Chapter 7. Deposition of HA-Based Coatings on Bio-Inert Substrates by Various Deposition Methods for Improved Bio-Mechanical Properties

$39.50

Shahid Hussain and Kazi Sabiruddin
Department of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India

Part of the book: What to Know about Hydroxyapatite

Abstract

Hydroxyapatite (HA) is an attractive bioactive material in the biomedical field due to its chemical composition and structure which are similar to the mineral components of natural bone. It is a highly bio-compatible and osteo-conductive material. However, the low bending strength and fracture toughness of pure HA restrict it from implant applications. Although bio-inert materials such as titanium alloy and bio-grade stainless steel have excellent mechanical properties, they show poor osteo-conductivity. Coating of HA applied to these metallic materials can be a solution to the problem. The HA-coated metallic implant can have superior mechanical and biological characteristics. HA powder can be synthesized from chemical reagents or biogenic materials by using various routes. Chemical composition and other properties of biogenic material are preserved in the synthesized biogenic-derived hydroxyapatite. The HA powder is deposited as a coating on bio-inert metals for biomedical implant applications by using several deposition methods. In this chapter, several techniques such as plasma spray, electrophoretic deposition, sputtering deposition, pulsed laser deposition, spin coating, ion beam assisted deposition, sol-gel deposition, electrodeposition, cold spray, and suspension spray techniques which were used to deposit HA coatings are discussed thoroughly. The characteristics of the HA coatings in terms of their microstructure, phases, mechanical properties, and biological behavior are described in detail.

Keywords: hydroxyapatite; biogenic; plasma spray process; characterization


References


[1] Nasker P., A. Samanta, S. Rudra, A. Sinha, A. K. Mukhopadhyay, M. Das, Effect
of fluorine substitution on sintering behaviour, mechanical and bioactivity of
hydroxyapatite, J. Mech. Behav. Biomed. Mater. 95 (2019) 136–142.
https://doi.org/10.1016/j.jmbbm.2019.03.032.
[2] Nikpour M. R., S. M. Rabiee, M. Jahanshahi, Synthesis and characterization of
hydroxyapatite/chitosan nanocomposite materials for medical engineering
applications, Compos. B. Eng. 43 (2012) 1881–1886.
https://doi.org/10.1016/j.compositesb.2012.01.056.
[3] Turnbull G., J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D
bioactive composite scaffolds for bone tissue engineering, Bioact. Mater. 3 (2018)
278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001.
[4] Harun W S W, R I M Asri, J. Alias, F H Zulkifli, K. Kadirgama, S. A. C. Ghani, J.
H. M. Shariffuddin, A comprehensive review of hydroxyapatite-based coatings
adhesion on metallic biomaterials, Ceram. Int. 44 (2018) 1250–1268.
https://doi.org/10.1016/j.ceramint.2017.10.162.
[5] Lahiri D., S. Ghosh, A. Agarwal, Carbon nanotube reinforced hydroxyapatite
composite for orthopedic application: A review, Materials Science and
Engineering: C. 32 (2012) 1727–1758.
https://doi.org/10.1016/j.msec. 2012.05.010.
[6] Lima R. S., B. R. Marple, Thermal Spray Coatings Engineered from Nanostructured
Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical
Applications: A Review, Journal of Thermal Spray Technology. 16 (2007) 40–63.
https://doi.org/10.1007/s11666-006-9010-7.
[7] Vecchio K. S., X. Zhang, J. B. Massie, M. Wang, C. W. Kim, Conversion of bulk
seashells to biocompatible hydroxyapatite for bone implants, Acta Biomater. 3
(2007) 910–918. https://doi.org/10.1016/j.actbio.2007.06.003.
[8] Hussain S., K. Sabiruddin, Effect of heat treatment on the synthesis of
hydroxyapatite from Indian clam seashell by hydrothermal method, Ceram. Int. 47
(2021) 29660–29669. https://doi.org/10.1016/j.ceramint.2021.07.137.
[9] Wu S. C., H. C. Hsu, S. K. Hsu, Y. C. Chang, W. F. Ho, Effects of heat treatment
on the synthesis of hydroxyapatite from eggshell powders, Ceram. Int. 41 (2015)
10718–10724. https://doi.org/10.1016/j.ceramint.2015.05.006.
[10] Hussain S., K. Sabiruddin, Synthesis of eggshell based hydroxyapatite using
hydrothermal method, IOP Conf. Ser. Mater. Sci. Eng. 1189 (2021) 012024.
https://doi.org/10.1088/1757-899x/1189/1/012024.
[11] Niakan A., S. Ramesh, P. Ganesan, C. Y. Tan, J. Purbolaksono, H. Chandran, S.
Ramesh, W. D. Teng, Sintering behaviour of natural porous hydroxyapatite derived
from bovine bone, Ceram. Int. 41 (2015) 3024–3029.
https://doi.org/ 10.1016/j.ceramint.2014.10.138.
[12] Ozawa M., S. Suzuki, Microstructural development of natural hydroxyapatite
originated from fish-bone waste through heat treatment, Journal of the American
Ceramic Society. 85 (2002) 1315–1317.
https://doi.org/10.1111/j.1151-2916.2002.tb00268.x.
[13] Bee S.-L., Z. A. A. Hamid, Characterization of chicken bone waste-derived
hydroxyapatite and its functionality on chitosan membrane for guided bone
regeneration, Compos. B. Eng. 163 (2019) 562–573.
https://doi.org/10.1016/j.compositesb.2019.01.036.
[14] Wu S. C., H. C. Hsu, Y. N. Wu, W. F. Ho, Hydroxyapatite synthesized from oyster
shell powders by ball milling and heat treatment, Mater. Charact. 62 (2011) 1180–1187. https://doi.org/10.1016/j.matchar.2011.09.009.
[15] Mondal B., S. Mondal, A. Mondal, N. Mandal, Fish scale derived hydroxyapatite
scaffold for bone tissue engineering, Mater. Charact. 121 (2016) 112–124.
https://doi.org/10.1016/j.matchar.2016.09.034.
[16] Wan Y Z., L. Hong, S.R. Jia, Y. Huang, Y. Zhu, Y.L. Wang, H.J. Jiang, Synthesis
and characterization of hydroxyapatite-bacterial cellulose nanocomposites,
Compos. Sci. Technol. 66 (2006) 1825–1832.
https://doi.org/ 10.1016/j.compscitech.2005.11.027.
[17] Sivakumar M., T. S. S. Kumar, K. L. Shantha, K. P. Rao, Development of
hydroxyapatite derived from Indian coral, Biomaterials. 17 (1996) 1709–1714.
https://doi.org/10.1016/0142-9612(96)87651-4.
[18] Ofudje E. A., A. Rajendran, A.I. Adeogun, MA Idowu, S.O. Kareem, D.K.
Pattanayak, Synthesis of organic derived hydroxyapatite scaffold from pig bone
waste for tissue engineering applications, Advanced Powder Technology. 29 (2018)
1–8. https://doi.org/10.1016/j.apt.2017.09.008.
[19] Zhou H., M. Yang, M. Zhang, S. Hou, S. Kong, L. Yang, L. Deng, Preparation of
Chinese mystery snail shells derived hydroxyapatite with different morphology
using condensed phosphate sources, Ceram. Int. 42 (2016) 16671–16676.
https://doi.org/10.1016/j.ceramint.2016.07.101.
[20] Edralin E J M, J. L. Garcia, F. M. dela Rosa, E.R. Punzalan, Sonochemical
synthesis, characterization and photocatalytic properties of hydroxyapatite nano rods
derived from mussel shells, Mater. Lett. 196 (2017) 33–36.
https://doi.org/10.1016/j.matlet.2017.03.016.
[21] Chen J., Z. Wen, S. Zhong, Z. Wang, J. Wu, Q. Zhang, Synthesis of hydroxyapatite
nanorods from abalone shells via hydrothermal solid-state conversion, Mater Des.
87 (2015) 445–449. https://doi.org/10.1016/j.matdes. 2015.08.056.
[22] Singh S., K. K. Pandey, A. Islam, A. K. Keshri, Corrosion behaviour of plasma
sprayed graphene nanoplatelets reinforced hydroxyapatite composite coatings in
simulated body fluid, Ceram. Int. 46 (2020) 13539–13548.
https://doi.org/10.1016/j.ceramint.2020.02.139.
[23] Henao J., C. Poblano-Salas, M. Monsalve, J. Corona-Castuera, O. Barceinas Sanchez,
Bio-active glass coatings manufactured by thermal spray: A status report,
Journal of Materials Research and Technology. 8 (2019) 4965–4984.
https://doi.org/10.1016/j.jmrt.2019.07.011.
[24] Singh S., K. K. Pandey, O. S. Asiq Rahman, S. Haldar, D. Lahiri, A. K. Keshri,
Investigation of crystallinity, mechanical properties, fracture toughness and cell
proliferation in plasma sprayed graphene nano platelets reinforced hydroxyapatite
coating, Mater. Res. Express. 7 (2020) 015415.
https://doi.org/ 10.1088/2053-1591/ab6c23.
[25] Chambard M., O. Marsan, C. Charvillat, D. Grossin, P. Fort, C. Rey, F. Gitzhofer,
G. Bertrand, Effect of the deposition route on the microstructure of plasma-sprayed
hydroxyapatite coatings, Surf. Coat. Technol. 371 (2019) 68–77.
https://doi.org/10.1016/j.surfcoat.2019.01.027.
[26] Singh J., S. S. Chatha, H. Singh, Characterization and corrosion behavior of plasma
sprayed calcium silicate reinforced hydroxyapatite composite coatings for medical
implant applications, Ceram. Int. 47 (2021) 782–792.
https://doi.org/10.1016/j.ceramint.2020.08.189.
[27] Singh G., S. Singh, S. Prakash, Surface characterization of plasma sprayed pure and
reinforced hydroxyapatite coating on Ti6Al4V alloy, Surf. Coat. Technol. 205
(2011) 4814–4820. https://doi.org/10.1016/j.surfcoat. 2011.04.064.
[28] Chen Y., J. Ren, Y. Sun, W. Liu, X. Lu, S. Guan, Efficacy of graphene nanosheets
on the plasma sprayed hydroxyapatite coating: Improved strength, toughness and
in-vitro bioperformance with osteoblast, Mater. Des. 203 (2021) 109585.
https://doi.org/10.1016/j.matdes.2021.109585.
[29] Drevet R., N. ben Jaber, J. Fauré, A. Tara, A. ben Cheikh Larbi, H. Benhayoune,
Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved
mechanical properties on prosthetic Ti6Al4V substrates, Surf. Coat. Technol. 301
(2016) 94–99. https://doi.org/10.1016/ j.surfcoat.2015.12.058.
[30] S. Khanmohammadi, M. Ojaghi-Ilkhchi, M. Farrokhi-Rad, Evaluation of bioglass
and hydroxyapatite based nanocomposite coatings obtained by electrophoretic
deposition, Ceram. Int. 46 (2020) 26069–26077.
https:// doi.org/10.1016/j.ceramint.2020.07.100.
[31] Zhang C., T. Uchikoshi, L. Liu, K. Iwanami-Kadowaki, M. Uezono, K. Moriyama,
M. Kikuchi, Antibacterial-functionalized Ag loaded-hydroxyapatite (HAp)
coatings fabricated by electrophoretic deposition (EPD) process, Mater. Lett. 297
(2021) 129955. https://doi.org/10.1016/j.matlet. 2021.129955.
[32] Mahmoodi M., M. H. Hydari, L. Mahmoodi, L. Gazanfari, M. Mirhaj,
Electrophoretic deposition of graphene oxide reinforced hydroxyapatite on the
tantalum substrate for bone implant applications: In vitro corrosion and bio
tribological behavior, Surf. Coat. Technol. 424 (2021) 127642.
https://doi.org/10.1016/j.surfcoat.2021.127642.
[33] Sun G., J. Ma, S. Zhang, Electrophoretic deposition of zinc-substituted
hydroxyapatite coatings, Materials Science and Engineering: C. 39 (2014) 67–72.
https://doi.org/10.1016/j.msec.2014.02.023.
[34] Parau A. C., C. M. Cotrut, P. Guglielmi, A. Cusanno, G. Palumbo, M. Dinu, G.
Serratore, G. Ambrogio, D.M. Vranceanu, A. Vladescu, Deposition temperature
effect on sputtered hydroxyapatite coatings prepared on AZ31B alloy substrate,
Ceram. Int. 48 (2022) 10486–10497.
https://doi.org/10.1016/ j.ceramint.2021.12.258.
[35] Lenis J A, F. M. Hurtado, M. A. Gómez, F. J. Bolívar, Effect of thermal treatment
on structure, phase and mechanical properties of hydroxyapatite thin films grown
by RF magnetron sputtering, Thin. Solid Films. 669 (2019) 571–578.
https://doi.org/10.1016/j.tsf.2018.11.045.
[36] Vladescu A., S. C. Padmanabhan, F. Ak Azem, M. Braic, I. Titorencu, I. Birlik,
M.A. Morris, V. Braic, Mechanical properties and biocompatibility of the sputtered
Ti doped hydroxyapatite, J. Mech. Behav. Biomed. Mater. 63 (2016) 314–325.
https://doi.org/10.1016/j.jmbbm.2016.06.025.
[37] Cho H.-R., H.-C. Choe, Morphology of hydroxyapatite and Sr coatings deposited
using radio frequency-magnetron sputtering method on nanotube formed Ti-6Al 4V alloy,
Thin Solid. Films. 735 (2021) 138893. https://doi.org/10.1016/j.tsf.2021.138893.
[38] Bramowicz M., L. Braic, F. A. Azem, S. Kulesza, I. Birlik, A. Vladescu,
Mechanical properties and fractal analysis of the surface texture of sputtered
hydroxyapatite coatings, Appl. Surf. Sci. 379 (2016) 338–346.
https://doi.org/10.1016/j.apsusc.2016.04.077.
[39] Pereiro I., C. Rodríguez-Valencia, C. Serra, E. L. Solla, J. Serra, P. González,
Pulsed laser deposition of strontium-substituted hydroxyapatite coatings, Appl.
Surf. Sci. 258 (2012) 9192–9197. https://doi.org/10.1016/j.apsusc. 2012.04. 063.
[40] Khandelwal H., G. Singh, K. Agrawal, S. Prakash, R. D. Agarwal, Characterization
of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316
L by varying laser energy, Appl. Surf. Sci. 265 (2013) 30–35.
https://doi.org/10.1016/j.apsusc.2012.10.072.
[41] Duta L., FN Oktar, G. E. Stan, G. Popescu-Pelin, N. Serban, C. Luculescu, I. N.
Mihailescu, Novel doped hydroxyapatite thin films obtained by pulsed laser
deposition, Appl. Surf. Sci. 265 (2013) 41–49.
https://doi.org/10.1016/ j.apsusc.2012.10.077.
[42] Hidalgo-Robatto B. M., J. J. Aguilera-Correa, M. López-Álvarez, D. Romera, J.
Esteban, P. González, J. Serra, Fluor-carbonated hydroxyapatite coatings by pulsed
laser deposition to promote cell viability and antibacterial properties, Surf. Coat.
Technol. 349 (2018) 736–744. https://doi.org/10.1016/J.SURF COAT.2018.06.047.
[43] Bao Q., C. Chen, D. Wang, J. Liu, The influences of target properties and deposition
times on pulsed laser deposited hydroxyapatite films, Appl. Surf. Sci. 255 (2008)
619–621. https://doi.org/10.1016/j.apsusc.2008.06.080.
[44] Yuan Q., J. Wu, C. Qin, A. Xu, Z. Zhang, S. Lin, X. Ren, P. Zhang, Spin-coating
synthesis and characterization of Zn-doped hydroxyapatite/polylactic acid
composite coatings, Surf. Coat. Technol. 307 (2016) 461–469.
https://doi.org/10.1016/j.surfcoat.2016.09.021.
[45] Shokri N., M S Safavi, M. Etminanfar, F. C. Walsh, J. Khalil-Allafi, Enhanced
corrosion protection of NiTi orthopedic implants by highly crystalline
hydroxyapatite deposited by spin coating: The importance of pre-treatment, Mater.
Chem. Phys. 259 (2021) 124041.
https://doi.org/10.1016/j.match emphys.2020.124041.
[46] Choi J.-M., H.-E. Kim, I.-S. Lee, Ion-beam-assisted deposition (IBAD) of
hydroxyapatite coating layer on Ti-based metal substrate, Biomaterials. 21 (2000)
469–473. https://doi.org/10.1016/S0142-9612(99)00186-6.
[47] Kim T. N., Q. L. Feng, Z. S. Luo, F. Z. Cui, J. O. Kim, Highly adhesive
hydroxyapatite coatings on alumina substrates prepared by ion-beam assisted
deposition, Surf. Coat. Technol. 99 (1998) 20–23.
https://doi.org/10.1016/ S0257-8972(97)00121-7.
[48] Luo Z. S., F. Z. Cui, Q. L. Feng, H. D. Li, X D. Zhu, M. Spector, In vitro and in
vivo evaluation of degradability of hydroxyapatite coatings synthesized by ion
beam-assisted deposition, Surf. Coat Technol. 131 (2000) 192–195.
https://doi.org/10.1016/S0257-8972(00)00824-0.
[49] Rabiei A., B. Thomas, C. Jin, R. Narayan, J. Cuomo, Y. Yang, J.L. Ong, A study
on functionally graded HA coatings processed using ion beam assisted deposition
with in situ heat treatment, Surf. Coat Technol. 200 (2006) 6111–6116.
https://doi.org/10.1016/j.surfcoat.2005.09.027.
[50] Blalock T., X. Bai, A. Rabiei, A study on microstructure and properties of calcium
phosphate coatings processed using ion beam assisted deposition on heated
substrates, Surf Coat Technol. 201 (2007) 5850–5858.
https://doi.org/ 10.1016/j.surfcoat.2006.10.039.
[51] Domínguez-Trujillo C., E. Peón, E. Chicardi, H. Pérez, J. A. Rodríguez-Ortiz, J. J.
Pavón, J. García-Couce, J. C. Galván, F. García-Moreno, Y. Torres, Sol-gel
deposition of hydroxyapatite coatings on porous titanium for biomedical
applications, Surf. Coat. Technol. 333 (2018) 158–162.
https://doi.org/ 10.1016/j.surfcoat.2017.10.079.
[52] Cai Y., S. Zhang, X. Zeng, Y. Wang, M. Qian, W. Weng, Improvement of
bioactivity with magnesium and fluorine ions incorporated hydroxyapatite coatings
via sol–gel deposition on Ti6Al4V alloys, Thin Solid Films. 517 (2009) 5347–5351.
https://doi.org/10.1016/j.tsf.2009.03.071.
[53] Priyadarshini B., S. Ramya, E. Shinyjoy, L. Kavitha, D. Gopi, U. Vijayalakshmi,
Structural, morphological and biological evaluations of cerium incorporated
hydroxyapatite sol–gel coatings on Ti–6Al–4V for orthopaedic applications,
Journal of Materials Research and Technology. 12 (2021) 1319–1338.
https://doi.org/10.1016/j.jmrt.2021.03.009.
[54] Ahmadi R., A. Afshar, In vitro study: Bond strength, electrochemical and
biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel
coatings on 316L SS, Surf. Coat Technol. 405 (2021) 126594.
https://doi.org/10.1016/j.surfcoat.2020.126594.
[55] Lin D.-Y., X.-X. Wang, Preparation of hydroxyapatite coating on smooth implant
surface by electrodeposition, Ceram. Int. 37 (2011) 403–406.
https://doi.org/10.1016/j.ceramint.2010.08.018.
[56] Gopi D., E. Shinyjoy, M. Sekar, M. Surendiran, L. Kavitha, T.S. Sampath Kumar,
Development of carbon nanotubesreinforced hydroxyapatite composite coatings on
titanium by electrodeposition method, Corros. Sci. 73 (2013) 321–330.
https://doi.org/10.1016/j.corsci.2013.04.021.
[57] Nizami MZI., B. D. L. Campéon, Y. Nishina, Electrodeposition of hydroxyapatite
and graphene oxide improves the bioactivity of medical grade stainless steel,
Materials Today Sustainability. 19 (2022) 100193.
https://doi.org/10.1016/j.mtsust.2022.100193.
[58] Zeng Y., X. Pei, S. Yang, H. Qin, H. Cai, S. Hu, L. Sui, Q. Wan, J. Wang, Graphene
oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition,
Surf Coat Technol. 286 (2016) 72–79.
https://doi.org/10.1016/j.surfcoat.2015.12.013.
[59] Qiu D., L. Yang, Y. Yin, A. Wang, Preparation and characterization of
hydroxyapatite/titania composite coating on NiTi alloy by electrochemical
deposition, Surf Coat Technol. 205 (2011) 3280–3284.
https://doi.org/ 10.1016/j.surfcoat.2010.11.049.
[60] Chen Q.-Y., Y.-L. Zou, X. Chen, X.-B. Bai, G.-C. Ji, H.-L. Yao, H.-T. Wang, F.
Wang, Morphological, structural and mechanical characterization of cold sprayed
hydroxyapatite coating, Surf Coat Technol. 357 (2019) 910–923.
https://doi.org/10.1016/j.surfcoat.2018.10.056.
[61] Tang J., Z. Zhao, H. Liu, X. Cui, J. Wang, T. Xiong, A novel bioactive
Ta/hydroxyapatite composite coating fabricated by cold spraying, Mater Lett. 250
(2019) 197–201. https://doi.org/10.1016/j.matlet.2019.04.123.
[62] Chatelain D., A. Denoirjean, V. Guipont, F. Rossignol, N. Tessier-Doyen, Influence
of the thermal treatment of a hydroxyapatite powder on the characteristics of
coatings deposited by cold gas spraying, Surf Coat Technol. (2022) 128697.
https://doi.org/10.1016/j.surfcoat.2022.128697.
[63] Vilardell A. M., N. Cinca, N. Garcia-Giralt, S. Dosta, I. G. Cano, X. Nogués, J. M.
Guilemany, Functionalized coatings by cold spray: An in vitro study of micro- and
nanocrystalline hydroxyapatite compared to porous titanium, Materials Science and
Engineering: C. 87 (2018) 41–49. https://doi.org/ 10.1016/j.msec.2018.02.009.
[64] Ročňáková I., K. Slámečka, E. B. Montufar, M. Remešová, L. Dyčková, A. Břínek,
D. Jech, K. Dvořák, L. Čelko, J. Kaiser, Deposition of hydroxyapatite and
tricalcium phosphate coatings by suspension plasma spraying: Effects of torch
speed, J. Eur. Ceram. Soc. 38 (2018) 5489–5496.
https://doi.org/ 10.1016/j.jeurceramsoc.2018.08.007.
[65] Xu H., X. Geng, G. Liu, J. Xiao, D. Li, Y. Zhang, P. Zhu, C. Zhang, Deposition,
nanostructure and phase composition of suspension plasma-sprayed hydroxyapatite
coatings, Ceram. Int. 42 (2016) 8684–8690.
https://doi.org/10.1016/j.ceramint.2016.02.102.
[66] Chen X., B. Zhang, Y. Gong, P. Zhou, H. Li, Mechanical properties of
nanodiamond-reinforced hydroxyapatite composite coatings deposited by
suspension plasma spraying, Appl. Surf. Sci. 439 (2018) 60–65.
https://doi.org10.1016/j.apsusc.2018.01.014.
[67] Zheng B., Y. Luo, H. Liao, C. Zhang, Investigation of the crystallinity of suspension
plasma sprayed hydroxyapatite coatings, J. Eur. Ceram. Soc. 37 (2017) 5017–5021.
https://doi.org/10.1016/j.jeurceramsoc.2017.07.007.
[68] Abir M M M, Y. Otsuka, K. Ohnuma, Y. Miyashita, Effects of composition of
hydroxyapatite/gray titania coating fabricated by suspension plasma spraying on
mechanical and antibacterial properties, J. Mech. Beha.v Biomed. Mater. 125 (2022)
104888. https://doi.org/10.1016/j.jmbbm.2021.104888.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!