Chapter 3. Ginsenosides: Health Benefits and Role in Disease Prevention

$39.50

Li Huang, PhD, Hui-Jing Li, PhD, and Yan-Chao Wu, PhD
Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism and Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China

Part of the book: Advances in Health and Disease. Volume 62

Ginseng is one of the most precious medicines and is highly valuable in the global market. Ginseng shows various pharmacological effects and high application value, which is widely used in medicines, healthy foods, cosmetics and other fields. There are different chemical components in ginseng, including ginsenosides, polysaccharides, amino acids, volatile oils, trace elements, etc. Among them, ginsenosides are the most active compounds with many bioactivities, including liver protection, anti-cancer, anti-oxidation, anti-aging, etc. Particularly, ginsenosides monomers can play a protective role in multiple organs. For example, Rg1, Rb1 and Rg3 reveal significant renal function protection. Additionally, Rh2 and Rg3 show obvious anticancer effects, greatly promoting cancer cell apoptosis, inhibiting their proliferation, invasion and metastasis, and finally enhancing human immunity. Furthermore, ginsenosides exhibit good clinical application in nervous system, cardiovascular system, immune system, endocrine system and digestive system, and have been applied in the treatment and prevention of various diseases. Therefore, ginsenosides are expected to become functional components with health benefits and medicinal values. Since ginsenosides play an important role in human systems, further exploration reveals great potential in medicines and healthy foods. With this in mind, the health benefits and bioactivities of ginsenosides are totally described. This will provide a promising guidance for the further development of ginsenosides in clinical care.

Keywords: ginsenosides, pharmacological effect, anti-cancer, clinical treatment


References


Abbasi, B. A., Iqbal, J., Ahmad, R., Bibi, S., Mahmood, T., Kanwal, S., Bashir, S., Gul, F.,
and Hameed, S. (2019). Potential phytochemicals in the prevention and treatment of
esophagus cancer: A green therapeutic approach. Pharmacological Reports, 71, 644-652.
Ali, M. Y., Zaib, S., Jannat, S., and Khan, I. (2021). Inhibition of angiotensin-I converting
enzyme by ginsenosides: Structure-activity relationships and inhibitory mechanism.
Journal of Agricultural and Food Chemistry, 69, 6073-6086.
Aminifard, T., Razavi, B. M., and Hosseinzadeh, H. (2021). The effects of ginseng on the
metabolic syndrome: An updated review. Food Science & Nutrition, 9, 5293-5311.
Armendáriz-Castillo, I., Hidalgo-Fernández, K., Pérez-Villa, A., García-Cárdenas, J. M.,
López-Cortés, A., and Guerrero, S. (2022). Identification of key proteins from the
alternative lengthening of telomeres-associated promyelocytic leukemia nuclear
bodies pathway. Biology, 11, 185.
Arring, N. M., Millstine, D., Marks, L. A., and Nail, L. M. (2018). Ginseng as a treatment
for fatigue: a systematic review. The Journal of Alternative and Complementary
Medicine, 24, 624-633.
Aziz, F., Wang, X., Liu, J., and Yan, Q. (2016). Ginsenoside Rg3 induces FUT4-mediated
apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1
expressions. Toxicology in Vitro, 31, 158-166.
Bai, L., Gao, J., Wei, F., Zhao, J., Wang, D., and Wei, J. (2018). Therapeutic potential of
ginsenosides as an adjuvant treatment for diabetes. Frontiers in pharmacology, 9, 423.
Cai, X., Yan, P., Gao, X., Chen, Q., Guo, C., Liu, R., Liang, H., and Zhang, M. (2018).
Research progress of ginsenoside biotransformation. Journal of Agricultural Science
and Technology, 20, 52-60.
Cao, W., Wang, Y., Liu, Q., Jiang, R., and Chen, T. (1988). Effects of TSPG on apoptosis
and expressions of Fas and FasL in K562 cells. Journal of Third Military Medical
University.
Carney, R. M., and Freedland, K. E. (2017). Depression and Coronary Heart Disease.
Nature Reviews Cardiology, 14, 145-155.
Chen, F., Zheng, S.-L., Hu, J.-N., Sun, Y., He, Y.-M., Peng, H., Zhang, B., McClements,
D. J., and Deng, Z.-Y. (2016a). Octyl ester of ginsenoside Rh2 induces apoptosis and
G1 cell cycle arrest in human HepG2 cells by activating the extrinsic apoptotic
pathway and modulating the Akt/p38 MAPK signaling pathway. Journal of
Agricultural and Food Chemistry, 64, 7520-7529.
Chen, H., Yang, H., Fan, D., and Deng, J. (2020a). The anticancer activity and mechanisms
of ginsenosides: An updated review. eFood, 1, 226-241.
Chen, M., Qiao, Y., Cao, J., Ta, L., Ci, T., and Ke, X. (2022). Biomimetic
doxorubicin/ginsenoside co-loading nanosystem for chemoimmunotherapy of acute
myeloid leukemia. Journal of Nanobiotechnology, 20, 1-11.
Chen, W., Balan, P., and Popovich, D. G. (2019a). Comparison of the ginsenoside
composition of Asian ginseng (Panax ginseng) and American ginseng (Panax
quinquefolius L.) and their transformation pathways. Studies in Natural Products
Chemistry, 63, 161-195.
Chen, W., Balan, P., and Popovich, D. G. (2019b). Review of ginseng anti-diabetic studies.
Molecules, 24, 4501.
Chen, W., Chu, S., Li, H., and Qiu, Y. (2018). MicroRNA146a5p enhances ginsenoside
Rh2induced antiproliferation and the apoptosis of the human liver cancer cell line
HepG2. Oncology Letters, 16, 5367-5374.
Chen, X.-J., Zhang, X.-J., Shui, Y.-M., Wan, J.-B., and Gao, J.-L. (2016b). Anticancer
activities of protopanaxadiol-and protopanaxatriol-type ginsenosides and their
metabolites. Evidence-based Complementary and Alternative Medicine, 2016, 1-19.
Chen, Y., Zhang, Y., Song, W., Zhang, Y., Dong, X., and Tan, M. (2020b). Ginsenoside
Rh2 improves the cisplatin anti-tumor effect in lung adenocarcinoma A549 cells via
superoxide and PD-L1. Anti-Cancer Agents in Medicinal Chemistry (Formerly
Current Medicinal Chemistry-Anti-Cancer Agents), 20, 495-503.
Choi, S., Jung, S.-Y., Kim, C.-H., Kim, H.-S., Rhim, H., Kim, S.-C., and Nah, S.-Y. (2001).
Effect of ginsenosides on voltage-dependent Ca2+ channel subtypes in bovine
chromaffin cells. Journal of Ethnopharmacology, 74, 75-81.
Chu, G., and Chen, X. (1990). Anti-lipid peroxidation and protection of ginsenosides
against cerebral ischemia-reperfusion injuries in rats. Acta Pharmacologica Sinica,
119-123.
Chu, L. L., Montecillo, J. A. V., and Bae, H. (2020). Recent advances in the metabolic
engineering of yeasts for ginsenoside biosynthesis. Frontiers in Bioengineering and
Biotechnology 8, 139.
Chung, A.-S., and Park, K. M. (2016). Anticancer and Antineurodegenerative effects of
Ginsenosides. Studies in Natural Products Chemistry, 50, 131-158.
Chung, K.-S., Cho, S.-H., Shin, J.-S., Kim, D.-H., Choi, J.-H., Choi, S. Y., Rhee, Y. K.,
Hong, H.-D., and Lee, K.-T. (2013). Ginsenoside Rh2 induces cell cycle arrest and
differentiation in human leukemia cells by upregulating TGF-β expression.
Carcinogenesis, 34, 331-340.
Du, N., Xu, Z., Gao, M., Liu, P., Sun, B., and Cao, X. (2018). Combination of Ginsenoside
Rg1 and Astragaloside IV reduces oxidative stress and inhibits TGF-β1/Smads
signaling cascade on renal fibrosis in rats with diabetic nephropathy. Drug Design,
Development and Therapy, 12, 3517.
Fan, W., Huang, Y., Zheng, H., Li, S., Li, Z., Yuan, L., Cheng, X., He, C., and Sun, J.
(2020). Ginsenosides for the treatment of metabolic syndrome and cardiovascular
diseases: Pharmacology and mechanisms. Biomedicine & Pharmacotherapy, 132,
110915.
Feng, R., Liu, J., Wang, Z., Zhang, J., Cates, C., Rousselle, T., Meng, Q., and Li, J. (2017).
The structure-activity relationship of ginsenosides on hypoxia-reoxygenation induced
apoptosis of cardiomyocytes. Biochemical and Biophysical Research
Communications, 494, 556-568.
Flagg, A. J. (2021). Traditional and current use of ginseng. Nursing Clinics, 56, 109-121.
Fuchs, F. D., and Whelton, P. K. (2020). High blood pressure and cardiovascular disease.
Hypertension, 75, 285-292.
Gan, X. T., and Karmazyn, M. (2018). Cardioprotection by ginseng: experimental and
clinical evidence and underlying mechanisms. Canadian Journal of Physiology and
Pharmacology, 96, 859-868.
Gao, X., Zhang, X., Cui, L., Chen, R., Zhang, C., Xue, J., Zhang, L., He, W., Li, J., and
Wei, S. (2020). Ginsenoside Rb1 promotes motor functional recovery and axonal
regeneration in post-stroke mice through cAMP/PKA/CREB signaling pathway. Brain
Rresearch Bulletin, 154, 51-60.
Gao, Y., Chu, S., Zhang, Z., and Chen, N. (2017). Hepataprotective effects of ginsenoside
Rg1–A review. Journal of Ethnopharmacology, 206, 178-183.
González-Burgos, E., Fernandez-Moriano, C., and Gómez-Serranillos, M. P. (2015).
Potential neuroprotective activity of Ginseng in Parkinson’s disease: a review. Journal
of Neuroimmune Pharmacology, 10, 14-29.
Gu, Y., Wang, G.-J., Wu, X.-L., Zheng, Y.-T., Zhang, J.-W., Ai, H., Sun, J.-G., and Jia, Y.-
W. (2010). Intestinal absorption mechanisms of ginsenoside Rh2: stereoselectivity and
involvement of ABC transporters. Xenobiotica, 40, 602-612.
Guo, Y.-h., Kuruganti, R., and Gao, Y. (2019). Recent advances in ginsenosides as potential
therapeutics against breast cancer. Current Topics in Medicinal Chemistry, 19, 2334-2347.
Han, X., Li, M., Zhao, Z., Zhang, Y., Zhang, J., Zhang, X., Zhang, Y., Guan, S., and Chu,
L. (2019). Mechanisms underlying the cardio-protection of total ginsenosides against
myocardial ischemia in rats in vivo and in vitro: Possible involvement of L-type Ca2+
channels, contractility and Ca2+ homeostasis. Journal of Pharmacological Sciences,
139, 240-248.
Hartley, A., Haskard, D., and Khamis, R. (2019). Oxidized LDL and anti-oxidized LDL
antibodies in atherosclerosis–Novel insights and future directions in diagnosis and
therapy. Trends in Cardiovascular Medicine, 29, 22-26.
Hashemi, F., Zarrabi, A., Zabolian, A., Saleki, H., Farahani, M. V., Sharifzadeh, S. O.,
Ghahremaniyeh, Z., Bejandi, A. K., Hushmandi, K., and Ashrafizadeh, M. (2021).
Novel strategy in breast cancer therapy: Revealing the bright side of ginsenosides.
Current Molecular Pharmacology, 14, 1093-1111.
He, X.-L., Xu, X.-H., Shi, J.-J., Huang, M., Wang, Y., Chen, X., and Lu, J.-J. (2022).
Anticancer effects of ginsenoside Rh2: A systematic review. Current Molecular
Pharmacology, 15, 179-189.
Hong, H., Baatar, D., and Hwang, S. G. (2021). Anticancer activities of ginsenosides, the
main active components of ginseng. Evidence-Based Complementary and Alternative
Medicine, 2021.
Hong, J., Gwon, D., and Jang, C.-Y. (2022). Ginsenoside Rg1 suppresses cancer cell
proliferation through perturbing mitotic progression. Journal of Ginseng Research,
46, 481-488.
Hossain, M. A., and Kim, J.-H. (2022). Possibility as role of ginseng and ginsenosides on
inhibiting the heart disease of COVID-19: A systematic review. Journal of Ginseng
Research, 46, 321-330.
Hou, J., Xue, J., Wang, Z., and Li, W. (2018). Ginsenoside Rg3 and Rh2 protect
trimethyltin‐induced neurotoxicity via prevention on neuronal apoptosis and
neuroinflammation. Phytotherapy Research, 32, 2531-2540.
Hou, M., Wang, R., Zhao, S., and Wang, Z. (2021). Ginsenosides in Panax genus and their
biosynthesis. Acta Pharmaceutica Sinica B, 11, 1813-1834.
Hou, Y., Yuan, Z., Guo, S., Li, Y., and Sun, K. (2009). Effect of GS-Rh2 on proliferation
and apoptosis of HL60 cell induced by Ara-c. Shandong Medical Journal, 49, 14-16.
Huang, C.-Y., Ju, D.-T., Chang, C.-F., Reddy, P. M., and Velmurugan, B. K. (2017). A
review on the effects of current chemotherapy drugs and natural agents in treating
non–small cell lung cancer. Biomedicine, 7, 23.
Huang, Q., Gao, S., Zhao, D., and Li, X. (2021). Review of ginsenosides targeting
mitochondrial function to treat multiple disorders: Current status and perspectives.
Journal of Ginseng Research, 45, 371-379.
Huang, Y., Huang, H., Han, Z., Li, W., Mai, Z., and Yuan, R. (2019). Ginsenoside Rh2
inhibits angiogenesis in prostate cancer by targeting CNNM1. Journal of Nanoscience
and Nanotechnology, 19, 1942-1950.
Huilai, Z., Qinghua, W., Xishan, H., and Zhi, Y. (2005). Study on effect of ginsenoside
Rg3 on immunological recovery after peripheral blood stem cell transplantation in
animal experiments. Chinese Journal of Radiological Medicine and Protection, 25,
431-434.
Jegal, J., Jeong, E. J., and Yang, M. H. (2019). A review of the different methods applied
in ginsenoside extraction from Panax ginseng and Panax quinquefolius roots. Natural
Product Communications, 14, 1-10.
Jeong, S. M., Lee, J. H., Kim, S., Rhim, H., Lee, B. H., Kim, J. H., Oh, J. W., Lee, S. M.,
and Nah, S. Y. (2004). Ginseng saponins induce store‐operated calcium entry in
Xenopus oocytes. British journal of Pharmacology, 142, 585-593.
Jiang, J., Yuan, Z., Sun, Y., Bu, Y., Li, W., and Fei, Z. (2017). Ginsenoside Rg3 enhances
the anti-proliferative activity of erlotinib in pancreatic cancer cell lines by
downregulation of EGFR/PI3K/Akt signaling pathway. Biomedicine & Pharma cotherapy, 96, 619-625.
Jin, X., Yang, Q., Cai, N., and Zhang, Z. (2020). A cocktail of betulinic acid, parthenolide,
honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment.
Nanomedicine, 15, 41-54.
Jin, Y., Cui, R., Zhao, L., Fan, J., and Li, B. (2019). Mechanisms of Panax ginseng action
as an antidepressant. Cell Proliferation, 52, e12696.
Joo, S. S., and Lee, D. I. (2005). Potential effects of microglial activation induced by
ginsenoside Rg3 in rat primary culture: enhancement of type A Macrophage
Scavenger Receptor expression. Archives of Pharmacal Research, 28, 1164-1169.
Kang, Z., Zhonga, Y., Wu, T., Huang, J., Zhao, H., and Liu, D. (2021). Ginsenoside from
ginseng: A promising treatment for inflammatory bowel disease. Pharmacological
Reports, 73, 700-711.
Karmazyn, M., and Gan, X. T. (2017). Treatment of the cardiac hypertrophic response and
heart failure with ginseng, ginsenosides, and ginseng-related products. Canadian
Journal of Physiology and Pharmacology, 95, 1170-1176.
Kim, B.-M., Kim, D.-H., Park, J.-H., Surh, Y.-J., and Na, H.-K. (2014a). Ginsenoside Rg3
inhibits constitutive activation of NF-κB signaling in human breast cancer (MDA-MB 231) cells: ERK and Akt as potential upstream targets. Journal of Cancer Prevention, 19, 23.
Kim, D.-H. (2009). Metabolism of ginsenosides to bioactive compounds by intestinal
microflora and its industrial application. Journal of Ginseng Research, 33, 165-176.
Kim, E. O., Cha, K. H., Lee, E. H., Kim, S. M., Choi, S. W., Pan, C.-H., and Um, B.-H.
(2014b). Bioavailability of ginsenosides from white and red ginsengs in the simulated
digestion model. Journal of Agricultural and Food Chemistry, 62, 10055-10063.
Kim, H., Choi, P., Kim, T., Kim, Y., Song, B. G., Park, Y.-T., Choi, S.-J., Yoon, C. H.,
Lim, W.-C., and Ko, H. (2021). Ginsenosides Rk1 and Rg5 inhibit transforming
growth factor-β1-induced epithelial-mesenchymal transition and suppress migration,
invasion, anoikis resistance, and development of stem-like features in lung cancer.
Journal of Ginseng Research, 45, 134-148.
Kim, J.-H. (2018). Pharmacological and medical applications of Panax ginseng and
ginsenosides: a review for use in cardiovascular diseases. Journal of Ginseng
Research, 42, 264-269.
Kim, S., Ahn, K., Oh, T. H., Nah, S.-Y., and Rhim, H. (2002). Inhibitory effect of
ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons.
Biochemical and Biophysical Research Communications, 296, 247-254.
Kim, Y. H., Park, K. H., and Rhoxy, H. M. (1996). Transcriptional activation of the Cu,
Zn-superoxide dismutase gene through the AP2 site by ginsenoside Rb2 extracted
from a medicinal plant, Panax ginseng. Journal of Biological Chemistry, 271, 24539-24543.
Kim, Y. S., Kim, D. S., and Kim, S. I. (1998). Ginsenoside Rh2 and Rh3 induce
differentiation of HL-60 cells into granulocytes: modulation of protein kinase C
isoforms during differentiation by ginsenoside Rh2. The International Journal of
Biochemistry & Cell Biology, 30, 327-338.
Kim, Y.-J., Jeon, J.-N., Jang, M.-G., Oh, J. Y., Kwon, W.-S., Jung, S.-K., and Yang, D.-C.
(2014c). Ginsenoside profiles and related gene expression during foliation in Panax
ginseng Meyer. Journal of Ginseng Research, 38, 66-72.
Kim, Y.-J., Zhang, D., and Yang, D.-C. (2015). Biosynthesis and biotechnological
production of ginsenosides. Biotechnology Advances, 33, 717-735.
Kitts, D. D., Popovich, D. G., and Hu, C. (2007). Characterizing the mechanism for
ginsenoside-induced cytotoxicity in cultured leukemia (THP-1) cells. Canadian
Journal of Physiology and Pharmacology, 85, 1173-1183.
Kuo, C. C., Kuo, C. W., Liang, C. M., and Liang, S. M. (2005). A transcriptomic and
proteomic analysis of the effect of CpG‐ODN on human THP‐1 monocytic leukemia
cells. Proteomics, 5, 894-906.
Lee, E.-G., and Son, H. (2009). Adult hippocampal neurogenesis and related neurotrophic
factors. BMB Reports, 42, 239-244.
Lee, S.-J., Ko, W.-G., Kim, J.-H., Sung, J.-H., Lee, S.-J., Moon, C.-K., and Lee, B.-H.
(2000). Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via
cytochrome c-mediated activation of caspase-3 protease. Biochemical Pharmacology,
60, 677-685.
Lei, F.-J., Zhang, A.-H., Xu, Y.-H., and Zhang, L.-X. (2010). Allelopathic effects of
ginsenosides on in vitro growth and antioxidant enzymes activity of ginseng callus.
Allelopathy Journal, 26.
Li, J., and Qi, Y. (2019). Ginsenoside Rg3 inhibits cell growth, migration and invasion in
Caco-2 cells by downregulation of lncRNA CCAT1. Experimental and Molecular
Pathology, 106, 131-138.
Li, J., Wei, Q., Zuo, G.-W., Xia, J., You, Z.-M., Li, C.-L., and Chen, D.-L. (2014).
Ginsenoside Rg1 induces apoptosis through inhibition of the EpoR-mediated
JAK2/STAT5 signalling pathway in the TF-1/Epo human leukemia cell line. Asian
Pacific Journal of Cancer Prevention, 15, 2453-2459.
Li, M., Ling, C.-Q., Huang, X.-Q., and Shen, Z.-L. (2006). Effects of ginsenosides extracted
from ginseng stem and leaves on glucocorticoid receptor in different viscera in heat damaged rats. Journal of Chinese Integrative Medicine, 4, 156-159.
Li, N., Zhou, L., Li, W., Liu, Y., Wang, J., and He, P. (2015). Protective effects of
ginsenosides Rg1 and Rb1 on an Alzheimer’s disease mouse model: A metabolomics
study. Journal of Chromatography B, 985, 54-61.
Li, W., Jiang, Y., Liu, Y., Li, C., and Fan, D. (2019). Biocatalytic strategies in producing
ginsenoside by glycosidase-a review. Chinese Journal of Biotechnology, 35, 1590-1606.
Li, W., Yan, M.-H., Liu, Y., Liu, Z., Wang, Z., Chen, C., Zhang, J., and Sun, Y.-S. (2016a).
Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through
inhibition of inflammation, oxidative stress, and apoptosis. Nutrients, 8, 566.
Li, W., Zhang, M., Gu, J., Meng, Z.-j., Zhao, L.-C., Zheng, Y.-n., Chen, L., and Yang, G.-
L. (2012). Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound
K on Type 2 diabetes mice induced by high-fat diet combining with streptozotocin via
suppression of hepatic gluconeogenesis. Fitoterapia, 83, 192-198.
Li, X. (2020). Research progress of ginseng prescription, ginseng and ginsenoside in
prevention and treatment of viral diseases. Chinese Traditional and Herbal Drugs,
2379-2389.
Li, Y.-h., Li, Y.-y., Fan, G.-w., Yu, J.-h., Duan, Z.-z., Wang, L.-y., and Yu, B. (2016b).
Cardioprotection of ginsenoside Rb1 against ischemia/reperfusion injury is associated
with mitochondrial permeability transition pore opening inhibition. Chinese Journal
of Integrative Medicine, 1-10.
Lin, Y.-P., Zhang, M.-P., Wang, K.-Y., Sun, C.-Y., and Wang, Y. (2016). Research
achievements on ginsenosides biosynthesis from Panax ginseng. China Journal of
Chinese Materia Medica, 41, 4292-4302.
Liu, T., Zuo, L., Guo, D., Chai, X., Xu, J., Cui, Z., Wang, Z., and Hou, C. (2019a).
Ginsenoside Rg3 regulates DNA damage in non-small cell lung cancer cells by
activating VRK1/P53BP1 pathway. Biomedicine & Pharmacotherapy, 120, 109483.
Liu, X., Sun, Y., Yue, L., Li, S., Qi, X., Zhao, H., Yang, Y., Zhang, C., and Yu, H. (2016).
JNK pathway and relative transcriptional factor were involved in ginsenoside Rh2-
mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells.
Genetics Molecular Research, 15, 1-13.
Liu, X., Zhang, Z., Liu, J., Wang, Y., Zhou, Q., Wang, S., and Wang, X. (2019b).
Ginsenoside Rg3 improves cyclophosphamide-induced immunocompetence in Balb/c
mice. International Immunopharmacology, 72, 98-111.
Liu, X.-c., Fan, D.-d., Yang, F., and Wu, Z.-s. (2021a). Advances in Microbial Production
of Ginsenoside and Its Derivatives. China Biotechnology, 41, 80-93.
Liu, Y., Zhang, H., Dai, X., Zhu, R., Chen, B., Xia, B., Ye, Z., Zhao, D., Gao, S., and
Orekhov, A. N. (2021b). A comprehensive review on the phytochemistry,
pharmacokinetics, and antidiabetic effect of Ginseng. Phytomedicine, 92, 153717.
Liu, Z., Li, W., Li, X., Zhang, M., Chen, L., Zheng, Y.-n., Sun, G.-z., and Ruan, C.-c.
(2013). Antidiabetic effects of malonyl ginsenosides from Panax ginseng on type 2
diabetic rats induced by high-fat diet and streptozotocin. Journal of Ethno pharmacology, 145, 233-240.
Liu, Z., Liu, T., Li, W., Li, J., Wang, C., and Zhang, K. (2021c). Insights into the antitumor
mechanism of ginsenosides Rg3. Molecular Biology Reports, 48, 2639-2652.
Liu, Z., Song, L., Zhang, P., Cao, Z., Hao, J., Tian, Y., Luo, A., Zhang, P., and Ma, J.
(2019c). Ginsenoside Rb1 exerts antiarrhythmic effects by inhibiting INa and ICaL in
rabbit ventricular myocytes. Scientific Reports, 9, 1-11.
Lu, J., Li, J., Wang, S., Yao, L., Liang, W., Wang, J., and Gao, W. (2018). Advances in
ginsenoside biosynthesis and metabolic regulation. Biotechnology and Applied
Biochemistry, 65, 514-522.
Lu, J., Wang, X., Wu, A., Cao, Y., Dai, X., Liang, Y., and Li, X. (2022). Ginsenosides in
central nervous system diseases: Pharmacological actions, mechanisms, and
therapeutics. Phytotherapy Research, 36, 1523-1544.
Luo, B.-Y., Jiang, J.-L., Fang, Y.-F., Yang, F., Yin, M.-D., Zhang, B.-C., Zhao, R.-R., and
Shao, J.-W. (2020). The effects of ginsenosides on platelet aggregation and vascular
intima in the treatment of cardiovascular diseases: from molecular mechanisms to
clinical applications. Pharmacological Research, 159, 105031.
Luo, Y., Cheng, X., and Yuan, W. (1993). Effects of ginseng root saponins and ginsenoside
Rb1 on immunity in cold water swim stress mice and rats. Acta Pharmacologica
Sinica, 14, 401-404.
Marotta, F., Sweed, H., Rastmanesh, R., Rasheedy, D., Rasulova, S., and Catanzaro, R.
(2020). Liver protection: ancient empirical roots, marketing oversimplifications and
novel molecular-biology-endowed compounds. Bioactive Compounds in Health and
Disease, 3, 251-255.
Mathiyalagan, R., Kim, Y. J., Wang, C., Jin, Y., Subramaniyam, S., Singh, P., Wang, D.,
and Yang, D. C. (2016). Protopanaxadiol aglycone ginsenoside-polyethylene glycol
conjugates: synthesis, physicochemical characterizations, and in vitro studies.
Artificial Cells, Nanomedicine, and Biotechnology, 44, 1803-1809.
Mohanan, P., Subramaniyam, S., Mathiyalagan, R., and Yang, D.-C. (2018). Molecular
signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. Journal of
Ginseng Research, 42, 123-132.
Mou, Z., Huang, Q., Chu, S.-f., Zhang, M.-J., Hu, J.-F., Chen, N.-h., and Zhang, J.-t. (2017).
Antidepressive effects of ginsenoside Rg1 via regulation of HPA and HPG axis.
Biomedicine & Pharmacotherapy, 92, 962-971.
Nakhjavani, M., Hardingham, J. E., Palethorpe, H. M., Tomita, Y., Smith, E., Price, T. J.,
and Townsend, A. R. (2019a). Ginsenoside Rg3: Potential molecular targets and
therapeutic indication in metastatic breast cancer. Medicines, 6, 17.
Nakhjavani, M., Palethorpe, H. M., Tomita, Y., Smith, E., Price, T. J., Yool, A. J., Pei, J.
V., Townsend, A. R., and Hardingham, J. E. (2019b). Stereoselective anti-cancer
activities of ginsenoside Rg3 on triple negative breast cancer cell models. Pharma ceuticals, 12, 117.
Park, J. E., Kim, H. W., Yun, S. H., and Kim, S. J. (2021a). Ginsenoside Rh2 upregulates
long noncoding RNA STXBP5-AS1 to sponge microRNA-4425 in suppressing breast
cancer cell proliferation. Journal of Ginseng Research, 45, 754-762.
Park, S. K., Hyun, S. H., In, G., Park, C.-K., Kwak, Y.-S., Jang, Y.-J., Kim, B., Kim, J.-H.,
and Han, C.-K. (2021b). The antioxidant activities of Korean Red Ginseng (Panax
ginseng) and ginsenosides: A systemic review through in vivo and clinical trials.
Journal of Ginseng Research, 45, 41-47.
Parlakpinar, H., Ozhan, O., Ermis, N., Vardi, N., Cigremis, Y., Tanriverdi, L. H., Colak,
C., and Acet, A. (2019). Acute and subacute effects of low versus high doses of
standardized panax ginseng extract on the heart: An experimental study.
Cardiovascular Toxicology, 19, 306-320.
Piao, X. M., Huo, Y., Kang, J. P., Mathiyalagan, R., Zhang, H., Yang, D. U., Kim, M.,
Yang, D. C., Kang, S. C., and Wang, Y. P. (2020). Diversity of ginsenoside profiles
produced by various processing technologies. Molecules, 25, 4390.
Popovich, D. G., and Kitts, D. D. (2002). Structure–function relationship exists for
ginsenosides in reducing cell proliferation and inducing apoptosis in the human
leukemia (THP-1) cell line. Archives of Biochemistry and Biophysics, 406, 1-8.
Qin, N., Yang, W., Feng, D., Wang, X., Qi, M., Du, T., Sun, H., and Wu, S. (2016). Total
ginsenosides suppress monocrotaline-induced pulmonary hypertension in rats:
Involvement of nitric oxide and mitogen-activated protein kinase pathways. Journal
of Ginseng Research, 40, 285-291.
Qu, D.-F., Yu, H.-J., Liu, Z., Zhang, D.-F., Zhou, Q.-J., Zhang, H.-L., and Du, A.-F. (2011).
Ginsenoside Rg1 enhances immune response induced by recombinant Toxoplasma
gondii SAG1 antigen. Veterinary Parasitology, 179, 28-34.
Quan, K., Liu, Q., Wan, J.-Y., Zhao, Y.-J., Guo, R.-Z., Alolga, R. N., Li, P., and Qi, L.-W.
(2015). Rapid preparation of rare ginsenosides by acid transformation and their
structure-activity relationships against cancer cells. Scientific Reports, 5, 1-7.
Ratan, Z. A., Haidere, M. F., Hong, Y. H., Park, S. H., Lee, J.-O., Lee, J., and Cho, J. Y.
(2021). Pharmacological potential of ginseng and its major component ginsenosides.
Journal of Ginseng Research, 45, 199-210.
Rokot, N. T., Kairupan, T. S., Cheng, K.-C., Runtuwene, J., Kapantow, N. H., Amitani, M.,
Morinaga, A., Amitani, H., Asakawa, A., and Inui, A. (2016). A role of ginseng and
its constituents in the treatment of central nervous system disorders. Evidence-Based
Complementary and Alternative Medicine, 2016.
Salama, A., Mansour, D., and Hegazy, R. (2021). The cardio and renoprotective role of
ginseng against epinephrine-induced myocardial infarction in rats: Involvement of
angiotensin II type 1 receptor/protein kinase C. Toxicology Reports, 8, 908-919.
Sanchis-Gomar, F., Perez-Quilis, C., Leischik, R., and Lucia, A. (2016). Epidemiology of
coronary heart disease and acute coronary syndrome. Annals of Translational
Medicine, 4, 256.
Sarhene, M., Ni, J. Y., Duncan, E. S., Liu, Z., Li, S., Zhang, J., Guo, R., Gao, S., Gao, X.,
and Fan, G. (2021). Ginsenosides for cardiovascular diseases: Update on pre-clinical
and clinical evidence, pharmacological effects and the mechanisms of action.
Pharmacological Research, 166, 105481.
Sasaki, Y., Shimizu, K., Watanabe, H., and Shoyama, Y. (2021). Application of
monoclonal antibody against ginsenoside in ginseng research: a review. Traditional
Medicine Research, 6, 25.
Seong, B. J., Kim, S. I., Jee, M. G., Kim, S. D., Kwon, A. R., Kim, H. H., Won, J. Y., and
Lee, K. S. (2018). Antioxidative activity and inhibition of angiotensin converting
enzyme by Lycii fructus extracts prepared by adding white ginseng and red ginseng.
Korean Journal of Medicinal Crop Science, 26, 370-381.
Shao, J.-W., Jiang, J.-L., Zou, J.-J., Yang, M.-Y., Chen, F.-M., Zhang, Y.-J., and Jia, L.
(2020). Therapeutic potential of ginsenosides on diabetes: From hypoglycemic
mechanism to clinical trials. Journal of Functional Foods, 64, 103630.
Shi, G., Liu, D., Zhou, B., Liu, Y., Hao, B., Yu, S., Wu, L., Wang, M., Song, Z., and Wu,
C. (2020). Ginsenoside Rb1 alleviates oxidative low-density lipoprotein–induced
vascular endothelium senescence via the SIRT1/Beclin-1/autophagy axis. Journal of
Cardiovascular Pharmacology, 75, 155-167.
Shi, W., Wang, Y., Li, J., Zhang, H., and Ding, L. (2007). Investigation of ginsenosides in
different parts and ages of Panax ginseng. Food Chemistry, 102, 664-668.
Shin, B.-K., Kwon, S. W., and Park, J. H. (2015). Chemical diversity of ginseng saponins
from Panax ginseng. Journal of Ginseng Research, 39, 287-298.
Shojaeepour, S., Sharififar, F., Haghpanah, T., Iranpour, M., Imani, M., and Dabiri, S.
(2022). Panax ginseng ameliorate toxic effects of cadmium on germ cell apoptosis,
sperm quality, and oxidative stress in male Wistar rats. Toxin Reviews, 41, 389-401.
So, S.-H., Lee, J. W., Kim, Y.-S., Hyun, S. H., and Han, C.-K. (2018). Red ginseng
monograph. Journal of Ginseng Research, 42, 549-561.
Sodrul, I. M., Wang, C., Chen, X., Du, J., and Sun, H. (2018). Role of ginsenosides in
reactive oxygen species-mediated anticancer therapy. Oncotarget, 9, 2931.
Song, X., Chen, J., Sakwiwatkul, K., Li, R., and Hu, S. (2010). Enhancement of immune
responses to influenza vaccine (H3N2) by ginsenoside Re. International Immuno pharmacology, 10, 351-356.
Sun, D.-X., Yang, Z., Long, F.-X., Li, M.-Z., Chen, G., and Tang, D.-X. (2019). Miao
medicine may serve as an essential adjuvant therapy in cancer treatment. Cancer, 2,
233-238.
Sun, Y., Liu, Y., and Chen, K. (2016). Roles and mechanisms of ginsenoside in
cardiovascular diseases: Progress and perspectives. Science China Life Sciences, 59,
292-298.
Sun, Y.-Y. (2017). Research progress on anti-liver fibrosis effect of ginsenoside. Chinese
Traditional and Herbal Drugs, 1912-1915.
Tang, X., Gan, X. T., Jong, C. J., Rajapurohitam, V., and Karmazyn, M. (2021). Inhibition
of angiotensin II–induced hypertrophy and cardiac dysfunction by North American
ginseng (Panax quinquefolius). Canadian Journal of Physiology and Pharmacology,
99, 512-521.
Todkar, S. S. (2016). Diabetes mellitus the’Silent Killer’of mankind: An overview on the
eve of upcoming World Health Day! Journal of Medical & Allied Sciences, 6, 39.
Tong, Y., Song, X., Zhang, Y., Xu, Y., and Liu, Q. (2022). Insight on structural
modification, biological activity, structure-activity relationship of PPD-type
ginsenoside derivatives. Fitoterapia, 105135.
Tu, C., Wan, B., and Zeng, Y. (2020). Ginsenoside Rg3 alleviates inflammation in a rat
model of myocardial infarction via the SIRT1/NF-κB pathway. Experimental and
Therapeutic Medicine, 20, 1-1.
Tung, N. H., Quang, T. H., Son, J.-H., Koo, J.-E., Hong, H.-J., Koh, Y.-S., Song, G. Y.,
and Kim, Y. H. (2011). Inhibitory effect of ginsenosides from steamed ginseng-leaves
and flowers on the LPS-stimulated IL-12 production in bone marrow-derived dendritic
cells. Archives of Pharmacal Research, 34, 681-685.
Wan, Y., Wang, J., Xu, J.-f., Tang, F., Chen, L., Tan, Y.-z., Rao, C.-l., Ao, H., and Peng,
C. (2021). Panax ginseng and its ginsenosides: Potential candidates for the prevention
and treatment of chemotherapy-induced side effects. Journal of Ginseng Research, 45,
617-630.
Wang, J., Wang, H., Mou, X., Luan, M., Zhang, X., He, X., Zhao, F., and Meng, Q. (2020).
The advances on the protective effects of ginsenosides on myocardial ischemia and
ischemia-reperfusion injury. Mini Reviews in Medicinal Chemistry, 20, 1610-1618.
Wang, W. (2016). Research progress in pharmacological effects of ginsenoside on
cardiovascular diseases in last decade. Chinese Traditional and Herbal Drugs, 3736-3741.
Wang, W., Rayburn, E. R., Hao, M., Zhao, Y., Hill, D. L., Zhang, R., and Wang, H. (2008).
Experimental therapy of prostate cancer with novel natural product anti-cancer
ginsenosides. Prostate, 68, 809-819.
Wang, Y., Ren, Y., Xing, L., Dai, X., Liu, S., Yu, B., and Wang, Y. (2016).
Endotheliumdependent vasodilation effects of Panax notoginseng and its main
components are mediated by nitric oxide and cyclooxygenase pathways. Experimental
and Therapeutic Medicine, 12, 3998-4006.
Wang, Y., Xu, H., Lu, Z., Yu, X., Lv, C., Tian, Y., and Sui, D. (2018). PseudoGinsenoside
Rh2 induces A549 cells apoptosis via the Ras/Raf/ERK/p53 pathway. Experimental
and Therapeutic Medicine, 15, 4916-4924.
Wei, C., Jia, J., and Wang, F. (2006). Effect of ginsenoside Rg1 and Rb1 on secretase in
metabolic pathway of amyloid precursor protein. Chinese Journal of Information on
Traditional Chinese Medicine.
Wu, H.-F., Zhu, C.-H., and Guo, J.-Y. (2012). Effect of ginsenoside Rg1 on behaviors and
hippocampal amino acids in depressive-like rats. China Journal of Chinese Materia
Medica, 37, 3117-3121.
Wu, J., Saovieng, S., Cheng, I.-S., Liu, T., Hong, S., Lin, C.-Y., Su, I.-C., Huang, C.-Y.,
and Kuo, C.-H. (2019). Ginsenoside Rg1 supplementation clears senescence associated β-galactosidase in
exercising human skeletal muscle. Journal of Ginseng
Research, 43, 580-588.
Xia, T., Zhang, J., Zhou, C., Li, Y., Duan, W., Zhang, B., Wang, M., and Fang, J. (2020).
20 (S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia
through the PI3K/Akt/mTOR signal pathway. Journal of Ginseng Research, 44, 725-737.
Xie, W., Zhou, P., Sun, Y., Meng, X., Dai, Z., Sun, G., and Sun, X. (2018). Protective
effects and target network analysis of ginsenoside Rg1 in cerebral ischemia and
reperfusion injury: a comprehensive overview of experimental studies. Cells, 7, 270.
Xu, J., Pan, Y., Liu, Y., Na, S., Zhou, H., Li, L., Chen, F., and Song, H. (2021b). A review
of anti-tumour effects of ginsenoside in gastrointestinal cancer. Journal of Pharmacy
and Pharmacology, 73, 1292-1301.
Xu, J.-F., Wan, Y., Tang, F., Chen, L., Yang, Y., Xia, J., Wu, J.-J., Ao, H., and Peng, C.
(2021a). Emerging significance of ginsenosides as potentially reversal agents of
chemoresistance in cancer therapy. Frontiers in Pharmacology, 12, 720474.
Xu, W., Choi, H.-K., and Huang, L. (2017). State of panax ginseng research: A global
analysis. Molecules, 22, 1518.
Xu, X., Shi, S., Tang, Y., Shen, H., and Qian, B. (2010). Therapeutic effects of ginsenoside
Rh2 on multi-drug resistant leukemia cell line K562/VCR. Chinese Traditional and
Herbal Drugs, 41, 1131-1135.
Xue, Q., He, N., Wang, Z., Fu, X., Aung, L. H. H., Liu, Y., Li, M., Cho, J. Y., Yang, Y.,
and Yu, T. (2021). Functional roles and mechanisms of ginsenosides from Panax
ginseng in atherosclerosis. Journal of Ginseng Research, 45, 22-31.
Yan, H., Jin, H., Fu, Y., Yin, Z., and Yin, C. (2019). Production of rare ginsenosides Rg3
and Rh2 by endophytic bacteria from Panax ginseng. Journal of Agricultural and
Food Chemistry, 67, 8493-8499.
Yang, J.-L., Hu, Z.-F., Zhang, T.-T., Gu, A.-D., Gong, T., and Zhu, P. (2018). Progress on
the studies of the key enzymes of ginsenoside biosynthesis. Molecules, 23, 589.
Yang, L., Zou, H., Gao, Y., Luo, J., Xie, X., Meng, W., Zhou, H., and Tan, Z. (2020).
Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their
bioactivities. Drug Metabolism Reviews, 52, 125-138.
Yang, Y., He, K., Wu, T., Li, Q., Zhang, J., and Fu, Z. (1999a). Effects of ginsenosides on
myocardial reperfusion arrhythmia and lipid superoxidation in high cholesterol diet
rats. Shi yan Sheng wu xue bao 32, 349-352.
Yang, Y., Wu, T., He, K., and Fu, Z. (1999b). Effect of aerobic exercise and ginsenosides
on lipid metabolism in diet-induced hyperlipidemia mice. Acta Pharmacologica
Sinica, 20, 563-565.
Ye, L., Zheng, Y., and Wang, L. (2015). Effects of Shenmai injection and its bioactive
components following ischemia/reperfusion in cardiomyocytes. Experimental and
Therapeutic Medicine, 10, 1348-1354.
Yeon, S., Seto, S., Chan, G., Low, M., Kiat, H., Wang, N., Liu, J., and Chang, D. (2020).
Endothelium-independent vasodilatory effect of sailuotong (SLT) on rat isolated tail
artery. Evidence-Based Complementary and Alternative Medicine, 2020.
Yin, X., Hu, H., Shen, X., Li, X., Pei, J., and Xu, J. (2021). Ginseng omics for ginsenoside
biosynthesis. Current Pharmaceutical Biotechnology, 22, 570-578.
You, L., Cha, S., Kim, M.-Y., and Cho, J. Y. (2021). Ginsenosides are active ingredients
in Panax ginseng with immunomodulatory properties from cellular to organismal
levels. Journal of Ginseng Research. (In Press)
Yu, Y., Sun, J., Liu, J., Wang, P., and Wang, C. (2020). Ginsenoside Re preserves cardiac
function and ameliorates left ventricular remodeling in a rat model of myocardial
infarction. Journal of Cardiovascular Pharmacology, 75, 91-97.
Yun, T. K. (2001). Brief introduction of Panax ginseng CA Meyer. Journal of Korean
Medical Science, 16, S3-S5.
Zhang, C., Han, M., Zhang, X., Tong, H., Sun, X., and Sun, G. (2022a). Ginsenoside Rb1
protects against diabetic cardiomyopathy by regulating the adipocytokine pathway.
Journal of Inflammation Research, 15, 71.
Zhang, H., Park, S., Huang, H., Kim, E., Yi, J., Choi, S.-K., Ryoo, Z., and Kim, M. (2021a).
Anticancer effects and potential mechanisms of ginsenoside Rh2 in various cancer
types. Oncology Reports, 45, 1-10.
Zhang, J., Ma, X., and Fan, D. (2021b). Ginsenoside CK inhibits hypoxia-induced
epithelial–mesenchymal transformation through the HIF-1α/NF-κB feedback pathway
in hepatocellular carcinoma. Foods, 10, 1195.
Zhang, L., Wang, J., Ii, K., and Tu, W. (2019). Study on Improvement effects of different
proportions of total ginsenoside of ginseng. Total glucosides of moutan cortex and
paeonol containing serum on HUVEC injury induced by H2O2. China Pharmacy,
1209-1213.
Zhang, Y., Ma, P., Duan, Z., Liu, Y., Mi, Y., and Fan, D. (2022b). Ginsenoside Rh4
suppressed metastasis of lung adenocarcinoma via inhibiting JAK2/STAT3 signaling.
International Journal of Molecular Sciences, 23, 2018.
Zhao, J., Duan, Z., Ma, X., Liu, Y., and Fan, D. (2021). Recent advances in systemic and
local delivery of ginsenosides using nanoparticles and nanofibers. Chinese Journal of
Chemical Engineering, 30, 291-300.
Zheng, M., Xin, Y., Li, Y., Xu, F., Xi, X., Guo, H., Cui, X., Cao, H., Zhang, X., and Han,
C. (2018). Ginsenosides: A potential neuroprotective agent. BioMed Research
International, 2018.
Zheng, Q., Bao, X.-Y., Zhu, P.-C., Tong, Q., Zheng, G.-Q., and Wang, Y. (2017).
Ginsenoside Rb1 for myocardial ischemia/reperfusion injury: Preclinical evidence and
possible mechanisms. Oxidative Medicine and Cellular Longevity, 2017.
Zhou, P., Xie, W., He, S., Sun, Y., Meng, X., Sun, G., and Sun, X. (2019). Ginsenoside
Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells, 8, 204.
Zhuang, Y., Yang, G.-Y., Chen, X., Liu, Q., Zhang, X., Deng, Z., and Feng, Y. (2017).
Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key
promiscuous microbial enzyme. Metabolic Engineering, 42, 25-32.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!