Corneal Collagen Cross-Linking and Femtosecond Laser in Refractive and Cataract Surgery

Hui Sun
Academy of OPTO-Electronics, Chinese Academy of Sciences, Beijing, China

Series: Surgery – Procedures, Complications, and Results
BISAC: MED064000



Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick


Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:



The cornea serves as the gateway into the eye for external images. Maintenance of corneal shapes and transparency is critical for refraction. Small changes in the smoothness of the corneal surface or in the total thickness of the cornea can lead to visual distortion. Recently, however, refractive surgery for the transparent cornea has been introduced. In this procedure, the curvature of the cornea is modified either by cutting the stroma or by laser ablation of normal corneal tissue. Given the clinical efficacy of refractive surgery, it is important to understand the anatomical and physiological structure of the cornea such as corneal collagen cross-linking. Multiple commercial femtosecond lasers have been cleared for use by the US Food and Drug Administration for ophthalmic surgery, including use in creating corneal flaps in LASIK surgery. The newest application of femtosecond lasers in ophthalmology is in cataract surgery. In LASIK surgery, all surgery procedures are done in cornea. In cataract surgery, the cornea is also cut with a femtosecond laser.

Over the last decade, the field of femtosecond eye surgery has expanded rapidly, supporting the advantages of combined high-ablation precision and minimized collateral tissue effects. One of the most promising applications for femtosecond laser eye surgery has been corneal surgery, namely laser in situ keratomileusis (LASIK) surgery, where the high-pressure laser plasma non-thermally dissociates the dense corneal tissue, thereby enabling lamellar cornea procedures with minimized side effects with the subsequent excimer laser shaping the corneal surface. Millions of people worldwide have been patients for LASIK surgery and have benefited from new forms of technology. LASIK surgery includes three parts: wavefront detection, femtosecond laser flap creation, and excimer laser cornea correction. Some parts of this book focus on femtosecond laser-assisted LASIK surgery, including basic research for femtosecond laser eye surgery and tissue imaging. The newest application of femtosecond lasers in ophthalmology is cataract surgery.

Currently, there are a few lasers at or near the point of commercial release, including LenSx (Alcon Laboratories Inc., Fort Worth, Texas), Catalys (Abbott Medical Optics, Santa Ana, California), LensAR (LensAR Inc., Orlando, Florida), Victus (Technolas Perfect Vision and Bausch & Lomb, Rochester, New York), and Femto LDV (Ziemer Ophthalmic Systems AG, Port, Switzerland). All laser systems share a common platform—which includes an anterior-segment imaging system, patient interface, and femtosecond laser to image—to calculate and deliver the laser pulses. Some parts of this book explain the principle of OCT-guided femtosecond laser cataract surgery. The combination of femtosecond laser surgery and OCT imaging simultaneously guides the development of next generation femtosecond surgical lasers in cataract surgery and explores femtosecond laser surgical strategies.


Chapter 1. Corneal Collagen Cross-Linking

Chapter 2. Femtosecond laser in refractive and cataract surgery

Chapter 3. Acknowledgments


“This book gives a deep understanding of new ophthalmic applications which are corneal crosslinking (CXL) and the femtosecond laser surgery. It is a great text book for PhD students or physicians who are interested in basic science. Detailed mechanism of action for both CXL as well as laser physics and tissue processing with ultra-short laser pulses are explained in a fundamental and professional way.” - Professor Holger Lubatschowski, PhD, ROWIAK GmbH, Hanover, Germany

“In this book, Professor Hui Sun gives a comprehensive review on corneal collagen cross-linking, femtosecond laser assisted LASIK surgery, and femtosecond-laser-assisted cataract surgery. A particular emphasis is given to elasticity measurement related to collagen cross-linking, safety about femtosecond laser flap creation, and new applications of femtosecond in cataract surgery. This book is an invaluable tool to those who are interested in LASIK surgery or femtosecond-laser-assisted cataract surgery.” - Dr. Bo Gu, SPIE fellow and OSA fellow, Founder/CTO, Bos Photonics, U.S.A.

[1] Otori, T. (1967). Electrolyte content of rabbit corneal stroma. Exp Eye Res, 6: 356-367.
[2] Kern, P., Menasche, M., and Robert, L. (1991). Relative rates of biosynthesis of collagen type I, type V and type VI in calf cornea. Biochem J, 274: 615-617.
[3] Komai, Y., Ushiki, T. (1991). The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci, 32: 2244-2258.
[4] Giraud, J. P., Pouliquen, Y., and Offret, G. (1975). Statistical morphometric studies in normal human and rabbit corneal stroma. Exp Eye, Res 21: 221-229.
[5] Hamada, R., Pouliquen, Y., and Giranud, J. P. (1976). Quantitative analysis on the ultrastructure of human fetal cornea. In Yamada E, Mishima S, editors: The structure of the eye III, Tokyo, 1976, Jpn J Ophthalmol, 49-62.
[6] Hamada, R., Giraud, J. P., and Graf, B. (1972). Analytical and statistical study of the lamellae, keratocytes and collagen fibrils of the central region of the normal human cornea. (light and electron microscopy). Arch Ophtalmol Rev Gen Ophtalmol, 32: 563-570.
[7] Iozzo, R. V. (1998). Matrix proteoglycans: from molecular design to cellular function. Amm Rev Biochem, 67: 609-652.
[8] Ueda, A., Nishida, T. and Otori, T. (1987). Electron-microscopic studies on the presence of gap junctions between corneal fibroblasts in rabbits. Cell Tissue Res, 249: 473-475.
[9] Roth, S., and Freund, I. (1980). Coherent Optical Harmonic Generation in Rat-tail. Opt. Commun, 33:292-296.
[10] Roth, S., and Freund, I. (1979). Second harmonic generation in collagen. Journal of Chemical Physics, 70(04):1637–1643.
[11] Fukada, E. (1971). Piezoelectric phenomena in biological polymers. British Chemical Engineering, 16(2-3):231-&.
[12] Kleinman, D. A. (1962). Second harmonic generation of light. Physical Review, 128:1761–1775.
[13] Denk,W., Strickler,J. H., and Webb, W. W. (1990). Two-Photon laser scanning fluorescence microscope. Science, 248: 73-76.
[14] Han, M., Bindewald-Wittichc, A., Holzc, F., Snyderb, S., Giesed, G., Sun, H., Schiazz, O. L., Agopov, M., Niemza, M. H., and Bille, J. F. (2006). Confocal and two-photon excited autofluorescence imaging of human retinal pigment epithelial cells. Journal of Biomedical Optics, 11: 010501.
[15] Chen, J. X., Jia, Y. K., Zheng, G. F., and Xie, X. S. (2002). Laser-scanning coherent anti-Stocks Raman scattering microscope and applications to cell biology. Biophys. J, 83: 502-509.
[16] Patterson, G. H., and Piston, D. W. (2000). Photobleaching in two-photon excitation microscope. Biophys. J, 78: 2159-2162.
[17] Wang, Y. Y., Han, M., Sun, H., Bille, J. F., and Ren, Q. S. (2005). Second harmonic generation microscopy imaging of cornea after femtosecond laser intrastromal ablation. Acta Laser Biology Sinica, 14(5): 321-326.
[18] Hochheimer, B. F. (1982). Second harmonic light generation in the rabbit cornea. Appl. Opt., 21:1516-1518.
[19] Sun, H., Kurtz, R. M., and Juhasz, T. (2012). Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy. Journal of Biomedical Optics, 17 (8): 081441.
[20] Han, M., Zickler, L., Giese, G., et al. (2004). Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation. Journal of Biomedical Optics, 9(4): 760-766.
[21] Sun, H., Han, M., Niemz, M. H., and Bille, J. F. (2007). Femtosecond laser corneal ablation threshold : dependence on tissue depth and laser pulse width. Lasers in Surgery and Medicine, 39: 654-658.
[22] Stoller, P., Kim, B. M., Rubenchik, A. M., et al. (2002). Polarization dependent optical second harmonic imaging of a rat tail tendon. Journal of Biomedical Optics, 7: 205-214.
[23] Yeh, A. T., Nassif, N., Zoumi, A., and Tromberg, B. J. (2002). Selective corneal imaging using combined second harmonic generation and two photon excited fluorescence. Opt. Lett, 27:2082-2084.
[24] Jester, J. V., Winkler, M., Jester, B. E., et al. (2010). Evaluating corneal collagen organization using high resoulution nonlinear optical macroscopy. Eye & Contact Lens, 36(5): 260-264.
[25] Winkler, M., Kriling, S., Nien C. J., et al. (2010). Nonlinear optical macroscopic assessment of 3 D corneal collagen organization and axial biomechanics. Investigative Ophthalmology & Visual Science, 52(12): 8818-8827.
[26] Winkler, M., Jester, B. E., Nien C. J., et al. (2010). High resolution macroscopy (HRMac) of the eye using nonlinear optical imaging. Proc. of SPIE, 7589: 758906.
[27] Daxer, A., Misof, K., Grabner, B., et al. (1998). Collagen fibrils in the human corneal stroma: structure and aging. Investigative Ophthalmology & Visual Science, 39: 644-648.
[28] Sun, H., Li, X., Kurtz, R. M., and Juhasz, T. (2017). Using laser induced breakdown spectroscopy and acoustic radiation force elasticity microscope to measure the spatial distribution of corneal elasticity. Proc. Of SPIE, 10062: 100620T.

[29] Mikula, E., Hollman, K., Jester, J. V., and Juhasz, T. (2014). Measurement of corneal elasticity with an acoustic radiation force elasticity microscope. Ultrasound in Med. & Biol., 40(7): 1671-1679.
[30] Mikula, E., Jester, J. V., and Juhasz, T. (2016). Measurement of an elasticity map in the human cornea. Investigative Ophthalmology & Visual Science, 57(7): 3282-3286.
[31] Siegman, A. E. Lasers. (1986). University Science Books, Mill Valley, CA.
[32] Treacy, E. B. (1969). Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron, 5: 454-460.
[33] Duarte, F. J., Piper, J. A. (1982). Dispersion theory of multiple prisms beam expanders for pulsed dye lasers. Optics Comm, 43: 303-307.
[34] Fork, R. L., Martinez, O. E., and Gordon, J. P. (1984). Negative dispersion using pairs of prisms. Optics Letters, 9(5): 150-154.
[35] Froehly, C., Colombeau, B., and Vampouille, M. (1981). Shaping and analysis of picosecond light pulses. in Progress of Modern Optics, XX: 115-125.
[36] Martinez, O. E. (1986). Grating and prism compressor in the case of finite beam size. J.Opt.Soc.Am.B, 3: 929-934.
[37] Martinez, O. E., Gordon, J. P., and Fork, R. L. (1984). Negative group velocity dispersion using diffraction. J.Opt.Soc.Am. A, 1: 1003-1006.
[38] Duarte, F. J. (1987). Generalized multiple prism dispersion theory for pulse compression in ultrafast dye lasers. Opt. And Quant. Electr., 19: 223-229.
[39] Petrov, V., Noack, F., Rudolph, W., and Rempel, C. (1988). Intracavity dispersion compensation and extracavity pulse compression using pairs of prisms. Exp. Technik der Physik, 36: 167-173.
[40] Barty, C. P. J., Gordo III, C. L., and Lemoff, B. E. (1994). Multiterawatt 30 fs Ti:sapphire laser system. Optics Lett., 19:1442-1444.
[41] Curley, P. F., Spielmann, C., Brabec, T., et al. (1993). Operation of a fs Ti:sapphire solitary laser in the vicinity of zero group delay dispersion. Opt.Lett., 18: 54-57.
[42] Asaki, M. T., Huang, C. P., Garvey, D., et al. (1993). Generation of 11 fs pulses from a self mode locked Ti:sapphire laser. Opt.Lett., 18: 977-979.
[43] Desbois, J., Gires, F., and Tournois, P. (1973). A new approach to picosecond laser pulse analysis and shaping. IEEE J.Quantum Electron., 9: 213-218.
[44] Duguay, M. A., and Hansen, J. W. (1969). Compression of pulses from a mode-locked He-Ne laser. Appl.Phys.Lett., 14:14-15.
[45] Heppner, J., and Kuhl, J. (1985). Intra cavity chirp compensation in a colliding pulse mode-locked laser using thin-film interferometers. Appl.Phys.Lett., 47:453-455.
[46] Fittinghoff, D. N., Walker, B. C., Squier, J. A., et al. (1998). Dispersion Considerations in Ultrafast CPA Systems. IEEE journal of selected topics in quantum electronics, 4(2): 658-663.
[47] Diels, J. C., and Rudolph, W. (1996). Ultrashort Laser Pulse Phenomena. Optics and Photonics.
[48] New, G. H. C. (1972). Mode locking of quasi continuous lasers. Optics Comm., 6: 188-193.
[49] New, G. H. C. (1974). Pulse evolution in mode locked quasi continuous lasers. IEEE J.of Quantum Electron., 10:115-124.
[50] Chekalin, S. V., Kryukov, P. G., Matveetz, Yu. A., and Shatherashvili, O. B. (1971). The processes of formation of ultrashort laser pulses. Opto Electronics, 6:249-261.
[51] Liang, J. Z., Grimm, B., Goelz, S., and Bille, J. F. (1994). Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor. J. Opt. Soc. Am. A, 11: 1949-1957.
[52] Mourou, G. (1997). The ultrahigh-peak-power laser: Present and future. Applied Physics B (Lasers and Optics) B, 65(2): 205–211.
[53] Niemz, M. H. (2004). Laser-Tissue Interactions: Fundamentals and Applications. Springer-Verlag Berlin Heidelberg.
[54] Parrish, J. A. and Deutsch, T. F. (1984). Laser photomedicine. IEEE J. Qu. Electron., 20: 1386-1396.
[55] Srinivasan, R. and Mayne-Banton, V, (1982). Self-developing photoetching of poly (ethylene terephthalate) films by far-ultraviolet excimer laser radiation. Appl. Phys. Lett., 41: 576-578.
[56] Teng, P. Nishilka, N. S. Anderson, R. R. and Deutsch, T. F. (1987). Acoustic studies of the role of immersion in plasma mediated laser ablation. IEEE J. Qu. Electron., 23: 1845-1852.
[57] Stern, D. Schoenlein, R. W. Puliafito, C. A. et al. (1989). Corneal ablation by nanosecond, picosend and femtosecond lasers at 532 and 625 nm. Arch. Ophthalmol., 107: 587-592.
[58] Niemz, M. H. Klancnik, E. G. and, J. F. (1991). Plasma mediated ablation of corneal tissue at 1053 nm using a Nd:YLF oscillator/ regenerative amplifier laser. Lasers Surg. Med., 11: 426-431.
[59] Puliafito, C. A. and Steinert, R. F. (1984). Short-pulsed Nd:YAG laser microsurgery of the eye: biophycisal considerations. IEEE J. Qu. Electron., 20: 1442-1448.
[60] Aron, R. D. Aron, J. Griesemann, J. and Thyzel, R. (1980). Use of the neodym-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report. J. Am. Intraocul. Implant Soc., 6: 352-354.
[61] Krasnov, MM. (1973). Laserpuncture of anterior chamber angle in glaucoma. Am. J. Ophthalmol., 75: 674-678.
[62] Aron, R. D. Aron, J. Griesemann, J. and Thyzel, R. (1980). Use of the neodym-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report. J. Am. Intraocul. Implant Soc., 6: 352-354.
[63] Fankhauser, F Roussel, P Steffen, J. et al. (1981). Clinical studies on the efficiency of high power laser radiation upon some structures of the anterior segment of the eye. Int. Ophthalmol., 3: 129-139.
[64] Niemz, M. H. (1994). Investigation and spectral analysis of the plasma-induced ablation mechanism of dental hydroxyapatite. Appl. Phys. B., 58: 273-281.
[65] Bille, J. F., H. Harner, C. F., and Loesel, F. (2002). New Frontiers in Vision and Aberration-Free Refractive Surgery. Springer Press, Heidelberg, Germany.
[66] Babcock, H. W. (1953). The possibility of compensating astronomical seeing. Publ. Astron. Soc.Pac, 65: 229-236.
[67] Babcock, H. W. (1990). Adaptive optics revisited. Science, 249: 253-257.
[68] Hardy, J. (1978). Active optics: a new technology for the control of light. Proc. IEEE, 66: 651-697.
[69] Fugate, R. Q., Fried, D. L., Ameer, G. A. et al. (1991). Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star. Nature, 352: 144-146.
[70] Beckers, J. (1993). Adaptive optics for astronomy: principles, performance, and applications. Ann.Rev.Astron.Astrophy, 31: 13-62.
[71] Barraquer, J. I. (1958). Method for cutting lamellar grafts in frozen cornea: new orientation for refractive surgery. Arch Soc Am Oftal Optom, 1: 271-286.
[72] Ruiz, L., and Rowsey J. J. (1988). In situ keratomileusis. Invest Ophthalmol Vis Sci, 29: 392-398.
[73] Hoffman, J. M., Hays, A. K., and Tisone, G. C. (1976). High powered UV noble gas halide lasers. Appl Phys Lett., 28(9): 538-539.
[74] Burnham, R., Djeu, N. (1976). Ultraviolet preionized discharge pumped lasers in XeF, KrF, and ArF. Appl Phys Lett., 29(11): 707-709.
[75] Pallikaris, I. G., Papatzanaki, M. E., Siganos, D. S., and Tsilimbaris, M. K. (1991). A corneal flap technique for laser in situ keratomileusis: human studies. Arch Ophthalmol, 109: 1699-1702.
[76] Wong, R. C., Yu, M., Chan, T. C. et al. (2015). Longitudinal comparison of outcomes after sub-bowman keratomileusis and laser in situ keratomileusis: randomized, double masked study. Am J Ophthalmol, 59: 835-845.
[77] Binder, P. S., Sarayba, M., Ignacio, T., Juhasz, T., Kurtz, R. M. (2008). Characterization of submicrojoule femtosecond laser corneal tissue dissection. J Cataract Refract Surg, 34: 146-152.
[78] Liu, K. Y., Lam, D. S. C. (2001). Direct measurement of microkeratome gap width by electron microscope. J Cataract Refract Surg, 27 : 924-927.
[79] Javaloy, J., Vidal, M. T., Ruiz-Moreno, J. M., Alio, J. L. (2006). Confocal microscopy of disposable and nondisposable heads for the Moria M2 microkeratome. J Refract Surg, 22: 28-33.
[80] Juhasz, T., Loesel, F. H., Kurtz, R. M., Horvath, C., Bille, J. F., Mourou, G. (1999). Corneal refractive surgery with femtosecond lasers. IEEE J Sel Top Quant Electron, 5: 902-910,.
[81] Han, M., Giese, G., Zickler, L., Sun, H., Bille, J. F. (2004). Mini-invasive corneal surgery and imaging with femtosecond lasers. Opt Express, 12: 4275-4281.
[82] Juhasz, T., Djoyan, G., Loesel, F. H., Kurtz, R. M., Horvath, C., Bille, J. F., Mourou, G. (2000). Applications of femtosecond lasers in corneal surgery. Laser Physics, 10: 495-500.
[83] Nordan, L. T., Slade, S. G., Baker, R. N., Suarez, C., Juhasz, T., Kurtz, R. M. (2003). Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series. J Refract Surg, 19: 8-14.
[84] Ratkay-Traub, I., Ferincz, I. E., Juhasz, T., Kurtz, R. M., Krueger, R. R. (2003). First clinical results with the femtosecond neodynuim-glass laser in refractive surgery. J Refract Surg, 19: 94-103.
[85] Terry, M. A., Ousley, P. J., Will, B. (2005). A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography. Cornea, 24: 453-459.
[86] Jonas, J. B. (2004). Corneal endothelial transplantation using femtosecond laser technology. Eye, 18: 657-658.
[87] Price, F. W. Jr., Price, M. O. (2008). Femtosecond laser shaped penetrating keratoplasty: one-year results utilizing a top-hat configuration. Am J Ophthalmol, 145: 210-214.
[88] Lubatschowski, H., Schumacher, S., Wegener, A. et al. (2009). Fs-Lentotomy: presbyopia reversal by generating gliding planes inside the crystalline lens. Klin Monatsbl Augenheilkd, 226: 984-990.
[89] Lubatschowski, H. (2008). Overview of Commercially Available Femtosecond Lasers in Refractive Surgery. J Refract Surg, 24(1): 102-107.
[90] Dishler, J. G. (2002). All laser LASIK: is it what patients have been waiting for. Refractive Eyecare for Ophthalmologists, 6(1): 120-124.
[91] Binder, P. S. (2010). Femtosecond applications for anterior segment surgery. Eye Contact Lens, 36(5): 282-285.
[92] Kymionis, G. D., Kankariya, V. P., Plaka, A. D. et al. (2012). Femtosecond laser technology in corneal refractive surgery: a review. J Refract Surg, 28(12): 912-920.
[93] Sun, H., Mikula, E., Kurtz, R. M., Juhasz, T. (2010). Temperature increase in human cadaver retina during direct illumination by femtosecond laser pulses. J Refract Surg, 26(4): 272-277.
[94] Sun, H., Mikula, E., Kurtz, R. M., Juhasz, T. (2011). Temperature increase in the porcine cadaver iris during direct illumination by femtosecond laser pulses. J Cataract Refract Surg, 37(2): 386-391.
[95] Sun, H., Kurtz, R. M., Juhasz, T. (2011). Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses. J Biomed Opt, 16(10): 108001.
[96] Sun, H., Kurtz, R. M., Juhasz, T. (2012). Finite element model of the temperature increase in excised porcine cadaver iris during direct illumination by femtosecond laser pulses. J Biomed Opt, 17(7): 078001.
[97] Slade, S. G. (2007). The use of the femtosecond laser in the customization of corneal flaps in laser in situ keratomileusis. Curr Opin Ophthalmol, 18:314-317.
[98] Hu, M. Y., McCulley, J. P., Cavanagh, H. D. et al. (2007). Comparison of the corneal response to laser in situ keratomileusis with flap creation using the FS15 and FS30 femtosecond lasers: clinical and confocal microscopy findings. J Cataract Refract Surg. 33: 673-681.
[99] Sarayba, M. A., Ignacio, T. S., Binder, P. S., Tran, D. B. (2007). Comparative study of stromal bed quality by using mechanical, IntraLase femtosecond laser 15- and 30-kHz microkeratomes. Cornea, 26:446-451.
[100] Gnyawali, S. C., Chen,. Y, Wu, F. et al. (2008). Temperature measurement on tissue surface during laser irradiation. Med Biol Eng Comput, 46:159-168.
[101] Schumacher, S., Sander, M., Stolte, A. et al. (2006). Investigation of possible fs-LASIK induced retinal damage. Proc. Of SPIE, 6138: 61381I.
[102] Boettner, E. A., Wolter, J. R. (1962). Transmission of the ocular media. Invest Ophthalmol Vis Sci, 1:776-783.
[103] Le Harzic, R., Bückle, R., Wüllner, C. et al. (2005). Laser safety aspects for refractive eye surgery with femtosecond laser pulses. Medical Laser Application, 20:233-238.
[104] Sander, M., Müller, M., Tetz, M. R. (2008). Possible retina damage potential of the femtosecond laser in situ keratomileusis (fs-LASIK) refractive surgery. Medical Laser Application, 23:39-45.
[105] Sailer, H., Shinoda, K., Blatsios, G. et al. (2007). Investigation of thermal effects of infrared lasers on the rabbit retina: a study in the course of development of an active subretinal prosthesis. Graefes Arch Clin Exp Ophthalmol, 245:1169-1178.

[106] Gabriela, A. S., and Jean-Pierre, L. H. (1999). Simulating and optimizing of argon laser iridectomy: Influence of irradiation duration on the corneal and lens thermal injury. Proc. SPIE, 3564: 101–113.
[107] Nemati, B., Dunn, A., Welch, A. J., and Rylander, H. G. (1998). Optical model for light distribution during transscleral cyslophotoagulation. Appl. Opt., 37(4): 764–771.
[108] Lagendijk, J. J. W. (1982). A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment. Phys. Med. Biol., 27(11): 1301–1311.
[109] Scott, J. A. (1988).A finite element model of heat transport in the human eye. Phys. Med. Biol., 33(2): 227–241.
[110] Scott, J. A. (1988). The computation of temperature rises in the human eye induced by infrared radiation. Phys. Med. Biol., 33(2): 243–257.
[111] Willoughby, C. E., Ponzin, D., Ferrari, S. et al. (2010). Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function-a review. Clin. Exp. Ophthalmol., 38(Suppl. 1): 2–11.
[112] Okuno, T. (1991). Thermal effect of infrared radiation on the eye – a study based on a model. Ann. Occup. Hyg., 25(1): 1–12.
[113] Watts, G. K. (1971). Retinal hazards during laser irradiation of iris. Br. J.Ophthalmol., 55(1): 60–67.
[114] Ooi, E. H., Ang, W. T., andNg, E. Y. K. (2007). Bioheat transfer in the human eye: a boundary element approach. Eng. Anal. Boundary Elem., 31: 494–500.
[115] Geeraets, W. J., Williams, R. C., Chan, G. et al. (1962). The relative absorption of thermal energy in retina and choroid. Invest. Ophthalmol., 1(3): 340–347.
[116] Mainster, M. A., White, T. J., Tips, J. H. and Wilson, P. W. (1970). Retinal temperature increases produced by intense light sources. J. Opt. Soc. Am., 60(2): 264–271.
[117] Amara, E. H. (1995). Numerical investigations on thermal effects of laser ocular media interaction. Int. J. Heat Mass Transfer, 38: 2479–2488.
[118] Gabriela, A. S., and Jean-Pierre, L. H. (1997). Modelling and simulating of argon laser iridectomy based on 3-D finite element method. Influence of laser parameters and pathological eye situation on the temperature history. Proc. SPIE, 3192: 219–232.
[119] Nubile, M., Carpineto, P., Lanzini, M. et al., (2009). Femtosecond laser arcuate keratotomy for the correction of high astigmatism after keratoplasty. Ophthalmology, 116(6): 1083–1092.
[120] Reinstein, D. Z., Archer, T. J., Gobbe, M., and Johnson, N. (2010). Accuracy and reproducibility of artemis central flap thickness and visual outcomes of LASIK with the carl zeiss meditec visumax femtosecond laser and mel 80 excimer laser platforms, J. Refractive Surg., 26(2): 107–119.
[121] Petroll, W. M., Bowman, R. W., Cavanagh, H. D. et al., (2008). Assessment of keratocyte activation following LASIK with flap creation using the IntraLase FS60 laser. J. Refract. Surg., 24(8): 847–849.
[122] Kohnen, T., Klaproth, O. K., Derhartunian, V., and Kook, D. (2010). Results of 308 consecutive femtosecond laser cuts for LASIK. Ophthalmologe, 107(5): 439–445.
[123] Nuzzo, V., Aptel, F., Savoldelli, M. et al., (2009). Hostologic and ultrastructural characterization of corneal femtosecond laser trephination. Cornea, 28(8): 908–913.
[124] Muftuoglu, O., Prasher, P., Chu, C. et al., (2009). Laser in situ keratomileusis for residual refractive errors after apodized diffractive multifocal intraocular lens implantation. J. Cataract Refractive Surg., 35(6): 1063–1071.
[125] Mehta, J. S., Shilbayeh, R., Por, Y. M. et al., (2008). Femtosecond laser creation of donor cornea buttons for Descemet-stripping endothelial keratoplasty. J. Cataract Refractive Surg., 34(11): 1970–1975.
[126] Heichel, J., Hammer, T., Sietmann, R. et al., (2010). Scanning electron microscopic characteristics of lamellar keratotomies using the Femtec femtosecond laser and the Zyoptix XP microkeratome. A comparison of quality. Ophthalmologe, 107(4): 333–340.
[127] Sekundo W, Kunert K, Russmann C et al., “First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six month results”, J Cataract Refract Surg, 34(9), 1513-1520, 2008.
[128] Salomao, M. Q., and. Wilson, S. E. (2010). Femtosecond laser in laser in situ keratomileusis. J. Cataract Refractive Surg., 36(6): 1024–1032.
[129] Farid, M., and Steinert, R. F. (2010). Femtosecond laser-assisted corneal surgery. Curr. Opin. Ophthalmology, 21(4): 288–292.
[130] Binder, P. S. (2004). Flap dimensions created with the intralaser FS laser. J. Cataract Refractive Surg., 30(1): 26–32.
[131] Tran, D. B., Sarayba, M. A., Bor, Z. et al., (2005). Randomized prospective clinical study comparing induced aberrations with intralse and hansatome flap creation in fellow eyes-potential impact on wavefront-guided laser in situ keratomileusis,” J. Cataract Refractive Surg., 31(1): 97–105.
[132] Cain, C. P., Toth, C. A., Noojin, G. D. et al., (2001). Visible lesion threshold dependence on retinal spot size for femtosecond laser pulses. J. Laser Appl., 13(3): 125–131.
[133] Schulmeister, K., Husinsky, J., Seiser, B. et al., (2008). Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range. J. Biomed. Opt., 13(5): 054038.
[134] Denton, M. L., Schuster, K. J., and Rockwell, B. A. (2006). Accurate measure of laser irradiance threshold for near-infrared photo-oxidation with a modified confocal microscope. J. Microsc., 221: 164–171.
[135] Ngoi, B. K.A., Hou, D. X., Koh, L. H.K., and Hoh, S. T. (2005). Femtosecond laser for glaucoma treatment: a study on ablation energy in pig iris. Lasers Med Sci, 19:218–222.
[136] Sturm, R. A. and Larsson, M. (2009). Genetics of human iris color and patterns. Pigm. Cell. Melanoma Res.,22(5): 544–562.
[137] Williams, G. P. (1963). Heat transfer coefficients for natural water surfaces. Proc. Int. Assoc. Sci. Hydrol. IUGG Publ., 62(1): 203–212.
[138] Foster, A., Johnson, G. J. (1990). Magnitude and causes of blindness in the developing workd. Int Ophthalmol, 14(3): 135-140.
[139] Sommer, A., Tielsch, J. M., Katz, J. et al., (1991). Racial differences in the cause specific prevalence of blindness in east baltimore. N Engl J Med, 325(20) : 1412-1417.
[140] Sparrow, J. M., Bron, A. J., Brown, N. A. P. et al., (1986). The Oxford clinical cataract classification and grading system. Int Ophthalmol, 9: 207-215.
[141] West, S. K., Rosenthal, F., Newland, H. S., Taylor, H. R. (1988). Use of photographic techniques to grade nuclear cataracts. Investigative ophthalmology & visual scienc, 29(1): 73-77.
[142] Chylack, L. T., Leske, C. M., Sperduto, R. et al., (1988). Lens opacities classification system. Arch Ophthalmol, 106: 330-334.
[143] Chylack, L. T., Leske, C. M., McCarthy, D. et al., (1989). Lens opacities classification system II (LOCS II). Arch Ophthalmol, 107: 991-997.
[144] Chylack, L. T., Wolfe, J. K., Singer, D. M. et al., (1993). Lens opacities classification system III. Arch Ophthalmol, 111: 831-836.
[145] Roberts, T. V., Lawless, M., Chan, C. C. et al., (2013). Femtosecond laser cataract surgery: technology and clinical practice. Clin Exp Ophthalmol, 41: 180-186.
[146] Lindstrom, R. L. (2011). The future of laser-assisted refractive cataract surgery. Journal of Refractive Surgery, 27: 552-553.
[147] Semmens, J. B., Li, J., Morlet, N. et al., (2003). Treads in cataract surgery and postoperative endophthalmitis in western Australia (1980-1998): the endophthalmitis population study of western australia. Clin Exp Ophthalmol, 31: 213-219.

[148] Eric, J. C., Baratz, K. H., Hodge, D. O. et al., (2007). Incidence of cataract surgery from 1980 through 2004: 25-year population-based study. Journal of Cataract and Refractive Surgery, 33: 1273-1277.
[149] Rieder, S. J. (2000). Current technical development of magnetic resonance imaging. IEEE Engineering in Medicine and Biology Magazine, 19(5): 34-41.
[150] Fercher, A. F., Mengedoht, K., Werner, W. (1988). Eye length measurement by interferometry with partially coherent light. Optics Letters, 13(3): 186-188.
[151] Fercher, A. F., Roth, E. (1986). Ophthalmic laser interferometry. Proc. SPIE, 658: 48-51.
[152] Huang, D., Swanson, E. R., Lin, C. P. et al., (1991). Optical coherence tomography. Science, 254(5035): 1178-1181.
[153] Zysk, A. M., Nguyen, F. T., Oldenburg, A. L. et al., (2007). Optical coherence tomography: a review of clinical development from bench to bedside. Journal of Biomedical Optics, 12(5): 051403.
[154] Fercher, A. F., Hitzenberger, C. K., Drexler, W. et al., (1993). In vivo optical coherence tomography. Am J Ophthalmol, 116(1): 113-114.
[155] Swason, E. A., Izatt, J. A., Hee, M. R. et al., (1993). In vivo retinal imaging by optical coherence tomography. Optics Letters, 18(21): 1864-1866.
[156] Schmitt, J. M. (1999). Optical coherence tomography(OCT): a review. IEEE Journal of Selected Topics in Quantum Electronics, 5(4): 1205-1215.
[157] Hee, M. R., Izatt, J. A., Swanson, E. A. et al., (1995). Optical coherence tomography of the human retina. Arch Ophthalmol, 113: 326-332.
[158] Drexler, W., Morgner, U., Ghanta, R. K. et al., (2001). Ultrahigh resolution ophthalmic optical coherence tomography. Nature Medicine, 7(4): 502-507.
[159] Kaufman, S., Musch, D. C., Belin, M. W. et al., (2004). confocal microscopy a report by the American academy of ophthalmology. Ophthalmology, 111(2): 396-406.
[160] Edward, W., Slawomir, T., Anna, K. N. et al., (2009). Anterior segment imaging: fourier domain optical coherence tomography versus time domain optical coherence tomography. Journal of Cataract and Refract Surgery, 35: 1410-1414.
[161] Li, H., Leung, C. K. S., Wong, L. et al., (2008). Comparative study of central corneal thickness measurement with slit lamp optical coherence tomography and visante optical coherence tomography. Ophthalmology, 115: 796-801,.
[162] Muller, M., Dahmen, G., Porksen, E. et al., (2006). Anterior chamber angle measurement with optical coherence tomography: intraobserver and interobserver variability. Journal of Cataract and Refractive Surgery, 32: 1803-1908.
[163] Fercher, A., Hitzenberger, C. K., Kamp, G. et al., (1995). Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 117(1-2): 43-48.
[164] Wojtkowski, M., Leitgeb, R., Kowalczyk, A. et al., (2002). In vivo human retinal imaging by fourier domain optical coherence tomography. Journal of Biomedical Optics, 7: 457-463.
[165] Wojtkowski, M., Bajraszewski, T., Targowski, P. et al., (2003). A real time in vivo imaging by high speed spectral optical coherence tomography. Optics Letters, 28: 1745-1747.
[166] Swanson, E. A., Huang, D., Hee, M. R. et al., (1992). high speed optical coherence domain reflectometry. Optics Letters, 17(2): 151-153.
[167] Hausler, G., Lindner, M. W. (1998). coherence radar and spectral radar new tools for dermatological diagnosis. Journal of Biomedical Optics, 3(1): 21-31.
[168] Wer, J., Zhao, Y. H., Kulkarni, M. et al., (2003). Optical coherence tomography in ophthalmic applications. Proc. SPIE, 4996: 241-249.
[169] Nagy, Z., Takacs, A., Filkorn, T. et al., (2009). Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg, 25: 1053-1060.
[170] Huetz, W. W., and Eckhardt, H. B. (2001). Photolysis using the Dodick-ARC laser system for cataract surgery. J. Cataract Refractive Surg., 27: 208–212.
[171] Masket, S. et al., (2010). Femtosecond laser assisted cataract incisions architectural stability and reproducibility. J. Cataract Refractive Surg., 36(6): 1048–1049.
[172] Krueger, R. R. et al., (2005). First safety study of femtosecond laser photodisruption in animal lenses tissue morphology and cataractogenesis. J. Cataract Refractive Surg., 31: 2386–2394.
[173] Stachs, O. et al., (2009). Visualization of femtosecond laser pulse induced microincisions inside crystalline lens tissue. J. Cataract Refractive Surg., 35: 1979–1983.
[174] Krueger, R. R. et al., (2001). Experimental increase in accommodative potential after neodymium yttrium aluminum garnet laser photodisruption of paired cadaver lenses. Ophthalmology, 108: 2122–2129.
[175] Nishimoto, H. et al., (2007). New approach for treating vertical strabismus decentered intraocular lenses. J. Cataract Refractive Surg., 33: 993–998.
[176] Lee, D. et al., (2009). Femtosecond laser lamellar ketatoplasty to aid visualization for cataract surgery. J. Refractive Surg., 25: 902–904.
[177] He, L., Sheehy, K., and Culbertson, W. (2011). Femtosecond laser assisted cataract surgery. Curr. Opin. Ophthalmol., 22: 43–52.
[178] Palanker, D. V. et al., (2010). Femtosecond laser assisted cataract surgery with integrated optical coherence tomography. Sci. Transl. Med., 2: 58–85.
[179] Leaming, D. V. (2003). Practice styles and preferences of ASCRS members 2002 survey. J. Cataract Refractive Surg., 29: 1412–1420.
[180] Chris, H. et al., (2012). Femtosecond cataract surgery a review of current literature and the experience from an initial installation. Saudi J. Ophthalmol., 26: 73–78.
[181] Nagy, Z. Z., Mastropasque, L., and Knorz, M. C. (2014). The use of femtosecond lasers in cataract surgery review of the published results with the LenSx system. J. Refractive Surg., 30(11): 730–740.
[182] Donaldson, K. E. et al., (2013). Femtosecond laser assisted cataract surgery. J. Cataract Refractive Surg., 39: 1753–1763.
[183] Rboerts, T. V. et al., (2016). Update and clinical utility of the LenSx femtosecond laser in cataract surgery. Clinical Ophthalmology, 10: 2021-2029.
[184] Alio, J. L. et al., (2014). Femtosecond laser cataract surgery updates on technologies and outcomes. J. Refractive Surg., 30(6): 420–427.
[185] Talamo, J. H. et al., (2013). Optical patient interface in femtosecond laser-assisted cataract surgery: contact corneal applanation versus liquid immersion. J. Cataract Refractive Surg., 39: 501–510.
[186] Bojan, P. et al., (2014). First experience with the new high frequency femtosecond laser system (LDV Z8) for cataract surgery. Clin. Ophthalmol., 8: 2485–2489.
[187] Pajic, B. et al., (2017). Cataract surgery performed by high frequency LDV Z8 femtosecond laser: safety, efficacy, and its physical properties. Sensors, 17: 1492.
[188] Doors, M. et al., (2010). Value of optical coherence tomography for anterior segment surgery. J. Cataract Refractive Surg., 36: 1213–1229.
[189] Kim, H. Y. et al., (2008). Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry. Am. J. Ophthalmol., 145: 228–232.
[190] Abouzeid, H., and Ferrini, W. (2014). Femtosecond laser assisted cataract surgery: a review. Acta Ophthalmol., 92: 597–603.
[191] Chee, S. P. et al., (2010). Anterior segment optical coherence tomography evaluation of the integrity of clear corneal incisions: a comparison between 2.2 mm and 2.65 mm main incisions. Am. J. Ophthalmol., 149: 768–776.
[192] Ernest, P. H. et al., (1991). Relative strength of cataract incisions in cadaver eyes. J. Cataract Refractive Surg., 12: 668–671.
[193] Alio, J. L. et al., (2013). Femtosecond laser cataract incision morphology and corneal higher order aberration analysis. J. Refractive Surg., 29: 590–595.
[194] Nagy, Z. Z. et al., (2014). Complications of femtosecond laser assisted cataract surgery,” J. Cataract Refractive Surg., 40: 20–28.
[195] Sanders, D. R., Higginbotham, R. W., Opatowsky, I. E. et al. (2006). Hyperopic shift in refraction associated with implantation of the single piece collamer intraocular lens. J Cataract Refract Surg, 32:2110-2112.
[196] Marques, F. F., Marques, D. M., Osher, R. H. et al., (2005). Phakic anterior capsular tears during cataract surgery. J Cataract Refract Surg, 32(10): 1638-1642.
[197] Ng, D. T., Rowe, N. A., Francis, I. C. et al., (1998). Intraoperative complications of 1000 phacoemulsification procedures: a prospective study. J Cataract Refract Surg, 24(10): 1390-1395.
[198] Tackman, R. N., Kuri, J. V., Nichamin, L. D. et al., (2011). Anterior capsulotomy with an ultra-short pulse laser. J Cataract Refract Surg, 37: 819-824.
[199] Norrby, S. (2008). Sources of error in intraocular lens power calculation. J Cataract Refract Surg, 34: 368-376.
[200] Friedman, N. J., Palanker, D. V., Schuele, G. et al., (2011). Femtosecond laser capsulotomy. J Cataract Refract Surg, 37: 1189-1198.
[201] Artzen, D., Lundstrom, M., Behndig, A. et al., (2009). Capsule complication during cataract surgery: case control study of preoperative and intraoperative risk factors-Swedish capsule rupture study group report 2. J Cataract Refract Surg, 35: 1688-1693.
[202] Gauba, V., Tsagaris, P., T ossounis, C. et al., (2008). Human reliability analysis of cataract surgery. Arch Ophthalmol, 126: 173-177.
[203] Abell, R. G., Kerr, N. M., Vote, B. J. (2013). Femtosecond laser assisted cataract surgery compared with conventional cataract surgery. Clin Experiment Ophthalmol, 41: 455-462.
[204] Reddy, K. P., Kandulla, J., Auffarth, G. U. (2013). Effectiveness and safety of femtosecond laser assisted lens fragmentation and anterior capsulotomy versus the manual technique in cataract surgery. J Cataract Refract Surg, 39: 1297-1306.
[205] Zhang, J. Y., Wang, R., Chen, B. et al., (2013). Safety evaluation of femtosecond lentotomy on the porcine lens by optical measurement with 50 femtosecond laser pulses. Lasers in Surgery & Medicine, 45: 450-459.

Keywords: cornea; corneal collagen; cross-linking; femtosecond laser; refractive surgery; lens; cataract; cataract surgery.

Audience: The physical scientists who work at femtosecond laser cornea and lens tissue interaction, the scientists who work at OCT detection of cornea and lens, the surgeon who does femtosecond laser assisted LASIK surgery or femtosecond laser cataract surgery should be the potential authors for this special tissue and should be the reader too. In fact, anyone who will take the related surgery should have interest to read this tissue.

You have not viewed any product yet.