Chapter 4. A Spatially Explicit Assessment of a Forestry Biorefinery for the Recovery of Bio-Based Materials


W. G. Sganzerla1, C. W. S. Romero2, L. S. Buller1, M. D. Berni3, R. A. Lamparelli3, T. Forster-Carneiro1 and T. T. Franco4
1School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil
2School of Agricultural Engineering (FEAGRI), University of Campinas (UNICAMP), Campinas, SP, Brazil
3Center for Energy Planning, University of Campinas (UNICAMP), Campinas, SP, Brazil
4School of Chemical Engineering (FEQ), University of Campinas (UNICAMP), Campinas, SP, Brazil

Part of the book: The Future of Biorefineries


The biorefinery concept emerged as an alternative to decrease the greenhouse gases emissions by the industrial section while producing bioenergy and value-added products. This chapter evaluated a critical analysis of the residues derived from eucalyptus harvest to support decision-making for a biorefinery implementation in the Administrative Region of Campinas (ARC), São Paulo State, Brazil. Brazilian official data for forestry extraction were collected for the eucalyptus production areas of the municipalities of ARC. RapidEye images were used to process, identify, and classify the areas occupied by eucalyptus and the chemical industries, aiming to compose a georeferenced database. Although most of the developments have been focused on processing technologies, it is critical to define the specific biobased products that should be produced considering market drivers such as demand, production flexibility, logistics, and supply chain configuration. The conversion of lignocellulosic materials present in forestry residues could produce several bio-based products after a pretreatment step. These products could replace fossil-based raw materials for the chemical industry, such as polyurethane, lignin, tannins, furfural, xylose, xylitol, polyphenols, and lubricants. It was possible to observe the existence of promising potential for the use of eucalyptus residues to produce a wide variety of chemicals. In the case of biofuels, the use of residual biomass is a primary factor for the transition to a viable and more renewable energy chain since eucalyptus residues are still little or not explored.

Keywords: biorefinery, eucalyptus residues, bioenergy, biofuels, bio-based products


Ajao O., Benali M., Faye A., Li H., Maillard D., Ton-That M. T. (2021). Multi-Product
Biorefinery System for Wood-Barks Valorization into Tannins Extracts, Lignin-Based
Polyurethane Foam and Cellulose-Based Composites: Techno-Economic Evaluation,
Industrial Crops and Products, 113435.
AliAkbari R., Ghasemi M. H., Neekzad N., Kowsari E., Ramakrishna S., Mehrali M.,
Marfavi Y. (2021). High Value Add Bio-Based Low-Carbon Materials: Conversion
Processes and Circular Economy, Journal of Cleaner Production, 293, 126101.
Andrade A., Herrera O. E., Reyes-Contreras P., Pereira M., Vásquez-Garay F. (2021).
Eucalyptus Globulus Bark Valorization: Production of Fibers by Neutral Sulphite
Semi-Chemical Process for Liner Paper Manufacture,
Floresta e Ambiente, 28, e20200048.
Clauser N. M., Felissia F. E., Area M. C., Vallejos M. E. (2021). A Framework for the
Design and Analysis of Integrated Multi-Product Biorefineries from Agricultural and
Forestry Wastes, Renewable and Sustainable Energy Reviews, 139, 110687.
Dababi I., Gimello O., Elaloui E., Brosse N. (2020). Water Extraction of Tannins from
Aleppo Pine Bark and Sumac Root for the Production of Green Wood Adhesives,
Molecules 25, 5041.
Dornelles L. B., Filho R. M., Mariano A. P. (2021). Organosolv Fractionation of
Eucalyptus: Economics of Cellulosic Ethanol and Chemicals versus Lignin
Valorization to Phenols and Polyols, Industrial Crops and Products, 173, 114097.
Foelkel C. (Ed.). (2016). Use of Eucalyptus Biomass for Heat, Steam and Electricity
Production, Eucalyptus Online Book & Newsletter, Brazil.
Junginger H. M., Mai-Moulin T., Daioglou V., Fritsche U., Guisson R., Hennig C., Thrän
D., Heinimö J., Hess J. R., Lamers P., Li C., Kwant K., Olsson O., Proskurina S.,
Ranta T., Schipfer F., Wild M. (2019). The Future of Biomass and Bioenergy
Deployment and Trade: A Synthesis of 15 Years IEA Bioenergy Task 40 on
Sustainable Bioenergy Trade, Biofuels, Bioproducts and Biorefining, 13, 247–266.
Le Maire G., Dupuy S., Nouvellon Y., Loos R. A., Hakamada R. (2014). Mapping Short
Rotation Plantations at Regional Scale Using MODIS Time Series: Case of Eucalypt
Plantations in Brazil, Remote Sensing of Environment, 152, 136–149.
Luhas J., Mikkilä M., Kylkilahti E., Miettinen J., Malkamäki A., Pätäri S., Korhonen J.,
Pekkanen T. L., Tuppura A., Lähtinen K., Autio M., Linnanen L., Ollikainen M.,
Toppinen A. (2021). Pathways to a Forest-Based Bioeconomy in 2060 within Policy
Targets on Climate Change Mitigation and Biodiversity Protection, Forest Policy and
Economics, 131, 102551.
Millati R., Cahyono R. B., Ariyanto T., Nafi I., Stp A., Utami R., Taherzadeh M. J. (2019).
Chapter 1 – Agricultural, Industrial, Municipal, and Forest Wastes: An Overview,
Chapter In Taherzadeh M. J. (Ed.), Sustainable Resource Recovery and Zero Waste
Approaches, Vol 1, Elsevier B.V., pp. 1-22.
Orejuela-Escobar L. M., Landázuri A. C., Goodell B. (2021). Second Generation
Biorefining in Ecuador: Circular Bioeconomy, Zero Waste Technology, Environment
and Sustainable Development: The Nexus, Journal of
Bioresources and Bioproducts, 6, 83–107.
Parajuli R., Dalgaard T., Jørgensen U., Adamsen A. P. S., Knudsen M. T., Birkved M.,
Gylling M., Schjørring J. K. (2015). Biorefining in the Prevailing Energy and
Materials Crisis: A Review of Sustainable Pathways for Biorefinery Value Chains and
Sustainability Assessment Methodologies, Renewable and Sustainable Energy
Reviews, 43, 244–263.
Pincelli A. L. S. M., Moura L. F., Brito J. O. (2017). Quantification of Harvest Residues in
Eucalyptus grandis and Pinus caribaea var. hondurensis forests,
Scientia Forestalis, 45, 519–526.
Pinto P. C. R., Sousa G., Crispim F., Silvestre A. J. D., Neto C. P. (2013). Eucalyptus
globulus Bark as Source of Tannin Extracts for Application in Leather industry, ACS
Sustainable Chemistry & Engineering, 1, 950–955.
Popp J., Lakner Z., Harangi-Rákos M., Fári M. (2014). The Effect of Bioenergy Expansion:
Food, Energy, and Environment, Renewable and Sustainable Energy Reviews, 32, 559–578.
Romero C. W. S., Berni M. D., Figueiredo G. K. D. A., Franco T. T., Lamparelli R. A. C.
(2019). Assessment of Agricultural Biomass Residues to Replace Fossil Fuel and
Hydroelectric Power Energy: A Spatial Approach, Energy Science & Engineering, 7,
SIMA, 2020, Secretariat of Infrastructure and Environment, Renewable Energy Statistics,
State of São Paulo accessed on 09.01.2022.
Stafford W., De Lange W., Nahman A., Chunilall V., Lekha P., Andrew J., Johakimu J.,
Sithole B., Trotter D. (2020). Forestry Biorefineries, Renewable and Sustainable
Energy Reviews, 154, 461–475.
UNICA (2020). Sugarcane Industry Union, Statistics on hydrous ethanol consumption
<> accessed on 09.01.2022.
Vital B. R., Carneiro A. C. O., Pimenta A. S., Della Lucia R. M. (2004). Two Eucalypts
Bark Tannin-Based Adhesive for Production of Flakeboards, Revitsta Árvore, 28, 571–582.
Wang C., Zhang X., Liu Q., Zhang Q., Chen L., Ma L. (2020). A Review of Conversion of
Lignocellulose Biomass to Liquid Transport Fuels by Integrated Refining Strategies,
Fuel Processing Technology, 208, 106485.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!