Chapter 8. Negative Energies/Masses in Relativity Theory

$39.50

Valeriy V. Dvoeglazov
Universidad de Zacatecas, Zacatecas, Mexico

Part of the book: Future Relativity, Gravitation, Cosmology

Abstract

It is easy to check that both algebraic equation Det(ˆp − m) = 0 and Det(ˆp + m) = 0 for u− and v− 4-spinors have solutions with p0 = ±Ep = ± p p2 + m2. The same is true for higher-spin equations. Meanwhile, every book considers the equality p0 = Ep for both u− and v− spinors of the (1/2, 0) ⊕ (0, 1/2) representation only, thus applying the Dirac-Feynman-Stueckelberg procedure for elimination of the negative-energy solutions. The recent Ziino works (and, independently, the articles of several others) show that the Fock space can be doubled. We re-consider this possibility on the quantum field level for both s = 1/2 and higher spin particles.


References


[1] Guang-jiong Ni, In Relativity, Gravitation, Cosmology. (Nova Science Pub., Huntington, NY, USA, 2004), hep-ph/0306028.
[2] N. Simicevic, Implications of Weak-Interaction Space Deformation for Neutrino Mass
Measurements, nucl-th/9909034.
[3] S. M. Bilenky and C. Giunti, Nucl. Phys. Proc. Suppl. 48, 381 (1996).
[4] A. O. Barut, Phys. Lett. B73, 310 (1978); Phys. Rev. Lett. 42, 1251 (1979).
[5] D. V. Ahluwalia and A. Ch. Nayak, Int. J. Mod. Phys. D23, 1430026 (2014).
[6] V. V. Dvoeglazov, Adv. Appl. Clifford Algebras (2016), accepted.
[7] P. A. M. Dirac, Proc. Roy. Soc. Lond. A117, 610 (1928).
[8] J. J. Sakurai, Advanced Quantum Mechanics. (Addison-Wesley, 1967).
[9] L. H. Ryder, Quantum Field Theory. (Cambridge University Press, Cambridge, 1985).
[10] C. Itzykson and J.-B. Zuber, Quantum Field Theory. (McGraw-Hill Book Co., 1980),
p. 156.
[11] N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields.
2nd Edition. (Nauka, Moscow, 1973).
[12] V. V. Dvoeglazov, J. Phys. Conf. Ser. 284, 012024 (2011), arXiv:1008.2242.
[13] V. V. Dvoeglazov, Hadronic J. Suppl. 18, 239 (2003), physics/0402094; Int. J. Mod.
Phys. B20, 1317 (2006).
[14] M. Markov, ZhETF 7, 579 (1937); ibid. 603; Nucl. Phys. 55, 130 (1964).
[15] A. Barut and G. Ziino, Mod. Phys. Lett. A8, 1099 (1993); G. Ziino, Int. J. Mod. Phys.
A 11, 2081 (1996).
[16] I. M. Gelfand and M. L. Tsetlin, ZhETF 31 (1956) 1107; G. A. Sokolik, ZhETF 33
(1957) 1515.
[17] V. V. Dvoeglazov, Int. J. Theor. Phys. 34 (1995) 2467; Nuovo Cim. 108A (1995) 1467;
Hadronic J. 20 (1997) 435; Acta Phys. Polon. B29 (1998) 619.
[18] R. P. Feynman and M. Gell-Mann, Phys. Rev. 109 (1958) 193.
[19] M. Kirchbach, C. Compean and L. Noriega, Eur. Phys. J. A22 (2004) 149.
[20] V. V. Dvoeglazov, Int. J. Theor. Phys. 37 (1998) 1915.
[21] V. A. Ilyin, Spektralnaya Teoriya Differencialnyh Operatorov. [Spectral Theory of
Differential Operators.] (Nauka, Moscow, 1991); V. D. Budaev, Osnovy Teorii Ne samosopryazhennyh
Differencialnyh Operatorov. [Fundamentals of the Theory of
Non-Self-Adjoint Differential Operators] (SGMA, Smolensk, 1997).

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!