Chapter 9. Pyrite in Agriculture: Sustainable Applications for Crop Enhancement


Chinmaya Kumar Das, PhD
Orissa University of Agriculture and Technology, Bhubaneswar, India

Part of the book: Pyrite and Pyrrhotite: Managing the Risks in Construction Materials and New Applications


The development of affordable green interventions using abundantly available and inexpensive earth resources is needed to achieve sustainability in food security. This will help to minimize the expansion of negative environmental footprints, mostly associated with excessive dependency on fertilizers and agrochemicals. In this chapter, an attempt is made to describe the role of a readily available mineral on the Earth’s surface, i.e., pyrite, an iron-sulfide mineral, in sustaining chemoautotrophic life forms from the hydrothermal vent of the deep sea to its emerging applications in the soil test bed, to enhance crop productivity. This would be achieved by modulating the developmental rhythms and metabolomic circuitry of the crop plants without affecting the environmental health. Pyrite is implicated in prebiotic chemistry-mediated evolution and emergence of life, probably by playing a role in electron transfer reactions, energy transductions and informational coupling. Sustainable applications of nano pyrite through seed pretreatment or root priming are implicated in crop growth and yield enhancement in multiple crops including cereals (wheat, rice), pulses (chickpea), oilseed (sesame, mustard), vegetables (spinach, carrot, beetroot, cauliflower, cabbage, tomato), spice (chili, fenugreek), flower (marigold), and fodder (alfalfa). The mechanism of crop enhancement involves fortification of crop plants with elemental sulfur, iron and better pumping of nutrient ions from the soil. Pyrite[1]mediated long term beneficial effects in multiple crop plants are attributed to the generation of traces of H2O2, FeS, elemental sulfur, FeSO4 and Fe2O3 from the reaction between pyrite and water. The generated H2O2 promotes growth in spinach and rice by promoting the higher breakdown of starch and thus boosting germination and growth. These are linked to the secondary chemical messenger role of generated H2O2 in stimulating a molecular signaling pathway called “the brassinosteroid pathway” to help in CO2 assimilation, redox signaling and carbohydrate metabolism. Similarly, root priming or seed pretreatment with pyrite modulated rhizosphere ion dynamics, to modulate root architecture with denser root networks and better root foraging capacity, is ecologically useful in competing for nutrients from the soil. Overall, pyrite can play a role in sustainable enhancement of crop productivity in an ecofriendly manner, with reduced fertilizer consumption and without jeopardizing genetic diversity.

Keywords: iron pyrite, prebiotic chemistry, crop productivity


Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W.,
Rustad, L. and Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems. Bioscience,
48(11) : 921–934.
Aber, J. D., Nadelhoffer, K. J., Steudler, P. and Melillo, J. M. (1989). Nitrogen saturation in northern forest
ecosystems. Bioscience, 39(6) : 378–386.
Ahlberg, E. and Broo, A. E. (1997). Electrochemical reaction mechanisms at pyrite in acidic perchlorate
solutions. Journal of Electrochemical Society, 144 (4) : 1281-1286. 10.1149/1.1837584. Appl Nanosci 8: 1399.
Barba-Espín, G., Hernández, J. A. and Diaz-Vivancos, P. (2012). Role of H2O2 in pea seed germination. Plant
Signaling and Behavior, 7(2) : 193-195.
Benning, L. and Barnes, H. (1998). In situ determination of the stability of iron monosulphides and kinetics of
pyrite formation. Mineralogical Magazine, 62 :151–152.
Benning, L. G., Wilkin, R. T. and Barnes, H. L. (2000). Reaction pathways in the Fe-S system below 100°C.
Chemical Geology, 167 :25–51.
Berner, R. A. (1970). Sedimentary pyrite formation. American Journal of Science, 268 (1) : 1–23.
Berner, R. A. (1984). Sedimentary pyrite formation – An update. Geochim Cosmochim Acta, 48 : 605–615.
Bi, Y., Yuan, Y., Exstrom, C. L., Darveau, S. A. and Huang, J. (2011). Air stable, photosensitive, phase pure
iron pyrite nanocrystal thin films for photovoltaic application. Nano letters, 11(11) : 4953-4957.
Borda, M., Elsetinow, A., Schoonen, M. and Strongin, D. (2001). Pyrite-induced hydrogen peroxide formation
as a driving force in the evolution of photosynthetic organisms on an early Earth. Astrobiology, 1(3) : 283-
288. 10.1089/15311070152757474.
Borda, M. J., Elsetinow, A. R., Strongin, D. R. and Schoonen, M. A. (2003). A mechanism for the production
of hydroxyl radical at surface defect sites on pyrite. Geochimica et Cosmochimica Acta, 67 (5): 935 –
9939. 10.1016/S0016-7037(02)01222-X.
Bowonder, B. (1979) Impact analysis of the green revolution in India. Technological Forecasting and Social
Change, 15(4) :297–313.
Brar, G. S. and Ahuja, K. (1980). Sesame: its culture, genetics, breeding and biochemistry. Annual Review of
Plant Science, Kalyani Publishers, New Delhi.
Breen, A. P. and Murphy, J. A. (1995). Reactions of oxyl radicals with DNA. Free Radical Biology & Medicine,
18 (6) : 1033-1077. 10.1016/0891-5849(94)00209-3.
Budowski, P. (1964). Recent research on sesamin, sesamolin, and related compounds. J Am Oil Chem Soc., 41: 280–285.
Budowski, P. and Markley, K. (1951). The chemical and physiological properties of sesame oil. Chem Rev., 48: 125–151.
Canfield, D. E., Thamdrup, B. and Fleischer, S. (1998). Isotope fractionation and sulfur metabolism by pure
and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol Oceanogr., 43 : 253–264.
Cassman, K. G., Dobermann, A. and Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and
nitrogen management. Ambio., 31(2): 132–140.
Cheeseman, J. M. (2007). Hydrogen peroxide and plant stress : à challenging relationship. Plant Stress, 1: 4–15.
Choudhury, B. (1990). Vegetables. National Book Trust, India. A-5, Green Park, New Delhi-110016, 165.
Cohn, C. A., Borda, M. J. and Schoonen, M. A. (2004). RNA decomposition by pyrite-induced radicals and
possible role of lipids during the emergence of life. Earth and Planetary Science Letters, 225 (3-4) : 271-
278. 10.1016/j.epsl.2004.07.007.
Cohn, C. A., Mueller, S., Wimmer, E., Leifer, N., Greenbaum, S., Strongin, D. R. and Schoonen, M. A. (2006).
Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions, 7(1) : 1-11.
Council, N. R. (1999). Nature’s numbers: expanding the national economic accounts to include the
environment. National Academies Press, Washington, DC.
Cowling, E. and Galloway, J. (2002). Challenges and opportunities facing animal agriculture : optimizing
nitrogen management in the atmosphere and biosphere of the Earth. Journal of Animal Science, 80(E Suppl_2) : E157–E167.
Das, C. K., Srivastava, G., Dubey, A., Verma, S., Saxena, M., Roy, M., Sethy, N. K., Bhargava, K., Singh,
S.K. and Sarkar, S. (2016a). The seed stimulant effect of nano iron pyrite is compromised by nano cerium
oxide : regulation by the trace ionic species generated in the aqueous suspension of iron pyrite. RSC Adv., 6(71) : 67029–67038.
Das, C. K., Srivastava, G., Dubey, A., Roy, M., Jain, S., Sethy, N. K., Saxena, M., Harke, S., Sarkar, S., Misra,
K. and Singh, S. K. (2016b). Nano-iron pyrite seed dressing : à sustainable intervention to reduce fertilizer
consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard,
sesamum) crops. Nanotechnology for Environmental Engineering, 1(1) : 1-12.
Das, C. K., Jangir, H., Kumar, J., Verma, S., Mahapatra, S. S., Philip, D., Srivastava, G. and Das, M., (2018).
Nano-pyrite seed dressing : à sustainable design for NPK equivalent rice production. Nanotechnology for
Environmental Engineering, 3(1), pp. 1-14.
Deepa, M., Sudhakar, P., Nagamadhuri, K. V., Reddy, K. B., Krishna, T. G. and Krishna Vara Prasad, T. N.
(2015). First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture
technique. Applied Nanoscience, 5 : 545-551.
Desai, B. K. and Pujari, B. T. (2014). Sustainable Agriculture : A Vision for Future. New India Publishing
Agency, ISBN 10 : 8189422634, ISBN 13 : 9788189422639.
Downing, J. A., Baker, J. L., Diaz, R. J., Prato, T., Rabalais, N. N. and Zimmerman, R. J. (1999). Gulf of
Mexico hypoxia: land and sea interactions. Task Force Rep. 134 : 44.
Felle, H. H. (2001). PH : Signal and messenger in plant cells. Plant biol., 3 : 577–591.
Finster, K., Liesack, W. and Thamdrup, B. (1998). Elemental sulfur and thiosulfate disproportionation by
Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment.
Appl Environ Microbiol., 64 : 119–125.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T.,
Daily, G. C. and Gibbs, H. K. (2005). Global consequences of land use. Science, 309(5734) : 570–574.
Fukuoka, M. (2001). One-straw revolution: An Introduction to Natural Farming. (Korn, L., Ed.). Other India
Press, Goa, India, 214p. ISBN No : 81-85569-31-2.
Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., Cosby, B. J.
(2003). The nitrogen cascade. AIBS Bull., 53(4) : 341–356.
Gaxiola, R. A., Palmgren, M. G. and Schumacher, K. (2007). Plant proton pumps. FEBS Letters, 581 : 2204–2214.
Gilbert, N. (2012). African agriculture : Dirt poor. Nature, 483: 525–527.
Gomiero, T., Pimentel, D. and Paoletti, M. G. (2011). Is there a need for a more sustainable agriculture? Critical
Reviews in Plant Sciences, 30(1-2):.6-23.
Halliwell, B. and Aruoma, O. I. (1991). DNA damage by oxygen-derived species. Its mechanism and
measurement in mammalian systems. FEBS Letters, 281 (1, 2): 9-19. 10.1016/0014-5793(91)80347-6.
Hinsinger, P., Plassard, C., Tang, C. and Jaillard, B. (2003). Origins of root mediated pH changes in the
rhizosphere and their responses to environmental constraints: A review. Plant Soil, 248: 43–59.
Holmkvist, L., Ferdelman, T. G. and Jørgensen, B. B. (2011). A cryptic sulfur cycle driven by iron in the
methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta, 75: 3581–3599.
Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J. A., Elmgren, R.,
Caraco, N. and Jordan, T. (1996). Regional nitrogen budgets and riverine N & P fluxes for the drainages
to the North Atlantic Ocean: natural and human influences. In : Howart, R. W. (ed.) Nitrogen cycling in
the North Atlantic Ocean and its watersheds. Springer, Berlin : 75–139.
Huber, C. and Wächtershäuser, G. (1998). Peptides by activation of amino acids with CO on (Ni,Fe) S surfaces
: Implications for the origin of life. Science. 281, Iss. 5377 : 670- 672.
Jacobsen, S-E., Sorenen, M., Pedersen, S. M. and Weiner, J. (2013). Feeding the world : genetically modified
crops versus agricultural biodiversity. Agron Sustain Dev., 33(4): 651–662.
Jangir, H., Bharadwaj, A., Srivastava, G. and Das, M. (2020a). Fertilizer-free cultivation of wheat in nutrient deficient soil by treating the seeds with nanopyrite. Nanotechnology for Environmental Engineering, 5(1):1-16.
Jangir, H., Bhardwaj, A. and Das, M. (2020b). Larger root nodules increased Fe, Mo, Mg, P, Ca, Mn, K in the
roots and higher yield in chickpea grown from nano FeS2 pre-treated seeds: emulating nitrogenase.
Applied Nanoscience, 10(2): 445-454.
Jangir, H., Das, C. K., Kumar, J., Mahapatra, S. S., Srivastava, G., Bhardwaj, A. and Das, M. (2019a). Nano
pyrite (FeS2) root priming enhances chilli and marigold production in nutrients-deficient soil: A nano
strategy for fertiliser tuning. Applied Nanoscience, 9(3): 327-340.
Jangir, H., Bhardwaj, A., Srivastava, G. and Das, M. (2019b). Nano pyrite driven root foraging increases
production of the heavy feeders, viz., cauliflower, cabbage and tomato in nutrient deficient soil with no
fertiliser application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(3), id.035007.
Jangir, H., Kaler, B., Srivastava, G. and Das, M. (2022). Nano pyrite root treatment in conjunction with soil
application of goat droppings boost onion yield and anthocyanin and flavonoids content: A nano-organic
farming model towards sustainability. (under review for publication).
Jeyasubramanian, K., Thoppey, U. U. G., Hikku, G. S., Selvakumar, N., Subramia, A. and Krishnamoorthy, K.
(2016). Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide
nanoparticles. RSC Advances, 6: 15451–15459.
Jiang, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Mao, W. H., Shi, K., Chen, Z. X. and Yu, J. Q. (2012). Hydrogen
peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and
carbohydrate metabolism in Cucumis sativus. Journal of Zhejiang University Science B, 13(10): 811-823.
Joshi, A., Kaur, S., Singh, P., Dharamvir, K., Nayyar, H. and Verma, G. (2018). Tracking multi-walled carbon
nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian
(human) cell viability. Applied Nanoscience, 8(6):.1399-1414.
Joshi, M. V. (1999). Green-revolution and its impacts. APH Publishing Corporation, New Delhi, India.
Ju, X. T., Kou, C. L., Christie, P., Dou, Z. X. and Zhang, F. S. (2007). Changes in the soil environment from
excessive application of fertilizers and manures to two contrasting intensive cropping systems on the
North China Plain. Environ Pollut., 145(2): 497–506.
Kahrl, F., Li, Y., Su, Y., Tennigkeit, T., Wilkes, A. and Xu, J. (2010). Green house gas emissions from nitrogen
fertilizer use in China. Environmental Science and Policy, 13(8): 688-694.
Khan, M. A., Sarker, J. C., Lee, S., Mangham, S. C. and Manasreh, M. O. (2014). Synthesis, characterization
and processing of cubic iron pyrite nanocrystals in a photovoltaic cell. Materials Chemistry and Physics,
148(3): 1022-1028.
Kush, P., Mehra, N. C. and Deka, S. (2013). Synthesis, characterization and optical properties of novel
hierarchical flower like pyrite FeS2 particles for low cost photovoltaics. Science of Advanced Materials,
5(7): 788-795.
Li, G., Kronzucker, H. J. and Shi, W. (2016). The response of the root apex in plant adaptation to iron
heterogeneity in soil. Frontiers in Plant Science., 7: 344.
Li, X., Yang, Y., Gao, B. and Zhang, M. (2015). Stimulation of peanut seedling development and growth by
zero-valent iron nanoparticles at low concentrations. PLoS One, 10(4): e0122884.
Lomnitski, L., Bergman, M., Nyska, A., Ben-Shaul, V. and Grossman, S. (2003). Composition, efficacy, and
safety of spinach extracts. Nutrition and Cancer, 46(2): 222-231.
Lynch, J. P. (1995). Root architecture and plant productivity. Plant Physiol., 109: 7–13.
Lynch, J. P. and Brown, K. (2012). New roots for agriculture-exploiting the root phenome. Philos Trans R Soc
Lond B Biol Sci., 367: 1598–1604.
Lynch, J. P. and St. Clair, S. B. (2004). Mineral stress: the missing link in understanding how global climate
change will affect plants in real world soils. Field Crops Research, 90: 101–115.
Macpherson, H. A. and Stoldt, C. R. (2012). Iron pyrite nanocubes: size and shape considerations for
photovoltaic application. Acs Nano, 6(10): 8940-8949.
MacRae, R. J., Hill, S. B., Henning, J. and Mehuys, G. R. (1989). Agricultural Science and Sustainable
Agriculture : A Review of the Existing Scientific Barriers to Sustainable Food Production and Potential
Solutions. Biol. Agric. Hortic., 6 : 173–219.
Mangham, S. C., Khan, M. A., Benamara, M. and Manasreh, M. O. (2013). Synthesis of iron pyrite nanocrystals
utilizing trioctylphosphine oxide (TOPO) for photovoltaic devices. Materials Letters, 97 : 144-147.
Manna, M. C. and Ganguly, T. K. (2000). Rockphosphate and pyrite in compost technology: their role in
improving crop productivity and soil quality. Fertiliser News, 45(7) : 41-48.
Marshall-Bowman, K., Ohara, S., Sverjensky, D. A., Hazen, R. M. and Cleaves, H. J. (2010). Catalytic peptide
hydrolysis by mineral surface : Implications for prebiotic chemistry. Geochimica et Cosmochimica Acta,
74(20) :5852-5861.
Matson, P. A., Naylor, R. and Ortiz-Monasterio, I. (1998). Integration of environmental, agronomic, and
economic aspects of fertilizer management. Science, 280(5360) : 112–115.
McLaughlin, L. (1927). Utilization of the Calcium of Spinach. Journal of Biological Chemistry, 74 : 455-62.
Mitsch, W. J. (1993). Ecological engineering : à cooperative role with the planetary life-support systems.
Environ Sci Technol., 27 : 438–445.
Murphy, R. and Strongin, D. R. (2009). Surface reactivity of pyrite and related sulfides. Surface Science
Reports, 64(1) : 1-45.
Naik, G. R. (1988). Use of low grade iron pyrite as an amendement for calcareous alkaline soil to improve
sugarcane productivity in India. Journal of Plant Nutrition, 11(6-11) : 1451-1458.
Nair, N. N., Schreiner, E. and Marx, D. (2006). Glycine at the Pyrite− Water interface : the role of surface
defects. Journal of the American Chemical Society, 128(42) : 13815-13826.
Nakamura, S. and Yamamoto, A. (2001). Electrodeposition of pyrite (FeS2) thin films for photovoltaic cells.
Solar Energy Materials and Solar Cells, 65(1-4) : 79-85.
Namanu, P., Jayalakshmi, M. and Bhat, K. U. (2015). Low temperature synthesis of iron pyrite nanorods for
photovoltaic applications. Journal of Materials Science : Materials in Electronics, 26(11) : 8534-8539.
Normile, D. (2006). Consortium aims to supercharge rice photosynthesis. American Association for the
Advancement of Science, Washington, DC.
Nosengo, N. (2003). Fertilized to death. Nature Publishing Group, London.
Ort, D. R., Merchant, S. S., Alric, J., Barkan, A., Blankenship, R. E., Bock, R., Croce, R., Hanson, M. R.,
Hibberd, J. M. and Long, S. P. (2015). Redesigning photosynthesis to sustainably meet global food and
bioenergy demand. Proc Natl Acad Sci., 112(28) : 8529–8536.
Palchoudhury, S., Jungjohann, K. L., Weerasena, L., Arabshahi, A., Gharge, U., Albattah, A., Miller, J., Patel,
K. and Holler, R. A. (2018). Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle
fertilizer. RSC Advances, 8 : 24075–24083.
Pandey, K. D., Shukla, P. N., Giri, D. D. and Kashyap, A. K. (2005). Cyanobacteria in alkaline soil and the
effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biology and Fertility of
Soils, 41(6) : 451-457.
Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D. and Balestrazzi, A. (2015). Seed
priming : state of the art and new perspectives. Plant Cell Rep., 34 : 1281–1293.
Pathak, N., Rai, A. K., Kumari, R., Thapa, A. and Bhat, K. V. (2014). Sesame crop: an underexploited oilseed
holds tremendous potential for enhanced food value. Agric Sci., 5 : 519–529.
Picard, A., Gartman, A., Clarke, D. R. and Girguis, P. R. (2018). Sulfate-reducing bacteria influence the
nucleation and growth of mackinawite and greigite. Geochim Cosmochim Acta, 220 : 367–384.
Pingali, P. L. (2012). Green revolution: impacts, limits, and the path ahead. PNAS, 109(31) : 12302–12308.
Pontes-Buarque, M., Tessis, A. C., Bonapace, J. A., Monte, M., Souza-Barros, F. D. and Vieyra, A. (2000).
Surface charges and interfaces : implications for mineral roles in prebiotic chemistry. Anais da Academia
Brasileira de Ciências, 72(3) : 317-322.
Prianischnikow, D. (1929). Zur Frage nach der Ammoniakern ahrung von hoheren Pflanzen [On the question
of the ammonia nutrition of higher plants]. Biochim Zeitschrift, 227 : 341–349.
Pryor, W. A. (1988). Why is the hydroxyl radical the only radical that commonly adds to DNA ? Hypothesis:
it has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of
production that can occur near DNA. Free Radical Biology & Medicine, 4 : 219-223. 10.1016/0891-5849(88)90043-3.
Puthussery, J., Seefeld, S., Berry, N., Gibbs, M. and Law, M. (2011). Colloidal iron pyrite (FeS2) nanocrystal
inks for thin-film photovoltaics. Journal of the American Chemical Society, 133(4) : 716-719.
Reganold, J. P., Papendick, R. I. and Parr, J. F. (1990). Sustainable agriculture. Scientific American, 262(6) :112-121.
Rickard, D. (1969). The microbiological formation of iron sulphides. Stockholm Contributions to Geology, 20 : 49–66.
Rickard, D. and Luther, G. W. (1997). Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide
in aqueous solutions between 25 and 125°C : The mechanism. Geochim Cosmochim Acta, 61 : 135–147.
Rickard, D. and Luther, G. W. (2007). Chemistry of iron sulfides. Chemical Reviews, 107 : 514–562.
Sanchez-Arenillas, M. and Mateo-Marti, E. (2016). Pyrite surface environment drives molecular adsorption :
cystine on pyrite (100) investigated by X-ray photoemission spectroscopy and low energy electron
diffraction. Physical Chemistry Chemical Physics, 18(39) :27219-27225.
Schoonen, M. A. A. and Barnes, H. L. (1991). Reactions forming pyrite and marcasite from solution. 1.
Nucleation of FeS2 below 100°C. Geochim Cosmochim Acta, 55 : 1495–1504.
Schreiner, E., Nair, N. N., Wittekindt, C. and Marx, D. (2011). Peptide synthesis in aqueous environments: the
role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides. Journal
of the American Chemical Society, 133(21) : 8216-8226.
Schwietzer, C. H. (1960). Spinach and black pudding, two especially iron-rich foods. Medizinische Klinik, 55 : 1271-1275.
Shankramma, K., Yallappa, S., Shivanna, M. B. and Manjanna, J. (2016) Fe2O3 magnetic nanoparticles to
enhance S. lycopersicum (tomato) plant growth and their biomineralization. Applied Nanoscience, 6 : 983-990.
Singh, B. and Sekhon, G. S. (1976). Nitrate pollution of groundwater from nitrogen fertilizers and animal
wastes in the Punjab, India. Agric Environ., 3(1) : 57–67.
Singh, J. S., Pandey, V. C., Singh, D. P. and Singh, R. P. (2010). Influence of pyrite and farmyard manure on
population dynamics of soil methanotroph and rice yield in saline rain-fed paddy field. Agriculture,
Ecosystems & Environment, 139(1-2) : 74-79.
Smil, V. (1999a). Detonator of the population explosion. Nature, 400(6743) : 415.
Smil, V. (1999b). Nitrogen in crop production : an account of global flows. Glob Biogeochem Cycles, 13(2): 647–662.
Smil, V. (2000). Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ, 25(1) : 53–88.
Sorrell, B. K. and Orr, P. T. (1993). H+
exchange and nutrient uptake by roots of the emergent hydrophytes,
Cyperus involucratus Rottb. Eleocharis sphacelata R. Br. and Juncus ingens N. A. Wakef. New Phytol., 125(1) : 85–92.
Srivastava, G., Das, A., Kusurkar, T. S., Roy, M., Airan, S., Sharma, R. K., Singh, S. K., Sarkar, S. and Das,
M. (2014a). Iron pyrite, a potential photovoltaic material, increases plant biomass upon seed pretreatment.
Mater Express, 4(1) :23–31.
Srivastava, G., Das, C. K., Das, A., Singh, S. K., Roy, M., Kim, H., Sethy, N., Kumar, A., Sharma, R. K.,
Singh, S. K. and Philip, D. (2014b). Seed treatment with iron pyrite (FeS2) nanoparticles increases the
production of spinach. RSC Advances, 4(102): 58495-58504.
Stirling, A., Rozgonyi, T., Krack, M. and Bernasconi, M. (2016). Prebiotic NH3 formation : Insights from
simulations. Inorganic Chemistry, 55(4) :1934-1939.
Subba Rao, N. S. (1988). Biofertilisers in agriculture. Oxford and IBH Pub. Co., New Delhi, India.
Tang, G., Qin, J., Dolnikowski, G. G., Russell, R. M. and Grusak, M. A. (2005). Spinach or carrots can supply
significant amounts of vitamin A as assessed by feeding with intrinsically deuterated vegetables. The
American Journal of Clinical Nutrition, 82(4) : 821-828.
Thamdrup, B. O., Finster, K., Hansen, J. W. and Bak, F. (1993). Bacterial disproportionation of elemental
sulfur coupled to chemical reduction of iron or manganese. Applied and Environmental Microbiology,
59(1): 101-108.
Thiel, J., Byrne, J. M., Kappler, A., Schink, B. and Pester, M. (2019). Pyrite formation from FeS and H2S is
mediated through microbial redox activity. Proceedings of the National Academy of Sciences, 116(14) : 6897-6902.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. and Polasky, S. (2002). Agricultural sustainability and
intensive production practices. Nature, 418(6898) : 671.
Tilman, D., Fargione, J., Wolff, B., D’antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H.,
Simberloff, D. and Swackhamer, D. (2001). Forecasting agriculturally driven global environmental
change. Science, 292(5515): 281–284.
Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor Cendejas, L. M., Villegas, J., Carreto Montoya, L. and Borjas
Garcia, S. E. (2014). Interfacing carbon nanotubes (CNT) with plants : enhancement of growth, water and
ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience, 4 : 577-591.
Vinod, K. and Heuer, S. (2012). Approaches towards nitrogen-and phosphorus-efficient rice. AoB Plants, pls028.
Vitousek, P. M., Mooney, H. A., Lubchenco, J. and Melillo, J. M. (1997). Human domination of Earth’s
ecosystems. Science, 277(5325): 494–499.
Volokh, A. A., Gorbunov, A. V., Gundorina, S. F., Revich, B. A., Frontasyeva, M. V. and Pal, C. S. (1990).
Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment. Sci Total
Environ., 95: 141–148.
Von Caemmerer, S. and Furbank, R. T. (2016). Strategies for improving C-4 photosynthesis. Curr Opin Plant
Biol., 31 : 125–134.
Von Caemmerer, S., Ghannoum, O. and Furbank, R. T. (2017). C4 photosynthesis: 50 years of discovery and
innovation. J Exp Bot., 68(2): 97.
Von Caemmerer, S., Quick, W. P. and Furbank, R. T. (2012). The development of C-4 rice: current progress
and future challenges. Science, 336(6089) : 1671–1672.
Wächtershäuser, G. (1988). Pyrite formation, the first energy source for life : a hypothesis. System Appl
Microbiol., 10 : 207-210.
Wilkin, R. T. and Barnes, H. L. (1996). Pyrite formation by reactions of iron monosulfides with dissolved
inorganic and organic sulfur species. Geochim Cosmochim Acta, 60 :4167–4179.
Xian, H., Zhu, J., Tan, W., Tang, H., Liu, P., Zhu, R., Liang, X., Wei, J., He, H. and Teng, H. H. (2019). The
mechanism of defect induced hydroxylation on pyrite surfaces and implications for hydroxyl radical
generation in prebiotic chemistry. Geochimica et Cosmochimica Acta, 244 : 163-172.
Yadav, K. K. and Chhipa, B. R. (2007). Effect of FYM, gypsum and iron pyrites on fertility status of soil and
yield of wheat irrigated with high RSC water. Journal of the Indian Society of Soil Science, 55(3): 324-329.
Zhang, Y., Hu, J., Law, M. and Wu, R. (2012). Effect of surface stoichiometry on the band gap of the pyrite
FeS2 (100) surface. Phys Rev B, 85(8) : 085314


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!

See some of our Authors and Editors