Space. Sci., 112 (1985) 381-390.
[3] T. Watanabe, I. Pop, Magnetohydrodynamic free convection flow over a wedge in the presence of a transverse magnetic field, Int. Comm. Heat Mass Transfer, 20 (1993) 871-881.
[4] K. A. Yih, MHD forced convection flow adjacent to a non-isothermal wedge, Int. Comm. Heat Mass Transfer, 26 (1999) 819-827.
[5] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson, Anomalously increased effective thermal conductivities containing copper nanoparticles, Applied Physics Letters, 78 (2001) 718-720.
[6] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, Anomalous thermal conductivity enhancement on nanotube suspensions, Applied Physics Letters, 79 (2001) 2252-2254.
[7] H. B. Keller, Numerical Methods in Boundary Layer Theory, Annual Rev. Fluid Mech., 1978, 10, pp.417-433.
[8] T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer, New York, 1984.
[9] J. C. Hsieh, T. S. Chen, B. F. Armaly, Mixed convection along a nonisothermal vertical plate embedded in a porous medium: the entire regime, Int. J. Heat Mass transfer, 36 (1993) 1819-1825.
[10] R. S. R. Gorla, M. Kumari, Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid: entire regime, J. Nanoengineeering and Nanosystems, 225 (2012) 55-62.