Chapter 9. Alkaloids as Botanical Pesticides for Plants Protection


Himani Karakoti, Sonu Kumar Mahawer, Tanuja Kabdal, Ravendra Kumar and Om Prakash
Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand, India

Part of the book: The Essential Guide to Alkaloids


Alkaloids are the most basic, naturally occurring nitrogen-containing organic compounds frequently found in plants, animals and microbes. These are the important secondary metabolites known to have a number of therapeutic and pharmacological properties. Several studies have focused on the wide range of pharmaceutical potential of alkaloids from various plants. In recent years, research regarding the pesticidal properties of alkaloids has gradually increased as they are safer for the environment, easily degradable and have low toxicity as compared to chemical pesticides. This book chapter is mainly focusing on the different properties of alkaloids as a botanical pesticide to prevent insect pests and diseases.

Keywords: alkaloids, insecticide, antimicrobial, nematicidal


Abookleesh, F. L., Al-Anzi, B. S., & Ullah, A. (2022). Potential Antiviral Action of
Alkaloids. Molecules, 27(3), 903.
Akbar, M., Javaid, A., Ahmed, E., Javed, T., & Clary, J. (2014). Holadysenterine, a natural
herbicidal constituent from Drechslera australiensis for management of Rumex
dentatus. Journal of agricultural and food chemistry, 62(2), 368-372.
Babaali, D., Roeb, J., Zaidat, S., Reguige, B., Hammache, M., & Hallmann, J. (2021).
Nematicidal activity of the tropane alkaloids hyoscyamine and scopolamine against
the root-knot nematode Meloidogyne incognita. Nematology, 23(7), 761-769.
Badmus, A., & Afolayan, A. (2012). Allelopathic potential of Arctotis arctotoides (Lf) O.
Hoffm aqueous extracts on the germination and seedling growth of some vegetables.
African Journal of Biotechnology, 11(47), 10711-10716.
Chen, J., Yang, M. L., Zeng, J., & Gao, K. (2014). New broad-spectrum antibacterial and
antifungal alkaloids from Kopsia hainanensis. Phytochemistry Letters, 7, 156-160.
Chowański, S., Adamski, Z., Marciniak, P., Rosiński, G., Büyükgüzel, E., Büyükgüzel, K.,
& Bufo, S. A. (2016). A review of bioinsecticidal activity of Solanaceae alkaloids.
Toxins, 8(3), 60.
Colbach, N., Darmency, H., Fernier, A., Granger, S., Le Corre, V., & Messéan, A. (2017).
Simulating changes in cropping practices in conventional and glyphosate-resistant
maize. II. Weed impacts on crop production and biodiversity. Environmental Science
and Pollution Research, 24(14), 13121-13135.
Deng, Y., Yu, Y., Luo, H., Zhang, M., Qin, X., & Li, L. (2011). Antimicrobial activity of
extract and two alkaloids from traditional Chinese medicinal plant Stephania
dielsiana. Food Chemistry, 124(4), 1556-1560.
Duraipandiyan, V., Baskar, K., Muthu, C., Ignacimuthu, S., & Al-Dhabi, N. A. (2015).
Bioefficacy of flindersine against Helicoverpa armigera Hübner, Spodoptera litura
Fabricius, Anopheles stephensis Liston. and Culex quinquefasciatus Say. Brazilian
Archives of Biology and Technology, 58, 595-604.
Elfikrie, N., Ho, Y. B., Zaidon, S. Z., Juahir, H., & Tan, E. S. S. (2020). Occurrence of
pesticides in surface water, pesticides removal efficiency in drinking water treatment
plant and potential health risk to consumers in Tengi River Basin, Malaysia. Science
of the Total Environment, 712, 136540.
Feng, G., Chen, M., Ye, H. C., Zhang, Z. K., Li, H., Chen, L. L., & Zhang, J. (2019).
Herbicidal activities of compounds isolated from the medicinal plant Piper
sarmentosum. Industrial Crops and Products, 132, 41-47.
Gerwick, B. C., & Sparks, T. C. (2014). Natural products for pest control: an analysis of
their role, value and future. Pest Management Science, 70(8), 1169-1185.
Guo, W., Lu, X., Liu, B., Yan, H., & Feng, J. (2021). Anti-TMV activity and mode of action
of three alkaloids isolated from Chelidonium majus. Pest Management Science, 77(1),
Hayashi, H., Takiuchi, K., Murao, S., & Arai, M. (1989). Structure and insecticidal activity
of new indole alkaloids, okaramines A and B, from Penicillium simplicissimum AK 40.
Agricultural and biological chemistry, 53(2), 461-469.
Isman, M. B., & Grieneisen, M. L. (2014). Botanical insecticide research: many
publications, limited useful data. Trends in plant science, 19(3), 140-145.
Jang, J. Y., Le Dang, Q., Choi, Y. H., Choi, G. J., Jang, K. S., Cha, B., & Kim, J. C. (2015).
Nematicidal activities of 4-quinolone alkaloids isolated from the aerial part of
Triumfetta grandidens against Meloidogyne incognita. Journal of Agricultural and
Food Chemistry, 63(1), 68-74.
Ji, X., Wang, Z., Dong, J., Liu, Y., Lu, A., & Wang, Q. (2016). Discovery of topsentin
alkaloids and their derivatives as novel antiviral and anti-phytopathogenic fungus
agents. Journal of agricultural and food chemistry, 64(48), 9143-9151.
Kathuria, V., Ruhl, S., Kaushik, N., Edrada-Ebel, R., & Proksch, P. (2013). Evaluation of
bio efficacy of Tylophora indica leaf extracts, fractions and pure alkaloids against
Helicoverpa armigera (Hübner). Industrial Crops and Products, 46, 274-282.
Koli, P., Bhardwaj, N. R., & Mahawer, S. K. (2019). Agrochemicals: harmful and
beneficial effects of climate changing scenarios. In Climate change and agricultural
ecosystems (pp. 65-94). Woodhead Publishing.
Kui, W., Chao, L., Hao, L., Jianmei, X., Weibo, S., & Ligang, Z. (2012). Nematicidal
activity of the alkaloids from Macleaya cordata against certain nematodes. African
Journal of Agricultural Research, 7(44), 5925-5929.
Laboratories, G. (2005). Definition and Classification of Alkaloids. Most, 56–61.
Lee, S. H., Moon, K., Kim, H., Shin, J., Oh, D. C., & Oh, K. B. (2014). Bahamaolide A
from the marine-derived Streptomyces sp. CNQ343 inhibits isocitrate lyase in Candida
albicans. Bioorganic & Medicinal Chemistry Letters, 24(17), 4291-4293.
Liu, D. D., Guo, Y. F., Zhang, J. Q., Yang, Z. K., Li, X., Yang, B., & Yang, R. (2017).
Inclusion of lycorine with natural cyclodextrins (α-, β-and γ-CD): Experimental and
in vitro evaluation. Journal of molecular structure, 1130, 669-676.
Liu, H., Wang, J., Zhao, J., Lu, S., Wang, J., Jiang, W., & Zhou, L. (2009). Isoquinoline
alkaloids from Macleaya cordata active against plant microbial pathogens. Natural
Product Communications, 4(11), 1934578X0900401120.
Liu, Z. L., Liu, Q. Z., Du, S. S., & Deng, Z. W. (2012). Mosquito larvicidal activity of
alkaloids and limonoids derived from Evodia rutaecarpa unripe fruits against Aedes
albopictus (Diptera: Culicidae). Parasitology Research, 111(3), 991-996.
Ma, J. T., Du, J. X., Zhang, Y., Liu, J. K., Feng, T., & He, J. (2022). Natural imidazole
alkaloids as antibacterial agents against Pseudomonas syringae pv. actinidiae isolated
from kiwi endophytic fungus Fusarium tricinctum. Fitoterapia, 156, 105070.
Marciniak, P., Adamski, Z., Bednarz, P., Slocinska, M., Ziemnicki, K., Lelario, F. & Bufo,
S. A. (2010). Cardioinhibitory properties of potato glycoalkaloids in beetles. Bulletin
of environmental contamination and toxicology, 84(2), 153-156.
Ntalli, N. G., & Caboni, P. (2012). Botanical nematicides: a review. Journal of agricultural
and food chemistry, 60(40), 9929-9940.
Park, B. S., Lee, S. E., Choi, W. S., Jeong, C. Y., Song, C., & Cho, K. Y. (2002). Insecticidal
and acaricidal activity of pipernonaline and piperoctadecalidine derived from dried
fruits of Piper longum L. Crop protection, 21(3), 249-251.
Raghavendra, M. P., Satish, S., & Raveesha, K. A. (2009). Alkaloids isolated from leaves
of Prosopis juliflora against Xanthomonas pathovars. Archives of Phytopathology and
Plant protection, 42(11), 1033-1041.
Sampaio, O. M., Vieira, L. C. C., Bellete, B. S., King-Diaz, B., Lotina-Hennsen, B., Da
Silva, M. F. D. G. F., & Veiga, T. A. M. (2018). Evaluation of alkaloids isolated from
Ruta graveolens as photosynthesis inhibitors. Molecules, 23(10), 2693.
Sarma, B. K., Pandey, V. B., Mishra, G. D., & Singh, U. P. (1999). Antifungal activity of
berberine iodide, a constituent of Fumaria indica. Folia microbiologica, 44(2), 164-166.
Shaheen, H. A., & Issa, M. Y. (2020). In vitro and in vivo activity of Peganum harmala L.
alkaloids against phytopathogenic bacteria. Scientia Horticulturae, 264, 108940.
Sheikh, N., Patowary, H., & Laskar, R. A. (2020). Screening of cytotoxic and genotoxic
potency of two pesticides (malathion and cypermethrin) on Allium cepa L. Molecular
& Cellular Toxicology, 16(3), 291-299.
Singaravelan, N., Nee’man, G., Inbar, M., & Izhaki, I. (2005). Feeding responses of free
flying honeybees to secondary compounds mimicking floral nectars. Journal of
chemical ecology, 31(12), 2791-2804.
Singh, A. K., Pandey, M. B., Singh, S., Singh, A. K., & Singh, U. P. (2008). Antifungal
activity of securinine against some plant pathogenic fungi. Mycobiology, 36(2), 99-101.
Singh, S., Jain, L., Pandey, M. B., Singh, U. P., & Pandey, V. B. (2009). Antifungal activity
of the alkaloids from Eschscholtzia californica. Folia Microbiologica, 54(3), 204-206.
Singh, S., Singh, B., & Singh, A. P. (2015). Nematodes: a threat to sustainability of
agriculture. Procedia Environmental Sciences, 29, 215-216.
Singh, U. P., Sarma, B. K., Mishra, P. K., & Ray, A. B. (2000). Antifungal activity of
venenatine, an indole alkaloid isolated from Alstonia venenata. Folia microbiologica,
45(2), 173-176.
Taillebois, E., Cartereau, A., Jones, A. K., & Thany, S. H. (2018). Neonicotinoid
insecticides mode of action on insect nicotinic acetylcholine receptors using binding
studies. Pesticide biochemistry and physiology, 151, 59-66.
Thu, H. E., Hussain, Z., Mohamed, I. N., & Shuid, A. N. (2018). Recent advances in
antibacterial, antiprotozoal and antifungal trends of Eurycoma longifolia: a review of
therapeutic implications and future prospects. Current Drug Targets, 19(14), 1657-1671.
Tomizawa, M., & Casida, J. E. (2005). Neonicotinoid insecticide toxicology: mechanisms
of selective action. Annual review of pharmacology and toxicology, 45, 247.
Ujvary, I., Eya, B. K., Grendell, R. L., Toia, R. F., & Casida, J. E. (1991). Insecticidal
activity of various 3-acyl and other derivatives of veracevine relative to the Veratrum
alkaloids veratridine and cevadine. Journal of Agricultural and Food Chemistry,
39(10), 1875-1881.
Wang, T., Yang, S., Li, H., Lu, A., Wang, Z., Yao, Y., & Wang, Q. (2019). Discovery,
structural optimization, and mode of action of essramycin alkaloid and its derivatives
as anti-tobacco mosaic virus and anti-phytopathogenic fungus agents. Journal of
agricultural and food chemistry, 68(2), 471-484.
Wen, Y., Meyer, S. L., Masler, E. P., Zhang, F., Liao, J., Wei, X., & Chitwood, D. J. (2013).
Nematotoxicity of drupacine and a cephalotaxus alkaloid preparation against the plant‐
parasitic nematodes Meloidogyne incognita and Bursaphelenchus xylophilus. Pest
Management Science, 69(9), 1026-1033.
Williams, S. D., Boehm, M. J. & Hand, F. P. (2017). Bacterial Diseases of Plants.
Department of Plant Pathology. Agriculture and Natural Resources.
Wink, M. (1998). Modes of action of alkaloids. In Alkaloids (pp. 301-326). Springer,
Boston, MA.
Wu, J., Ma, J. J., Liu, B., Huang, L., Sang, X. Q., & Zhou, L. J. (2017). Herbicidal spectrum,
absorption and transportation, and physiological effect on Bidens pilosa of the natural
alkaloid berberine. Journal of agricultural and food chemistry, 65(30), 6100-6113.
Wu, Y., Ren, D., Gao, C., Li, J., Du, B., Wang, Z., & Qian, S. (2021). Recent advances for
alkaloids as botanical pesticides for use in organic agriculture. International Journal
of Pest Management, 1-11.
Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research progress on
antibacterial activities and mechanisms of natural alkaloids: a review. Antibiotics,
10(3), 318.
Yang, J., Gong, L., Guo, M., Jiang, T., Ding, Y., Wang, Z., & An, F., (2021). Bioactive
indole diketopiperazine alkaloids from the marine endophytic fungus Aspergillus sp.
YJ191021. Marine Drugs, 19(3), 157.
Yu, Q., & Potter, J. W. (2008). Selective nematicidal activity of nicotine. Journal of Food,
Agriculture and Environment, 6, 428-432.
Zhang, J. W., Gao, J. M., Xu, T., Zhang, X. C., Ma, Y. T., Jarussophon, S., & Konishi, Y.
(2009). Antifungal activity of alkaloids from the seeds of Chimonanthus praecox.
Chemistry & biodiversity, 6(6), 838-845.
Zhao, Z. M., Shang, X. F., Lawoe, R. K., Liu, Y. Q., Zhou, R., Sun, Y., … & Yang, C. J.
(2019). Anti-phytopathogenic activity and the possible mechanisms of action of
isoquinoline alkaloid sanguinarine. Pesticide biochemistry and physiology, 159, 51-58.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!