Chapter 7. Conquering the Impact of Climate Change through Organic Farming: A Global Perspective

$39.50

Samrendra Singh Thakur¹, Azhar Rashid Lone², Siddhartha Shankar Bhattacharyya³,⁴, Sk Musfiq Us Salehin³,⁴, Subodh Kumar Jain² and Shweta Yadav²
¹Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
²Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
³Department of Soil and Crop Science, Texas A&M University, College Station, TX, USA
⁴Texas A&M AgriLife Research, College Station, TX, USA

Part of the book: Research Advancements in Organic Farming

Chapter DOI: https://doi.org/10.52305/APLS7818

Abstract

Anthropogenic activity-induced climate change and its impact on natural catastrophes, biodiversity loss, hygienic risk, and other factors are now well understood. It is expected that anthropogenic greenhouse gas concentration and surface temperature would rise over the 21st century, causing the climate to undergo significant changes. Carbon dioxide (CO2), the main driver of climate change, is produced in substantial quantities through the burning of fossil fuels. In addition, methane (CH4) and nitrous oxide (N2O), two additional gases that are mostly produced by agriculture, have a significant impact that is often underestimated. Methane is produced from several sources including ruminant animals’ digestive tracts, fermentation of effluents from livestock (manure, slurry, compost) and paddy cultivation while nitrogen-based synthetic fertilisers and fumigants are responsible for N2O emission. In terms of global warming potential, N2O and CH4 are 300 and 80 times more potent than CO2 respectively. The agriculture sector is responsible for approximately 30% of global climate change. Conventional farming techniques involve extensive application of synthetic agrochemicals, which adversely impact the physicochemical and biological characteristics of soil and eventually lead to soil disturbance. Excessive usage of agrochemicals might delay or prevent natural biodegradation, which increases their persistence. Additionally, due to the elevated carbon dioxide (eCO2) levels, drought, flooding, rising temperatures, and indiscriminate pesticide usage significantly contribute to soil erosion and degradation, resulting in soil organic carbon (SOC) depletion. In degraded soils, the decomposition and respiration of soil organic carbon (SOC) releases a considerable amount of CO2 into the atmosphere. The chapter discusses how organic farming can facilitate mitigating the impact of climate change.

 Keywords: organic farming, climate change, GHGs emission, carbon sequestration, soil fertility, SOC dynamics


References


Ahemad, M., and Khan, M. S. (2012). Evaluation of plant-growth-promoting activities of
rhizobacterium Pseudomonas putida under herbicide stress. Ann. Microbiol., 62(4):
1531-1540. https://doi.org/10.1007/s13213-011-0407-2.
Ahemad, M., and Kibret, M. (2014). Mechanisms and applications of plant growth
promoting rhizobacteria: current perspective. J. King Saud. Univ. Sci., 26(1): 1-20.
https://doi.org/10.1016/j.jksus.2013.05.001.
Ajwa, H. A., and Tabatabai, M. A. (1994). Decomposition of different organic materials in
soils. Biol. Fertil. Soils, 18: 175–182. https://doi.org/10.1007/BF00647664.
Alavi, P., Müller, H., Cardinale, M., Zachow, C., Sánchez, M. B., Martínez, J. L., and Berg,
G. (2013). The DSF quorum sensing system controls the positive influence of
Stenotrophomonas maltophilia on plants. PLoS One, 8(7): e67103.
https://doi.org/10.1371/journal.pone.0067103.
Aldebron, C., Jones, M. S., Snyder, W. E., and Blubaugh, C. K. (2020). Soil organic matter
links organic farming to enhanced predator evenness. Biol. Control, 146: 104278.
https://doi.org/10.1016/j.biocontrol.2020.104278.
Alf, K., and Nannipieri, P. (1995). β-glucosidase activity. In: Methods in Applied Soil
Microbiology and Biochemistry. K. Alf, and P. Nannipieri (Eds.), Academic Press,
London, United Kingdom, pp 24-28.
Aliasgharzad, N., Neyshabouri, M. R., and Salimi, G. (2006). Effects of arbuscular
mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean.
Biologia, 61(19): S324-S328. https://doi.org/10.2478/s11756-006-0182-x.
Ansari, M. W., Trivedi, D. K., Sahoo, R. K., Gill, S. S., and Tuteja, N. (2013). A critical
review on fungi mediated plant responses with special emphasis to Piriformospora
indica on improved production and protection of crops. Plant Physiol. Biochem., 70:
403-410. https://doi.org/10.1016/j.plaphy.2013.06.005.
Antoun, H., and Prévost, D. (2005). Ecology of plant growth promoting rhizobacteria. In:
PGPR: Biocontrol and biofertilization. Z. A. Siddiqui (Eds.), Springer, Dordrecht,
pp 1-38. https://doi.org/10.1007/1-4020-4152-7_1.
Baartman, J. E., Jetten, V. G., Ritsema, C. J., and de Vente, J. (2012). Exploring effects of
rainfall intensity and duration on soil erosion at the catchment scale using open
LISEM: Prado catchment, SE Spain. Hydrol. Process., 26(7): 1034-1049.
https://doi.org/10.1002/hyp.8196.
Baharlouei, J., Pazira, E., and Solhi, M. (2011). Evaluation of inoculation of plant
growth promoting Rhizobacteria on cadmium uptake by canola and barley. Afr. J. Microbiol.
Res., 5(14): 1747-1754 https://doi.org/10.5897/AJMR10.625.
Bakker, M. M., Govers, G., Jones, R. A., and Rounsevell, M. D. (2007). The effect of soil
erosion on Europe’s crop yields. Ecosyst., 10(7): 1209-1219. https://doi.org/10.1007/s10021-007-9090-3.
Bandick, A. K., and Dick, R. P. (1999). Field management effects on soil enzyme activities.
Soil Biol. Biochem., 31(11): 1471-1479. https://doi.org/10.1016/S0038-0717(99)00051-6.
Bardgett, R. D., Freeman, C., and Ostle, N. J. (2008). Microbial contributions to climate
change through carbon cycle feedbacks. ISME J., 2(8), 805-814.
https://doi.org/10.1038/ismej.2008.58.
Bellarby, J., Foereid, B., and Hastings, A. (2008). Cool Farming: Climate impacts of
agriculture and mitigation potential. Greenpeace International, Amsterdam,
Netherlands.
Beniston, M. (2006). Mountain weather and climate: a general overview and a focus on
climatic change in the Alps. Hydrobiologia, 562(1): 3-16. https://doi.org/10.1007/s10750-005-1802-0.
Bera, T., Sharma, S., Thind, H. S., Sidhu, H. S., and Jat, M. L. (2017). Soil biochemical
changes at different wheat growth stages in response to conservation agriculture
practices in a rice-wheat system of north-western India. Soil Res., 56(1): 91-104.
https://doi.org/10.1071/SR16357.
Berg, G., Köberl, M., Rybakova, D., Müller, H., Grosch, R., and Smalla, K. (2017). Plant
microbial diversity is suggested as the key to future biocontrol and health trends.
FEMS Microbiol. Ecol., 93(5): fix050. https://doi.org/10.1093/femsec/fix050.
Bergström, L., and Kirchmann, H. (2016). Are the claimed benefits of organic agriculture
justified? Nat. Plants, 2(7): 1-2. https://doi.org/10.1038/nplants.2016.99.
Bhat, M. G., English, B. C., Turhollow, A. F., Nyangito, H. O. (1994). Energy in
synthetic fertilizers and pesticides: revisited. Final project report. Knoxville, TN,
USA. Department of Agricultural Economics and Rural Sociology, Tennessee
University Press, USA.
Bhattacharyya, S. S., Adeyemi, M. A., Onyeneke, R. U., Bhattacharyya, S., Faborode, H.
F. B., Melchor-Martínez, E. M., Iqbal, H. M., and Parra-Saldívar, R. (2021). Nutrient
Budgeting — A Robust Indicator of Soil–Water–Air Contamination Monitoring and
Prevention. Environ. Technol. Innov., 24: 101944. https://doi.org/10.1016/j.eti.2021.101944.
Bhattacharyya, S. S., Leite, F. F. G. D., France, C. L., Adekoya, A. O., Ros, G. H., de Vries,
W., Melchor-Martínez, E. M., Iqbal, H. M., and Parra-Saldívar, R. (2022). Soil carbon
sequestration, greenhouse gas emissions, and water pollution under different tillage
practices. Sci. Tot. Environ., 826: 154161. https://doi.org/10.1016/j.scitotenv.2022.154161.
Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D.,
Montanarella, L., and Ballabio, C. (2020). Land use and climate change impacts on
global soil erosion by water (2015-2070). Proc. Natl. Acad. Sci., 117(36): 21994-
22001. https://doi.org/10.1073/pnas.2001403117.
Brander, M., and Davis, G. (2012). Greenhouse Gases, CO2, CO2e, and Carbon: What Do
All These Terms Mean? Accessed August 20, 2021. http://ecometrica.com/white papers/greenhouse-gases-co2-co2e-and-carbon-what-do-all-these-terms-mean?filterandfilter_categoryandfilter_dateandfilter_topic.
Bulluck Iii, L. R., Brosius, M., Evanylo, G. K., and Ristaino, J. B. (2002). Organic and
synthetic fertility amendments influence soil microbial, physical and chemical
properties on organic and conventional farms. Appl. Soil Ecol., 19(2): 147-160.
https://doi.org/10.1016/S0929-1393(01)00187-1.
Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., Morsy,
M., Eisen, J. A., Leach, J. E., and Dangl, J. L. (2017). Research priorities for
harnessing plant microbiomes in sustainable agriculture. PLoS Biol., 15(3): e2001793.
https://doi.org/10.1371/journal.pbio.2001793.
Clark, M. S., Horwath, W. R., Shennan, C., and Scow, K. M. (1998). Changes in soil
chemical properties resulting from organic and low‐input farming practices. Agron. J.,
90(5): 662-671. https://doi.org/10.2134/agronj1998.00021962009000050016x.
Creus, C. M., Graziano, M., Casanovas, E. M., Pereyra, M. A., Simontacchi, M., Puntarulo,
S., Barassi, C. A., and Lamattina, L. (2005). Nitric oxide is involved in the
Azospirillum brasilense-induced lateral root formation in tomato. Planta, 221(2): 297-303.
https://doi.org/10.1007/s00425-005-1523-7.
Dakhlalla, A. O., Parajuli, P. B., Ouyang, Y., and Schmitz, D. W. (2016). Evaluating the
impacts of crop rotations on groundwater storage and recharge in an agricultural
watershed. Agric. Water Manag., 163: 332-343. https://doi.org/10.1016/j.agwat.2015.10.001.
de Corato, U. (2020). Soil microbiota manipulation and its role in suppressing soil-borne
plant pathogens in organic farming systems under the light of microbiome-assisted
strategies. Chem. Biol. Technol. Agric., 7(17). https://doi.org/10.1186/s40538-020-00183-7.
Dick, R. P. (1994). Soil enzyme activities as indicators of soil quality. In: Defining Soil
Quality for a Sustainable Environment, Soil Science Society of America Doran, J. V.,
Coleman, D. C., Bezdicek, D. F., Stewart, B. A., (Eds.), American Society of
Agriculture, Madison, pp. 107-124.
Dick, R. P., and Kandeler, E. (2004). Enzymes in soils. In: Encyclopedia of Soils in the
Environment. Hillel, D., (Eds.), Elsevier, Oxford, pp 448-455.
Dungait, J. A., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P. (2012). Soil organic
matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol.,
18(6): 1781-1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x.
Egamberdiyeva, D. (2007). The effect of plant growth promoting bacteria on growth and
nutrient uptake of maize in two different soils. Appl. Soil Ecol., 36(2-3), 184-189.
https://doi.org/10.1016/j.apsoil.2007.02.005.
Feng, X., Wang, Y., Chen, L., Fu, B., and Bai, G. (2010). Modeling soil erosion and its
response to land-use change in hilly catchments of the Chinese Loess Plateau.
Geomorphol., 118(3-4): 239-248. https://doi.org/10.1016/j.geomorph.2010.01.004.
Fernandez, A. L., Sheaffer, C. C., Wyse, D. L., Staley, C., Gould, T. J., and Sadowsky, M.
J. (2016). Structure of bacterial communities in soil following cover crop and organic
fertilizer incorporation. Appl. Microbiol. Biotechnol., 100(21): 9331-9341.
https://doi.org/10.1007/s00253-016-7736-9.
Fließbach, A., and MaÈder, P. (2000). Microbial biomass and size-density fractions differ
between soils of organic and conventional agricultural systems. Soil Biol. Biochem.,
32(6): 757-768. https://doi.org/10.1016/S0038-0717(99)00197-2.
Friedel, J. K., Gabel, D., and Stahr, K. (2001). Nitrogen pools and turnover in arable soils
under different durations of organic farming: II: Source‐and‐sink function of the soil
microbial biomass or competition with growing plants? J. Plant Nutr. Soil Sci., 164(4):
421-429. https://doi.org/10.1002/1522-2624(200108)164:4<421::AID-JPLN421>3.0.CO;2-P.
Gao, J., Wu, S., Liu, Y., Wu, S., Jiang, C., Li, X., Wang, R., Bai, Z., Zhuang, G., and
Zhuang, X. (2020). Characterization and transcriptomic analysis of a highly Cr (VI)-
resistant and-reductive plant-growth-promoting rhizobacterium Stenotrophomonas
rhizophila DSM14405T
. Environmental Pollut., 263: 114622. https://doi.org/10.1016/j.envpol.2020.114622.
Garratt, M. P. D., Wright, S. R., Leather R. (2011). The effects of farming system and
fertilisers on pests and natural enemies: a synthesis of current research. Agr. Ecosyst.
Environ., 141: 261–270. https://doi.org/10.1016/j.agee.2011.03.014.
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications.
Scientifica, 2012. https://doi.org/10.6064/2012/963401.
Gomez, E., Ferreras, L., and Toresani, S. (2006). Soil bacterial functional diversity as
influenced by organic amendment application. Bioresour. Technol., 97(13): 1484-
1489. https://doi.org/10.1016/j.biortech.2005.06.021.
Gomiero, T., Pimentel, D., and Paoletti, M.G. (2011). Environmental impact of different
agricultural management practices: conventional vs. organic agriculture. Crit. Rev.
Plant Sci., 30(1-2): 95-124. https://doi.org/10.1080/07352689.2011.554355.
Gunstone, T., Cornelisse, T., Klein, K., Dubey, A., and Donley, N. (2021). Pesticides and
Soil Invertebrates: A Hazard Assessment. Front. Environmen. Sci., 9: 122.
https://doi.org/10.3389/fenvs.2021.643847.
Hartmann, M., Frey, B., Mayer, J., Mäder, P., and Widmer, F. (2015). Distinct soil
microbial diversity under long-term organic and conventional farming. ISME J., 9(5):
1177-1194. https://doi.org/10.1038/ismej.2014.210.
Hartwig, N. L., and Ammon, H.U. (2002). Cover crops and living mulches. Weed Sci.,
50(6): 688-699. https://doi.org/10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2.
Hassink, J. (1997). The capacity of soils to preserve organic C and N by their association
with clay and silt particles. Plant Soil, 191(1): 77-87. https://doi.org/10.1023/A:1004213929699.
Hayat, R., Ali, S., Amara, U., Khalid, R., and Ahmed, I. (2010). Soil beneficial bacteria
and their role in plant growth promotion: a review. Ann. Microbiol., 60(4): 579-598.
https://doi.org/10.1007/s13213-010-0117-1.
Heidari, M., and Golpayegani, A. (2012). Effects of water stress and inoculation with plant
growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic
pigments in basil (Ocimum basilicum L.). J. Saudi Soc. Agric. Sci., 11(1), 57-61.
https://doi.org/10.1016/j.jssas.2011.09.001.
Hoeppner, J. W., Entz, M. H., McConkey, B. G., (2006). Energy use and efficiency in
two Canadian organic and conventional crop production systems. Renew. Agric.
Food Syst., 21: 60–67 https://doi.org/10.1079/RAF2005118.
Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., and Wu, Z. (2018). Microbial
degradation of pesticide residues and an emphasis on the degradation of cypermethrin
and 3-phenoxy benzoic acid: a review. Molecules, 23(9): 2313.
https://doi.org/10.3390/molecules23092313.
Hussain, N., Mujeeb, F., Tahir, M., Khan, G. D., Hassan, N. M., and Bari, A. (2002).
Effectiveness of Rhizobium under salinity stress. Asian J. Plant Sci., 1(1): 12-14.
https://doi.org/10.3923/ajps.2002.12.14.
IFOAM (2008). Criticisms and frequent misconceptions about organic agriculture: the
counter-arguments, p 71. Web site www.ifoam.org.
IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I,
II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change Pachauri, R. K., Meyer, L. A. (Eds.), Geneva, Switzerland, pp. 151.
IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger,
S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy,
E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou,
B. (Eds.), Cambridge University Press. In Press
Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., Leclère, D., Ohrel,
S., Ragnauth, S., Schmid, E., Valin, H., Lipzig, N. V., and Maertens, M. (2020).
Global hunger and climate change adaptation through international trade. Nat. Clim.
Change, 10(9): 829-835. https://doi.org/10.1038/s41558-020-0847-4.
Jenny, H. (1941). Factors in soil formation. McGraw-Hill, New York, pp 281.
Karaca, A., Cetin, S. C., Turgay, O. C., and Kizilkaya, R. (2010). Effects of heavy metals
on soil enzyme activities. In: Soil heavy metals. Soil Biology, vol 19, Springer,
Berlin, pp 237-262. https://doi.org/10.1007/978-3-642-02436-8_11.
Katayama, N., Osada, Y., Mashiko, M., Baba, Y. G., Tanaka, K., Kusumoto, Y., Okubo,
S., Ikeda, H., and Natuhara, Y. (2019). Organic farming and associated management
practices benefit multiple wildlife taxa: A large‐scale field study in rice paddy
landscapes. J. Appl. Ecol., 56(8): 1970-1981. https://doi.org/10.1111/1365-2664.13446.
Khanal, R. C. (2009). Climate change and organic agriculture. J. Agric. Environ., 10:
116–127. https://doi.org/10.3126/aej.v10i0.2136
King, B. C., Waxman, K. D., Nenni, N. V., Walker, L. P., Bergstrom, G. C., and Gibson,
D. M. (2011). Arsenal of plant cell wall degrading enzymes reflects host preference
among plant pathogenic fungi. Biotechnol. Biofuels, 4(1): 1-14.
https://doi.org/10.1186/1754-6834-4-4.
Kirkby, M.J., and Bracken, L.J. (2009). Gully processes and gully dynamics. Earth Surf.
Process. Landf, 34(14): 1841-1851. https://doi.org/10.1002/esp.1866.
Kohler, J., Caravaca, F., and Roldán, A. (2010). An AM fungus and a PGPR intensify the
adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca
sativa. Soil Biol. Biochem., 42(3): 429-434. https://doi.org/10.1016/j.soilbio.2009.11.021.
Kotschi, J., and Müller-Sämann, K. M. (2004). The role of organic agriculture in mitigating
climate change- a Scoping Study. IFOAM. Bonn, pp64.
Kuepper, G. (2010). A brief overview of the history and philosophy of organic agriculture.
Kerr Center for Sustainable Agriculture, Poteau, OK, USA.
Kumar, R., and Gautam, H. R. (2014). Climate change and its impact on agricultural
productivity in India. J. Climatol. Weather Forecasting, 2: 109. http://dx.doi.org/
10.4172/2332-2594.1000109.
Lal, R. (1994). Soil Erosion Research Methods, 2nd edn., Soil Water Conservation Society,
St. Lucie Press, Delray Beach, FL, pp 340.
Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2):
1-22. https://doi.org/10.1016/j.geoderma.2004.01.032.
Lal, R. (2008). Carbon sequestration. Phil. Trans. R. Soc. B., 363(1492): 815-830.
https://doi.org/10.1098/rstb.2007.2185.
Lal, R. (2020). Soil organic matter and water retention. Agron. J., 112(5): 3265–3277.
https://doi.org/10.1002/agj2.20282.
Langdale, G. W., West, L. T., Bruce, R. R., Miller, W. P., and Thomas, A. W. (1992).
Restoration of eroded soil with conservation tillage. Soil Technol., 5(1): 81-90.
https://doi.org/10.1016/0933-3630(92)90009-P.
Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P.,
Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P.,
Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P.,
Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E.,
Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan,
F., Omar, A., Ono, T., Park, G. H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P.,
Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi,
T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and
Zaehle, S. (2014). Global carbon budget 2013. Earth Syst. Sci. Data, 6(1): 235–263.
https://doi.org/10.5194/essd-6-235-2014.
Leifeld, J., and Fuhrer, J. (2010). Organic farming and soil carbon sequestration: what do
we really know about the benefits?. Ambio., 39(8): 585-599. https://doi.org/10.1007/s13280-010-0082-8.
Liebig, M. A., Morgan, J. A., Reeder, J. D., Ellert, B. H., Gollany, H. T., and Schuman, G.
E. (2005). Greenhouse gas contributions and mitigation potential of agricultural
practices in north western USA and western Canada. Soil Tillage Res., 83(1): 25-52.
https://doi.org/10.1016/j.still.2005.02.008.
Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K., and Kuramae, E. E.
(2017). Soil microbiome is more heterogeneous in organic than in conventional
farming system. Front. Microbiol., 7: 2064. https://doi.org/10.3389/fmicb.2016.02064.
Lupwayi, N. Z., Larney, F. J., Blackshaw, R. E., Kanashiro, D. A., Pearson, D. C., and
Petri, R. M. (2017). Pyrosequencing reveals profiles of soil bacterial communities
after 12 years of conservation management on irrigated crop rotations. Appl. Soil
Ecol., 121, 65-73. https://doi.org/10.1016/j.apsoil.2017.09.031.
Lynch, D., Truro, N. (2009). Environmental impacts of organic agriculture: a Canadian
perspective. Can. J. Plant Sci., 87: 1055–1066. https://doi.org/10.4141/CJPS08165.
Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., and Niggli, U. (2002). Soil
fertility and biodiversity in organic farming. Sci., 296(5573): 1694-1697.
https://doi.org/10.1126/science.1071148.
Marinari, S., Mancinelli, R., Campiglia, E., and Grego, S. (2006). Chemical and biological
indicators of soil quality in organic and conventional farming systems in Central Italy.
Ecol. Indic., 6(4), 701-711. https://doi.org/10.1016/j.ecolind2005.08.029.
Marulanda, A., Barea, J. M., and Azcón, R. (2009). Stimulation of plant growth and drought
tolerance by native microorganisms (AM fungi and bacteria) from dry environments:
mechanisms related to bacterial effectiveness. J. Plant Growth Regul., 28(2): 115-124.
https://doi.org/10.1007/s00344-009-9079-6.
Minhas, R. S., and Sood, A. (1994). Effect of inorganics and organics on the yield and
nutrient uptake by three crops in a rotation on an acid alfisol. J. Indian Soc. Soil Sci.,
42(2): 257-260.
Mishra, P. K., Rai, A., Abdelrahman, K., Rai, S. C., and Tiwari, A. (2022). Land
Degradation, Overland Flow, Soil Erosion, and Nutrient Loss in the Eastern
Himalayas, India. Land, 11(2): 179. https://doi.org/10.3390/land11020179.
Mora, O., Le Mouël, C., de Lattre-Gasquet, M., Donnars, C., Dumas, P., Réchauchère, O.,
Brunelle, T., Manceron, S., Marajo-Petitzon, E., Moreau, C., Barzman, M., Forslund,
A., and Marty, P. (2020). Exploring the future of land use and food security: A new
set of global scenarios. PloS One, 15(7): e0235597. https://doi.org/10.1371/journal.pone.0235597.
Mullan, D., Favis-Mortlock, D., and Fealy, R. (2012). Addressing key limitations
associated with modelling soil erosion under the impacts of future climate change.
Agric. For. Meteorol., 156: 18-30. https://doi.org/10.1016/j.agrformet.2011.12.004.
Müller-Lindenlauf, M. (2009). Organic agriculture and carbon sequestration. Possibilities
and constraints for the consideration of organic agriculture within carbon accounting
systems. FAO, Rome.
Nannipieri, P., Grego, S., and Ceccanti, B. (1990). Ecological significance of the biological
activity in soil. In: Soil Biochemistry Bollag, J. M., and Stotzky G. (Eds.), Vol. 6.
Marcel Dekker, New York, Pp 293–355.
Ndiaye, E. L., Sandeno, J. M., McGrath, D., Dick, R. P. (2000). Integrative biological
indicators for detecting change in soil quality. Am. J. Altern. Agric., 15: 26–36.
http://www.jstor.org/stable/44503132.
Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le
Bissonnais, Y., Nichols, M. H., Nunes, J. P., Renschler, C. S., Souchere, V., and Van
Oost, K. (2005). Modelling response of soil erosion and runoff to changes in
precipitation and cover. Catena, 61(2-3): 131-154. https://doi.org/10.1016/j.catena.2005.03.007.
Niggli, U., Fließbach, A., Hepperly, P., and Scialabba, N. (2009). Low greenhouse gas
agriculture: mitigation and adaptation potential of sustainable farming systems.
Ökologie Landbau, 141: 32-33.
Oelkers, E. H., and Cole, D. R. (2008). Carbon dioxide sequestration a solution to a global
problem. Elements, 4(5): 305-310. https://doi.org/10.2113/gselements.4.5.305.
Ohlson, K. (2014). The soil will save us: How scientists, farmers, and foodies are healing
the soil to save the planet. New York, NY: Rodale Books.
Pandey, P. K., Yadav, S. K., Singh, A., Sarma, B. K., Mishra, A., and Singh, H. B. (2012).
Cross‐species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas
aeruginosa PW09. J. Phytopathol., 160(10): 532-539. https://doi.org/10.1111/j.1439-0434.2012.01941.x.
Parry, M.L., Rosenzweig, C., Iglesias, A., Livermore, M., and Fischer, G. (2004). Effects
of climate change on global food production under SRES emissions and socio economic scenarios.
Glob. Environ. Change, 14(1): 53-67. https://doi.org/10.1016/j.gloenvcha.2003.10.008.
Paul, D., and Nair, S. (2008). Stress adaptations in a plant growth promoting rhizobacterium
(PGPR) with increasing salinity in the coastal agricultural soils. J. Basic Microbiol.,
48(5): 378-384. https://doi.org/10.1002/jobm.200700365.
Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., Dungait, J.,
Ellert, B., Frank, S., Goddard, T., Govaerts, B., Grundy, M., Henning, M., Izaurralde,
R. C., Madaras, M., McConkey, B., Porzig, E., Rice, C., Searle, R., Seavy, N., Skalsky,
R., Mulhern, W., and Jahn, M. (2019). Quantifying carbon for agricultural soil
management: from the current status toward a global soil information system. Carbon
Manag., 10(6): 567-587. https://doi.org/10.1080/17583004.2019.1633231.
Petersen, S. O., Regina, K., Pöllinger, A., Rigler, E., Valli, L., Yamulki, S., Esala, M.,
Fabbri, C., Syväsalo, E., and Vinther, F. P. (2006). Nitrous oxide emissions from
organic and conventional crop rotations in five European countries. Agric. Ecosys.
Environ., 112(2-3): 200-206. https://doi.org/10.1016/j.agee.2005.08.021.
Pimentel, D. (2006). Soil erosion: a food and environmental threat. Environ. Dev. Sustain.,
8(1): 119–137. https://doi.org/10.1007/s10668-005-1262-8.
Pimentel, D., and Burgess, M. (2013). Soil erosion threatens food production. Agric., 3(3),
443-463. https://doi.org/10.3390/agriculture3030443.
Poeplau, C., and Don, A. (2015). Carbon sequestration in agricultural soils via cultivation
of cover crops–A meta-analysis. Agric. Ecosyst. Environ., 200: 33-41.
https://doi.org/10.1016/j.agee.2014.10.024.
Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., Lobell,
D. B., and Travasso, M. I. (2014). Food security and food production systems. In:
Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and
sectoral aspects. Contribution of working group II to the fifth assessment report of the
intergovernmental panel on climate change Field, C. B., Barros, V. R., Dokken, D. J.,
Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y.
O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea,
P. R., White. L. L, (Eds.), Cambridge University Press, Cambridge, pp 485–533.
Prasanna, V. (2014). Impact of monsoon rainfall on the total food grain yield over India. J.
Earth Syst. Sci., 123(5): 1129-1145. https://doi.org/10.1007/s12040-014-0444-x.
Raddadi, N., Giacomucci, L., Marasco, R., Daffonchio, D., Cherif, A., and Fava, F. (2018).
Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention
capacity and humidity uptake in sandy soil. Microb. Cell Fact., 17(1): 1-12.
https://doi.org/10.1186/s12934-018-0934-7.
Rahmann, G. (2011). Biodiversity and organic farming: what do we know?. vTI Agric. For.
Res., 3: 189-208.
Reganold, J. P., Glover, J. D., Preston, K. A., Hinman, H. R. (2001). Sustainability of
three apple production systems. Nat., 410: 926–930. https://doi.org/10.1038/35073574.
Rice, C. W., and Owensby, C. E. (2001). The effects of fire and grazing on soil carbon in
rangelands. In: The potential of US grazing lands to sequester carbon and mitigate the
greenhouse effect. R. F. Follett, J. M. Kimble, R. Lal (Eds.), CRC Press, Boca
Raton, pp 323-342.
Ritchie, H., Roser, M., and Rosado, P. (2020). CO2 and other greenhouse gas emissions.
Our World in Data, https://ourworldindata.org/co2-and-other-greenhouse-gas emissions (Accessed 8 August 2021).
Routschek, A., Schmidt, J., and Kreienkamp, F. (2014). Impact of climate change on soil
erosion—a high-resolution projection on catchment scale until 2100 in
Saxony/Germany. Catena, 121: 99-109. https://doi.org/10.1016/j.catena.2014.04.019
Rowen, E., Tooker, J. F., and Blubaugh, C. K. (2019). Managing fertility with animal waste
to promote arthropod pest suppression. Biol. Control., 134: 130–140.
https://doi.org/10.1016/j.biocontrol.2019.04.012.
Russo, A., Vettori, L., Felici, C., Fiaschi, G., Morini, S., and Toffanin, A. (2008). Enhanced
micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on
Prunus cerasifera L. clone Mr. S 2/5 plants. J. Biotechnol., 134(3-4): 312-319.
https://doi.org/10.1016/j.jbiotec.2008.01.020.
Samuel, S., and Muthukkaruppan, S. M. (2011). Characterization of plant growth
promoting rhizobacteria and fungi associated with rice, mangrove and effluent
contaminated soil. Curr. Bot., 2(3): 22-25.
Schertz, D. L., Moldenhauer, W. C., Livingston, S. J., Weesies, G. A., and Hintz, E. A.
(1989). Effect of past soil erosion on crop productivity in Indiana. J. Soil Water
Conservation, 44(6): 604-608.
Schmidhuber, J., and Tubiello, F. N. (2007). Global food security under climate change.
Proc. Natl. Acad. Sci., 104(50): 19703-19708. https://doi.org/10.1073/pnas.0701976104.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A.,
Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse,
D. P., Weiner, S., and Trumbore, S. E. (2011). Persistence of soil organic matter as an
ecosystem property. Nat., 478(7367): 49-56. https://doi.org/10.1038/nature10386.
Sengupta, A., and Dick, W. A. (2015). Bacterial community diversity in soil under two
tillage practices as determined by pyrosequencing. Microb. Ecol., 70(3): 853-859.
https://doi.org/10.1007/s00248-015-0609-4.
Settle, W. H., Ariawan, H., Astuti, E. T., Cahyana, W., Hakim, A. L., Hindayana, D., and Lestari,
A. S. (1996). Managing tropical rice pests through conservation of generalist natural
enemies and alternative prey. Ecol., 77: 1975–1988. https://doi.org/10.2307/2265694.
Singh, R., Babu, S., Avasthe, R., Yadav, G. S., Das, A., Mohapatra, K., Kumar, A., Singh,
V. K., and Chandra, P. (2021). Crop productivity, soil health, and energy dynamics of
Indian Himalayan intensified organic maize-based systems. Int. Soil Water Conserv.
Res., 9(2): 260–270. https://doi.org/10.1016/j.iswcr.2020.11.003.
Six, J., Frey, S. D., Thiet, R. K., and Batten, K. M. (2006). Bacterial and fungal
contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J., 70(2):
555-569. https://doi.org/10.2136/sssaj2004.0347.
Smith, L. G., Williams, A. G., and Pearce, B. D. (2014). The energy efficiency of organic
agriculture: A review. Renew. Agric. Food Syst., 30(3): 280-301.
https://doi.org/10.1017/S1742170513000471.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S.,
O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G.,
Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., and Smith, J.
(2007). Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B: Biol. Sci.,
363(1492): 789-813. https://doi.org/10.1098/rstb.2007.2184.
Sparling, G. P. (1992). Ratio of microbial biomass carbon to soil organic carbon as a
sensitive indicator of changes in soil organic matter. Soil Res., 30(2): 195-207.
https://doi.org/10.1071/SR9920195.
Speir, T. W., Ross, D. J. (1978). Soil phosphatase and sulphatase. In: Soil enzymes Burns,
R. G. (Eds.), Academic press, London, UK, pp 197–250.
Stein-Bachinger, K., Gottwald, F., Haub, A., and Schmidt, E. (2020). To what extent does
organic farming promote species richness and abundance in temperate climates? A
review. Organic Agric., 11(1): 1–12. https://doi.org/10.1007/s13165-020-00279-2.
Stockdale, E. A., and Murphy, D. V. (2017). Managing soil microbial biomass for
sustainable agro-ecosystems. In: Microbial Biomass: A Paradigm Shift in Terrestrial
Biogeochemistry. K. R. Tate (Eds.), World Scientific, London, pp. 67- 101,
https://doi.org10.1142/9781786341310_0003.
Sun, W., Canadell, J. G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T., and Huang, Y.
(2020). Climate drives global soil carbon sequestration and crop yield changes under
conservation agriculture. Glob. Change Biol., 26(6): 3325–3335.
https://doi.org/10.1111/gcb.15001
Tang, J. C., Wang, R. G., Niu, X. W., Wang, M., Chu, H. R., and Zhou, Q. X. (2010).
Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of
different influencing factors. Biogeosci., 7(12): 3961-3969. https://doi.org/10.5194/bg-7-3961-2010.
Tank, N., and Saraf, M. (2010). Salinity-resistant plant growth promoting rhizobacteria
ameliorates sodium chloride stress on tomato plants. J. Plant Interact., 5(1): 51-58.
https://doi.org/10.1080/17429140903125848.
Tian, H., Xu, R., Canadell, J.G., Thompson, R.L., Winiwarter, W., Suntharalingam, P., and
Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and
sinks. Nat., 586(7828): 248-256. https://doi.org/10.1038/s41586-020-2780-0.
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B. (2003). The changing
character of precipitation. Bull. Am. Meteorol. Soc., 84(9): 1205-1218.
https://doi.org/10.1175/BAMS-84-9-1205.
Troeh, F. R., Hobbs, A. H., and Donahue, R. L. (1981). Soil and Water Conservation: For
Productivity and Environmental Protection. Soil Sci., 132(2): 189.
Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A., and Bengtsson, J. (2014).
Land‐use intensity and the effects of organic farming on biodiversity: a hierarchical
meta‐analysis. J. Appl. Ecol., 51(3): 746-755. https://doi.org/10.1111/1365-2664.12219.
United Nations Food and Agricultural Organization (UN FAO) (2003). Statistics Analysis
Service, Compendium of Agricultural-Environmental Indicators 1989–91 to 2000.
Rome, pp 11.
Utobo, E. B., and Tewari, L. (2015). Soil enzymes as bioindicators of soil ecosystem status.
Appl. Ecol. Environ. Res., 13(1): 147-169.
Valentin, C., Poesen, J., and Li, Y. (2005). Gully erosion: Impacts, factors and control.
Catena, 63(2-3): 132-153. https://doi.org/10.1016/j.catena.2005.06.001
Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R.,
Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., and
Watson, J. E. (2016). Sixteen years of change in the global terrestrial human footprint
and implications for biodiversity conservation. Nat. Commun., 7(1): 1-11.
https://doi.org/10.1038/ncomms12558.
Wagg, C., Bender, S. F., Widmer, F., and Van Der Heijden, M. G. (2014). Soil biodiversity
and soil community composition determine ecosystem multifunctionality. Proc. Natl.
Acad. Sci., 111(14): 5266-5270. https://doi.org/10.1073/pnas.1320054111.
Wang, S.L., Ball, E., Nehring, R., Williams, R., and Chau, T. (2018). Impacts of climate
change and extreme weather on US agricultural productivity: evidence and projection.
In: Agricultural Productivity and Producer Behavior Schlenker, W. (Eds), University
of Chicago Press, USA, pp 41-75.
Wang, X., Wang, B., Xu, X., Liu, T., Duan, Y., and Zhao, Y. (2018). Spatial and temporal
variations in surface soil moisture and vegetation cover in the Loess Plateau from 2000
to 2015. Ecol. Indic., 95: 320–330. https://doi.org/10.1016/j.ecolind.2018.07.058.
Wani, P. A., and Khan, M. S. (2010). Bacillus species enhance growth parameters of
chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem. Toxicol.,
48(11): 3262-3267. https://doi.org/10.1016/j.fct.2010.08.035.
Watson, C. J., and Foy, R. H. (2001). Environmental impacts of nitrogen and phosphorus
cycling in grassland systems. Outlook Agric., 30(2): 117-127.
https://doi.org/10.5367/000000001101293562.
Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., van der Mensbrugghe, D., Biewald,
A., Bodirsky, B., Islam, S., Kavallari, A., Mason-D’Croz, D., Müller, C., Popp, A.,
Robertson, R., Robinson, S., van Meijl, H., and Willenbockel, D. (2015). Climate
change impacts on agriculture in 2050 under a range of plausible socioeconomic and
emissions scenarios. Environ. Res. Lett., 10(8): 085010.
https://doi.org/10.1088/1748-9326/10/8/085010.
Wright, S. F., and a Nichols, K. (2002). Glomalin: hiding place for a third of the world’s
stored soil carbon. Agric. Res., 50(9): 4-7.
Wu, S., Chen, L., Wang, N., Yu, M., and Assouline, S. (2018). Modeling Rainfall‐Runoff
and Soil Erosion Processes on Hillslopes With Complex Rill Network Planform.
Water Resour. Res., 54(12): 117-133. https://doi.org/10.1029/2018wr023837.
Xavier, F. A. D. S., Maia, S. M. F., Oliveira, T. S. D., and Mendonça, E. D. S. (2006).
Microbial biomass and light organic matter in soils under organic and conventional
systems in the Chapada da Ibiapaba-CE, Brazil. Rev. Bras. Cienc. Solo., 30(2): 247-
258. https://doi.org/10.1590/S0100-06832006000200006.
Xiong, W., Zhao, Q., Zhao, J., Xun, W., Li, R., Zhang, R., Wu, H., and Shen, Q. (2015).
Different continuous cropping spans significantly affect microbial community
membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.
Microb. Ecol., 70(1): 209-218. https://doi.org/10.1007/s00248-014-0516-0.
Yang, D., Kanae, S., Oki, T., Koike, T., and Musiake, K. (2003). Global potential soil
erosion with reference to land use and climate changes. Hydrol. Process., 17(14):
2913-2928. https://doi.org/10.1002/hyp.1441.
Yang, J., Kloepper, J. W., and Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate
abiotic stress. Trends Plant Sci., 14(1): 1-4. https://doi.org/10.1016/j.tplants.2008.10.004.
Yao, X., Horie, T., Xue, S., Leung, H. Y., Katsuhara, M., Brodsky, D.E., Wu, Y., and
Schroeder, J. I. (2010). Differential sodium and potassium transport selectivities of the
rice OsHKT2; 1 and OsHKT2; 2 transporters in plant cells. Plant Physiol., 152(1):
341-355. https://doi.org/10.1104/pp.109.145722.
Zhang, X., Wan, G., Mlotshwa, S., Vance, V., Berger, F. G., Chen, H., and Lu, X. (2010).
Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling
pathway. Cancer Res., 70(18): 7176-7186. https://doi.org/10.1158/0008-5472.CAN 10-0697.
Zhao, Y., Wang, P., Li, J., Chen, Y., Ying, X., and Liu, S. (2009). The effects of two organic
manures on soil properties and crop yields on a temperate calcareous soil under a
wheat–maize cropping system. Eur. J. Agron., 31(1): 36-42.
Zhao, Z. H., Hui, C., Reddy, G. V. P., Ouyang, F., Men, X., and Ge, F. (2019). Plant species
richness controls arthropod food web: evidence from an experimental model system.
Ann. Entomol. Soc. Am., 112: 27–32. https://doi.org/10.1093/aesa/say038.
Zomer, R. J., Bossio, D. A., Sommer, R., and Verchot, L. V. (2017). Global sequestration
potential of increased organic carbon in cropland soils. Sci. Rep., 7(1): 1-8.
https://doi.org/10.1038/s41598-017-15794-8

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!