Chapter 7. Nitrogen Containing Conjugated Building Blocks for Use in Organic Electronics


Neha Rani Kumar
Department of Chemistry, Dhemaji College, Dhemaji, Assam, India

Part of the book: Advances in Chemistry Research. Volume 76

Chapter DOI:


The field of organic electronics has significantly developed in the last two decades, aiming at practical applications to ultra-thin, large-area, and/or flexible devices of the future generation, consisting of organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), and organic photovoltaics (OPVs). Numerous molecular and polymeric organic semiconductors have been developed due to their great potentials in next-generation flexible and printed electronics. Heterocyclic building blocks incorporating heteroatoms like sulfur, nitrogen, silicon, phosphorous, boron, etc. have been of tremendous importance to researchers involved in designing materials for organic electronics. In this chapter, the author reviews some of the most popular heterocyclic building blocks incorporating nitrogen, their synthesis, and their applications in organic electronics.


[1] Press Release by Kungl. Vetenskapsakademein, The Royal Swedish Academy of
Sciences, 10/10/2000 ( release/).
[2] Arias, A. C., J. D. MacKenzie, I. McCulloch, J. Rivnay, and A. Salleo, Chem. Rev.,
110, 3-24 (2010).
[3] Takimiya, K., I. Osaka, and M. Nakano, Chem. Mater., 26, 1, 587-593 (2014).
[4] Chen J., and Y. Cao, Macromol. Rapid Commun., 28, 1714-1742 (2007).
[5] Bryce, M. R., J. Chem. Soc. Perkin Trans., 1, 2591-2593 (1984).
[6] Neto, B. A. D., A. A. M. Lapis, E. N. DaSilva, and J. Dupont, Eur. J. Org. Chem.,
228-255 (2013)
[7] Mori, H., H. Nonobea, and Y. Nishihara, Polym. Chem., 7, 1549-1558 (2016).
[8] Zhou, Y., Y, Qin, C. Ni, and Y. Xie, J Appl. Polym. Sci., 137, 49006 (2020).
[9] Kanbara, T., and T. Yamamoto, Macromolecules, 26, 3464-3466 (1993).
[10] Wu, W. C., C. L. Liu, and W. C. Chen, Polymer, 47, 527-538 (2006).
[11] Jeong, Y. J., J. Hyun Oh, H. J. Song, and T. Kyu An, Polymers, 11, 563 (2019).
[12] Hou, J. H., M. H. Park, S. Q. Zhang, Y. Yao, L. M. Chen, J. H. Li, and Y. Yang,
Macromolecules, 41, 6012-6018 (2008).
[13] Kim, D., J. Kim, and T. S. Lee, Polym. Chem., 8, 5539-5545, (2017).
[14] Wu, J., G. Li, L. Zhang, G. Zhou, and Z. S. Wang, J. Mater. Chem. A, 4, 3342-3355,
[15] Parker, T. C., D. G. Patel, K. Moudgil, S. Barlow, C. Risko, J. L. Bredas, J. R.
Reynolds, and S. R. Marder, Mater. Horizons, 2, 22-36 (2015).
[16] Keshtov, M. L., D. V. Marochkin, V. S. Kochurov, A. R. Khokhlov, E. N.
Koukarasc, and G. D. Sharma, J. Mater. Chem. A, 2, 155-171 (2014).
[17] Bird, C. W., G. W. Cheeseman, and A. A. Sarsfiel, J. Chem. Soc., 4767-4770 (1963).
[18] Ye, F., Y. Liu, J. Chen, S. H. Liu, W. Zhao, and J. Yin, 21, 7213-7217, (2019).
[19] Nian, Y., F. Pan, S. Li, H. Jiang, S. Feng, L. Zhang, Y. Cao, and J. Chen, Asian J.
Org. Chem, 7, 2285-2293, (2018).
[20] Damschroder, R. E., and W. D. Peterson, Org. Synth., 20, 16-18 (1940).
[21] Liu, X., J. Zhang, P. Tang, G. Yu, Z. Zhang, H. Chen, Y. Chen, B. Zhao, S. Tan,
and P. Shen, Org. Electron., 13, 1671-1679 (2012).
[22] Allan, Z. J., and F. Muzik, Chem. Commun., 22, 64-75 (1957).
[23] Li, Y., J. Ding, M. Day, Y. Tao, J. Lu, and M. D’Iorio, Chem. Mater., 16, 2165-
2173 (2004).
[24] Dierschke, F., A. C. Grimsdale, and K. Mullen, Synthesis, 2470-2472 (2003).
[25] Morin, J. F., and M. Leclerc, Macromolecules, 34, 4680-4682 (2001).
[26] Blouin, N., and M. Leclerc, Acc. Chem. Res., 41, 1110-1119 (2008).
[27] Kuroda, Y., Y. Sakamoto, T. Suzuki, E. Kayahara, and S. Yamago, J. Org. Chem.,
81, 3356-3363, (2016).
[28] Kumar, S., and Y. T. Tao, J. Org. Chem., 80, 5066, 5076, (2015).
[29] Koeckelberghs, G., L. De Cremer, W. Vanormelingen, W. Dehaen, T. Verbiest, A.
Persoons, and C. Samyn, Tetrahedron, 61, 687-691 (2005).
[30] Polander, L. E., L. Pandey, S. Barlow, P. Tiwari, C. Risko, B. Kippelen, J. L. Bredas,
and S. R. Marder, J. Phys. Chem. C, 115, 23149-23163 (2011).
[31] Zhang, W., J. Li, L. Zou, B. Zhang, J. Qin, Z. Lu, Y. F. Poon, M. B. Chan-Park, and
C. Ming Li, Macromolecules, 41, (2008).
[32] Guo, X. G., A. Facchetti, and T. J. Marks, Chem. Rev., 114, 8943-9021 (2014).
[33] Guo, X., F. S. Kim, S. A. Jenekhe, and M. D. Watson, J. Am. Chem. Soc., 131, 7206-
7207 (2009).
[34] Li, Y., W. Tatum, J. Onorato, S. Barajas, Y. Yang, and C. Luscombe, Polym. Chem.,
8, 5185-5193, (2017).
[35] Zhang, Q., and J. M. Tour, J. Am. Chem. Soc., 119, 5065-5066 (1997).
[36] Schmatz, B., I. Pelse, A. Advincula, J. Zhang, S. R. Marder, and J. R. Reynolds,
Org. Electron., 68, 280-284 (2019).
[37] Rochat, C., L. Cassar, and A. Iqbal, Pat. EP0094911A2.
[38] Frebort, S., Z. Elias, A. Lycka, S. Lunak, J. Vynuchal, L. Kubac, R. Hrdina, and L.
Burgert, Tetrahedron Lett., 52, 5769-5773 (2011).
[39] Liu, Q., S. E. Bottle, and P. Sonar, Adv. Mater., 32, 1903882, (2019).
[40] Letizia, J. A., M. R. Salata, C. M. Tribout, A. Facchetti, M. A. Ratner, and T. J.
Marks, J. Am. Chem. Soc., 130, 9679-9694 (2008).
[41] Guo, X., N. Zhou, S. J. Lou, J. W. Hennek, R. P. Ortiz, M. R. Butler, P. L. T.
Boudreault, J. Strzalka, P. O. Morin, M. Leclerc, J. T. Loopez Navarrete, M. A.
Ratner, L. X. Chen, R. P. H. Chang, A. Facchetti, and T. J. Marks, J. Am. Chem.
Soc., 134, 18427-18439 (2012).
[42] Meng, H., and F. Wudl, Macromolecules, 34, 1810-1816 (2001).
[43] Braunecker, W. A., Z. R. Owczarczyk, A. Garcia, N. Kopidakis, R. E. Larsen, S. R.
Hammond, D. S. Ginley, and D. C. Olson, Chem. Mater., 24, 1346-1356 (2012).
[44] Douglas, J. D., G. Griffini, T. W. Holcombe, E. P. Young, O. P. Lee, M. S. Chen,
and J. M. J. Frechet, Macromolecules, 45, 4069-4074, (2012).
[45] Papageorgiou, C., and X. Borer, Helv. Chim. Acta., 71, 1079-1083 (1988).
[46] Mei, J., K. R. Graham, R. Stalder, and J. R. Reynolds, Org. Lett., 12, 660-663
[47] Bogdanov, V., L. I. Musin, and V. F. Mironov, Arkivoc, (vi) 362-392 (2015).
[48] Kwon, N. Y., H. Kang, S. H. Park, H. J. Kim, C. Y. Kim, S. Park, M. J. Cho, and D.
H. Choi, Dyes and Pigments, 179, 108391 (2020).
[49] Zhan, X., A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski,
and S. R. Marder, Adv. Mater., 23, 268-284 (2011).
[50] Guo X. G., and M. D. Watson, Org. Lett., 10, 5333-5336 (2008).
[51] Thalacker, C., C. Roeger, and F. Wuerthner, J. Org. Chem., 71, 8098-8105 (2006).
[52] Wescott, L. D., and D. L. Mattern, J. Org. Chem., 68, 10058-10066 (2003).
[53] Lindner S. M., and M. Thelakkat, Macromolecules, 37, 8832-8835 (2004).
[54] Huang, C., S. Barlow, and S. R. Marder, J. Org. Chem., 76, 2386-2407 (2011).
[55] Mataka, S., K. Takahashi, Y. Ikezaki, T. Hatta, A. Torii, and M. Tashiro, Bull. Chem.
Soc. Jpn., 64, 68-73 (1991).
[56] Wang, M., X. Hu, P. Liu, W. Li, X. Gong, F. Huang, and Y. Cao, J. Am. Chem. Soc.
133, 9638-9641 (2011).
[57] Osaka, M. Shimawaki, H. Mori, E. Miyazaki, T. Koganezawa, and K. Takimiya, J.
Am. Chem. Soc., 134, 3498-3507 (2012).
[58] Osaka, T. Kakara, N. Takemura, T. Koganezawa, and K. Takimiya, J. Am. Chem.
Soc., 135, 8834-8837 (2013).
[59] Bunz, U. H. F. and J. Freudenberg, Acc. Chem. Res. 52, 1575-1587 (2019).


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!