Chapter 4. Microbial Biofertilizer as an Important Tool in Managing Soil Nutrients for Sustainable Agriculture


Balaram Sarkar¹, Barsha Sarkar¹, Shilpa Ahmed¹, Keka Sarkar² and Jatindra N. Bhakta¹
¹Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, WB, India
²Department of Microbiology, University of Kalyani, Kalyani, WB, India

Part of the book: Research Advancements in Organic Farming

Chapter DOI:


The increasing food demands of the growing population and also the necessity for an eco-friendly approach to agricultural development require specific attention to soil fertility management. Management of soil fertility demands the use of appropriate inorganic nutrients and/or organic nutrients in order to achive a higher yield of crops. The chemical fertilizer-based nutrient management of soil causes environmental and human health problems, which also leads to unsustainable agriculture. Nutrient management in promoting soil fertility and health by microbial biofertilizers is a promising technique for resolving such nutrient problems in the soil. To increase plant productivity and resource efficiency, biofertilizers have multifunctional potential and also provide environmental security and resource quality. Extensive research on biofertilizers revealed that the microbial biofertilizer has the ability to manage the soil nutrients through a variety of mechanisms (such as – biological nitrogen fixation, phosphate solubilization and mobilization, potassium solubilization, carbon and sulphur-oxidation, etc.), soil health, economic benefits to farmers, enhancement of sustainability and grain quality. However, a comprehensive literature regarding the role of microbial biofertilizers in the nutrient management process of soil is still needed. Therefore, the objectives of the present review were to draw an up-to-date picture of the concepts, purposes, mechanisms and efficiency of microbial biofertilizer-driven nutrient management of soil for sustainable agriculture.

Keywords: soil fertility, biofertilizers, crop production, nutrient management, sustainability


Ahmad, M., Nadeem, S.M., Naveed, M., and Zahir, Z.A. (2016). Potassium-solubilizing
bacteria and their application in agriculture, in: Meena VS, Maurya BR, Verma JP,
Meena RS (Eds.), Potassium solubilizing microorganisms for sustainable agriculture.
Springer India, New Delhi, pp. 293-313.
Alexander, M. (1977). Introduction to Soil Microbiology. John Wiley and Sons Inc.,
NewYork, USA.
Alori, E.T., Glick, B.R., and Babalola, O.O. (2017). Microbial Phosphorus Solubilization
and Its Potential for Use in Sustainable Agriculture. Front. Microbiol., 8:971. doi:
Anand, K., Kumari, B., and Mallick, M.A. (2016). Phosphate solubilizing microbes: an
effective and alternative approach as biofertilizers. Int. J. Pharm. Pharm. Sci., 8: 37–40.
Anjanadevi, I.P., John, N.S., John, K.S., Jeeva, M.L., and Misra, R.S. (2016). Rock
inhabiting potassium solubilizing bacteria from Kerala, India: characterization and
possibility in chemical K fertilizer substitution. J. Basic Microbiol., 56: 67-77.
Awasthi, R., Tewari, R., and Nayyar, H. (2011). Synergy between plants and P-solubilizing
microbes in soils: effects on growth and physiology of crops. Int. Res. J. Microbiol.,
2: 484-503.
Bakhshandeh, E., Pirdashti, H., and Lendeh, K.S. (2017). Phosphate and potassium solubilizing bacteria effect on the growth of rice. Ecol. Eng., 103: 164-169.
Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., and Dhiba, D. (2018). Soil microbial
resources for improving fertilizers efficiency in an integrated plant nutrient
management system. Front. Microbiol., 9: 1606. doi: 10.3389/fmicb.2018.01606.
Basak, B.B., Sarkar, B., Biswas, D.R., Sarkar, S., Sanderson, P., and Naidu, R. (2016). Bio intervention of naturally occurring silicate minerals for alternative source of
potassium: challenges and opportunities. Adv. Agron., 141: 115–145.
Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture.
Biotechnol. Adv., 16: 729–770. doi: 10.1016/S0734-9750(98)00003-2.
Bashan, Y., and De-Bashan, L.E. (2010). How the plant growth-promoting bacterium
Azospirillum promotes plant growth—a critical assessment. Adv. Agron., 108: 77–136.
doi: 10.1016/S0065-2113(10)08002-8.
Bhat, N.A., Riar, A., Ramesh, A., Iqbal, S., Sharma, M.P., Sharma, S.K., and Bhullar, G.S.
(2017). Soil biological activity contributing to phosphorus availability in vertisols
under long-term organic and conventional agricultural management. Front. Plant Sci.,
8:1523. doi: 10.3389/fpls.2017.01523.
Bhatt, K., and Maheshwari, D.K. (2020). Zinc solubilizing bacteria (Bacillus megaterium)
with multifarious plant growth promoting activities alleviates growth in Capsicum
annuum L. 3 Biotech., 10: 36.
Bieleski, R.L. (1973). Phosphate pools, phosphate transport, and phosphate availability.
Annu Rev Plant Physiol., 24: 225–252.
Board, N. (2004). The Complete Technology Book on Bio-Fertilizer and Organic Farming;
National Institute of Industrial Research: Delhi, India, 2004.
Chabot, R., Antoun, H., and Cescas, M.P. (1996). Growth promotion of maize and lettuce
by phosphate-solubilizing Rhizobium leguminosarum biovar. Phaseoli. Plant Soil.,
Chandrasekar, B.R., Ambrose, G., and Jayabalan, N. (2005). Influence of biofertilizers and
nitrogen source level on the growth and yield of Echinochloa frumentacea (Roxb.)
link. Journal of Agricultural Technology., 222-233.
Chang, C.H., and Yang, S.S. (2009). Thermo-tolerant phosphate-solubilizing microbes for
multi-functional biofertilizer preparation. Bioresour. Technol., 100: 1648–1658.
Chang, H.B., Lin, C.W., and Huang, H.J. (2005). Zinc induced cell death in rice (Oryza
sativa L.) roots. Plant Growth Regul., 46: 261–266. doi: 10.1007/s10725-005-0162-0.
Choudhury, A., and Kennedy, I. (2004). Prospects and potentials for systems of biological
nitrogen fixation in sustainable rice production. Biol. Fertil. Soils., 39: 219–227.
Dakora, F.D., Chimphango, S.B.M., Chimphango, S.B.M., Elmerich, C., and Newton, W.E.
(2008). “Biological nitrogen fixation: towards poverty alleviation through sustainable
agriculture,” in Proceedings of the 15th International Nitrogen Fixation Congress and
the 12th International Conference of the African Association for Biological Nitrogen
Fixation (Dordrecht: Springer).
De Freitas, J.R., Banerjee, M.R., and Germida, J.J. (1997). Phosphate solubilizing
rhizobacteria enhance the growth and yield but not phosphorus uptake of canola
(Brassica napus L.). Biol. Fertil. Soils., 24: 358–364. doi: 10.1007/s003740050258.
De Graef, B., Cnudde, V., Dick, J., De Belie, N., Jacobs, P., and Verstraete, W. (2005). A
sensitivity study for the visualisation of bacterial weathering of concrete and stone
with computerised X-ray microtomography. Sci. Total Environ., 341: 173–183.
Debnath, S., Rawat, D., Mukherjee, A.K., Adhikary, S., and Kundu, R. (2019).
“Applications and constraints of plant beneficial microorganisms in agriculture,
biostimulants,” in Plant Science, eds SM Mirmajlessi and R Radhakrishnan
(IntechOpen), 1–25. doi: 10.5772/intechopen.89190.
Deepali, G.K., and Gangwar, K. (2010). Biofertilizers: An Ecofriendly Way to Replace
Chemical Fertilizers. Available online: agriculture/237-biofertilizer-substitute-chemical.html (accessed on 7 February 2021).
Dubey, R., Gupta, D.K., and Sharma, G.K., (2020). Chemical stress on plants. In New
Frontiers in Stress Management for Durable Agriculture; Springer: Berlin/
Heidelberg, Germany; pp. 101–128.
Ekardt, F. (2016). “Justice and sustainability: normative criteria for the use of
phosphorus,” in Phosphorus in Agriculture: 100% Zero, eds E Schnug and LJ De Kok
(Dordrecht: Springer), 317–330. doi: 10.1007/978-94-017-7612-7_15.
Etesami, H., Emami, S., and Alikhani, H.A. (2017). Potassium solubilizing bacteria (KSB):
Mechanisms, promotion of plant growth, and future prospects A review. J. Soil Sci.
Plant Nutr., 17: 897–911.
Fasusi, O.A., Cruz, C., and Babalola, O.O. (2021). Agricultural Sustainability: Microbial
Biofertilizers in Rhizosphere Management. Agriculture., 11: 163.
Ferreira, M.J., Silva, H., and Cunha, A. (2019). Siderophore-producing rhizobacteria as a
promising tool for empowering plants to cope with iron limitation in saline soils: a
review. Pedosphere., 29: 409–420. doi: 10.1016/S1002-0160(19)60810-6.
Franz, A., Burgstaller, W., and Schinner, F. (1991). Leaching with Penicillium
simplicissimum: Influence of metals and buffers on proton extrusion and citric acid
production. Appl. Environ. Microbiol., 57: 769–774.
Friedrich, C.G., Bardischewsky, F., Rother, D., Quentmeier, A., and Fischer, J. (2005).
Prokaryotic sulfur oxidation. Curr. Opin. Microbiol., 8: 253-259.
Friedrich, C.G., Rother, D., Bardischewsky, F., Quentmeier, A., and Fischer, J. (2001).
Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a
common mechanism? Appl. Environ. Microbiol., 67: 2873-2882.
Garcha, S., and Maan, P.K. (2017). “Biological nitrogen fixation in cereals crops: a
bacterial perspective,” in Advances in Soil Microbiology: Recent Trends and Future
Prospects, eds TK Adhya, K Annapurna, BB Mishra, U Kumar and DK Verma
(Springer), 127–153. doi: 10.1007/978-981-10-7380-9.
Germida, J.J., and Janzen, H.H. (1993). Factors affecting the oxidation of elemental sulfur
in soils. Fertil. Res., 35: 101–114. doi: 10.1007/BF00750224.
Glick, B.R. (2015). Beneficial Plant-Bacterial Interactions, 1st Edn. Cham: Springer
International Publishing. doi: 10.1007/978-3-319-13921-0.
Grayston, S.J., Nevell, W., and Wainwright, M. (1986). Sulphur oxidation by fungi. Trans.
Br. Mycol. Soc., 87: 193–198. doi: 10.1016/S0007-1536(86)80020-1.
Gundala, P.B., Chinthala, P., and Sreenivasulu, B. (2013). A new facultative alkaliphilic,
potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore
District, Andhra Pradesh, India. Research and Reviews. J. Microbiol. Biotechnol., 2: 1-7.
Gupta, G., Panwar, J., Akhtar, M.S., and Jha, P.N. (2012). Endophytic nitrogen-fixing
bacteria as biofertilizer. In Sustainable Agriculture Reviews; Springer:
Berlin/Heidelberg, Germany, pp. 183–221.
Havlin, J.L., Beaton, J.D., Tisdale, S.L., and Nelson, W.L. (2005). Soil fertility and
fertilizers: An introduction to nutrient management. 7.ed. New Jersey, Pearson
Prentice Hall, 528p.
Ijaz, M., Ali, Q., Ashraf, S, Kamran, M., and Rehman, A. (2019). Development of future
bioformulations for sustainable agriculture. In Microbiome in Plant Health and
Disease; Springer: Berlin/Heidelberg, Germany; pp. 421–446.
Illmer, P., and Schinner, F. (1995). Solubilization of inorganic calcium phosphates—
solubilization mechanisms. Soil Biol. Biochem., 27: 257–263. doi: 10.1016/0038-
Itelima, J.U., Bang, W.J., Sila, M.D., Onyimba, I.A., and Egbere, O.J. (2018). A review:
Biofertilizer; a key player in enhancing soil fertility and crop productivity. J.
Microbiol. Biotechnol. Rep., 2: 22–28.
Jones, D.L., and Darrah, P.R. (1994). Role of root derived organic acids in the mobilization
of nutrients from the rhizosphere. Plant Soil., 166: 247–257. doi: 10.1007/
Kaur, G., and Reddy, M.S. (2014). Influence of P-solubilizing bacteria on crop yield and
soil fertility at multilocational sites. Eur J Soil Biol., 61: 35–40.
Kelly, D.P., Shergill, J.K., Lu, W.P., and Wood, A.P. (1997). Oxidative metabolism of
inorganic sulfur compounds by bacteria. Antonie Leeuwenhoek., 71: 95-107.
Kennedy, I.R., Choudhury, A.T.M.A., and Kecskés, M.L. (2004). Non-symbiotic bacterial
diazotrophs in crop-farming systems: can their potential for plant growth promotion
be better exploited? Soil Biol. Biochem. J., 36: 1229–1244. doi: 10.1016/j.soilbio.
Kertesz, M.A., Fellows, E., and Schmalenberger, A. (2007). Rhizobacteria and plant sulfur
supply. Adv. Appl. Microbiol. 62: 235-268.
Khan, M.S., Zaidi, A., Ahemad, M., Oves, M., and Wani, P.A. (2010). Plant growth
promotion by phosphate solubilizing fungi – Current perspective. Arch. Agron. Soil
Sci., 26: 73–98. doi: 10.1080/03650340902806469.
Kour, D., Rana, K.L., Kaur, T., Yadav, N., Halder, S.K., Yadav, A.N., Sachan, S.G., and
Saxena, A.K. (2020). “Potassium solubilizing and mobilizing microbes: biodiversity,
mechanisms of solubilization, and biotechnological implication for alleviations of
abiotic stress,” in Trends of Microbial Biotechnology for Sustainable Agriculture and
Biomedicine Systems: Diversity and Functional Perspective, ed V.K. Gupta
(Amsterdam: Elsevier Inc.), 177–202. doi: 10.1016/B978-0-12-820526-6.00012-9.
Kour, D., Rana, K.L., Yadav, A.N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal,
H.S., and Saxena, A.K. (2019). Microbial biofertilizers: Bioresources and eco-friendly
technologies for agricultural and environmental sustainability. Biocatalysis and
Agricultural Biotechnology., 101487. doi: 10.1016/j.bcab.2019.101487.
Krishnaraj, P.U., and Dahale, S. (2014). Mineral phosphate solubilization: concepts and
prospects in sustainable agriculture. Proc. Ind. Natl. Sci. Acad., 80: 389–405. doi:
Lalitha, S. (2017). Plant growth–promoting microbes: a boon for sustainable agriculture.
In: A Dhanarajan (Ed.), Sustainable Agriculture towards Food Security. Springer
Singapore, Singapore, pp. 125–158.
Lian, B., Wang, B., Pan, M., Liu, C., and Teng, H.H. (2008). Microbial release of potassium
from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochem.
Cosmochim. Acta.,72: 87–98.
Lucheta, A.R., and Lambais, M.R. (2012). Sulfur in agriculture. Revista Brasileira de
Ciência Do Solo., 36(5):1369–1379. doi:10.1590/s0100-06832012000500001.
Lynn, T.M., Win, H.S., Kyaw, E.P., Latt, Z.K., and Yu, S.S. (2013). Characterization of
phosphate solubilizing and potassium decomposing strains and study on their effects
on tomato cultivation. Int. J. Innov. Applied Stud., 3: 959-966.
Macik, M., Gryta, A., and Frac, M. (2020). Biofertilizers in agriculture: an overview on
concepts, strategies and effects on soil microorganisms. Adv. Agron., 162:31–87. doi:
Malik, K.A., Mirza, M.S., Hassan, U., Mehnaz, S., Rasul, G., Haurat, J., Bauy, R., and
Normanel, P. (2002) The role of plant associated beneficial bacteria in rice-wheat
Cropping System. In: IR Kennedy, ATMA Chaudhry (eds) Biofertilisers in action.
Rural industries research and development Corporation, Canberra, pp 73–83.
Malusà, E., Pinzari, F., and Canfora, L. (2016). Efficacy of biofertilizers: Challenges to
improve crop production. In Microbial Inoculants in Sustainable Agricultural
Productivity; Springer: Berlin/Heidelberg, Germany, pp. 17–40.
Martino, E., Perotto, S., and Parsons, R. (2003). Solubilization of insoluble inorganic zinc
compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil
Biology and Biochemistry., 35: 133-141.
Masson-Boivin, C., and Sachs, J.L. (2018). Symbiotic nitrogen fixation by rhizobia – the
roots of a success story. Curr. Opin. Plant Biol., 44: 7–15. doi: 10.1016/j.pbi.2017.
Meena, V.S., Bahadur, I., Maurya, B.R., Kumar, A., Meena, R.K., Meena, S.K., and Verma,
J.P. (2016). Potassium-solubilizing microorganism in evergreen agriculture: an
overview. In: Meena, VS (Ed.), Potassium Solubilizing Microorganisms for
Sustainable Agriculture. Springer India, pp. 1–20.
Meena, V.S., Maurya, B.R., and Bahadur, I. (2015a). Potassium solubilization by bacterial
strain in waste mica. Bangladesh J. Bot., 43: 235-237.
Meena, V.S., Maurya, B.R., and Verma, J.P. (2014). Does a rhizospheric microorganism
enhance K+
availability in agricultural soils? Microbiol. Res., 169: 337-347.
Meena, V.S., Maurya, B.R., Verma, J.P., and Meena, R.S. (2016). Potassium solubilizing
microorganisms for sustainable agriculture. Springer.
Meena, V.S., Mishra, P.K., Bisht, J.K., and Pattanayak, A. (2017). Agriculturally Important
Microbes for Sustainable Agriculture: Volume 2: Applications in Crop Production
and Protection; Springer: Berlin/Heidelberg, Germany.
Mirminachi, F., Zhang, A., and Roehr, M. (2002). Citric acid fermentation and heavy metal
ions. Acta Biotechnol., 22: 363–373.
Mishra, D., Rajvir, S., Mishra, U., and Kumar, S.S. (2013). Role of bio-fertilizer in organic
agriculture: A review. Res. J. Recent Sci., ISSN 2277, 2502.
Mishra, P., and Dash, D. (2014). Rejuvenation of biofertilizer for sustainable agriculture
and economic development. Consilience., 41–61.
Mitter, E.K., Tosi, M., Obregón, D., Dunfield, K.E., and Germida, J.J. (2021). Rethinking
Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer
Technologies. Front. Sustain. Food Syst., 5: 606815. doi: 10.3389/fsufs.2021.606815.
Moreira-Coello, V., Mouriño-Carballido, B., Marañón, E., Fernández-Carrera, A., Bode,
A., Sintes, E., Zehr, J.P., Kubo, K.T., and Varela, M.M. (2019). Temporal variability
of diazotroph community composition in the upwelling region off NW Iberia. Sci.
Rep., 9: 3737. doi: 10.1038/s41598-019-3 9586-4.
Nannipieri, P., Giagnoni, L., Landi, L., and Renella, G. (2011). “Role of phosphatase
enzymes in soil,” in Phosphorus in Action: Biological Processes in Soil Phosphorus
Cycling. Soil Biology, eds E Bunemann, A Oberson and E Frossard (Berlin: Springer),
Nassal, D., Spohn, M., Eltlbany, N., Jacquiod, S., Smalla, K., Marhan, S., and Kandeler, E.
(2018). Effects of phosphorus-mobilizing bacteria on tomato growth and soil
microbial activity. Plant Soil., 427: 17–37.
Naveed, M., Mehboob, I., Shaker, M.A., Hussain, M.B., and Farooq, M. (2015).
Biofertilizers in Pakistan: Initiatives and limitations. Int. J. Agric. Biol., 17: 411–420.
Naz, I., Ahmad, H., Khokhar, S.N., Khan, K., and Shah, A.H. (2016). Impact of zinc
solubilizing bacteria on zinc contents of wheat. American Eurasian J. Agric. Environ.
Sci., 16: 449–454.
Nobbe, F., and Hiltner, L. (1896). Inoculation of the Soil for Cultivating Leguminous
Plants. US Patent 570813.
Pankievicz, V.C.S., do Amaral, F.P., Santos, K.F.D.N., Agtuca, B., Xu, Y., Schueller, M.J.,
Arisi, A.C.M., Steffens, M.B.R., Souza, de., Pedrosa, F.O., Stacey, G., and Ferrieri,
R.A. (2015). Robust biological nitrogen fixation in a model grass-bacterial
association. Plant J., 81: 907–919. doi: 10.1111/tpj.12777.
Patil, H.J., and Solanki, M.K. (2016). “Microbial inoculant: modern era of fertilizers and
pesticides,” in Microbial Inoculants in Sustainable Agricultural Productivity:
Research Perspectives, Vol. 1. eds D.P. Singh, H.B. Singh, R. Prabha (Berlin:
Springer), 319–334. doi: 10.1007/978-81-322-2647-5_19.
Paul, E.A. (2015). Soil Microbiology, Ecology and Biochemistry. London: Elsevier. doi:
Peix, A., Mateos, P.F., Rodríguez-Barrueco, C., Martínez-Molina, E., and Velázquez, E.
(2001). Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of
Burkholderia cepacia under growth chamber conditions. Soil Biol. Biochem., 33:
1927–1935. doi: 10.1016/S0038-0717(01)00119-5.
Pereg, L., and McMillan, M. (2015). Scoping potential uses of beneficial microorganisms
for increasing productivity in cotton cropping systems. Soil Biol Biochem., 80: 349–358.
Pereg, L., De-Bashan, L.E., and Bashan, Y. (2016). Assessment of affinity and specificity
of Azospirillum for plants. Plant Soil., 399: 389–414. doi: 10.1007/s11104-015-2778-9.
Prabakaran, E., Muthuraman, Y., and Pandurangan, G. (2020). Application of Bacteria as
a Prominent Source of Biofertilizers, Biostimulants in Plant Science, S.M. Mirmajlessi
and R, Radhakrishnan, IntechOpen., DOI: 10.5772/intechopen.89825. Available
Pujar, A.M., Kumar, B.N.A., and Geeta, G.S. (2014). Response of Sunflower (Helianthus
annuus L.) to graded levels of Sulphur and sulphur oxidising biofertilizer
(Thiobacillus thiooxidans). Biochem. Cell. Arch., 14: 339–342.
Raj, S.A. (2007). Bio-fertilizers for micronutrients. Biofertilizer Newsletter (July), pp. 8-10.
Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., Ghazaryan,
K., Movsesyan, H., and Barsova, N. (2020). ZnO and CuO nanoparticles: A threat to
soil organisms, plants, and human health. Environ Geochem Health., 42: 147–158.
Reed, S.C., Cleveland, C.C., and Townsend, A.R. (2011). Functional ecology of free-living
nitrogen fixation: A contemporary perspective. Annu. Rev. Ecol Evol Syst., 42: 489–512.
Richardson, A.E., and Simpson, R.J. (2011). Soil microorganisms mediating phosphorus
availability. Plant Physiol., 156: 989–996. doi: 10.1104/pp.111.175448.
Romheld, V., and Kirkby, E.A. (2010). Research on potassium in agriculture: needs and
prospects. Plant Soil., 335: 155–180.
Saad, M.M., Eida, A.A., and Hirt, H. (2020). Tailoring plant-associated microbial
inoculants in agriculture: a roadmap for successful application. J Exp Bot., 71: 3878–
3901. doi: 10.1093/jxb/eraa111.
Saravanan, V.S., Kumar, M.R., and Sa, T.M. (2011). “Microbial zinc solubilization and
their role on plants,” in Bacteria in Agrobiology: Plant Nutrient Management, ed DK
Maheshwari (Berlin: Springer), 47–63.
Sattar, A., Muhammad, N., Ali, M., Zahir, A.Z., Nadeem, S.M., Yaseen, M., Meena, V.S.,
Farooq, M., Singh, R., Rahman, M., and Meena, H.N. (2018). Perspectives of
potassium solubilizing microbes in sustainable food production system: A review.
Applied Soil Ecology., 133. 10.1016/j.apsoil.2018.09.012.
Sawers, R.J.H., Svane, S.F., Quan, C., Grønlund, M., Wozniak, B., Gebreselassie, M.N.,
Munoz, E.G., Montes, R.A.C., Baxter, I., Goudet, J., Jakobsen, I., and Paszkowski, U.
(2017). Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is
correlated with the abundance of root-external hyphae and the accumulation of
transcripts encoding PHT1 phosphate transporters. New Phytol., 214: 632–643. doi:
Schachtman, D.P., Reid, R.J., and Ayling, S.M. (1998). Phosphorus uptake by plants: from
soil to cell. Plant Physiol., 116: 447–453. doi: 10.1104/pp.116.2.447.
Scherer, H.W. (2009). Sulfur in soils. J Plant Nutr. Soil Sci., 172: 326–335. doi:
Schinner, F., and Burgstaller, W. (1989). Extraction of zinc from industrial waste by a
Penicillium sp. Applied Environmental Microbiology., 55: 1153–1156.
Seshachala, U., and Tallapragada, P. (2012). Phosphate solubilizers from the rhizosphere
of Piper nigrum L. in Karnataka, India. Chil. J Agric Res., 72: 397–403. doi:
Shamseldin, A., Abdelkhalek, A., and Sadowsky, M.J. (2017). Recent changes to the
classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review.
Symbiosis., 71: 91–109. doi: 10.1007/s13199-016-0462-3.
Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., and Gobi, T.A. (2013). Phosphate solubilizing
microbes: sustainable approach for managing phosphorus deficiency in agricultural
soils. Springerplus., 2: 587–600. doi: 10.1186/2193-1801-2-587.
Sheng, X.F., and He, L.Y. (2006). Solubilization of potassium bearing minerals by a wild
type strain of Bacillus edaphicus and its mutants and increased potassium uptake by
wheat. Can J Microbiol., 52: 66–72.
Sheng, X.F., Zhao, F., He, H., Qiu, G., and Chen, L. (2008). Isolation, characterization of
silicate mineral solubilizing Bacillus globisporus Q12 from the surface of weathered
feldspar. Can J Microbiol., 54: 1064–1068.
Shirmohammadi, E., Alikhani, H.A., Pourbabaei, A.A., and Etesami, H. (2020). Improved
phosphorus (P) uptake and yield of rainfed wheat fed with p fertilizer by drought tolerant phosphate-solubilizing fluorescent pseudomonads strains: a field study in
drylands. J Soil Sci. Plant Nutr., 20: 2195–2211. doi: 10.1007/s42729-020-00287-x.
Singh, G., Biswas, D.R., and Marwah, T.S. (2010). Mobilization of potassium from waste
mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea
mays) and wheat (Triticum aestivum L.). J Plant Nutr., 33: 1236–1251.
Singh, M., Dotaniya, M., Mishra, A., Dotaniya, C., Regar, K., and Lata, M. (2016). Role of
biofertilizers in conservation agriculture. In Conservation Agriculture; Springer:
Berlin/Heidelberg, Germany, pp. 113–134.
Singh, S.P., Singh, S., Dubey, A.N., and Rajput, R.K. (2020). Biofertilizers and Plant
Growth Regulators as Key Player in Sustainable Agriculture by Enhancing Soil
Fertility and Crop Productivity. Environ Agric Health.
website/pdf/AGRICULTURE_PART-1.pdf#page=19 (accessed on 8 February 2021).
Singh, M., Singh, D., Gupta, A., Pandey, K.D., Singh, P.K., and Kumar, A. (2019). “Plant
growth promoting rhizobacteria,” in PGPR Amelioration in Sustainable Agriculture,
eds AK Singh, A Kumar and PK Singh (Cambridge, MA: Elsevier), 41–66.
DOI: 10.1016/B978-0-12-815879-1.00003-3.
Srivastava, A.K., Shankar, A., Nalini Chandran, A.K., Sharma, M., Jung, K.H., Suprasanna,
P., and Pandey, G.K. (2019). Emerging concepts of potassium homeostasis in plants.
J. Exp. Bot., 71: 608–619. doi: 10.1093/jxb/erz458.
Subba Rao, N.S. (2001). An appraisal of biofertilizers in India. The Biotechnology of
Biofertilizers, eds S Kannaiyan, Narosa Pub. House, New Delhi.
Sundara, B., Natarajan, V., and Hari, K. (2002). Influence of phosphorus solubilizing
bacteria on the changes in soil available phosphorus and sugarcane and sugar yields.
Field Crop Res., 77: 43–49.
Thomas, L., and Singh, I. (2019). Microbial Biofertilizers: Types and Applications. In
Biofertilizers for Sustainable Agriculture and Environment; Springer: Berlin/
Heidelberg, Germany, pp. 1–19.
Tosi, M., Mitter, E.K., Gaiero, J., and Dunfield, K.E. (2020). It takes three to tango: the
importance of microbes, host plant and soil management to elucidate manipulation
strategies for the plant microbiome. Can. J. Microbiol., 66: 413–433. doi: 10.1139/
Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, R., Giller, K., and Chalk,
P. (2008). Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems.
Canberra: Australian Centre for International Agricultural Research, 258.
Uroz, S., Calvaruso, C., Turpault, M.P., and Frey-Klett, P. (2009). Mineral weathering by
bacteria: ecology, actors and mechanisms. Trends Microbiol., 17: 378–387.
Weber, N., Herrmann, I., Hochholdinger, F., Ludewig, U., and Neumann, G. (2018).
PGPR-induced growth stimulation and nutrient acquisition in maize: Do root hairs
matter? Sci. Agric. Bohem., 49(3): 164-172.
Wu, Y., He, Y., Yin, H., Chen, W., Wang, Z., Xu, L., and Zhang, A. (2012). Isolation of
phosphate-solubilizing fungus and its application in solubilization of rock phosphates.
Pak. J. Biol. Sci. 15: 1144–1151. doi: 10.3923/pjbs.2012.1144.1151.
Xiao, Y., Wang, X., Chen, W., Huang, Q. (2017). Isolation and identification of three
potassium-solubilizing bacteria from rape rhizospheric soil and their effects on
ryegrass. Geomicrobiol. J. 1-8.
Yadav, K.K., and Sarkar, S. (2019). Biofertilizers, impact on soil fertility and crop
productivity under sustainable agriculture. Environ. Ecol., 37: 89–93.
Zarjani, J.K., Aliasgharzad, N., Oustan, S., Emadi, M., and Ahmadi, A. (2013). Isolation
and characterization of potassium solubilizing bacteria in some Iranian soils. Arch.
Agron. Soil. Sci., 59: 1713–1723.
Zeffa, D.M., Perini, L., Silva, M.B., de Sousa, N.V., Scapim, C.A., de Oliveira, A.L.M., do
Amaral Ju´nior, A.T., and Goncalves, L.S.A. (2019). Azospirillum brasilense
promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS
ONE., 14: e0215332. doi: 10.1371/journal.pone.0215332.
Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., and Chen, Q. (2014). Maize
rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia
with phosphate solubilizing and antifungal abilities. Microbiol. Res., 169: 76–82. doi:
Zhao, Y., Zhang, M., Yang, W., Di, H.J., Ma, L., Liu, W., and Li, B. (2019). Effects of
microbial inoculants on phosphorus and potassium availability, bacterial community
composition, and chili pepper growth in a calcareous soil: A greenhouse study. J. Soils
Sed., 19: 3597–3607.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!