## Details

**Table of Contents**

Preface

Notation Conventions

Chapter 1. Time-space Perturbations and Wave-packets

Chapter 2. Conservative Extension of the Quantum Mechanics

Chapter 3. Quantum Field Theory (QFT)

Chapter 4. Interactions: Gauge Fields, External Forces and Boundary Conditions

Chapter 5. Appendix of PART I

References

About the Author

Index

**References**

[1] A.Belayev, M.S.Brown, R.Foadi, and M.T.Frandsen. The technicolor Higgs in the light of LHC data. *arXiv:hep-ph/1309.2097*, 2013.

[2] A.Einstein. The meaning of relativity. *Translation into English by Edwin P.Adams, Princenton University Press*, 1922.

[3] A.Einstein,B.Podolsky, and N.Rosen. Can quantum-mechanical description of physical reality be considered complete? *Phys. Rev. 47 (10)*, pages 777–780, 1935.

[4] A.Fine. Einstein’s interpretations of quantum theory. *Translation of correspondence A.Einstein to W.Heitler, p.262*, 1948.

[5] A.Fine. Locality and the Hardy theorem. in *J. Butterﬁeld and C. Pagonis (eds),From Physics to Philosophy, Cambridge: Cambridge University Press.*, 1999.

[6] A.Ilderton, M.Lavelle, and D.McMullan. Symmetry breaking, conformal geometry and gauge invariance. *Journal of Physics A: Mathematical and Theoretical, 43(31):312002*, 2010.

[7] A.Kosinski. Differentiable manifolds. *Academic Press, Inc., San Diego, CA*, 1992.

[8] A.Noether. Invariante variationsprobleme. *G¨ ottinger Nachrichten, presented by F.Klein at the meeting of 26 July 1918*, pages 235–257, 1918.

[9] A.Proca. Sur la theorie ondulatorie des electrons positifs et negatifs. *J.Phys. Radium 7, 347 (1936); Sur la theorie du position, C.R.Acad. Sci. Paris 202, 1366*, 1936.

[10] A.Sergi and M.Ferrario. Non-Hamiltonian equations of motion with a conserved energy. *Phys.Rev. E 64*, 2001.

[11] A.Unzicker. The Higgs fake: how particle physicists fooled the Nobel commitee. *ISBN: 1492176249*, 2013.

[12] B.Bellazzini, c.Csaki, and J.Serra. Composite higgses. *arXiv:hep-ph/1401.2457*, 2014.

[13] B.Greene. The elegant universe: Superstrings, hidden dimensions, and the quest for the ultimate theory. *Vintage Series, Random House Inc.*, pages 110–111, 2000.

[14] B.Grzadkowski, J.F.Gunion, and M.Toharia. Higgs-radioninterpretation of the LHC data? *arXiv:hep-ph/1202.5017v2*, 2012.

[15] B.L.Van’derWaerden. Sources of quantum mechanics. *North-Holand, Amsterdam*, 1967.

[16] L. Broglie. Recherches sur la theorie des quanta. *Ann. de Phys., 10e serie, t. III (Janvier-Fervier)*, 1925.

[17] B.Sidharth. The thermodynamic universe. *World Scientiﬁc. p. 134. ISBN 9812812342. http://books.google.com/books?id=OUfHR36wSfAC&pg=PA134]*, 2008.

[18] C.Csaki, C.Grojean, H.Murayama, L.Pilo, and J.Terning. Gauge theories on an interval: unitarity without a higgs boson. *Physical Review D,69,5*, 2004.

[19] C.Csaki, C.Grojean, L.Pilo, and J.Terning. Towards a realistic model of Higgsless elektroweak symmetry breaking. *Phys. Rev. Letters, 92,10*, 2004.

[20] C.Csaki, M.L.Graesser, and G.D.Kribs. Radion dynamics and electroweak physics. *Physical Review D,63,6*, 2001.

[21] C.G.Jacobi. Zur theorie del variationensrechnung under der differentalgleichungen. 1937.

[22] C.Liu, Z.Dutton, C.Behroozi, and L.Hau. Observation of coherent optical information storage in an atomic medium using halted light pulses. *Nature 409 (6819)*, pages 490–493, 2001.

[23] C.N.Yang and R.Mills. Conservation of isotopic spin and isotopic gauge invariance. *Physical Review 96 (1)*, pages 191–195, 1954.

[24] D.Bohm. A suggested interpretation of the quantum thory in terms of Hidden Variables. *Physical Revie 85, *1952.

[25] D.C.Brody and E.M.Graefe. Six-dimensional space-time from quaternionic quantum mechanics. *arXiv: 1105.3604v2, 06 December*, pages 1–3, 2011.

[26] D.C.Brody and L.P.Hughston. Theory of quantum space-time. *Proc.R.Soc.London A461 2679, 2005*.

[27] D.Harrison. Complementarity and the Copenhagen interpretation of quantum mechanics. UPSCALE. Dept. of Physics, U. of Toronto. *http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Complementarity/ CompCopen.html., 2002*.

[28] B. Diaz-Pintado and C.Maria. Updating the wave-particle duality. *15th UK and European Meeting on the Foundations of Physics, Leeds, 29-31 March*, 2007.

[29] D.R.Davis. The inverse problem of the calculus of variations in higher space. *Transactions of the American Mathematical Socety, 30,710*, 1928.

[30] D.W.Sciama. On the origin of inertia. *Monthly Notices of the Royal Astronomical Society, Vol.113*, 1953.

[31] E.Adelberger, G.Dvali, and A.Gruzinov. Photon mass bound destroyed by vortices. *Phys.Rev.Lett.98:010402*, 2007.

[32] E.Regis. Who got Einstin’s ofﬁce. *Addison-Wesley Publishing Company,MA,USA*, 1987.

[33] E.Schr¨ odinger. An undulatory theory of the mechanics of atoms and molecules. *Physical Review 28 (6)*, pages 1049–1070, 1926.

[34] F.Englert. Broken symmetry and yang-mills theory. *arXiv:hep-th/0406162v2, Contribution to ’Fifty years of Yang Mills theory’, editor G.’t Hooft, World Scientiﬁc*, 2004.

[35] F.W.Hehl, P. der Heyde, G.D.Kerlick, and J.M.Nester. General relativity with spin and torsion: foundations and prospects. *Rev. Mod. Phys. 48, N0.3*, 1976.

[36] F.W.Warner. Foundations of differentiable manifolds and Lie groups. *Springer, New York*, 1983.

[37] G.F.Torres’delCastillo. Differentiable manifolds-A theoretical physics approach. *Springer Science, New York, NY,USA*, 2010.

[38] G.Perelman. The entropy formula for the Ricci ﬂow and its geometric applications. *arXiv:math.DG/0211159*, 2002.

[39] G.Perelman. Finite extinction time for the solutionsto the ricci ﬂow on certain three-manifolds. *arXiv:math.DG/0307245*, 2003.

[40] G.Perelman. Ricci ﬂow with surgery on three-manifolds. *arXiv:math.DG/0303109*, 2003.

[41] G.S.Ezra. On the statistical mechanics of non-Hamiltonian systems: the generalized Liouville equation, entropy, and time-dependent metrics. *J.Math. Chemistry, Vol.35, No 1*, 2004.

[42] G.’tHooft. Quantum ﬁeld theory for elementary particles: Is quantum ﬁeld theory a theory? *Phys.Rep., Review Section of Physics Letters 104, Nos.2-4*, 1984.

[43] G.’tHooft. The mathematical basis for deterministic quantum mechanics*. arXiv:quant-ph/0604008*, 2006.

[44] G.’tHooft. The emergence of quantum mechanics. *FFP11, Paris, ITP-UU-10/44, Spin-10/37*, 2010.

[45] G.’tHooft. Hilbert space in deterministic theories. *in Proc. of the 3rd Stueckelberg Workshop on Relativistic Field Theory, Cambridge Sci. Publ.*, 2010.

[46] G.’tHooft and M.Veltman. Regularization and renormalization of gauge ﬁelds. *Nuclear Physics B 44: 189*, 1972.

[47] H.A.Kramers. The law of dispersion and Bohr’s theory of spectra. *Phil.Mag., 47*, 1924.

[48] H.Davoudiasl, J.L.Hewett, B.Lillie, and T.G.Rizzo. Warped Higgsles models with ir-brane kinetic terms. *arXiv:hep-ph/0403300*, 2004.

[49] H.Minkowski. Raum und zeit. *Jahresberichte der Deutschen MathematikerVereinigung, transl.F.Lewertoff and V.Petkov, 2012, Minkowski Institute Press, Montreal, CA*, pages 75–88, 1909.

[50] H.Poincare. Sur la dynamique de l’electron. *Rendiconti del Circolo matematico di Palermo 21*, pages 129–176, 1906.

[51] H.Pulte. L’ottocento: matmatica. mechanica analitica. *Enciclopedia, L’ Ottocento Matmatica Meccanica Analitica in Storia della Scienza, Treccani*, 2003.

[52] H.Weyl. Gravitation and electrizit¨ at. *Sitzungsber. Akademie der Wissenschaften Berlin. Englishtranslationin L.O’Raifeartaigh,The dawning of Gauge Theoty, Princenton Univ. Press*, 1918.

[53] H.Weyl. Elektron and gravitation. *I.Z.Phys. 56, 330*, 1929.

[54] H.Yukawa. On the interaction of elementary particles. *Proc. Phys.-Math. Soc., 17*, pages 48–57, 1935.

[55] I.M.Gelfand and N.Y.Vilenkin. Generalized functions. *Vol. IV, Accademic Press, New York*, 1964.

[56] I.Schmelzer. Why the Hamilton operator alone is not enough. *arXiv:0901.3262*, 2009.

[57] J. D. Jackson. Classical electrodynamics. *(3rd ed.). Wiley*, 1998.

[58] J.A.Wheeler. Geons. *Phys. Rev. 97, 511*, 1955.

[59] J.C.Slatter. Quantum theory of matter. *McGraw-Hill Book Company, New York*, 1968.

[60] J.D.Ramshaw. Remarks on non-Hamiltonian statistical mechanics. *Europhys.Lett. 59*, pages 319–323, 2002.

[61] J.Goldstone. Field theories with superconductor solutions. *Nuovo Cimento 19*, pages 154–164, 1961.

[62] J.Goldstone, A.Salam, and S.Weinberg. Broken symmetries. *Phys. Rev., 127*, pages 965–970, 1962.

[63] J.Liouville. Sur la theorie de la variation des constants arbitraires. *J.Math. Pures Appl. 3*, pages 342–349, 1838.

[64] J.L.Lagrange. Mechanique analytique (1788). *reprinted by Gauthler-Villaris, Paris*, 1888.

[65] J.S.Bell. On the Einstein Podolsky Rosen paradox. *Physics 1(3)*, pages 195–200, 1964.

[66] J.W.Gibbs. Elementary principles in statistical mechanics. *Yale University Press, New Haven*, 1902.

[67] K.G.Zloshchastiev. Spontaneous symmetry breaking and mass generation as built-in phenomena in logaritmic nonlinear quantum theory. *arXiv:hep-ph/0912.4139v5*, 2011.

[68] L.Faddeev. An alternative interpretation of the Weiberg-Salam model. *arXiv:0811.3311v2 [hep-th]*, 2008.

[69] L.G.Sapogin and Y.A.Ryabov. New theoretical results about the mass spectrum of elementary particles. *Applied Physics Research, Vol.2, No.1*, 2010.

[70] L.G.Sapogin, Y.A.Ryabov, and V.A.Boichenko. The Unitary Quantum Theory and nwe sources of energy. *Science Publishing Group, New York, ISBN:978-1-94036643-2*, 2015.

[71] L.Hau, S.Harris, Z.Dutton, and C.Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. *Nature 397*, pages 594–598, 1999.

[72] L.Schwartz. Theory of distributions. *Hermann, Paris*, 1950.

[73] L.Smolin. The trouble with physics: The rise of string theory, the fall of a science, and what comes next. *Houghton Mifﬂin. ISBN 978-0-618-55105-7*, 2006.

[74] M.Born. The statistical interpretation of quantum mechanics. *Nobel Lecture, December 11*, 1954.

[75] M.Carena, C.Grojean, M.Kado, and V.Sharma. Status of Higgs boson physics. *The Review of Particle Physics, PDG*, 2013.

[76] M.E.Tuckerman, C.J.Mundy, and M.L.Klein. On the classical statistical mechanics of non-Hamiltonian systems. *Europhys.Lett. 45*, pages 149–155, 1999.

[77] M.Fairbairn and R.Hogan. Elecrtoweak vacuum stability in light of BICEP-2. *Phys. Rev. Lett. 112, and arXiv:hep-ph/1403.6786v3*, 2014.

[78] M.Jammer. Concepts of mass in classical and modern physics. *Harvard University Press*, 1961.

[79] M.Jammer. The conceptul development of quantum mechanics. *McGraw-Hill*, 1966.

[80] M.N.Chernodub, L.Faddeev, and A.J.Niemi. Non-abelian supercurrents and de sitter ground state in electroweak theory. *arXiv:0804.1544v2 [hep-th]*, 2008.

[81] M.Pawlowski and R.Raczka. A uniﬁed conformal model for fundamental interactions without dynamical Higgs ﬁeld. *arXiv:hep-th/9407137v1*,1994.

[82] M.Strassler. Matter and energy: a false dichotomy. *athttp://profmattstrassler.com/articles-and-posts/particle-physics-basics/*, 2012.

[83] N.Bohr. On the quantum theory of line-spectra. *Kgl. Danske Vid. Selsk. Skr., natmath. Afd., 8*, 1918.

[84] N.Bohr, J.A.Wheeler, and W.H.Zurek. Quantum theory and measurement. *Princeton*, pages 9–49, 1983.

[85] J. Neumann. Mathematical foundations of quantum mechanics. *Princeton, Princeton University Press. Translated (1955) by Robert T. Beyer*, 1932.

[86] J. Neumann. Mathematische grundlagen der quantenmechanik. *Springer, Berlin*, 1932.

[87] O.Donati, G.F.Missiroli, and G.Pozzi. An experiment on electron interference. *American Journal of Physics 41*, pages 639–644, 1973.

[88] P.A.M.Dirac. The principles of quantum mechanics. *Fourth Edition, Oxford University Press*, 1958.

[89] P.A.Schilpp. Albert Einstein-philosopher scientist. *2nd ed. New York: Tudor Publishing*, 1951.

[90] P.C.W.Davis and J.Brown. Superstrings, a theory of everithing? *Cambridge University Press, ISBN 0-521-35741-1*, 1988.

[91] R. Penrose and W.Rindler. Spinors and space-time. *vol.1 (Cambridge: Cambridge University Press)*, 1984.

[92] P.Gibs. Is the speed of light constant? *in Carlip, S. Usenet Physics FAQ. University of California, Riverside. http://math.ucr.edu/home/baez/physics/Relativity/SpeedOfLight/speed of light.html*, 1997.

[93] P.Woit. Not even wrong: The failure of string theory and the search for unity in physical law. *Basic Books. ISBN 978-0-465-09275-8*, 2006.

[94] R.A.Treumann, R.Nakamura, and W.Baumjohann. Relativistic transformation of phase-space distributions. *arXiv: 1105.2120v2, 19 Jul*, 2011.

[95] R.Barbieri, A.Pomarol, and R.Rattazzi. Weakly coupled higgsless theories and precision electroweak tests. *arXiv:hep-ph/0310285*,2003.

[96] R.B.Salgado. Visualiing proper-time in special relativity. *arXiv: 0505134v1, 19 May*, 2005.

[97] R.Feynman, R.Leighton, and M.Sands. The Feynman lectures on physics. *Addison Wesley, Reading, Vol. III*, 1965.

[98] R.Hamilton. Three-manifolds with positive Ricci curvature. *Journal of Differential Geometry, vol.17, n.2*, pages 255–306, 1982.

[99] R.M.Santilli. Foundations of theoretical mechanics, Vol. I: The inverse problem in Newtonian mechanics. *Springer-Verlag, Heidelberg-New York*, 1978.

[100] R.M.Santilli. Hadronic mathematics, mechanics and chemistry, Vol. I: Limitations of Einstein’s special and general relativities, quantum mechanics and quantum chemistry. *Publisher: International Academic Press*, 2008.

[101] R.Penrose. The road to reality: a complte guide to the laws of the universe. *Knopf., ISBN 0-679-45443-8*, 2005.

[102] R.P.Feynman. Qed: The strange theory of light and matter. *Princeton University Press, New Jersey*, 1985.

[103] S.Bilson-Thompson, F.Markopoulou, and L.Smolin. Quantum gravity and the standard model. *arXiv:hep-th/0603022v2*,2007.

[104] S.L.Glashow. NOVA- The elegant universe. *PBS.org. Retrieved on 2012-07-11*, 2012.

[105] S.Weinberg. The quantum theory of ﬁelds II, modern applications. *Cambridge University Pres*, 1996.

[106] T.G.Rizzo. Introduction to extra dimensions. *arXiv:hep-ph/1003.1698*, 2010.

[107] T.Masson and J.C.Wallet. A remark on the spontaneous symmetry breaking mechanism in the standard model. *arXiv:1001.1176v1 [hep-th]*, 2010.

[108] V.A.Zorich. Mathematical analisys II. *Springer, Berlin*, 2004.

[109] V.E.Tarasov. Stationary solutions of liouville equations for non-Hamiltonian systems. *Annals of Physics 316, Elsevier*, pages 393–413, 2005.

[110] W.Heisenberg. ¨ Uber der quantentheoretische umdeutung kinematischer und mechanischer beziehungen. *Z.Phys., 33*, 1925.

[111] W.R.Hamilton. On a general method in dynamics (1834). *reprinted in Hamilton’s Collected Woirks, Cambridge University Press*, 1940.

[112] W.Struyve. Gauge invariant accounts of the Higgs mechanism. *Studies in History and Philosophy of Science, Part B 42(4)*, pages 226–236, 2011.

[113] Y.Kametaka. Korteweg-de Vries equation. I. Global existence of smooth solutions. *Proc. Japan Acad., 45*, 1969.

[114] Z.Majkic´. Complex wave packets for elementary particles in the Minkowski 4-dimensional spaces. *Technical Report 04-10, Compet Research, http://zoranmajkic.webs.com*, 2010.

[115] Z.Majkic´. Energy and special relativity effects for wave packets in the Minkowski 4-dimensional spaces. *Technical Report 03-10, Compet Research, http://zoranmajkic.webs.com*, 2010.

[116] Z.Majkic´. Lagrangian for elementary massless particles in the Minkowski 4-dimensional spaces. *Technical Report 05-10, Compet Research, http://zoranmajkic.webs.com*, 2010.

[117] Z.Majkic´. Double-split experiment and wave packets for elementary particles in the Minkowski spaces. *Technical Report 04A-11, Compet Research, http://zoranmajkic.webs.com*, 2011.

[118] Z.Majkic´. Partial differential equations for wave packets in the Minkowski 4-dimensional spaces. *E-Journal Differential Equations and Control Processes, N.1 February 2011, Publisher: Mathematics and Mechanics Faculty of Saint-Petersburg State University, Russia, http://www.math.spbu.ru/diffjournal/pdf/madjkic.pdf*,2011.

[119] Z.Majkic´. Schr¨odinger equation and wave packets for elementary particles in the Minkowski spaces. *E-Journal Differential Equations and Control Processes, N.3 July 2011, Publisher: Mathematics and Mechanics Facultyof Saint-PetersburgState University, Russia, http://www.math.spbu.ru/diffjournal/pdf/madjkic2.pdf*, 2011.

[120] Z.Majkic´. Differential equations for elementary particles: Beyond duality. *LAP LAMBERT Academic Publishing, Saarbr¨ ucken, Germany*, 2013.

[121] Z.Majkic´. Big data integration theory. *Texts in Computer Science, Springer Int. Pub. Co.,Switzerland*, 2014.

All people which works in theoretical Quantum Mechanics and General Relativity (faculties, research centers, professionals, graduate students, Postgraduate researchers, etc..)