Publish with Nova Science Publishers
We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!
$39.50
Akram Bani Ahmad and Thomas P. West
Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, USA
Part of the book: Pyrimidines and their Importance
The pyrimidine biosynthetic pathway consists of five enzymes that are unique to the formation of pyrimidine nucleotides. The pyrimidine biosynthetic pathway enzymes are aspartate transcarbamoylase, dihydroorotase, dihydroorotate dehydrogenase, orotate phosphoribosyltransferase and orotidine 5’-monophosphate decarboxylase. The focus of this study was to explore the regulation of pyrimidine biosynthesis in Pseudomonas chlororaphis ATCC 17414. To do so, the effect of supplementing the pyrimidine bases orotic acid or uracil into a glucose or succinate-containing culture medium of P. chlororaphis ATCC 17414 on the pyrimidine biosynthetic enzyme activities was first explored. Transcarbamoylase and decarboxylase activities were repressed by orotic acid or uracil addition independent of carbon source in the ATCC 17414 cells. Next, a pyrimidine auxotrophic mutant of P. chlororaphis was isolated using chemical mutagenesis and 5-fluororotic acid resistance. The isolated mutant utilized either uracil, uridine or cytosine as a pyrimidine source to support their growth. The mutant strain was deficient for orotidine 5’-monophosphate decarboxylase activity. The mutant cells were subjected to pyrimidine limitation to determine if nucleotide depletion influenced the synthesis of the pyrimidine biosynthetic enzyme activities. The pyrimidine limitation of a pyrimidine auxotrophic strain often causes derepression of the synthesis of the pyrimidine pathway enzymes. When the orotidine 5’-monophosphate decarboxylase mutant strain cells were limited for pyrimidines for one hour, transcarbamoylase, dihydroorotase, dehydrogenase and phosphoribosyltransferase activities were all derepressed compared to their activities in the mutant strain grown in excess uracil. To learn if the initial pathway enzyme aspartate transcarbamoylase was subject to regulation of its activity, the effect of pyrophosphate and ribonucleotides in P. chlororaphis ATCC 17414 cells was studied. The transcarbamoylase was highly inhibited by uridine 5’- monophosphate, uridine 5’-diphosphate, cytidine 5’-monophosphate and guanosine 5’-triphosphate in the glucose-grown ATCC 17414 cells. Overall, it was concluded that pyrimidine biosynthetic pathway enzymes in P. chlororaphis ATCC 17414 was regulated at the level of enzyme synthesis and that the initial pathway enzyme aspartate transcarbamoylase activity was controlled at the level of enzyme activity.
Keywords: pyrimidine, biosynthesis, bacterium, pseudomonad, orotic acid, uracil
Adair, L. B., and Jones, M. E. (1972). Purification and characteristics of aspartate
transcarbamylase from Pseudomonas fluorescens. Journal of Biological Chemistry,
247(8), 2308-2315.
Anzai, Y., Kim, H., Park, J. Y., Wakabayashi, H., and Oyaizu, H. (2000). Phylogenetic
affiliation of the pseudomonads based on 16S rRNA sequence. International Journal
of Systematic and Evolutionary Microbiology, 50(4), 1563-1589.
Beck, D. A., and O’Donovan, G. A. (2008). Pathways of pyrimidine salvage in
Pseudomonas and former Pseudomonas: Detection of recycling enzymes using high performance liquid chromatography. Current Microbiology, 56(2), 162-167.
Beckwith, J. R., Pardee, A. B., Austrian, R., and Jacob, F. (1962). Coordination of the
synthesis of the enzymes in the pyrimidine pathway of E. coli. Journal of Molecular
Biology, 5(6), 618-634.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Analytical
Biochemistry, 72(1-2), 248-254.
Chin, A. W. T. F., van den Broek, D., Lugtenberg, B. J., and Bloemberg, G. V. (2005). The
Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production
of the antifungal metabolite phenazine-1-carboxamide. Molecular Plant-Microbe
Interactions, 18(3), 244-253.
Chu, C. P., and West, T. P. (1990a). Pyrimidine biosynthetic pathway of Pseudomonas
fluorescens. Journal of General Microbiology, 136(5), 875-880.
Chu, C. P., and West, T. P. (1990b). Pyrimidine ribonucleoside catabolism in Pseudomonas
fluorescens biotype A. Antonie van Leeuwenhoek, International Journal of General
and Molecular Microbiology, 57(4), 253-257.
Chunduru, J., and West, T. P. (2018). Pyrimidine nucleotide synthesis in the emerging
pathogen Pseudomonas monteilii. Canadian Journal of Microbiology, 64(6), 432-438.
Condon, S., Collins, J. K., and O’Donovan, G. A. (1976). Regulation of arginine and
pyrimidine biosynthesis in Pseudomonas putida. Journal of General Microbiology,
92(2), 375-383.
Dietrich, L. E., Price-Whelan, A., Petersen, A., Whiteley, M., and Newman, D. K. (2006).
The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network
of Pseudomonas aeruginosa. Molecular Microbiology, 61(5), 1308-1321.
Domakonda, A., and West, T. P. (2020). Control of pyrimidine nucleotide formation in
Pseudomonas aurantiaca. Archives of Microbiology, 202(6), 1551-1557.
Gill, R., and West, T. P. (2022). Control of a pyrimidine ribonucleotide salvage pathway in
Pseudomonas oleovorans. Archives of Microbiology, 204(7), 383.
Haugaard, L. E., and West, T. P. (2002). Pyrimidine biosynthesis in Pseudomonas
oleovorans. Journal of Applied Microbiology, 92(3) 517-525.
Kelln, R. A., Kinahan, J. J., Foltermann, K. F., and O’Donovan, G. A. (1975). Pyrimidine
biosynthetic enzymes of Salmonella typhimurium, repressed specifically by growth in
the presence of cytidine. Journal of Bacteriology, 124(2), 764-774.
Kim, S., and West, T. P. (1991). Pyrimidine catabolism in Pseudomonas aeruginosa. FEMS
Microbiology Letters, 77(2-3), 175-179.
Lazzarini, R. A., Nakata, K., and Winslow, R. M. (1969). Coordinate control of ribonucleic
acid synthesis during uracil deprivation. Journal of Biological Chemistry, 244(11),
3092-3100.
Morohoshi, T., Wang, W. Z., Suto, T., Saito, Y., Ito, S., Someya, N., and Ikeda, T. (2013).
Phenazine antibiotic production and antifungal activity are regulated by multiple
quorum-sensing systems in Pseudomonas chlororaphis subsp. aurantiaca StFRB508.
Journal of Bioscience and Bioengineering, 116(5), 580-584.
Mehnaz, S., Baig, D. N., and Lazarovits, G. (2010). Genetic and phenotypic diversity of
plant growth promoting rhizobacteria isolated from sugarcane plants growing in
Pakistan. Journal of Microbiology and Biotechnology, 20(12), 1614-1623.
Mehnaz, S., Saleem, R. S., Yameen, B., Pianet, I., Schnakenburg, G., Pietraszkiewicz, H.,
Valeriote, F., Josten, M., Sahl, H. G., Franzblau, S. G., and Gross, H. (2013).
Lahorenoic acids A-C, ortho-dialkyl-substituted aromatic acids from the biocontrol
strain Pseudomonas aurantiaca PB-St2. Journal of Natural Products, 76(2), 135-141.
Mehnaz, S., Bauer, J. S., and Gross, H. (2014). Complete genome sequence of the sugar
cane endophyte Pseudomonas aurantiaca PB-St2, a disease-suppressive bacterium
with antifungal activity toward the plant pathogen Colletotrichum falcatum. Genome
Announcements, 2(1), e01108-13.
Mulet, M., Lalucat, J., and Garcia-Vales, E. (2010). DNA sequence-based analysis of the
Pseudomonas species. Environmental Microbiology, 12(6), 1513-1530.
Murahari, E. C., and West, T. P. (2019). The pyrimidine biosynthetic pathway and its
regulation in Pseudomonas jessenii. Antonie van Leeuwenhoek, International Journal
of General and Molecular Microbiology, 112(3), 461-469.
O’Donovan, G. A., and Neuhard, J. (1970). Pyrimidine metabolism in microorganisms.
Bacteriological Reviews, 34(3), 278-343.
Pardee, A. B., and Yates, R. A. (1956a). Pyrimidine biosynthesis in Escherichia coli.
Journal of Biological Chemistry, 221(2), 743-756.
Pardee, A. B., and Yates, R. A. (1956b). Control of pyrimidine biosynthesis in Escherichia
coli by a feedback mechanism. Journal of Biological Chemistry, 221(2), 757-770.
Patten, C. L., and Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in
development of the host plant root system. Applied and Environmental Microbiology,
68(8), 3795-3801.
Pohanka, A., Broberg, A., Johansson, M., Kenne, L., and Levenfors, J. (2005).
Pseudotrienic acids A and B, two bioactive metabolites from Pseudomonas sp.
MF381-IODS. Journal of Natural Products, 68(9), 1380-1385.
Prescott, L. M., and Jones, M. E. (1969). Modified methods for the determination of
carbamyl aspartate. Analytical Biochemistry, 32(3), 408-419.
Price-Whelan, A., Dietrich, L. E., and Newman, D. K. (2006). Rethinking ‘secondary’
metabolism: physiological roles for phenazine antibiotics. Nature Chemical Biology,
2(2), 71-78.
Santiago, M. F., and West, T. P. (1999). Effect of nitrogen source on pyrimidine catabolism
by Pseudomonas fluorescens. Microbiological Research, 154(3), 221-224.
Santiago, M. F., and West, T. P. (2002a). Regulation of pyrimidine synthesis in
Pseudomonas mendocina. Journal of Basic Microbiology, 42(1), 75-79.
Santiago, M. F., and West, T. P. (2002b). Control of pyrimidine formation in Pseudomonas
putida ATCC 17536. Canadian Journal of Microbiology, 48(12), 1076-1081.
Santiago, M. F., and West, T. P. (2003a). Comparison of aspartate transcarbamoylase
regulation in Pseudomonas alcaligenes and Pseudomonas mendocina. Journal of
Basic Microbiology, 43(1), 75-79.
Santiago, M. F., and West, T. P. (2003b). Influence of carbon source on pyrimidine
synthesis in Pseudomonas mendocina. Journal of Basic Microbiology, 43(6), 534-538.
Santiago, M. F., and West, T. P. (2003c). Effect of carbon source on pyrimidine
biosynthesis in Pseudomonas alcaligenes ATCC 14909. Microbiological Research
158(2), 195-199.
Schultheisz, H. L., Szymczyna, B. R., Scott, L. G., and Williamson, J. R. (2011). Enzymatic
de novo pyrimidine nucleotide synthesis. Journal of the American Chemical Society,
133(2), 297-304.
Schwartz, M., and Neuhard, J. (1975). Control of expression of the pyr genes in Salmonella
typhimurium: Effects of variations in uridine and cytidine nucleotide pools. Journal of
Bacteriology, 121(3), 814-822.
Stanier, R. Y. (1947). Simultaneous adaptation: A new technique for the study of metabolic
pathways. Journal of Bacteriology, 54(3), 339-348.
Watrin, L., Lucas, S., Purcarea, C., Legrain, C., and Prieur, D. (1999). Isolation and
characterization of pyrimidine auxotrophs, and molecular cloning of the pyrE gene
from the hyperthermophilic Archaeon Pyrococcus abyssi. Molecular Genetics and
Genomics, 262(2), 378- 381.
Watson, J. M., and Holloway, B. W. (1976). Suppressor mutations in Pseudomonas
aeruginosa. Journal of Bacteriology, 125(3), 780-786.
West, T. P. (1988). Metabolism of pyrimidine bases and nucleosides by Pseudomonas
fluorescens biotype F. Microbios, 56(226), 27-36.
West, T. P. (1989). Isolation and characterization of thymidylate synthetase mutants of
Xanthomonas maltophilia. Archives of Microbiology, 151(3), 220-222.
West, T. P. (1991). Pyrimidine base and ribonucleoside utilization by the Pseudomonas
alcaligenes group. Antonie van Leeuwenhoek, International Journal of General and
Molecular Microbiology, 59(4), 263-268.
West, T. P. (1992). Pyrimidine base and ribonucleoside catabolic enzyme activities of the
Pseudomonas diminuta group. FEMS Microbiology Letters, 99(2-3), 305-310.
West, T. P. (1994a). Control of the pyrimidine biosynthetic pathway in Pseudomonas
pseudoalcaligenes. Archives of Microbiology, 162(1-2), 75-79.
West, T. P. (1994b). Pyrimidine ribonucleoside catabolic enzyme activities of
Pseudomonas pickettii. Antonie van Leeuwenhoek, International Journal of General
and Molecular Microbiology, 66(4), 307-312.
West, T. P. (1996). Degradation of pyrimidine ribonucleosides by Pseudomonas
aeruginosa. Antonie van Leeuwenhoek, International Journal of General and
Molecular Microbiology, 69(4), 331-335.
West, T. P. (1997a). Pyrimidine biosynthesis in Pseudomonas stutzeri ATCC 17588.
Antonie van Leeuwenhoek, International Journal of General and Molecular
Microbiology, 72(3), 175-181.
West, T. P. (1997b). Regulation of aspartate transcarbamoylase activity in Pseudomonas
stutzeri. Microbiological Research, 152(4), 373-375.
West, T. P. (2000). Role of cytosine deaminase and β-alanine-pyruvate transaminase in
pyrimidine base catabolism by Burkholderia cepacia. Antonie van Leeuwenhoek,
International Journal of General and Molecular Microbiology, 77(1), 1-5.
West, T. P. (2001). Pyrimidine base catabolism in Pseudomonas putida biotype B. Antonie
van Leeuwenhoek, International Journal of General and Molecular Microbiology,
80(2), 163-167.
West, T. P. (2002). Control of pyrimidine synthesis in Pseudomonas fragi. Letters in
Applied Microbiology, 35(5), 380-384.
West, T. P. (2004a). Regulation of pyrimidine nucleotide formation in Pseudomonas
taetrolens ATCC 4683. Microbiological Research, 159(1), 29-33.
West, T. P. (2004b). Pyrimidine nucleotide synthesis in Pseudomonas citronellolis.
Canadian Journal of Microbiology, 50(6), 455-459.
West, T. P. (2004c). Regulation of pyrimidine nucleotide formation in Pseudomonas
reptilivora. Letters in Applied Microbiology, 38(2), 81-86.
West, T. P. (2005a). Regulation of the pyrimidine biosynthetic pathway in Pseudomonas
mucidolens. Antonie van Leeuwenhoek, International Journal of General and
Molecular Microbiology, 88(2), 181-186.
West, T. P. (2005b). Regulation of pyrimidine synthesis in Pseudomonas resinovorans.
Letters in Applied Microbiology, 40(6), 473-478.
West, T. P. (2005c). Effect of carbon source on pyrimidine formation in Pseudomonas
fluorescens ATCC 13525. Microbiological Research, 160(4), 337-342.
West, T. P. (2007a). Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas
synxantha. Antonie van Leeuwenhoek, International Journal of General and
Molecular Microbiology, 92(3), 353-358.
West, T. P. (2007b). Regulation of pyrimidine formation in Pseudomonas oryzihabitans.
Journal of Basic Microbiology, 47(5), 440-443.
West, T. P. (2009). Regulation of pyrimidine formation in Pseudomonas lundensis.
Canadian Journal of Microbiology, 55(3), 261-268.
West, T. P. (2010a). Control of pyrimidine nucleotide formation in Pseudomonas fulva.
Antonie van Leeuwenhoek, International Journal of General and Molecular
Microbiology, Antonie van Leeuwenhoek 97(3), 307-311.
West, T. P. (2010b). Effect of carbon source on pyrimidine biosynthesis in Pseudomonas
oryzihabitans. Journal of Basic Microbiology, 50(4), 397-400.
West, T. P. (2012). Pyrimidine biosynthesis in Pseudomonas veronii and its regulation by
pyrimidines. Microbiological Research, 167(5), 306-310.
West, T. P. (2014). Pyrimidine nucleotide synthesis in Pseudomonas nitroreducens and the
regulatory role of pyrimidines. Microbiological Research, 169(12), 954-958.
West, T. P., and O’Donovan, G. A. (1982). Repression of cytidine triphosphate synthetase
in Salmonella typhimurium by pyrimidines during uridine nucleotide depletion.
Journal of General Microbiology, 128(4), 895-899.
West, T. P., Herlick, S. A., and O’Donovan, G. A. (1983). Inverse relationship between
thymidylate synthetase and cytidine triphosphate synthetase activities during
pyrimidine limitation in Salmonella typhimurium. FEMS Microbiology Letters, 18(3),
275-278.
Xu, G., and West, T. P. (1992). Reductive catabolism of pyrimidine bases by Pseudomonas
stutzeri. Journal of General Microbiology, 138(11), 2459-2463.
We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!