Chapter 4. Overview of the Trois-Rivières (Québec, Canada) Pyrrhotite Issues


J. Duchesne, PhD, A. Rodrigues, PhD and B. Fournier, PhD
Department of Geology and Geological Engineering, Université Laval, Québec, Canada
CRIB – Research Center on Concrete Infrastructure

Part of the book: Pyrite and Pyrrhotite: Managing the Risks in Construction Materials and New Applications


Cases of concrete degradation associated with iron sulfide–bearing aggregates were identified in the Trois-Rivières area, Canada. Approximately 1500 residential houses, in addition to commercial and industrial sites, were affected by the premature deterioration of their concrete foundations. Petrographic examination of the damaged concrete samples revealed the presence of oxidized pyrrhotite. Secondary minerals such as iron oxyhydroxide, gypsum, ettringite, and thaumasite were also observed. These minerals originated from the oxidation of iron sulfides followed by an internal sulfate attack and caused expansion and cracking of the concrete. In many cases, the damage was severe to the point that such foundations needed to be replaced, which involved considerable costs. The decision of a first class-action suit determined that pyrrhotite present in the coarse aggregates produced from two quarries in the St. Boniface area, north of Trois-Rivières, is the only culprit and concrete structures containing more than 0.23% pyrrhotite (vol) are considered defective. This important case of concrete deterioration triggered research efforts for developing a quality control protocol to evaluate the potential reactivity of sulfide-bearing aggregates prior to their use in concrete.

Keywords: pyrrhotite, sulfide minerals, oxidation, expansion, concrete durability


Ayora, C., Chinchón, S., Aguado, A. and Guirado, F. (1998). Weathering of iron sulfides and concrete
alteration: thermodynamic model and observation in dams from central Pyrenees, Spain. Cement and
Concrete Research 28: 1223–1235.
Barnett, S. J., Macphee, D. E., Lachowski, E. E. and Crammond, N. J. (2002). XRD, EDX and IR analysis of
solid solutions between thaumasite and ettringite. Cement and Concrete Research 32: 719-730.
Belzile, N., Chen, Y., Cai, M. and Li, Y. (2004). A review on pyrrhotite oxidation. Journal of Geochemical Exploration 84: 65–76.
Bérard, J., Roux, R. and Durand, M. (1975). Performance of concrete containing a variety of black shale.
Canadian Journal of Civil Engineering 2: 58–65.
Casanova, I., Agulló, L. and Aguad, A. (1996). Aggregate expansivity due to sulfide oxidation I. Reaction
system and rate model. Cement and Concrete Research 26: 993–998.
Chinchón, J. S., Ayora, C., Aguado, A. and Guirado, F. (1995). Influence of weathering of iron sulfides
contained in aggregates on concrete durability. Cement and Concrete Research: 1264–1272.
Cour supérieure Canada. (2014). Jugement ‘phare’ [Flagship Jugement]. Cour supérieure Canada, province
de Québec, district de Trois-Rivières (11 novembre 2014) (No : 400-17-002016-091).
Crammond, N. J. (2002). The thaumasite form of sulfate attack in the UK. Cement and Concrete Composites 25: 809–818.
CSA A23.1. (2019). Annex P (informative) – Impact of sulphides in aggregate on concrete behaviour and
global approach to determine potential deteleterious reactivity of sulphide-bearing aggregates. Canadian
Standards Association, Mississauga, Ontario, Canada. 288–341.
CSA A23.2-25A. (2014). Test method for detection of alkali-silica reactive aggregate by accelerated expansion
of mortar bars. Canadian Standards Association, Mississauga, Ontario, Canada.
Divet, L. and Davy, J. P. (1996). Étude des risques d’oxydation de la pyrite dans le milieu basique du béton
[Study of the risks of oxidation of pyrite in the basic concrete environment]. Bulletin du Laboratoire
Central des Ponts et Chaussées 204: 97–107.
Duchesne, J., Fournier, B., Durand, B., Rivard, P. et Shehata, M. (2014). Étude de la détérioration du béton en
présence de sulfures de fer [Study of the deterioration of concrete in the presence of iron sulfide].
Subvention de recherche et développement coopérative (CRSNG-RDC). Rapport Final.
Duchesne, J., Fournier, B. and Francoeur, J. (2018). Study of the deterioration of concrete incorporating sulfidebearing
aggregates, Sixth International Conference on Durability of Concrete Structures (ICDCS 2018), July 18-20, Leeds, UK.
Elberling, B., Nicholson, R. V., Reardon, E. J. and Tibble, P. (1994). Evaluation of sulfide oxidation rates: a
laboratory study comparing oxygen fluxes and rates of oxidation product release. Canadian Geotechnical Journal 31: 375-383.
European Standard. (2003). EN-12620: Aggregates for concrete, European Committee for Standardization, Brussels.
Francoeur, J. (2016). Étude de l’évolution de la détérioration du béton incorporant des granulats riches en
sulfures de fer [Study of the evolution of deterioration of concrete incorporating aggregates rich in iron
sulfides]. Mémoire de maîtrise, Université Laval: 466 p.
French Standard. (1983). NF P18-301: Granulats. Granulats naturels pour bétons hydrauliques [Aggregates.
Natural aggregates for hydraulic concretes], Normes nationales et documents normatifs nationaux, France.
French Standard. (1994). NF P18-541: Granulats – Guide pour l’élaboration du dossier carrière dans le cadre
de la prévention [Aggregates – Guide for the drafting of the quarry specifications for the purpose of
prevention], Normes nationales et documents normatifs nationaux, France.
Grattan-Bellew, P. E. and Eden, W. J. (1975). Concrete deterioration and floor heave due to biogeochemical
weathering of underlying shale. Canadian Geotechnical Journal 12: 372–378.
Hocq, M. (1994). La Province de Grenville [The Grenville Province]. Dans: Dubé, C. (Ed), Géologie du
Québec. Ministère des Ressources Naturelles, Québec, MM 94-01, 75-94.
LCPC. (1997). Détermination de l’indice de fissuration d’un parement de béton [Development of a cracking
index for a concrete facing]. Laboratoire Central des Ponts et Chaussées, Méthode d’essai No. 47, 8 p.
Macphee, D. E. and Barnett, S. J. (2004). Solution properties of solids in the ettringite– thaumasite solid
solution series. Cement and Concrete Research 34: 1591–1598.
Mikhlin, Tu. L, Kuklinskiy, A. V., Pavlenko, N. I., Varnek, V. A. and Solovyev, L. A. (2002). Spectroscopic
and XRD studies of the air degradation of acid-reacted pyrrhotites, Geochimica et Cosmochimica Acta 66, no 23: 4057–4067.
Moum, J. and Rosenqvist, I. Th. (1959). Sulfate attack on concrete in the Oslo region. Journal of American
Concrete Institute 56: 257–264.
Nadeau, L. and Brouillette, P. (1995). Carte structurale de la région de Shawinigan (SNRC 311), Province de
Grenville, Québec [Structural map of the Shawinigan region (NTS 311), Grenville Province, Québec].
Commission Géologique du Canada, dossier public 3012, 1:250 000.
Nicholson, R. V. and Scharer, J. M. (1994). Laboratory studies of pyrrhotite oxidation kinetics. in
Environmental Geochemistry of Sulfide Oxidation, ACS Symposium Series 550: 14–30.
Rodrigues, A., Duchesne, J., Fournier, B., Durand, B., Rivard, P. and Shehata, M. (2012). Mineralogical and
chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: importance of
thaumasite formation on reaction mechanisms. Cement and Concrete Research 42: 1336–1347.
Rodrigues, A., Fournier, B. and Duchesne, J. (2013a). Petrographic characterization of the deterioration
products of a concrete containing sulphide bearing aggregates; a particular case of internal sulfate attack.
35th Annual International Conference on Cement Microscopy Chicago, Illinois: 19 p.
Rodrigues, A., Duchesne, J. and Fournier, B. (2013b). Deterioration in concrete incorporating a sulfide-bearing
aggregate: petrographic characteristics and evolution of the secondary products, in 14th Euroseminar on
Microscopy Applied to Building Materials 1: 3–6.
Rodrigues, A., Duchesne, J. and Fournier, B. (2015). A new accelerated mortar bar test to assess the potential
deleterious effect of sulfide-bearing aggregate in concrete, Cement and Concrete Research 73: 96-110.
Rodrigues, A., Duchesne, J. and Fournier, B. (2016a). Quantitative assessment of the oxidation potential of
sulfide-bearing aggregates in concrete using an oxygen consumption test. Cement and Concrete Research 67: 93–100.
Rodrigues, A., Duchesne, J., Fournier, B., Durand, B. Shehata, M. and Rivard, P. (2016b). Evaluation protocol
for concrete aggregates containing iron sulfide minerals. ACI Materials Journal 113, no 3: 349-359.
Rodrigues, A. (2016). Concrete deterioration due to sulfide-bearing aggregates. Thèse de doctorat. Université Laval, Québec.: 335 p.
Schmidt, T., Leemann, A., Gallucci, E. and Scrivener, K. (2011). Physical and microstructural aspects of iron
sulfide degradation in concrete. Cement and Concrete Research 41: 263–269.
Shayan, A. (1988). Deterioration of a concrete surface due to the oxidation of pyrite contained in pyritic
aggregates. Cement and Concrete Research 18: 723–730.
Tagnit-Hamou, A., Saric-Coric, M. and Rivard, P. (2005). Internal deterioration of concrete by the oxidation
of pyrrhotitic aggregates. Cement and Concrete Research 35: 99–107.
Trahan, B. (2013a). La petite histoire de la pyrrhotite en Mauricie [The short history of pyrrhotite in Mauricie].
Le Nouvelliste, 4 février 2013.
Trahan, B. (2012). Le plus gros procès pour vice de construction au Canada [The largest construction defect
law suit in Canada]. Le nouvelliste, 14 novembre 2012.
Trahan, B. (2013b). Pyrrhotite: une catastrophe de 1 milliard $ pour la Mauricie… et le Québec [Pyrrhotite: A
$1 billion disaster for Mauricie….and Québec]. Le nouvelliste, 22 octobre 2013.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!