Design and Applications of Gravity Heat Pipes

Junxia Zhang
Yulin University, China

Series: Physics Research and Technology
BISAC: SCI065000

Clear

$0.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

Heat pipe technology, which is a type of heat transfer device using heat pipes, was invented by Grover of the Los Alamos National Laboratory in America in 1963. This technology fully applies the heat conductivity principle and fast heat transfer property of a refrigerant to rapidly transfer the heat of a heating unit to its surroundings through a heat pipe. A heat pipe possesses a higher conductivity heat capacity than any other metal. Heat pipe technology is used in various industries, such as aerospace and the military.

This book introduces the application of a constant-temperature heat pipe in the recovery of the waste heat of semi-coke during low-temperature coal pyrolysis in an internal heating retort furnace. The factors that affect the thermal resistances and overall heat transfer coefficient are calculated and analyzed.

A non-vacuum gravity heat pipe is designed and experimented on. Relative parameters, such as a local condensation heat transfer coefficient, air mole fractions, and air storage capacity in a reservoir mounted below the condensation tube are calculated. A degradation factor method is introduced to determine vapor condensation length, and the effects of air on the performance of the heat pipe are analyzed at various heat loads.
To effectively restrain the effect of air deterioration on vapor condensation, the accumulation of vapor condensation across a horizontal tube is analyzed experimentally. A concept of vapor flowing front is proposed, and the influential factors are discussed according to the interdiffusion flow occurring between vapor and air in dynamic equilibrium. This work describes the applications of gravity heat pipes in various fields, such as solar photoelectric thermal energy generation, energy storage, mine air conditioning, and energy saving of waste boiler heat. This book presents a new leading-edge research in the energy engineering field.

Preface

Nomenclature

Chapter 1. Review of Heat Pipe Technology

Chapter 2. Application of Heat Pipes in Waste Heat Utilization of Semi-Coke

Chapter 3. Application of Non-Vacuum Gravity Heat Pipe

Chapter 4. Experimental Study of Air Accumulation in Vapor Condensation

Chapter 5. Applications of Gravity Heat Pipes

Subject Index

Author Index

Chapter 1

[1] R. S. Gaugler, Heat transfer means, U.S. Patent 2350348, 1942.
[2] G. M. Grover, T. P. Cotter, G. F. Erickson, Structure of very high thermal conductance, J. Appl. Phys 35(10)(1964)3072–3073.
[3] J. Y. Kang, Application and history of heat pipe technique, China special equipment safety 23(1)(2006) 66.
[4] Q. Yao, Design and Application of heat pipe air preheaters, Shanghai: East china university of science and technology (2012) 17–25.
[5] B. H. Ma, Z. S. Lu, Application of heat pipe in mechanical devices, Aviation precision manufacturing technology 43(5)(2007)57–59.
[6] D. D. Xin, The research and application of heat pipe technology on reducing temperature of exhaust gas in power plant, Shenyang: Northeast electricity power university (2012).
[7] H. M. S. Hussein, Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchange, Energ. Convers. Manage 48 (4)(2007) 1266–1272.
[8] H. N. Chaudhry, B. R. Hughes, S. A. Ghani, A review of heat pipe systems for heat recovery and renewable energy applications, Renew. Sust. Energ. Rev 16(4)(2012)2249–2259
[9] Y. Zhao, Development of heat pipe type reactor, Chemical equipment technology 27(4)(2006)27–29.
[10] Y. M. Cheng, Y. Q. Li, H. W. Zheng, et al. Application of superconducting heat pipe in environmental protection and energy conservation, Energy conservation 7(2006) 63–65.
[11] W. Xu, S. J. Chen, Y. He, et al., Advances of application research of heat pipe technique in waste heat recovery, Guangdong Chemical industry 5(2007)11–13.
[12] X. J. Zhao, L. Yu, Cooling technology of electronic equipment in heat pipe, World Sci-Tech R & D 29 (6)(2007)19–23.
[13] E. T. Zhou, B. G. Li, J. Z. Lin, Research of application of heat pipe technology to hydraulics system, Mechine Tool & hydraulics 36(3)(2008)108–110.
[14] F. C. Wan, L. L. Jiang, R. Zuo, Application of heat pipe to flat-plate solar collectors, Energ. Eng 28(200)61–64.
[15] H. Y. Du, Z. Guo, Application of heat pipe in solar water heater, Chemical industry and engineering progress 27(3)(2008)390–393.
[16] Y. B. Liu, X. M. Huang, G. H. Liu, et al., Progress of research of micro heat pipe, Cryogenics & Conductivity 36(2)(2007)39–42.
[17] Y. N. Li, X. W. Fan, C. X. Zhu, Application of heat pipe technology in Air-conditioning system, Journal of Zhongyuan university of technology 18(2)(2007)17–19.
[18] H. Zhao, Numerical analysis of the heat transfer character in the evaporator of loop thermosyphon with high heat flux, Hangzhou: Zhejiang University, 2004.
[19] Q. Mo, J. T. Liang, J. H. Chai, et al., Experimental study of cryogenics loop heat pipe using nitrogen as working fluid, Cryogenics engineering 1(2005)12–16.
[20] H. Zhang, H. Z. Tao, J. Zhuang, “Application of loop heat pipe in medium and low temperature geothermal development.” Proceeding of the interantional conference on renewable energy scale-up development and the third energy technique forum in far-yangtze river triangle area. 2006.
[21] L. Shu, H. Zhang, Thermodynamic analysis of steady state circulation flow condition for an loop oscillating heat pipe, Journal Beijing University of chemical technology 34(6)(2007)41–46.
[22] T. Yan, J. T. Liang, A cryogenic loop heat pipe with actively controllable operating temperature, Journal of Astronautic 9(2010)35–42.
[23] B. Suman, S. De, S. Dasgupta, A model of the capillary limit of a micro heat pipe and prediction of the dry-out length, International Journal of Heat and Fluid Flow 26(3)(2005)
495–505.
[24] J. Li, G. P. Peterson, 3D heat transfer analysis in a loop heat pipe evaporator with a fully saturated wick, Int. J. Heat Mass Transfer 54(1)(2011) 564–574.
[25] H. S. Xue, J. R. Fan, Y. C. Hu, et al., Boiling characteristics of carbon nanotube suspension in gravity asisted thermosyphon, CIESC Journal 57(11)(2006)2562–2567.
[26] H. Ishikawa, T. Nomura, T. Ogushi, et al. Study on heat transfer characteristics of reservoir embedded loop heat pipe (Influence of condenser cooling method on heat transfer characteristics), Heat Transfer - Asian Research 38 (2) (2010)118–133.
[27] C. C. Hsu, S. W. Kang, T. F. Hou, Performance testing of micro loop heat pipes, Tamkang Journal of Science and Engineering 8(2)(2005)123–132.
[28] J. Thayer, S. Semenov, A thermosyphon titanium-water heat pipe design for a lunar surface power system, AIP Conference Proceedings 1103(2009) 51–60.
[29] R. Singh, A. Akbarzadeh, M. Mochizuki. Operational characteristics of the miniature loop heat pipe with non-condensable gases, Int. J. Heat Mass Transfer 53(17-18)(2010)3–10.
[30] Y. Q. Zhu, Study of the condensation heat-exchanger characteristic of a separate-type heat pipe, Journal of Xi’an Shiyou university 5(2000)72–75.
[31] R. S. Tang, A theoretical study of gravity-assisted loop heat pipe solar collector, Kunming: Yunan normal university, 2005.
[32] Y. M. Zhou, Y. F. Wang, X. M. Zhang, et al., A investigation of industiral steel to water gravity heat pipe, Power engineering 12(5)(1992)27–32.
[33] Y. Z. Chen, Y. H. Zhou, X. W. Ding, An investigation of the heat transfer fluctuation characteristics in gravity heat pipe and an exploration of methods or their restraint, Journal of engineering for thermal energy and power 18(4)(1992)334–338.
[34] Z. W. Tang, C. Z. Lian, Z. Y. Jiang, et al., The analysis of the performance of the slug flow in gravity heat pipe, Journal of engineering thermophysics 23(3)(2002)345–347.
[35] J. R. Tao, S. M. Cheng, S. Y. Huang, On the heat transfer of vapor condensation inside siphon heat pipe, CIESC Journal 6(1989)768–773.

Chapter 2

[1] S. Y. Zhao, Production engineering and pollutant control technology on low-temperature pyrolysis of Yulin coal, China Coal 33(4)(2007)58−60.
[2] X. F. Chen, J. Zhao, X. P. Xue, et al., Environmental protection and energy consumption analysis in the production of the SH2007 vertical internally heated retort furnace, Heavy Mach (S2)(2010)133−136.
[3] N. C. Hassam, H. R. Ben, A. G. Saud, A review of heat pipe systems for heat recovery and renewable energy applications, Renew Sust Energy Rev 6(2012)2249−2259.
[4] Y. H. Yan, M. Ahmadzadehtalatapeh, A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics, Appl. Therm. Eng 30(1)(2010)77−84.
[5] T. L. Lin, H. H. Yang, Study on aluminum-ammonium heat pipe heat exchanger used for heat recovery from exhausted air in air-conditioning, Refrig. Air. Cond 11(1)(2011) 62−65.
[6] G. X. Liu, Application of heat pipe boiler to electric stove flue-gas waste heat recovery in Wuhan iron and steel corp, 2011 “Yuxing heating air furnace” The green iron and steel Summit Forum and the metallurgical equipment management experience exchange meeting. May 26, Tangshan, Heibei, China, 2011.
[7] Y. Jin, Y. Liu, Y. Zhang, et al. “Fin heat pipe type coke oven flue gas waste heat recovery device,” Dry quenching coke technology seminar in 2012, September 22-23, Ningxia, Yinchuan, China, 2013.
[8] X. T. Su, Application of heat pipe waste heat boiler to the steel-pipe annealing furnace, Met. Proc 51(2013) 51−53.
[9] Z. G. Yang, Q. Liu, Y. M. Xie, Waste heat recovery with heat pipes in the modern electric arc furnace process, J Univ Sci Tech Beijing 33(10)(2011)56−66.
[10] B. B. Wang, X. Q. Chou, Application of heat pipe and heat exchanger to waste heat recovery of flue gas, Ind. Heat 35(5)(2006)37−41.


[11] S. M. Yang, W. Q. Tao, Heat Transfer. China, Beijin: Higher education press, 2006.


Chapter 3

[1] H. N. Chaudhry, B. R. Hughes, S. A. Ghani, A review of heat pipe systems for heat recovery and renewable energy applications, Renew. Sust. Energ. Rev. 16(4)(2012)2249–2259.
[2] S. Launay, V. Sartre, J. Bonjour, Parametric analysis of loop heat pipe operation: a literature review, Int. J. Therm. Sci. 46(7)(2007)621–636.
[3] X. Yang, Y. Y. Yan, D. Mullen, Recent developments of lightweight, high performance heat pipes, Appl. Therm. Eng. 33–34(1)(2012)1–14.
[4] Y. H. Yan, M. Ahmadzadehtalatapeh, A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics, Appl. Therm. Eng. 30(2-3)(2010)77–84.
[5] J. Zhang, X. Liu, Analysis on heat transfer characteristics of constant temperature heat pipe in waste heat utilization for semi-coke, Heat transfer-Asian research 1(1)(2016)1–13.
[6] J. He, J. Miao, L. Bai, G. Lin, H. Zhang, Effect of non-condensable gas on the operation of a loop heat pipe, Int. J. Heat Mass Transfer 70(3)(2014)449–462.
[7] R. Singh, A. Akbarzadeh, M. Mochizuki, Operational characteristics of the miniature loop heat pipe with non-condensable gases, Int. J. Heat Mass Transfer 53(17–18)(2010) 3471–3482.
[8] J. Huang, L. Wang, J. Shen, C. Liu, Effect of non-condensable gas on the start-up of a gravity loop thermosyphon with gas-liquid separator, Exp. Therm. Fluid. Sci. 72 (2016) 161–170.
[9] P. Prado-Montes, D. Mishkinis, A. Kulakov, A. Torres, I. Pérez-Grande, Effects of non condensable gas in an ammonia
[10] loop heat pipe operating up to 125°C, Appl. Therm. Eng. 66(1–2)(2014)474–484.
[11] J. Huang, J. B. Shen, L. Wang, Experimental investigation of the influence of ethanol on the condensation heat transfer of gravity loop thermosyphon without vacuum, Chin. J. Process. Eng. 16 (4) (2016) 622–628.
[12] S. M. I. Saad, Y. C. Ching, D. Ewing, The transient response of wicked heat pipes with non-condensable gas, Appl. Therm. Eng. 37(2)(2012) 403–411.
[13] J. Ling, Y. Cao, Closed-form analytical solutions for radially rotating miniature high temperature heat pipes including non-condensable gas effects, Int. J. Heat Mass Transfer 43(19)(2000)3661–3671.
[14] Y. Q. Zhu, Study on the condensation heat-exchanger characteristic of a separate-type heat-pipe, Journal of Xi’an Petroleum Institute Natural Science Editor 15(5)(2000)3–10.
[15] J. Huang, J. Zhang, L. Wang, Review of vapor condensation heat and mass transfer in the presence of non-condensable gas, Appl. Therm. Eng. 89 (2015) 469–484.
[16] W. J. Minkowycz, E. M. Sparrow, Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating,variable properties and diffusion, Int. J. Heat Mass Transfer 9(10)(1966)1125–1144.
[17] S. Z. Kuhn, V. E. Schrock, P. F. Peterson, An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube, Nucl. Eng. Des. 177(1–3)(1997)53–69.
[18] S. Oh, S. T. Revankar, Experimental and theoretical investigation of film condensation with non condensable gas, Int. J. Heat Mass Transfer 49(15–16)(2006)2523–2534.
[19] T. J. Liu, Reflux condensation behavior in a U-tube steam generator with or without non-condensable, Nucl. Eng. des. 204(1–3)(2001)221–232.
[20] T. Wu, K. Vierow, Local heat transfer measurements of steam/air mixtures in horizontal condenser tubes, Int. J. Heat Mass Transfer 49(15-16)(2006)2491–2501.
[21] G. Caruso, D. V. D. Maio, A. Naviglio, Film condensation in inclined tubes with noncondensable gases: an experimental study on the local heat transfer coefficient, Int. Commun. Heat Mass 45(1)(2013)1–10.
[22] K. Y. Lee, M. H. Kim, Experimental and empirical study of steam condensation heat transfer with a non-condensable gas in a small-diameter vertical Tube, Nucl. Eng. Des. 238(1)(2008)207–216.
[23] N. K. Maheshwari, D. Saha, R. K. Sinha, M. Aritomi, Investigation on condensation in presence of a noncondensable gas for a wide range of Reynolds number, Nucl. Eng. Des. 227(1)(2004)219–238.
[24] M. K. Groff, S. J. Ormiston, H. M. Soliman, Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes, Int. J. Heat Mass Transfer 50(28)(2007)3899–3912.
[25] V. D. Rao, V. M. Krishna, K. V. Sharma, P. V. J. M. Rao, Convective condensation of vapor in the presence of a non-condensable gas of high concentration in laminar flow in a vertical pipe, Int. J. Heat Mass Transfer 51(25–26)(2008)6090–6201.
[26] H. Y. Li, L. Wang, D. H. Yu, Flow and condensation of vapor with high partial pressure non-condensable gas in a separate heat pipe, J. Univ. Sci. Technol. Beijing 30(3)(2008)293–298.
[27] L. Wang, H. Y. Li, “Research on flow and condensation of vapor with non-condensable gas in an inclined tube”, Proceedings of the 7th ASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, Canada, Jul. 08–12, (3)(2007)667–673.
[28] W. K. Lewis, W. G. Whitman, Principles of gas absorption, Ind. Eng. Chem. 16(12)(1924)1215–1220.
[29] S. M. Yang, W. Q. Tao, Heat transfer, fourth ed., Higher education press, Beijing, 2012.

Chapter 4

[1] J. Huang, J. Zhang, L. Wang, Review of vapor condensation heat and mass transfer in the presence of non-condensable gas, Appl. Therm. Eng. 89(2015)469-484.
[2] U. Gross, Reflux condensation heat transfer inside a closed thermosyphon, Int. J. Heat Mass Transfer 35(2)(1992)279-294.
[3] H. M. Sabir, I. W. Eames, K. O. Suen, The effect of non-condensable gases on the performance of film absorbers in vapor absorption systems, Appl. Therm. Eng. 19(5)(1999)531-541.
[4] J. Ling, Y. Cao, Closed-form analytical solutions for radially rotating miniature high-temperature heat pipes including non-condensable gas effects, Int. J. Heat Mass Transfer 43(19)(2000)3661-3671.
[5] S. M. I. Saad, Y. C. Chan, D. Ewing, The transient response of wicked heat pipes with non-condensable gas, Appl. Therm. Eng. 37(2)(2012) 403-411.
[6] J. He, G. Lin, L. Bai, H. Zhang. Effect of non-condensable gas on the operation of a loop heat pipe, Int. J. Heat Mass Transfer 70(3)(2014)449-462.
[7] P. Prado-Montes, D. Mishkinis, A. Kulakov, A. Torres, I. Pérez-Grande, Effects of non condensable gas in an ammonia loop heat pipe operating up to 125°C, Appl. Therm. Eng. 66(1–2)(2014)474-484.
[8] R. Senjaya, T. Inoue, Effects of non-condensable gas on the performance of oscillating heat pipe, part II: Experimental study, Appl. Therm. Eng. 73(1)(2014)1393-1400.
[9] W. M. Minkowycz, E. M. Sparrow, Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating,variable properties and diffusion, Int. J. Heat Mass Transfer 9(10)(1966)1125-1144.
[10] S. Z. Kuhn, V. E. Schrock, P. F. Peterson, An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube, Nucl. Eng. Des. 177(1-3)(1997)53-69.
[11] S. Oh, S. T. Revankar, Experimental and theoretical investigation of film condensation with non condensable gas, Int. J. Heat Mass Transfer 49(15-16)(2006)2523-2534.
[12] T. Wu, K. Vierow, Local heat transfer measurements of steam/air mixtures in horizontal condenser tubes, Int. J. Heat Mass Transfer 49(15-16)(2006) 2491-2501.
[13] G. Caruso, D. V. D. Maio, A. Naviglio, Film condensation in inclined tubes with noncondensable gases: an experimental study on the local heat transfer coefficient, Int. Commun. Heat Mass Transfer 45(7)(2013) 1-10.
[14] A. Briggs, J. R. Cooper, J. W. Rose, Condensation of R113 on a bank of horizontal tubes in the presence of air, Exp. Therm. Fluid. Sci. 7(2)(1993)255-261.
[15] Z. Zhuang, G. Tang, C. Zhu, Condensation heat transfer characteristics of a horizontal tube bundle with non-condensable gas, J XI’AN JiaoTong Univ 34(7)(2000) 35-38.
[16] D. T. Zhong, J. P. Liu, J. J Yan, Z. J. Zhou, Experimental research of the influence of air in-leakage upon condenser performance, Proceedings of the CSEE 25(4)(2005)152-157.
[17] S. K. Som, S. Chakraborty, Film condensation in presence of non-condensable gases over horizontal tubes with progressively increasing radius of curvature in the direction of gravity, Int. J. Heat Mass Transfer 49(3)(2006)594-600.
[18] C. K. Chen, Y. T. Lin, Turbulent film condensation in the presence of non-condensable gases over a horizontal tube, Int. J. Therm. Sci. 48(9) (2009) 1777-1785.
[19] J. Su, Z. Sun, G. Fan, M. Ding, Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface, Nucl. Eng. Des. 262(2013)201-208.
[20] Z. Zhao, Y. Li, L. Wang, Z. Liu, J. Zheng, Flow and heat transfer characteristics of ambient air condensation on a horizontal cryogenic tube. Cryogenics 62(7)(2014)110-117.
[21] K. Y. Lee, M. H. Kim, Experimental and Empirical Study of Steam Condensation Heat Transfer with a Non-condensable Gas in a Small-diameter Vertical Tube, Nucl. Eng. Des. 238(1)(2008)207-216.
[22] N. K. Maheshwari, D. Saha, R. K. Sinha, M. Aritomi, Investigation on condensation in presence of a noncondensable gas for a wide range of Reynolds number, Nucl. Eng. Des. 227(2)(2004)219–238.
[23] M. K. Groff, S. J. Ormiston, H. M. Soliman, Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes, Int. J. Heat Mass Transfer 50(19)(2007)3899–3912.
[24] V. D. Rao, V. M. Krishna, K. V. Sharma, P. V. J. M. Rao, Convective condensation of vapor in the presence of a non-condensable gas of high concentration in laminar flow in a vertical pipe, Int. J. Heat Mass Transfer 51(25–26)(2008)6090–6101.
[25] G. H. Tang, H. W. Hu, Z. N. Zhuang, W. Q. Tao, Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas, Appl. Therm. Eng. 36(2)(2012)414-425.
[26] X. H. Guan, H. J. Li, Study of heat exchange characteristic of condensing liquid film for gas-vapor mixtures, J. Therm. Sci. Tech. 13(4)(2014)327-333.
[27] V. D. Stevanovic, Z. V. Stosic, U. Stoll, Condensation induced non-condensable accumulation in a non-vented vertical pipe, Int. J. Heat Mass Transfer 48(1)(2005) 83-103.
[28] H. Y. Li, L. Wang, D. H. Yu, Flow and condensation of vapor with high partial pressure non-condensable gas in a separate heat pipe, J. Univ. Sci. Technol. Beijing 30(3)(2008)293–298.
[29] J. Huang, L. Wang, J. Shen, C. Liu, Effect of non-condensable gas on the start-up of a gravity loop thermosyphon with gas-liquid separator, Exp. Therm. Fluid. Sci. 72 (2016) 161–170.
[30] J. L. Yan, Y. Q. Wang, Engineering Thermodynamics, fourth ed., Higher Education Press, Bei Jing, 2006.
[31] S. M. Yang, W. Q. Tao, Heat Transfer, fourth ed., Higher Education Press, Bei Jing, 2012.
[32] Y. Q. Zhou, J. W. Rose, Effect of two-dimensional conduction in the condensate film on laminar film condensation on a horizontal tube with variable wall temperature, Int. J. Heat Mass Transfer 39(15)(1996)3187–3191.
[33] I. G. Shekriladze, V. E. Gomelauri, Theoretical study of laminar film condensation of flowing vapor, Int. J. Heat Mass Transfer 9(1966)581–591.
[34] J. W. Rose, Effect of pressure gradient in forced convection film condensation on a horizontal tube, Int. J. Heat Mass Transfer 27(1)(1984)39–47.
[35] T. Fujii, H. Uehara, C. Kurata, Laminar filmwise condensation of a flowing vapour on a horizontal cylinder, Int. J. Heat Mass Transfer 15(2)(1972)235–246.
[36] W. Nusselt, Die Oberflachenkondensation des Waserdampfes, ZVDI 60(1916)569–575.
[37] S. B. Memory, W. C. Lee, J. W. Rose, Forced convection film condensation on a horizontal tube-effect of surface temperature variation, Int. J. Heat Mass Transfer 36(6)(1993)1671–1676.

Chapter 5

[1] Y. B. Kang, The research on solar gravity heat pipe’s performance and key technology, Qilu: Qilu University of Technology, 2013.
[2] H. T. Wang, H. H. Ding, N. Hu, et al. Analysis of heat transfer performance of solar gravity heat pipe, Cryogenics and superconductivity 41(4)(2013) 79–82.
[3] W. Z. Li, L. M. Qiu, P. Li, Recent research and development of cryogenic heat pipes, Low temperature and special gas 22 (1)(2004)1–6.
[4] Z. D. He, Application of cold storage technology with low temperature heat pipe in civil air defense constructions, Chinese journal of underground space and engineering (2)(1991)103–107.
[5] W. L. Zhao, Z. M. Liu, S. R. Li, Research and development of high temperature heat pipe, Petro-chemical Equipment 34(4)(2005)40–44.
[6] W. Chen, H. Zhang, J. Zhuang, The analysis on the heat transfer performance of solar gravity heat pipe, Energy Research and Utilization (6)(2000)28–31.
[7] Q. Meng, Preliminary experimental study of working fluid selection in molten salt gravity heat pipe, Chemical engineering & Machinery 42 (6)(2015)759–762.
[8] Q. Meng, A preliminary experimental study on start-up behaviour in nitrate gravity heat pipe, CIESC Journal 65 (8)(2014) 2909–2912.
[9] J. R. Zhang, J. F. Wang, Application of corrugated gravity pipe exhaust heat boiler to residual heat utilization in glass furnace, Glass & enamel 35 (4)(2017)2909–2912.
[10] H. Lin, The simulation and analysis of an over-length gravity heat pipe’s extracting geothermal technology, Xi'an: Xi'an Polytechnic University, 2016.

You have not viewed any product yet.