Chemometrics: Advances in Applications and Research

$195.00$293.00

Larry D. Crenshaw (Editor)

Series: Analytical Chemistry and Microchemistry
BISAC: SCI013010

Chemometrics is a discipline of chemistry that finds correlation between specific data using mathematical and statistical methods. During any thorough research, the scientists are handling vast amounts of data related to the samples which are being researched. In this type of research, finding the correlation (similarities or differences) between analyzed samples and data is of great importance. In the first chapter, commonly used chemometrics for spectral modeling transfer is examined. The second chapter provides an analytical tool to detect fraud when olive oil is illegally blended with VOs or a ‘legal’ blend is falsely labelled with respect to the botanical nature of the oils mixed and/or the percentage of each oil in the declared mixture. H-NMR spectral data of olive and virgin olive oils and their mixtures with the VOs most commonly used to make blends was analysed by pattern recognition techniques to develop multivariate classification and regression models, which were organised in a decision tree to afford a stepwise strategy for the aimed purposes. The next chapter focuses on a metabolomics approach based on H-NMR fingerprinting and multivariate data analysis for virgin olive oil stability assessments. In the fourth chapter, the authors review unsupervised methods using both principal component analysis (PCA) and hierarchical cluster analysis (HCA). Using these methods, they were able to spot the correlation between the samples and underlying data structures without the potential bias of scientists about the previous knowledge of data samples.

**Order the printed version and SAVE 50% on the e-book with Print+eBook**

Table of Contents

Preface

Chapter 1. Commonly Used Chemometrics for Spectral Modeling Transfer
Yue Huang1 and Xiaoli Chu2
1
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
2Department of Analyticla Research, Sinopec Research Institute of Petroleum Processing, Beijing, China

Chapter 2. 1H-NMR Fingerprinting and Pattern Recognition Stepwise Strategy for Quality and Authenticity Control of Olive Oil
Gabriela E. Viacava1, Blanca Gallo2, Luis A. Berrueta2 and Rosa M. Alonso-Salces3
1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Investigación en Ingeniería en Alimentos (GIIA), INCyTAA, Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina 2Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIAS-IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina

Chapter 3. A Metabolomics Approach Based on 1H-NMR Fingerprinting and Multivariate Data Analysis for Virgin Olive Oil Stability Assessment
Gabriela E. Viacava1, Blanca Gallo2, Luis A. Berrueta2 and Rosa M. Alonso-Salces3
1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Investigación en Ingeniería en Alimentos (GIIA), INCyTAA, Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
2Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
3CONICET, CIAS-IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina

Chapter 4. A Chemometric Study of Chemical Research of Element Accumulation in Mushrooms
Marija V. Dimitrijevć and Dragoljub L. Miladinović
Department of Pharmacy, Faculty of Medicine, University of Niš, Serbia

Chapter 5. Bibliography

Index