Chapter 4. Functionalized Hydroxyapatite in Bone Regeneration


Prasenjit Mukherjee1, Subhasis Roy1, Shubhamitra Chaudhuri1, Rahul Deb Mukherjee2, Biswanath Kundu3 and Samit Kumar Nandi4
1Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata, West Bengal, India
2Coochbehar Krishi Vigyan Kendra, Pundibari, Cooch Behar, West Bengal, India
3Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata, West Bengal, India
4Department of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, West Bengal, India

Part of the book: What to Know about Hydroxyapatite


From 1990 to 2019, there were globally 178 million new cases of fracture which accounts for a 33.4% increment. The epidemiological studies explored that in the last three decades the years lived with disabilities (YLD) have increased to 65.3%. The challenges of orthopedic surgery still deal with the dearth of satisfactory solutions for the healing of large osseous defects. Even though autografts are the gold standard, surgeons must rely on synthetic graft alternatives due to a lack of availability and donor site morbidity. Due to its close physio-biological and chemical similarity to natural bone, osteoconductive nature, and ease of adaptability with many other necessary elements for functionalization, calcium phosphate hydroxyapatite (HA, Ca10(PO4)6(OH)2) has gained considerable attention as a bone graft substitute since 1980. They consistently aid in bone growth on the implant surface. However, limited bioactivity is the main hindrance behind their wide use in orthopedic surgeries. In recent years, several strategies have been undertaken to improve the biological performances with the various ionic substitutions with the apatite. Functionalization is one of the key processes to alter the surface properties of materials aiming toward specific properties to be induced depending on the target tissue or to minimize any unwanted negative or hindrance factors. Functionalization of HA with specific biomolecules is the process by which the surface of HA is made more bioactive i.e., increment of bio integration and osteogenesis. The use of functionalized HA is not only restricted to bone tissue engineering, they are equally important for skin, cartilage, periodontal, vascular tissue, hepatic tissue, tendon, ligament as well as corneal tissue engineering. But, in this chapter, special emphasis has been given to the brief introduction of HA, basic properties, different synthesis techniques, summarized application in biomedical engineering in general, and especially the use and scope of clinical translational aspect of functionalized HA in bone tissue engineering.


Agarwal R., García A. J. Biomaterial strategies for engineering implants for enhanced
osseointegration and bone repair. Adv Drug Deliv Rev. 2015 Nov 1;94:53–62.
Ahn E. S., Gleason N. J., Nakahira A., Ying J. Y. Nanostructure Processing of
Hydroxyapatite-based Bioceramics. Nano Lett. 2001 Mar 1;1(3):149–53.
Albrektsson T., Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur
Spine J. 2001 Oct 1;10(2):S96–101.
Almulaiky Y., Khalil N. M., El-Shishtawy R. M., Altalhi T., Algamal Y., Aldhahri M.,
Yousif Algamal, Musab Aldhahri, Sami A Al-Harbi, Esam S Allehyani, Muhammad
Bilal, Mustafa M Mohammed. Hydroxyapatite-decorated ZrO2 for a-amylase
immobilization: Toward the enhancement of enzyme stability and reusability. Int J
Biol Macromol. 2021;167:299–308.
Andreassen T. T., Oxlund H. The effects of growth hormone on cortical and cancellous
bone. J Musculoskelet Neuronal Interact. 2001 Sep;2(1):49–58.
Anita Lett J., Sagadevan S., Fatimah I., Hoque M. E., Lokanathan Y., Léonard E., Solhe F.
Alshahateet, Romana Schirhagl, Won Chun Oh. Recent advances in natural polymer
based hydroxyapatite scaffolds: Properties and applications. Eur Polym J. 2021 Apr
Arcos D., Vallet-Regí M. Substituted hydroxyapatite coatings of bone implants. J Mater
Chem B. 2020;8(9):1781–800.
Bakoš D., Soldán M., Hernández-Fuentes I. Hydroxyapatite–collagen–hyaluronic acid
composite. Biomaterials. 1999 Jan 1;20(2):191–5.
Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant
surfaces: Part I: Materials and surfaces. Prog Mater Sci. 2013 Apr 1;58(3):261–326.
Bhat S., Uthappa U. T., Altalhi T., Jung H. Y., Kurkuri M. D. Functionalized Porous
Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review.
ACS Biomater Sci Eng [Internet]. 2021 Sep 9 [cited 2022 Aug 2]; Available from:
Bigham A. S., Shadkhast M., Bigham Sadegh A., Shafiei Z., Lakzian A., Khalegi M. R.
Evaluation of osteoinduction properties of the demineralized bovine foetal growth
plate powder as a new xenogenic biomaterial in rat.
Res Vet Sci. 2011 Oct 1;91(2):306–10.
Bilton M. W. Nanoparticulate hydroxyapatite and calcium-based CO2 sorbents [Internet]
[phd]. University of Leeds; 2012 [cited 2022 Aug 6]. Available from: https://
Boanini E., Torricelli P., Cassani M. C., Rubini K., Fini M., Pagani S., Adriana Bigi.
Platinum nanoparticles supported on functionalized hydroxyapatite: Anti-oxidant
properties and bone cells response. Ceram Int. 2020;46(11):19574–82.
Boccaccini A. R., Ma P. X., Liverani L. Tissue Engineering Using Ceramics and Polymers.
Woodhead Publishing; 2021.
Boonsongrit Y., Abe H., Sato K., Naito M., Yoshimura M., Ichikawa H., Yoshinobu
Fukumori. Controlled release of bovine serum albumin from hydroxyapatite
microspheres for protein delivery system. Mater Sci Eng B. 2008 Feb 25;148(1):162–5.
Cardoso G. B. C., Maniglio D., Volpato F. Z., Tondon A., Migliaresi C., Kaunas R. R.,
Cecilia A. C. Zavaglia. Oleic acid surfactant in polycaprolactone/hydroxyapatite
composites for bone tissue engineering. J Biomed Mater Res B Appl Biomater.
Chai Y., Liu Z., Du Y., Wang L., Lu J., Zhang Q., Wenyan Han, Tingting Wang, Yameng
Yu, Lisha Sun, Lailiang Ou Hydroxyapatite reinforced inorganic-organic hybrid
nanocomposite as high-performance adsorbents for bilirubin removal in vitro and in
pig models. Bioact Mater. 2021;6(12):4772–85.
Chesnutt B. M., Viano A. M., Yuan Y., Yang Y., Guda T., Appleford M. R., Joo L. Ong,
Warren O. Haggard, Joel D. Bumgardner. Design and characterization of a novel
chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
J Biomed Mater Res A. 2009;88A(2):491–502.
Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures:
applications for tissue engineering and gene therapy. Med Biol Eng Comput. 2000 Mar
Cipreste M., da Nova Mussel W., da Silva J., de Freitas Marques M., Batista R., Gastelois
P., Waldemar Augusto de Almeida, Macedo, Edésia Martins Barros de Sousa. A new
theranostic system for bone disorders: Functionalized folate-MDP hydroxyapatite
nanoparticles with radiolabeled copper-64. Mater Chem Phys. 2020;254:123265.
Cirillo M., Martelli G., Boanini E., Rubini K., Di Filippo M., Torricelli P., Stefania Pagani,
Milena Fini, Adriana Bigi, Daria Giacomini. Strontium substituted hydroxyapatite
with b-lactam integrin agonists to enhance mesenchymal cells adhesion and to
promote bone regeneration. Colloids Surf B Biointerfaces. 2021;200:111580.
Collins Arun Prakash V., Venda I., Thamizharasi V., Sathya E. A comparative study on
microemulsion synthesis of hydroxyapatite powders by ionic and Non-Ionic
surfactants. Mater Today Proc. 2022 Jan 1;51:1701–5.
Cox S. C., Thornby J. A., Gibbons G. J., Williams M. A., Mallick K. K. 3D printing of
porous hydroxyapatite scaffolds intended for use in bone tissue engineering
applications. Mater Sci Eng C. 2015 Feb 1;47:237–47.
Dalby M. J., Di Silvio L., Harper E. J., Bonfield W. In vitro evaluation of a new
polymethylmethacrylate cement reinforced with hydroxyapatite. J Mater Sci Mater
Med. 1999 Dec 1;10(12):793–6.
De Groot K., Geesink R., Klein C. P. A. T., Serekian P. Plasma sprayed coatings of
hydroxylapatite. J Biomed Mater Res. 1987;21(12):1375–81.
Deshmukh K., Ramanan S. R., Kowshik M. A novel method for genetic transformation of
C. albicans using modified-hydroxyapatite nanoparticles as a plasmid DNA vehicle.
Nanoscale Adv. 2019;1(8):3015–22.
Dixit K., Kulanthaivel S., Agarwal T., Pal K., Giri S., Maiti T. K., Indranil Banerjee. Gum
tragacanth modified nano-hydroxyapatite: An angiogenic-osteogenic biomaterial for
bone tissue engineering. Ceram Int. 2022;48(10):14672–83.
Dogan S., Ozcan T., Dogan M., Turhan Y. The effects on antioxidant enzymes of
PMMA/hydroxyapatite nanocomposites/composites. Enzyme Microb Technol.
Dorozhkin S. V. Calcium Orthophosphate-Based Bioceramics. Materials. 2013
Dorozhkin S. V. Medical Application of Calcium Orthophosphate Bioceramics.
Dunn A. S., Campbell P. G., Marra K. G. The influence of polymer blend composition on
the degradation of polymer/hydroxyapatite biomaterials. J Mater Sci Mater Med. 2001
Aug 1;12(8):673–7.
El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev
Med Devices. 2005 Jan 1;2(1):87–101.
Enrich-Essvein T., Rodriguez-Navarro A. B., Alvarez-Lloret P., Cifuentes-Jimenez C.,
Bolanos-Carmona M. V., Gonzalez-Lopez S. Proanthocyanidin-functionalized
hydroxyapatite nanoparticles as dentin biomodifier. Dent Mater. 2021;37(9):1437–45.
Fang X., Zhu S., Ma J., Wang F., Xu H., Xia M. The facile synthesis of zoledronate
functionalized hydroxyapatite amorphous hybrid nanobiomaterial and its excellent
removal performance on Pb2+ and Cu2+
. J Hazard Mater. 2020;392:122291.
Fernandez-Yague M. A., Abbah S. A., McNamara L., Zeugolis D. I., Pandit A., Biggs M.
J. Biomimetic approaches in bone tissue engineering: Integrating biological and
physicomechanical strategies. Adv Drug Deliv Rev. 2015 Apr 1;84:1–29.
Ferreira-Ermita D. A. C., Valente F. L., Carlo-Reis E. C., Araújo F. R., Ribeiro I. M., Cintra
C. C. V., Andréa P. B. Borges. Characterization and in vivo biocompatibility analysis
of synthetic hydroxyapatite compounds associated with magnetite nanoparticles for a
drug delivery system in osteomyelitis treatment. Results Mater. 2020 Mar 1;5:100063.
Fierz F. C., Beckmann F., Huser M., Irsen S. H., Leukers B., Witte F., O. Degistirici, A.
Andronache, M. Thie, B. Müller. The morphology of anisotropic 3D-printed
hydroxyapatite scaffolds. Biomaterials. 2008 Oct 1;29(28):3799–806.
Fiume E., Magnaterra G., Rahdar A., Verné E., Baino F. Hydroxyapatite for Biomedical
Applications: A Short Overview. Ceramics. 2021 Dec;4(4):542–63.
Flahiff C. M., Blackwell A. S., Hollis J. M., Feldman D. S. Analysis of a biodegradable
composite for bone healing. J Biomed Mater Res. 1996;32(3):419–24.
Geesink R., de Groot K., Klein C. Bonding of bone to apatite-coated implants. J Bone Joint
Surg Br. 1988 Jan;70-B(1):17–22.
Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: The diamond concept. Injury.
2007 Sep 1;38:S3–6.
Goodman S. B., Yao Z., Keeney M., Yang F. The future of biologic coatings for
orthopaedic implants. Biomaterials. 2013 Apr 1;34(13):3174–83.
Haider A., Gupta K. C., Kang I. K. Morphological Effects of HA on the Cell Compatibility
of Electrospun HA/PLGA Composite Nanofiber Scaffolds. BioMed Res Int. 2014a Feb
Haider A., Gupta K. C., Kang I. K. PLGA/nHA hybrid nanofiber scaffold as a nanocargo
carrier of insulin for accelerating bone tissue regeneration. Nanoscale Res Lett. 2014b
Jun 25;9(1):314.
Haider A., Haider S., Soo Han S., Kang I. K. Recent advances in the synthesis,
functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv.
Haider A., Haider S., Soo Han S., Kang I. K. Recent advances in the synthesis,
functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv.
He J., Huang T., Gan L., Zhou Z., Jiang B., Wu Y., Fang Wu, Zhongwei Gu Collagen infiltrated
porous hydroxyapatite coating and its osteogenic properties: In vitro and in
vivo study. J Biomed Mater Res A. 2012;100A(7):1706–15.
Hetrick E. M., Schoenfisch M. H. Reducing implant-related infections: active release
strategies. Chem Soc Rev. 2006 Aug 23;35(9):780–9.
Higashi S., Yamamuro T., Nakamura T., Ikada Y., Hyon S. H., Jamshidi K. Polymer
hydroxyapatite composites for biodegradable bone fillers. Biomaterials.
1986 May 1;7(3):183–7.
Hing K. A., Best S. M., Tanner K. E., Bonfield W., Revell P. A. Quantification of bone
ingrowth within bone-derived porous hydroxyapatite implants of varying density. J
Mater Sci Mater Med. 1999 Oct 1;10(10):663–70.
Hong Z., Qiu X., Sun J., Deng M., Chen X., Jing X. Grafting polymerization of l-lactide on
the surface of hydroxyapatite nano-crystals. Polymer. 2004a Sep 3;45(19):6699–706.
Hong Z., Qiu X., Sun J., Deng M., Chen X., Jing X. Grafting polymerization of l-lactide on
the surface of hydroxyapatite nano-crystals. Polymer. 2004b Sep 3;45(19):6699–706.
Hong Z., Zhang P., He C., Qiu X., Liu A., Chen L., Xiabin Jing Nano-composite of poly(l lactide)
and surface grafted hydroxyapatite: Mechanical properties and
biocompatibility. Biomaterials. 2005 Nov 1;26(32):6296–304.
Hussain Z., Ullah I., Liu X., Shen W., Ding P., Zhang Y., Tong Gao, Mojtaba
Mansoorianfar, Tian Gao, Renjun Peia. Tannin-reinforced iron substituted
hydroxyapatite nanorods functionalized collagen-based composite nanofibrous
coating as a cell-instructive bone-implant interface scaffold. Chem Eng J.
Ibrahim A. R., Li X., Zhou Y., Huang Y., Chen W., Wang H., Jun Li. Synthesis of Spongy
Like Mesoporous Hydroxyapatite from Raw Waste Eggshells for Enhanced
Dissolution of Ibuprofen Loaded via Supercritical CO2. Int J Mol Sci. 2015
Ignjatović N., Delijić K., Vukcević M., Uskoković D. The Designing of Properties of
Hydroxyapatite/Poly-l-lactide Composite Biomaterials by Hot Pressing. Int J Mater
Res. 2001 Feb 1;92(2):145–9.
Ji D. Y., Kuo T. F., Wu H. D., Yang J. C., Lee S. Y. A novel injectable
chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for
soft-tissue augmentation. Carbohydr Polym. 2012 Aug 1;89(4):1123–30.
Jiang X., Zhao Y., Wang C., Sun R., Tang Y. Effects of physico-chemical properties of
ions-doped hydroxyapatite on adsorption and release performance of doxorubicin as a
model anticancer drug. Mater Chem Phys. 2022;276:125440.
Khajuria D. K., Kumar V. B., Gigi D., Gedanken A., Karasik D. Accelerated bone
regeneration by nitrogen-doped carbon dots functionalized with hydroxyapatite
nanoparticles. ACS Appl Mater Interfaces. 2018;10(23):19373–85.
Kim H. W., Knowles J. C., Kim H. E. Hydroxyapatite/poly(ε-caprolactone) composite
coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004
Mar 1;25(7):1279–87.
Kirkham J., Brookes S. J., Shore R. C., Wood S. R., Smith D. A., Zhang J., Haifeng Chen,
Colin Robinson. Physico-chemical properties of crystal surfaces in matrix–mineral
interactions during mammalian biomineralisation. Curr Opin Colloid Interface Sci.
2002 Mar 1;7(1):124–32.
Kolanthai E., Ganesan K., Epple M., Kalkura S. N. Synthesis of nanosized hydroxyapatite/
agarose powders for bone filler and drug delivery application. Mater Today Commun.
2016 Sep 1;8:31–40.
Koocheki S., Madaeni S. S., Niroomandi P. Application of hydroxyapatite nanoparticles in
development of an enhanced formulation for delivering sustained release of
triamcinolone acetonide. Int J Nanomedicine. 2011;6:825–33.
Koons G. L., Diba M., Mikos A. G. Materials design for bone-tissue engineering. Nat Rev
Mater. 2020 Aug;5(8):584–603.
Kulkarni R. K., Moore E. G., Hegyeli A. F., Leonard F. Biodegradable poly(lactic acid)
polymers. J Biomed Mater Res. 1971;5(3):169–81.
Lara-Ochoa S., Ortega-Lara W., Guerrero-Beltrán C. E. Hydroxyapatite Nanoparticles in
Drug Delivery: Physicochemistry and Applications. Pharmaceutics. 2021
Lee K. W., Bae C. M., Jung J. Y., Sim G. B., Rautray T. R., Lee H. J., Tae-Yub Kwon,
Kyo-Han Kim. Surface characteristics and biological studies of hydroxyapatite
coating by a new method. J Biomed Mater Res B Appl Biomater. 2011;98B(2):395–407.
Lee W. H., Loo C. Y., Rohanizadeh R. Functionalizing the surface of hydroxyapatite drug
carrier with carboxylic acid groups to modulate the loading and release of curcumin
nanoparticles. Mater Sci Eng C. 2019;99:929–39.
LeGeros R. Z. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008
LeGeros R. Z. Properties of osteoconductive biomaterials: calcium phosphates. Clin
Orthop. 2002 Feb;(395):81–98.
Levitt S. R., Crayton P. H., Monroe E. A., Condrate R. A. Forming method for apatite
prostheses. J Biomed Mater Res. 1969 Dec 1;3(4):683–4.
Li Y., Zhang D., Wan Z., Yang X., Cai Q. Dental resin composites with improved
antibacterial and mineralization properties via incorporating zinc/strontium-doped
hydroxyapatite as functional fillers. Biomed Mater. 2022;17(4):045002.
Li Z., Liu Z., Yin M., Yang X., Yuan Q., Ren J., and Xiaogang Qu. Aptamer-Capped
Multifunctional Mesoporous Strontium Hydroxyapatite Nanovehicle for Cancer-Cell
Responsive Drug Delivery and Imaging. Biomacromolecules. 2012 Dec 10;13(12): 4257–63.
Lin K., Chang J. 1 – Structure and properties of hydroxyapatite for biomedical applications.
In: Mucalo M., editor. Hydroxyapatite (Hap) for Biomedical Applications [Internet].
Woodhead Publishing; 2015 [cited 2022 Aug 9]. p. 3–19. (Woodhead Publishing
Series in Biomaterials). Available from:
Linh N. T. B., Abueva C. D. G., Jang D., Lee B. Collagen and bone morphogenetic
protein 2 functionalized hydroxyapatite scaffolds induce osteogenic differentiation in human
adipose-derived stem cells. J Biomed Mater Res B Appl Biomater. 2020;108(4):1363–71.
Liu D. M. Fabrication of hydroxyapatite ceramic with controlled porosity. J Mater Sci
Mater Med. 1997 Apr 1;8(4):227–32.
Loo S. C. J., Moore T., Banik B., Alexis F. Biomedical Applications of Hydroxyapatite
Nanoparticles. Curr Pharm Biotechnol. 2010 Jun 1;11(4):333–42.
Mas-Moruno C. 3 – Surface functionalization of biomaterials for bone tissue regeneration
and repair. In: Barbosa M. A., Martins M. C. L., editors. Peptides and Proteins as
Biomaterials for Tissue Regeneration and Repair [Internet]. Woodhead Publishing;
2018 [cited 2022 Aug 2]. p. 73–100. Available from: https://www.sciencedirect.
Mehedi Hasan M., Nuruzzaman Khan M., Haque P., Rahman M. M. Novel alginate-di aldehyde
cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue
regeneration. Int J Biol Macromol. 2018 Oct 1;117:1110–7.
Mondal S., Dorozhkin S. V., Pal U. Recent progress on fabrication and drug delivery
applications of nanostructured hydroxyapatite. WIREs Nanomedicine
Nanobiotechnology. 2018;10(4):e1504.
Mondal S., Pal U. 3D hydroxyapatite scaffold for bone regeneration and local drug delivery
applications. J Drug Deliv Sci Technol. 2019 Oct 1;53:101131.
Morishita T., Honoki K., Ohgushi H., Kotobuki N., Matsushima A., Takakura Y. Tissue
Engineering Approach to the Treatment of Bone Tumors: Three Cases of Cultured
Bone Grafts Derived From Patients’ Mesenchymal Stem Cells. Artif Organs.
Mudhafar M., Zainol I., Alsailawi H. A., Aiza Jaafar C. N. Synthesis and characterization
of fish scales of hydroxyapatite/collagen–silver nanoparticles composites for the
applications of bone filler. J Korean Ceram Soc. 2022 Mar 1;59(2):229–39.
Murugan R., Ramakrishna S. Bioresorbable composite bone paste using polysaccharide
based nano hydroxyapatite. Biomaterials. 2004 Aug 1;25(17):3829–35.
Nandi S. K., Kundu, B., Mukherjee, J., Datta, S. and Balla, V. K. Converted marine coral
hydroxyapatite implants with growth factors: In vivo bone regeneration. Materials
Science and Engineering C 2015; 49: 816-823
Neffe A. T., Loebus A., Zaupa A., Stoetzel C., Müller F. A., Lendlein A. Gelatin
functionalization with tyrosine derived moieties to increase the interaction with
hydroxyapatite fillers. Acta Biomater. 2011 Apr 1;7(4):1693–701.
Nikbakht A., Dehghanian C., Parichehr R. Silane coatings modified with hydroxyapatite
nanoparticlesto enhance the biocompatibility and corrosion resistance of a magnesium
alloy. RSC Adv. 2021;11(42):26127–44.
Oliveira H. L., Da Rosa W. L. O., Cuevas-Suárez C. E., Carreño N. L. V., da Silva A. F.,
Guim T. N., Odir A. Dellagostin, Evandro Piva. Histological Evaluation of Bone
Repair with Hydroxyapatite: A Systematic Review. Calcif Tissue Int. 2017 Oct
Orlovskii V. P., Komlev V. S., Barinov S. M. Hydroxyapatite and Hydroxyapatite-Based
Ceramics. Inorg Mater. 2002 Oct 1;38(10):973–84.
Oryan A., Alidadi S., Moshiri A. Current concerns regarding healing of bone defects. Hard
Tissue. 2013;2(2):1–2.
Oryan A., Moshiri A., Sharifi P. Advances in injured tendon engineering with emphasis on
the role of collagen implants. Hard Tissue. 2012;1(12):12.
Oulguidoum A., Bouyarmane H., Laghzizil A., Nunzi J. M., Saoiabi A. Development of
sulfonate-functionalized hydroxyapatite nanoparticles for cadmium removal from
aqueous solutions. Colloid Interface Sci Commun. 2019;30:100178.
Packer J. W., Colditz J. C. Bone Injuries: Treatment and Rehabilitation. Hand Clin. 1986
Feb 1;2(1):81–91.
Pal A., Maity S., Chabri S., Bera S., Chowdhury A. R., Das M., Arijit Sinha, Sumit Chabri.
Mechanochemical synthesis of nanocrystalline hydroxyapatite from $\less$i$\
greater$Mercenaria$\less$/i$\greater$ clam shells and phosphoric acid. Biomed Phys
Ampmathsemicolon Eng Express. 2017 Jan;3(1):015010.
Pal K., Pal S. Development of Porous Hydroxyapatite Scaffolds. Mater Manuf Process.
2006 May 1;21(3):325–8.
Pandey S., Rai N., Mahtab A., Mittal D., Ahmad F. J., Sandal N., Yub Raj Neupane, Anita
Kamra Verma, Sushama Talegaonkar. Hyaluronate-functionalized hydroxyapatite
nanoparticles laden with methotrexate and teriflunomide for the treatment of
rheumatoid arthritis. Int J Biol Macromol. 2021;171:502–13.
Parizi A. M., Oryan A., Shafiei-Sarvestani Z., Bigham A. S. Human platelet rich plasma
plus Persian Gulf coral effects on experimental bone healing in rabbit model:
radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci
Mater Med. 2012 Feb 1;23(2):473–83.
Paul W., Sharma C. P. Development of porous spherical hydroxyapatite granules:
application towards protein delivery. J Mater Sci Mater Med. 1999 Jul 1;10(7):383–8.
Rakmae S., Ruksakulpiwat Y., Sutapun W., Suppakarn N. Effect of silane coupling agent
treated bovine bone based carbonated hydroxyapatite on in vitro degradation behavior
and bioactivity of PLA composites. Mater Sci Eng C. 2012 Aug 1;32(6):1428–36.
Raphel J., Holodniy M., Goodman S. B., Heilshorn S. C. Multifunctional coatings to
simultaneously promote osseointegration and prevent infection of orthopaedic
implants. Biomaterials. 2016 Apr 1;84:301–14.
Reddi A. H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration.
Nat Biotechnol. 1998 Mar;16(3):247–52.
Rhee S. H., Lee J. D., Tanaka J. Nucleation of Hydroxyapatite Crystal through Chemical
Interaction with Collagen. J Am Ceram Soc. 2000;83(11):2890–2.
Rimola A., Corno M., Zicovich-Wilson C. M., Ugliengo P. Ab Initio Modeling of
Protein/Biomaterial Interactions: Glycine Adsorption at Hydroxyapatite Surfaces. J
Am Chem Soc. 2008 Dec 3;130(48):16181–3.
Saiz E., Gremillard L., Menendez G., Miranda P., Gryn K., Tomsia A. P. Preparation of
porous hydroxyapatite scaffolds. Mater Sci Eng C. 2007 Apr 1;27(3):546–50.
Salahuddin N., Ibrahim E., El-Kemary M. Surfactant free-poly (lactic-co-glycolic acid)
coated artesunate loaded citrate-functionalized hydroxyapatite nanorods as a
nanocapsule for improving artesunate delivery and antitumor efficiency. Ceram Int.
Salamanna F., Giavaresi G., Parrilli A., Torricelli P., Boanini E., Bigi A., Milena Fini.
Antiresorptive properties of strontium substituted and alendronate functionalized
hydroxyapatite nanocrystals in an ovariectomized rat spinal arthrodesis model. Mater
Sci Eng C. 2019;95:355–62.
Salinas A. J., Esbrit P., Vallet-Regí M. A tissue engineering approach based on the use of
bioceramics for bone repair. Biomater Sci. 2013;1(1):40–51.
Shafiei Z., Bigham A. S., Dehghani S. N., Torabi Nezhad S. Fresh cortical autograft versus
fresh cortical allograft effects on experimental bone healing in rabbits: radiological,
Histopathological and Biomechanical evaluation. Cell Tissue Bank. 2009 Feb
Shavandi A., Bekhit A. E. D. A., Sun Z. F., Ali A. A Review of Synthesis Methods,
Properties and Use of Hydroxyapatite as a Substitute of Bone. J Biomim Biomater
Biomed Eng. 2015;25:98–117.
Silva C. C. G., Rigo E. C. da S., Marchi J., Bressiani A. H. de A., Bressiani J. C.
Hydroxyapatite coating on silicon nitride surfaces using the biomimetic method.
Mater Res. 2008 Mar;11:47–50.
Siniscalco D., Dutreilh-Colas M., Hjezi Z., Cornette J., El Felss N., Champion E., Chantal
Damia. Functionalization of Hydroxyapatite Ceramics: Raman Mapping Investigation
of Silanization. Ceramics. 2019 Jun;2(2):372–84.
Son J. S., Choi Y. A., Park E. K., Kwon T. Y., Kim K. H., Lee K. B. Drug delivery from
hydroxyapatite-coated titanium surfaces using biodegradable particle carriers. J
Biomed Mater Res B Appl Biomater. 2013;101B(2):247–57.
Sotome S., Uemura T., Kikuchi M., Chen J., Itoh S., Tanaka J., Tetsuya Tateishi, Kenichi
Shinomiya. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen–
alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein.
Mater Sci Eng C. 2004 Apr 1;24(3):341–7.
Srinath P., Abdul Azeem P., Venugopal Reddy K. Review on calcium silicate-based
bioceramics in bone tissue engineering. Int J Appl Ceram Technol. 2020;17(5):2450–64.
Suchanek W., Yoshimura M. Processing and properties of hydroxyapatite-based
biomaterials for use as hard tissue replacement implants. J Mater Res. 1998a
Suchanek W., Yoshimura M. Processing and properties of hydroxyapatite-based
biomaterials for use as hard tissue replacement implants. J Mater Res. 1998b
Sukhodub L. F., Sukhodub L. B., Litsis O., Prylutskyy Y. Synthesis and characterization
of hydroxyapatite-alginate nanostructured composites for the controlled drug release.
Mater Chem Phys. 2018;217:228–34.
Sun L., Berndt C. C., Gross K. A., Kucuk A. Material fundamentals and clinical
performance of plasma-sprayed hydroxyapatite coatings: A review. J Biomed Mater
Res. 2001;58(5):570–92.
Swetha M., Sahithi K., Moorthi A., Srinivasan N., Ramasamy K., Selvamurugan N.
Biocomposites containing natural polymers and hydroxyapatite for bone tissue
engineering. Int J Biol Macromol. 2010 Jul 1;47(1):1–4.
Szcześ A., Hołysz L., Chibowski E. Synthesis of hydroxyapatite for biomedical
applications. Adv Colloid Interface Sci. 2017 Nov 1;249:321–30.
Szustakiewicz K., Gazińska M., Kryszak B., Grzymajło M., Pigłowski J., Wiglusz R. J.,
Masami Okamoto. The influence of hydroxyapatite content on properties of poly
(L lactide)/hydroxyapatite porous scaffolds obtained using thermal induced phase
separation technique. Eur Polym J. 2019 Apr 1;113:313–20.
Thirumalai J. Hydroxyapatite: Advances in Composite Nanomaterials, Biomedical
Applications and Its Technological Facets. BoD – Books on Demand; 2018.
Tian C., Xu P., Jiang J., Han C. Preparation and drug-delivery study of functionalized
hydroxyapatite based on natural polysaccharide gums with excellent drug-loading
properties. J Dispers Sci Technol. 2021a;42(5):751–9.
Tian Z., Lu C., Zhou Y., Zhang Y., Wei W. Phosphoric acid-induced activation of sepiolite
for enhanced As(III) adsorption: role of in situ deposition of nano-hydroxyapatite. J
Dispers Sci Technol. 2021b Jul 21;0(0):1–13.
Tram Do T. N., Lee W. H., Loo C. Y., Zavgorodniy A. V., Rohanizadeh R. Hydroxyapatite
nanoparticles as vectors for gene delivery. Ther Deliv. 2012 May;3(5):623–32.
Uchida A., Shinto Y., Araki N., Ono K. Slow release of anticancer drugs from porous
calcium hydroxyapatite ceramic. J Orthop Res. 1992;10(3):440–5.
Urist M. R., Silverman B. F., Büring K., Dubuc F. L., Rosenberg J. M. The bone induction
principle. Clin Orthop. 1967 Aug;53:243–83.
Uskoković V., Uskoković D. P. Nanosized hydroxyapatite and other calcium phosphates:
Chemistry of formation and application as drug and gene delivery agents. J Biomed
Mater Res B Appl Biomater. 2011;96B(1):152–91.
Vacanti C. A., Bonassar L. J., Vacanti M. P., Shufflebarger J. Replacement of an Avulsed
Phalanx with Tissue-Engineered Bone. N Engl J Med. 2001 May 17;344(20):1511–4.
Van De Putte K. A., Urist M. R. 23 Osteogenesis in the Interior of Intramuscular Implants
of Decalcified Bone Matrix. Clin Orthop Relat Res. 1965 Dec;43:257–70.
Venkatesan J., Kim S. K. Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue
Engineering – A Review. J Biomed Nanotechnol. 2014 Oct 1;10(10):3124–40.
Verma G., Gajipara A., Shelar S. B., Priyadarsini K. I., Hassan P. A. Development of
water dispersible gelatin stabilized hydroxyapatite nanoformulation for curcumin delivery.
J Drug Deliv Sci Technol. 2021;66:102769.
Verma G., Shetake N. G., Barick K. C., Pandey B. N., Hassan P. A., Priyadarsini K. I.
Covalent immobilization of doxorubicin in glycine functionalized hydroxyapatite
nanoparticles for pH-responsive release. New J Chem. 2018;42(8):6283–92.
Verma G., Shetake N. G., Pandrekar S., Pandey B. N., Hassan P. A., Priyadarsini K. I.
Development of surface functionalized hydroxyapatite nanoparticles for enhanced
specificity towards tumor cells. Eur J Pharm Sci. 2020;144:105206.
Verrier S., Alini M., Alsberg E., Buchman S. R., Kelly D., Laschke M. W., M. D. Menger,
W. L. Murphy, J. P. Stegemann, M. Schütz, T. Miclau, M. J. Stoddart, C. Evans.
Tissue engineering and regenerative approaches to improving the healing of large
bone defects. Eur Cell Mater. 2016 Jul 19;32:87–110.
Wang H., Chu C., Cai R., Jiang S., Zhai L., Lu J., Xingjiang Li and Shaotong Jiang
Synthesis and bioactivity of gelatin/multiwalled carbon nanotubes/hydroxyapatite
nanofibrous scaffolds towards bone tissue engineering. RSC Adv. 2015 Jun
Wang M., Joseph R., Bonfield W. Hydroxyapatite-polyethylene composites for bone
substitution: effects of ceramic particle size and morphology. Biomaterials. 1998 Dec
Wang X., Song G., Lou T. Fabrication and characterization of nano-composite scaffold of
PLLA/silane modified hydroxyapatite. Med Eng Phys. 2010 May 1;32(4):391–7.
Wang Y. chuan, Wang J. ning, Xiao G. yong, Huang S. yun, Xu W. li, Yan W., Yu-peng
Lu. Investigation of various fatty acid surfactants on the microstructure of flexible
hydroxyapatite nanofibers. Cryst Eng Comm. 2021 Oct 18;23(40):7049–55.
Webb J. C. J., Tricker J. A review of fracture healing. Curr Orthop. 2000;6(14):457–63.
Wilson O. C., Hull J. R. Surface modification of nanophase hydroxyapatite with chitosan.
Mater Sci Eng C. 2008 Apr 1;28(3):434–7.
Xu X., Chen X., Liu A., Hong Z., Jing X. Electrospun poly(l-lactide)-grafted
hydroxyapatite/poly(l-lactide) nanocomposite fibers. Eur Polym J. 2007 Aug
Yang Y. H., Liu C. H., Liang Y. H., Lin F. H., Wu K. C. W. Hollow mesoporous
hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH responsive
release properties for intracellular drug delivery. J Mater Chem B. 2013a
Apr 24;1(19):2447–50.
Yang Y. H., Liu C. H., Liang Y. H., Lin F. H., Wu K. C. W. Hollow mesoporous
hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH responsive
release properties for intracellular drug delivery. J Mater Chem B. 2013b
Apr 24;1(19):2447–50.
Yewle J. N., Wei Y., Puleo D. A., Daunert S., Bachas L. G. Oriented Immobilization of
Proteins on Hydroxyapatite Surface Using Bifunctional Bisphosphonates as Linkers.
Biomacromolecules. 2012 Jun 11;13(6):1742–9.
Yoon I. K., Hwang J. Y., Seo J. won, Jang W. C., Kim H. W., Shin U. S. Carbon nanotube
gelatin-hydroxyapatite nanohybrids with multilayer core–shell structure for
mimicking natural bone. Carbon. 2014 Oct 1;77:379–89.
Yoshikawa H., Tamai N., Murase T., Myoui A. Interconnected porous hydroxyapatite
ceramics for bone tissue engineering. J R Soc Interface. 2009 Jun 6;6(suppl_3):S341–8.
Youssef H. F., El-Kady A. M., Ahmed M. M., Abo-almaged H. H. Preparation and
characterization of novel bio-composites based on functionalized zeolite and nano
hydroxyapatite for a potential application in bone treatment. J Porous Mater.
Yu J. C., Ho W., Lin J., Yip H., Wong P. K. Photocatalytic Activity, Antibacterial Effect,
and Photoinduced Hydrophilicity of TiO2 Films Coated on a Stainless Steel Substrate.
Environ Sci Technol. 2003 May 1;37(10):2296–301.
Zafar M. J., Zhu D., Zhang Z. 3D Printing of Bioceramics for Bone Tissue Engineering.
Materials. 2019 Jan;12(20):3361.
Zantye P., Shende S., Ramanan S. R., Talukdar I., Kowshik M. Design of a biocompatible
hydroxyapatite-based nanovehicle for efficient delivery of small interference
ribonucleic acid into mouse embryonic stem cells. Mol Pharm. 2021;18(3):796–806.
Zhang C., Uchikoshi T., Liu L., Iwanami-Kadowaki K., Uezono M., Moriyama K.,
Masanori Kikuchi. Antibacterial-functionalized Ag loaded-hydroxyapatite (HAp)
coatings fabricated by electrophoretic deposition (EPD) process. Mater Lett.
Zhang P., Hong Z., Yu T., Chen X., Jing X. In vivo mineralization and osteogenesis of
nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface grafted
with poly(l-lactide). Biomaterials. 2009 Jan 1;30(1):58–70.
Zhang S., editor. Hydroxyapatite Coatings for Biomedical Applications [Internet]. Taylor
& Francis; 2013 [cited 2022 Aug 6]. Available from:
Zhang Y., Xia M., Wang F., Ma J. Experimental and theoretical study on the adsorption
mechanism of Amino trimethylphosphate (ATMP) functionalized hydroxyapatite on
Pb (II) and Cd (II). Colloids Surf Physicochem Eng Asp. 2021b;626:127029.
Zhao J, Guo LY, Yang XB, Weng J. Preparation of bioactive porous HA/PCL composite
scaffolds. Appl Surf Sci. 2008 Dec 30;255(5, Part 2):2942–6.
Zhao R., Xie P., Zhang K., Tang Z., Chen X., Zhu X., Yujiang Fan, Xiao Yang, Xingdong
Zhang. Selective effect of hydroxyapatite nanoparticles on osteoporotic and healthy
bone formation correlates with intracellular calcium homeostasis regulation. Acta
Biomater. 2017 Sep 1;59:338–50.
Zhou H., Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta
Biomater. 2011 Jul 1;7(7):2769–81.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!