Chapter 8. Growth of fex2 (x = s, se)-Pyrite Thin Films as Low-Cost Materials for Photovoltaic Applications and ru-Substitution Effect on Their Properties

$39.50

Beya Ouertani, PhD
Department of Physics-Chemistry & Renewable Energies, University of Carthage and CRTEn, Borj Cedria Science and Technology Park, Tunisia

Part of the book: Pyrite and Pyrrhotite: Managing the Risks in Construction Materials and New Applications

Chapter DOI: https://doi.org/10.52305/MBQI9472

Abstract

This research addresses the fabrication of low-cost materials for several applications, such as solar cells, electrocatalysts and anodes. We focused on pyrite (FeS2, FeSe2, etc.) films because they are promising candidates for absorption and photocatalysis. Indeed, they are of great interest in applications of renewable energy conversion due to their high optical absorption coefficients (a > 105 cm-1 for hn >1.4eV), their high abundance, their low cost, and their non-toxic constituent elements. Furthermore, the technique selected for the fabrication of our pyrite layers is simpler than others used previously, and it is environmentally safe. It consists of spraying an aqueous solution of FeCl3.6H2O on pre[1]heated glass substrates, followed by heat treatment under sulfur or selenium atmosphere. However, after fabrication, the band gap energy values of the resulting pyrite thin films are only about 1 eV, which is regarded as too low for solar cell applications. Thus, to develop functional pyrite-based photovoltaics, a practical method is needed to increase the band gap of FeS2 and FeSe2 to achieve the optimum band gap energy for single-junction photovoltaic applications, consistent with the Shockley-Queisser theory, of about 1.5 eV. So, a successful method for alloying with ruthenium is, also, described in this chapter. The fabricated Ru-alloyed pyrite films are shown to possess the desired band gap energy for several applications, particularly for the manufacture of photovoltaic cells.

Keywords: pyrite, thin films, FeS2, FeSe2, ruthenium, alloy, spray pyrolysis, desired band gap energy


References


Alonso-Vante, N., Chatzitheodorou, G., Fiechter, S., Mgoduka, N., Poulios, I. and Tributsch, H. (1988).
Interfacial behavior of hydrogen-treated sulphur deficient pyrite (FeS2−x). Solar Energy Materials,
Volume 18, Issues 1-2, Pages 9 – 21.
Ao, K. L., Shao, Y., Chan, I. N., Shi, X., Kawazoe, Y., Yang, M., Ng, K. W. and Pan, H. (2020). Design of
novel pentagonal 2Dtransitional-metalsulphidemonolayers for hydrogen evolution reaction. International
Journal of Hydrogen Energy, Volume 45, Issue 32, Pages 16201-16209.
Arico, A. S., Antonucci, V., Anntonucci, P. L., Cocke, D. L. and Giordano, N. (1991). A voltammetric study of
the electrodeposition chemistry in the FeS system Electrochimica Acta, Volume 36, Issues 3-4, Pages 581-590.
Aselage, T. L. and Hellstrom, E. E. (1987). Multicomponent Phase Diagrams for Battery Applications: II.
Oxygen Impurities in the Li(Si)/Fe2 Battery Cathode. J. Electrochem. Soc, Volume 134, Number 8, 1932.
Baccarani, G., Ricco, B. and Spadini, G. (1978). Transport properties of polycrystalline silicon films. J. Appl.
Phys., Volume 49, 5565.
Bhira, L., Nasrallah, T. B., Amlouk, M., Bernède, J. C. and Belgacem, S. (2001). Optimisation of Process for
the Growth of Culn(Se1-xSx)2 Thin Films. Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich.
Birkholz, M., Fiechter, S., Hartmann, A. and Tributsch, H. (1991a). Sulfur deficiency in iron pyrite (FeS2−x)
and its consequences for band-structure models. Physical Review B, Volume 43, Issue 14, 11926.
Birkholz, M., Fiechter, S. and Hartmann, A. (1991b). Sulfur deficiency in iron pyrite (FeS2−x) and its
consequences for band-structure models. Physical Review B, Volume 43, Issues 14-15, Pages 11926-11935.
Birkholz, M., Lichtenberger, D., Höpfner, C. and Fiechter, S. (1992). Sol. Energy Mater. and Solar Cells,
Volume 27, Issue 3, Pages 243-251.
Bonet, A., Conan, A., Morsly, M., Ganne, M. and Tourroux, M. (1988). Electronic and Structural Properties
of Tungsten Bronzes. Phys. Status Solidi B, Volume 150, Issue 1, Pages 225-335.
Bronold, M., Pettenkofer, C. and Jaegermann, W. (1994). Surface photovoltage measurements on pyrite (100)
cleavage planes: Evidence for electronic bulk defects. J. Appl. Phys., Volume 76, Issue 10, Pages 5800-5808.
Bronold, M., Kubala, S., Pettenkofer, C. and Jaegermann, W. (1997). Thin pyrite (FeS2) films by molecular
beam deposition. Thin Solid Films, Volume 304, Issue 1-2, Pages 178-182.
Buker, K., Alonso-Vante, N. and Tributsch, H. (1992). Photovoltaic output limitation of n‐FeS2 (pyrite)
Schottky barriers: A temperature‐dependent characterization. J. Appl. Phys., Volume 72, Issue 12, Pages 5721-5728.
Chan, S. S. M. (1962). Syntheses and X-ray investigations within the system FeS₂-CoS₂. Master’s Thesis, 2698,
Department of Geosciences and Geological and Petroleum Engineering, Missouri School of Mines and
Metallurgy, United States, 101 pages.
Chatzitheodorou, G., Fiechter, S. Könenkamp, R., Kunst, M., Jaegermann, W. and Tributsch, H. (1986). Thin
photoactive FeS2 (pyrite) films. Mater. Res. Bull., Volume 21, Issue 12, Pages 1481-1487.
Clark, M. B. (1983). Lithium-iron disulfide cells. In Lithium Batteries, Gabano, J.P. (ed.), Academic Press,
New York, Chapter 6, Pages 115-136.
Dasbach, R., Willeke, G. and Blenk, O. (1993). Iron Sulfide for Photovoltaics. MRS Bulletin, Volume 18, Issue 10, Pages 56-60.
Dawar, A. L., Kumar, A., Mall, R. P. and Mathur, P. C. (1984). Growth and electrical transport properties of
CuInTe2 thin films. Thin Solid Films, Volume 112, Issue 2, Pages 107-119.
de las Heras, C. and Lifante, G. (1997). Optical parameters of pyrite thin films. J. Appl. Phys. Volume 82, Issue
10, Pages 5132-5137.
Diamandescu, L., Mihăilă-Tărăbăşanu, D., Calogero, S., Popescu-Pogrion, N. and Feder, M. (1997).
Mechanism and reaction kinetics in the solid phase transformation α-FeOOH → α-Fe2O3 studied by
Mössbauer spectroscopy. Solid State Ionics, Volumes 101-103, Part 1, Pages 591-596.
Dong, S., Su, Q., Jiao, W., Ding, S., Zhang, M., Du, G. and Xu, B. (2020). FeSe2 microspheres coated with
carbon layers as anode materials for sodium-ion batteries. Journal of Alloys and Compounds, Volume
842, 155888.
Efros, A. L. and Shklovskij, B. I. (1975). Coulomb gap and low temperature conductivity of disordered systems.
J. Phys. C: Solid State Physics, Volume 8, Number 4.
Efros, A. L., Nguyen, V. L. and Shklovskij, B. I. (1979). Variable range hopping in doped crystalline
semiconductors. Solid State Communications, Volume 32, Issue 10, Pages 851-854.
Efros, A. L. and Shklovskij, B. I. (1985). Coulomb interaction in disordered systems with localized electronic
states. In Electron–Electron Interactions in Disordered Systems. Efros, A. L. and Pollak, M. (Eds.),
Volume 10, 1st Edition, Elsevier, Amsterdam.
El Menjra, A.-I., Seyeux, A., Mercier, D., Beech, I., Makama, Z. and Marcus, P. (2019). ToF-SIMS analysis
of abiotic and bioticironsulfidelayers formed in aqueous conditions onironsurfaces. Applied Surface
Science, Volume 484, Pages 876-883.
Ennaoui, A. and Tributsch, H. (1984). Iron sulphide solar cells. Solar Cells, Volume 13, Issue 2, Pages 197-200.
Ennaoui, A., Fiechter, S., Jaegermann, W. and Tributsch, H. (1986). Photoelectrochemistry of Highly Quantum
Efficient Single‐Crystalline n ‐ FeS2 (Pyrite). J. Electrochem. Soc., Volume 133, Number 1, Pages 91-106.
Ennaoui, A., Fiechter, S., Tributsch, H., Giersig, M., Vogel, R. and Weller, H. (1992a). Photoelectrochemical
Energy Conversion Obtained with Ultrathin Organo‐Metallic‐Chemical‐Vapor‐Deposition Layer of FeS2
(Pyrite) on TiO2. J. Electrochem. Soc., Volume 139, Number 9, 2514.
Ennaoui, A., Schlichthörl, G., Fiechter, S. and Tributsch, H. (1992b). Vapor phase epitaxial growth of
FeS2pyrite and evaluation of the carrier collection in liquid-junction solar cell. Solar Energy Materials
and Solar Cells, Volume 25, Issues 1-2, Pages 169-178.
Ennaoui, A., Fiechter, S., Pettenkofer, Ch., Alonso-Vante, N., Büker, K., Bronold, M., Höpfner, Ch. and
Tributsch, H. (1993), Iron disulfide for solar energy. Solar Energy Materials and Solar Cells, Volume 29,
Issue 4, Pages 289-370.
Euert, V., Hock, K. H., Fiechter, S. and Tributsch, H. (1998). Electronic structure of FeS2: The crucial role of
electron-lattice interaction. Physical Review B, Volume 57, Issue 11, 6350.
Ezzaouia, H., Foise, J. W. and Gorochov, O. (1985). Crystal growth in tellurium fluxes and characterization of
RuS2 single crystals. Materials Research Bulletin, Volume 20, Issue 11, Pages 1353-1358.
Fan, H., Yu, H., Zhang, Y., Guo, J., Wang, Z., Wang, H., Zhao, N., Zheng, Y., Du, C., Dai, Z., Yan, Q. and
Xu, J. (2018). 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell
nanorods for advanced sodium ion batteries. Energy Storage Materials, Volume 10, Pages 48-55.
Ferrer, I. J., Caballero, F., De las Heras, C. and Sánchez, C. (1994). Preparation of n-type doped FeS2 thin
films. Solid State Communications, Volume 89, Issue 4, Pages 349-352.
Foise, J. W., Ezzaouia, H. and Gorochov, O. (1985). Crystal growth of p-type RuS2 using bismuth flux and its
photoelectrochemical properties. Materials Research Bulletin, Volume 20, Issue 12, Pages 1421-1425.
Gao, S., Brown, B., Young, D. and Singer, M. (2018). Formation of iron oxide and iron sulfide at high
temperature and their effects on corrosion. Corrosion Science, Volume 135, Pages 167-176.
Geng, H., Zhu, L., Li, W. and Liu, H. (2017). Embedding iron sulfide(Fe-S) nanosheets into carbon electrode
for efficient quantum dots-sensitized solar cells. SolarEnergy, Volume 147, Pages 61-67.
Gonzalez-Hernandez, J., Gorley, P. M., Holrey, P. P., Varpsabyuk, O. M. and Vorobiev, Y. V. (2002). X-Ray,
kinetic and optical properties of thin CuInS2 films. Thin Solid Films, Volumes 403-404, Pages 471-475.
Hamdadou, N., Khelil, A. and Bernède, J. C. (2003). Pyrite FeS2 films obtained by sulphuration of iron pre deposited films. Materials Chemistry and Physics, Volume 78, Issue 3, Pages 591-601.
Hu, J., Zhang, Y., Law, M. and Wu, R. (2012). Increasing the Band Gap of Iron Pyrite by Alloying with
Oxygen. Journal of the American Chemical Society, Volume 134, 32, 13216-13219.
Huang, S., He, Q., Chen, W., Zai, J., Qiao, Q. and Qian, X. (2015). 3D hierarchical FeSe2 microspheres:
Controlled synthesis and applications in dye-sensitized solar cells. Nano Energy, Volume 15, Pages 205-215.
Huang, L., Wang, F., Luan, Z. and Meng, L. (2021). Pyrite (FeS2) thin films deposited by sol–gel method.
Materials Letters, Volume 64, Issue 23, Pages 2612 – 2615.
Hussain, R. A. and Hussain, I. (2020). Copperselenidethin films from growth to applications. Solid State
Sciences, Volume 100, 106101.
Jaegermann, W. and Tributsch, H. (1983). Photoelectrochemical reactions of FeS2 (pyrite) with H2O and
reducing agents. J. Appl. Electrochem, Volume 13, Pages 743-750.
Jia, J., Sun, W., Zhang, Q., Zhang, X., Hu, X., Liu, E. and Fan, J. (2020). Inter-plane heterojunctions within
2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation. Applied
Catalysis B: Environmental, Volume 261, 118249.
Julien, C., Eddrief, M., Kambas, F. and Balkanski, M. (1986). Electrical and optical properties of In2Se3 thin
films. Thin Solid Films, Volume 137, Issue 1, Pages 27-37.
Kong, F., Zheng, J., Tao, S. and Qian, B. (2021). Electrochemical and electrocatalytic performance of FeSe2
nanoparticles improved by selenium matrix. Materials Letters, Volume 284, Part 2, 128947.
Krishnamoorthy, A., Herbert, K. W., Yip, S., Van Vliet, K. J. and Yildiz, B. (2013). Electronic states of intrinsic
surface and bulk vacancies in FeS2. Journal of Physics: Condensed Matter, Volume 25, Number 4,045004.
Lazić, P., Armiento, R., Herbert, F. W., Chakraborty, R., Sun, R., Chan, M. K. Y., Hartman, K., Buonassisi,
T., Yildiz, B. and Ceder, G. (2013). Low intensity conduction states in FeS2: implications for absorption,
open-circuit voltage and surface recombination. Journal of Physics: Condensed Matter, Volume 25,465801.
Lehner, S. W., Savage, K. S. and Ayers, J. C. (2006). Vapor growth and characterization of pyrite (FeS2) doped
with Co, Ni, and As: Variations in semiconducting properties. Journal of Crystal Growth, Volume 286, Issue 2, Pages 306–317.
Le Nagard, N., Bouanani, A., Ezzaouia, H. and Gorochov, O. (1990). Metalorganic chemical vapor deposition
of RuS2 on various substrates. Journal of Crystal Growth, Volume 104, Issue 2, Pages 365-370.
Liu, H. (2013). Ammonia Synthesis Catalysts: Innovation and Practice. Chemical Industry Press, World
Scientific Publishing, Beijing, China, 872 pages.
Liu, H. and Chi, D. (2016). Synthesis of Iron Sulfide and Iron Oxide Nanocrystal Thin Films for Green Energy
Applications. Procedia Engineering, Volume 141, Pages 32-37.
Liu, Y., Yang, C., Li, Y., Zheng, F., Li, Y., Deng, Q., Zhong, W., Wang, G. and Liu, T. (2020). FeSe2/nitrogen doped carbon as anode material for Potassium-ion batteries. Chemical Engineering Journal, Volume 393, 124590.
Lu, N. C. C., Gerzberg, L., Lu, C. Y. and Meindl, J. D. (1981). Modeling and optimization of monolithic
polycrystalline silicon resistors. IEEE Trans. Electron. Devices, Volume 28, 818.
Luo, L., Luan, W., Yuan, B., Zhang, C. and Jin, L. (2015). High Efficient and Stable Solid Solar Cell: Based
on FeS2Nanocrystals and P3HT: PCBM. Energy Procedia, Volume 75, Pages 2181-2186.
Luo, M., Yu, H., Hu, F., Liu, T., Cheng, X., Zheng, R., Bai, Y., Shui, M. and Shu, J. (2020). Metal selenides
for high performance sodium ion batteries. Chemical Engineering Journal, Volume 380,122557.
Mai, L. N. T., Pham, V. T., Bui, Q. B. and Nhac-Vu, H. T. (2020). Iron sulfide nanosheets supported 3D foam:
A binder free electrocatalyst for sensitive and selective electrochemical H2O2 detection. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, Volume 600, 5 September 2020,124942.
Mars, A., Essaidi, H., Ouerfelli, J. and Gherouel, D. (2015). Optical and electrical measurement of FeSe2thin
films obtained at low temperature. Materials Science in Semiconductor Processing, Volume 40, Pages 319-324.
Mars, A., Essaidi, H. and Ouerfelli, J. (2016). Effect of heat treatment under sulfur atmosphere on physical
properties of pyrite (FeS2) sprayed thin films. Journal of Alloys and Compounds, Volume 688, Part A, Pages 553–564.
Mattisson, T., Lyngfelt, A. and Cho, P. (2001). The use of iron oxide as an oxygen carrier in chemical-looping
combustion of methane with inherent separation of CO2. Fuel, Volume 80, Issue 13, Pages 1953-1962.
Men, S., Lin, J., Zhou, Y. and Kang, X. (2021). N-doped porous carbon wrapped FeSe2 nanoframework
prepared by spray drying: A potential large-scale production technique for high-performance anode
materials of sodium ion batteries. Journal of Power Sources, Volume 485, 229310.
Mott, N. F. (1969). Conduction in non-crystalline materials. The Philosophical Magazine. Series 8, Volume
19, Issue 160, Pages 835-852.
Mott, N. F. and Davis, E. A. (1979). Electronic Processes in Non-Crystalline Materials, 2nd Edition, Clarendon
Press, Oxford, (1979).
Nakamura, S. and Yamamoto, A. (2001). Electrodeposition of pyrite (FeS2) thin films for photovoltaic cells.
Sol. Energy Mater. and Sol. Cells, Volume 65, Issues 1-4, Pages 79-85.
Ouertani, B., Ouerfelli, J., Saadoun, M., Bessaïs, B., Hajji, M., Kanzari, M., Ezzaouia, H., Hamdadou, N. and
Bernède, J. C. (2005a). Transformation of amorphous iron oxide films pre-deposited by spray pyrolysis
into FeS2-pyrite films. Materials Letters, Volume 59, Issue 6, Pages 734-739.
Ouertani, B., Ouerfelli, J., Saadoun, M., Bessaïs, B., Ezzaouia, H. and Bernède, J. C. (2005b). Transformation
of amorphous iron oxide thin films predeposited by spray pyrolysis into a single FeSe2-phase by
selenisation. Solar Energy Materials and Solar Cells, Volume 87, Issues 1-4, Pages 501-511.
Ouertani, B., Ouerfelli, J., Saadoun, M., Zribi, M., Ben Rabha, M., Bessaïs, B. and Ezzaouia, H. (2006). Optical
and structural properties of FeSe2 thin films obtained by selenization of sprayed amorphous iron oxide
films. Thin Solid Films, Volumes 511-512, Pages 457-462.
Ouertani, B., Ouerfelli, J., Saadoun, M., Ezzaouia, H. and Bessaïs, B. (2008). Characterisation of iron oxide
thin films prepared from spray pyrolysis of iron trichloride-based aqueous solution. Thin Solid Films,
Volume 516, Issue 23, Pages 8584-8586.
Ouertani, B., Ezzaouia, H. and Theys, B. (2017). Effect of ruthenium alloy on the band gap value of FeS2-
pyrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 525, Pages 13-19.
Ouertani, B., Bidouk, G., Ouertani, R., Theys, B. and Ezzaouia, H. (2020). Effect of the ruthenium
incorporation on iron oxide phases synthesis, Fe2O3 and Fe3O4, at low annealing temperature. Materials
Chemistry and Physics, Volume 242, 122272.
Ouertani, B., Boughzala, H., Theys, B. and Ezzaouia, H. (2021). Ru-substitution effect on the FeSe2 thin films
properties, Journal of Alloys and Compounds, Volume 871, 159490.
Peled, E., Golodnitsky, D., Strauss, E., Lang, J. and Lavi, Y. (1998). Li/CPE/FeS2 rechargeable battery.
Electrochimica Acta, Volume 43, Issues 10-11, Pages 1593-1599.
Pesko, E., Zukowska, G., Zero, E. and Krzton-Maziopa, A. (2020). Electrocrystallization of nanostructured
iron-selenide films for potential application in dye sensitized solar cells. Thin Solid Films, Volume 709, 138121.
Phahle, A. M. (1977). Electrical properties of thermally evaporated tellurium films. Thin Solid Films, Volume
41, Issue 2, Pages 235-241.
Rana, T. R., Khadka, D. B. and Kim, J. H. (2015). Sulfur stoichiometry driven chalcopyrite and pyrite structure
of spray pyrolyzed Cu-alloyed FeS2
thin films. Materials Science in Semiconductor Processing, Volume
40, Pages 325–330.
Sahoo, S., Naik, K. K., Late, D. J. and Rout, C. S. (2017). Electrochemical synthesis of a ternary transition
metal sulfide nanosheets on nickel foam and energy storage application. Journal of Alloys and
Compounds, Volume 695, Pages 154-161.
Sengeni, A. and Noda, S. (2020). Nickelselenidesas pre-catalysts for electrochemical oxygen evolution
reaction. International Journal of Hydrogen Energy, Volume 45, Issue 32, Pages 15763-15784.
Seto, J. Y. (1975). The electrical properties of polycrystalline silicon films. J. Appl. Phys., Volume 46, 5247.
Sharon, M. and Prasad, B. M. (1983). Preparation and characterization of iron oxide thin film electrodes. Solar
Energy Materials, Volume 8, Issue 4, Pages 457- 469.
Shi, X., Tian, A., Xue, X., Yang, H. and Xu, Q. (2015). Synthesis of FeS2 (pyrite) nanotube through sulfuration
of Fe2O3 nanotube. Materials Letters, Volume 141, Pages 104 – 106.
Shockley, W. and Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J.
Appl. Phys., Volume 32, Issue 3, Pages 510-519.
Shwetharani, R., Nagaraju, D. H., Balakrishna, R. G. and Suvina, V. (2019). Hydrogenase Enzyme like
Nanocatalysts FeS2 and FeSe2 for Molecular Hydrogen Evolution Reaction. Materials Letters, Volume
248, Pages 39-42.
Smestad, G., Da Silva, A., Tributsch, H., Fiechter, S., Kunst, M., Meziani, N. and Birkholz, M. (1989).
Formation of semiconducting iron pyrite by spray pyrolysis. Solar Energy Materials, Volume 18, Issue 5,
Pages 299-311.
Smestad, G., Ennaoui, A., Fiechter, S., Tributsch, H., Hofmann, W. K., Birkholz, M. and Kautek, W. (1990).
Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides. Solar Energy
Materials, Volume 20, Issue 3, Pages 149-165.
Sridevi, D. and Reddy, K. V. (1986). Electrical conductivity and optical absorption in flash-evaporated CuInTe2
thin films. Thin Solid Films, Volume 141, Issue 2, Pages 157-164.
Sun, R. and Ceder, G. (2011). Feasibility of band gap engineering of pyrite FeS2. Physical Review B, Volume
84, 245211-1 – 245211-7.
Sun, R., Chan, M. K. Y. and Ceder, G. (2011). First-principles electronic structure and relative stability of
pyrite and marcasite: Implications for photovoltaic performance. Physical Review B, Volume 83, Issue 23, 235311.
Sze, S. M. and Ng, K. K. (2006). Physics of Semiconductor Devices, John Wiley & Sons, Inc., New Jersey.
Theerthagiri, J., Senthil, R. A., Nithyadharseni, P., Lee, S. J., Durai, G., Kuppusami, P., Madhavan, J. and Choi,
M. Y. (2020). Recent progress and emerging challenges oftransitionmetalsulfidesbased composite
electrodes for electrochemical supercapacitive energy storage. Ceramics International, Volume 46, Issue
10, Part A, Pages 14317-14345.
Tsay, M.-Y., Chen, S.-H., Chen, C.-S. and Huang, W.-S. (1994). Preparation and characterization of iron-doped
RuS2 single crystals. Journal of Crystal Growth, Volume 144, Issues 1-2, Pages 91-96.
Werner, J. H. (1994). Origin of Curved Arrhenius Plots for the Conductivity of Polycrystalline Semiconductors.
Solid State Phenomena, Volumes 37–38, Pages 213-218.
Xiao, P., Fan, X.-L., Zhang, H., Fang, X. and Liu, L.-M. (2015). Increasing the band gap of FeS2 by alloying
with Zn and applying biaxial strain: A first-principles study. Journal of Alloys and Compounds, Volume 629, Pages 43-48.
Yu, L., Lan, S., Kykyneshi, R., Jieratum, V., Ravichandran, R., Pelatt, B., Altschul, E., Platt, H. A. S., Wager,
J. F., Keszler, D. A. and Zunger, A. (2011). Iron Chalcogenide Photovoltaic Absorbers. Adv. Energy
Mater., Volume 1, Issue 5, Pages 748-753.
Yuan, J., Liu, W., Zhang, X., Zhang, Y., Yang, W., Lai, W., Li, X., Zhang, J. Li, X. (2020). MOF derived
ZnSe–FeSe2/RGO Nanocomposites with enhanced sodium/potassium storage. Journal of Power Sources,
Volume 455, 227937.
Zhang, Y. N., Hu, J., Law, M. and Wu, R. Q. (2012). Effect of surface stoichiometry on the band gap of the
pyrite FeS2(100) surface. Phys. Rev. B, Volume 85, Issue 8, 085314

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!