Chapter 3. Endophytic Actinobacteria: A Source of Novel Bioactive Metabolites for the Treatment of Infectious Diseases

$39.50

Juri Saikia¹,², Rajkumari Mazumdar¹,³ and Debajit Thakur¹
¹Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
²Department of Biotechnology, Gauhati University, Guwahati, India
³Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India

Part of the book: Infectious Diseases: From Prevention to Control

Abstract

The emergence of infectious diseases has put on an alarming threat to human health and progress. The World Health Organization (WHO) claims that infectious diseases continue to spread and emerge and that efforts being made globally to combat newly emerging and drug-resistant infections are jeopardized by a lack of new antimicrobials (2020). Covid-19, a recent pandemic that has affected the entire world and claimed the lives of 2.7 million people, has hundreds of millions of documented cases (2021). Outbreaks of infectious disease can have detrimental social, political, and economic ramifications, and emerging and overlooking infectious diseases pose a real threat to public health. Since the historic IOM report that emphasized the significance of emerging infectious diseases, much has been taught from previous outbreaks and significant strides have been made. Yet, preparing for pandemics continues to be a significant global challenge. It has been discovered that a wide range of factors, including human behavior and activities, pathogen evolution, poverty, environmental changes, and dynamic human interactions with animals, all contributed to the emergence and spread of infectious diseases. Furthermore, the emergence of pathogens that are resistant to antibiotics has reduced the number of available treatments and caused incurable infections, necessitating the development of novel antibiotics. There is a global need to find novel sources of antibiotics. Natural products produced by endophytic actinobacteria (EA) act as a source of potential new antibiotics. In addition, they seem to be a source of brand-new, potent compounds to fight the rising tide of pathogens with multidrug resistance. Endophytic actinobacteria reside within plant tissues and interact with the host to produce diverse bioactive metabolites. Exploration of endophytic actinobacteria from untouched ecosystems is going on in the search for new bioactive molecules. The current review highlights the isolation and discovery of potent novel bioactive metabolites produced by endophytic actinobacteria associated with diverse ecosystems.


References


Abedinlou, H., Bahrami, Y., Mohammadi, S., & Kakaei, E. (2022). Rare actinobacteria and
their potential biotechnological applications. Sci. J. Kurdistan Univ. Med. Sci, 26(7),
108-131.
Abraham, E. P., & Chain, E. (1940). An enzyme from bacteria able to destroy penicillin.
Nature, 146(3713), 837-837.
Ahmed, W., Helal, I., Zaky, M., & Abdulla, H. M. (2022). Antimicrobial Activity of
Actinomycetes Extracts against Multidrug-Resistant Staphylococcus aureus and
Salmonella spp. isolated from meat. Alfarama Journal of Basic & Applied Sciences,
3(2), 283-299.
Ali, A. R., Bahrami, Y., Kakaei, E., Mohammadzadeh, S., Bouk, S., & Jalilian, N. (2022).
Isolation and identification of endophytic actinobacteria from Citrullus colocynthis
(L.) Schrad and their antibacterial properties. Microbial Cell Factories, 21(1), 1-17.
Almaary, K. S., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Rajivgandhi, G.,
Ramachandran, G., & Manoharan, N. (2021). Anti-bacterial effect of marine sea
grasses mediated endophytic actinomycetes against K. pneumoniae. Journal of King
Saud University-Science, 33(6), 101528.
Angelova, L., Dalgalarrondo, M., Minkov, I., Danova, S., Kirilov, N., Serkedjieva, J., &
Ivanova, I. (2006). Purification and characterisation of a protease inhibitor from
Streptomyces chromofuscus 34-1 with an antiviral activity. Biochimica et Biophysica
Acta (BBA)-General Subjects, 1760(8), 1210-1216.
Araújo, M. B., & Williams, P. H. (2000). Selecting areas for species persistence using
occurrence data. Biological Conservation, 96(3), 331-345.
Baltz, R. H. (2006). Marcel Faber Roundtable: is our antibiotic pipeline unproductive
because of starvation, constipation or lack of inspiration? Journal of Industrial
Microbiology and Biotechnology, 33(7), 507-513.
Baltz, R. H. (2008). Renaissance in antibacterial discovery from actinomycetes. Current
Opinion in Pharmacology, 8(5), 557-563.
Barlow, G., Nathwani, D., Myers, E., Sullivan, F., Stevens, N., Duffy, R., & Davey, P.
(2008). Identifying barriers to the rapid administration of appropriate antibiotics in
community-acquired pneumonia. Journal of Antimicrobial Chemotherapy, 61(2),
442-451.
Bozdogan, A. M. (2014). Assessment of total risk on non-target organisms in fungicide
application for agricultural sustainability. Sustainability, 6(2), 1046-1058.
Brader, G., Compant, S., Mitter, B., Trognitz, F., & Sessitsch, A. (2014). Metabolic
potential of endophytic bacteria. Current Opinion in Biotechnology, 27, 30-37.
Cassell, G. H., & Mekalanos, J. (2001). Development of antimicrobial agents in the era of
new and reemerging infectious diseases and increasing antibiotic resistance. JAMA,
285(5), 601-605.
Castillo, U. F., Strobel, G. A., Ford, E. J., Hess, W. M., Porter, H., Jensen, J. B., & Yaver,
D. (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL
30562, endophytic on Kennedia nigriscansaaThe GenBank accession number for the
sequence determined in this work is AY127079. Microbiology, 148(9), 2675-2685.
Castillo, U., Harper, J. K., Strobel, G. A., Sears, J., Alesi, K., Ford, E., & Teplow, D. (2003).
Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte
of Grevillea pteridifolia. FEMS Microbiology Letters, 224(2), 183-190.
Challis, G. L. (2008). Mining microbial genomes for new natural products and biosynthetic
pathways. Microbiology, 154(6), 1555-1569.
Cheepurupalli, L., Diaz, A., Gopal, A. C., Rathore, S. S., Ramakrishnan, V., &
Ramakrishnan, J. (2021). In vitro and in silico screening of Klebsiella pneumoniae
new Delhi metallo-β-lactamase-1 inhibitors from endophytic Streptomyces spp.
Journal of Biomolecular Structure and Dynamics, 1-13.
Davies, J. (2008). Resistance redux: infectious diseases, antibiotic resistance and the future
of mankind. EMBO reports, 9(S1), S18-S21.
Demain, A. L., & Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. The
Journal of Antibiotics, 62(1), 5-16.
Dixon, A. R. (2003). Health and wealth: Dietary supplements, network marketing and the
commodification of health. University of Hawai’i at Manoa.
Djinni, I., Defant, A., Kecha, M., & Mancini, I. (2013). Antibacterial polyketides from the
marine alga-derived endophitic Streptomyces sundarbansensis: a study on
hydroxypyrone tautomerism. Marine Drugs, 11(1), 124-135.
Djinni, I., Defant, A., Kecha, M., & Mancini, I. (2014). Metabolite profile of marine‐
derived endophytic S treptomyces sundarbansensis WR 1 L 1 S 8 by liquid
chromatography–mass spectrometry and evaluation of culture conditions on
antibacterial activity and mycelial growth. Journal of Applied Microbiology, 116(1),
39-50.
El-Gendy, M. M., & El-Bondkly, A. M. (2010). Production and genetic improvement of a
novel antimycotic agent, saadamycin, against dermatophytes and other clinical fungi
from endophytic Streptomyces sp. Hedaya48. Journal of Industrial Microbiology and
Biotechnology, 37(8), 831-841.
Ezra, D., Castillo, U. F., Strobel, G. A., Hess, W. M., Porter, H., Jensen, J. B., & Yaver, D.
(2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces
sp.(MSU-2110) endophytic on Monstera sp. Microbiology, 150(4), 785-793.
Falagas, M. E., & Karageorgopoulos, D. E. (2008). Pandrug resistance (PDR), extensive
drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative
bacilli: need for international harmonization in terminology. Clinical Infectious
Diseases, 46(7), 1121-1122.
Guo, B., Wang, Y., Sun, X., & Tang, K. (2008). Bioactive natural products from
endophytes: a review. Applied Biochemistry and Microbiology, 44(2), 136-142.
Hong-Thao, P. T., Mai-Linh, N. V., Hong-Lien, N. T., & Van Hieu, N. (2016). Biological
characteristics and antimicrobial activity of endophytic Streptomyces sp. TQR12-4
isolated from elite Citrus nobilis cultivar Ham Yen of Vietnam. International Journal
of Microbiology, 2016.
Jiang, Z. K., Hu, X. X., Xiao, L. L., Ren, Y. R., Shakhtina, A. N., Lukianov, D. A., & Sun,
C. H. (2021). Beilunmycin, a new virginiamycins antibiotic from mangrove-derived
Streptomyces sp. 2BBP-J2 and the antibacterial activity by inhibiting protein
translation. Journal of Asian Natural Products Research, 23(10), 992-1000.
Joseph, B., Sankarganesh, P., Edwin, B. T., & Raj, S. J. (2012). Endophytic streptomycetes
from plants with novel green chemistry: review. Int. J. Biol. Chem, 6, 42-52.
Kumar, S. V., Damodar, G., Ravikanth, S., & Vijayakumar, G. (2012). An Overview on
Infectious Disease.
Lam, K. S. (2006). Discovery of novel metabolites from marine actinomycetes. Current
Opinion in Microbiology, 9(3), 245-251.
Li, J., Lu, C., & Shen, Y. (2010). Macrolides of the bafilomycin family produced by
Streptomyces sp. CS. The Journal of Antibiotics, 63(10), 595-599.
Lin, Z. J., Lu, X. M., Zhu, T. J., Fang, Y. C., Gu, Q. Q., & Zhu, W. (2008). GPR12
Selections of the metabolites from an endophytic Streptomyces sp. asociated with
Cistanches deserticola. Archives of Pharmacal Research, 31(9), 1108-1114.
Livermore, D. M., Canton, R., Gniadkowski, M., Nordmann, P., Rossolini, G. M., Arlet,
G., & Woodford, N. (2007). CTX-M: changing the face of ESBLs in Europe. Journal
of Antimicrobial Chemotherapy, 59(2), 165-174.
Mahdi, R. A., Bahrami, Y., & Kakaei, E. (2022). Identification and antibacterial evaluation
of endophytic actinobacteria from Luffa cylindrica. Scientific Reports, 12(1), 1-13.
Masand, M., Jose, P. A., Menghani, E., & Jebakumar, S. R. D. (2015). Continuing hunt for
endophytic actinomycetes as a source of novel biologically active metabolites. World
Journal of Microbiology and Biotechnology, 31(12), 1863-1875.
Matsumoto, A., & Takahashi, Y. (2017). Endophytic actinomycetes: promising source of
novel bioactive compounds. The Journal of Antibiotics, 70(5), 514-519.
Miao, V., & Davies, J. (2010). Actinobacteria: the good, the bad, and the ugly. Antonie Van
Leeuwenhoek, 98(2), 143-150.
Molina, G., Pimentel, M. R., Bertucci, T. C., & Pastore, G. M. (2012). Application of fungal
endophytes in biotechnological processes. Chem. Eng. Trans, 27.
Mondal, S., & Ravishankar Rai, V. (2021). Molecular profiling and anti-infective potency
of endophytic actinomycetes inhabiting Madhuca insignis Radlk., from Western Ghats
of India. Journal of Genetic Engineering and Biotechnology, 19(1), 1-10.
Morens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and re-emerging infectious diseases.
Nature, 430(6996), 242-249.
Muri, S. D., van der Voet, H., Boon, P. E., van Klaveren, J. D., & Brüschweiler, B. J.
(2009). Comparison of human health risks resulting from exposure to fungicides and
mycotoxins via food. Food and Chemical Toxicology, 47(12), 2963-2974.
Mustafa, S., Lakshmi, D. V., Syed, R., Sekhar, C. C., Sahoo, B. K., Surendrababu, M. S.,
& Kumar, C. G. (2016). Synthesis, antimicrobial, bactericidal and anti-biofilm
activities of novel pyridyl tetrazole analogs. J Chem Pharm Res, 8(11), 1-6.
Okoye, F. B., Nworu, C. S., Debbab, A., Esimone, C. O., & Proksch, P. (2015). Two new
cytochalasins from an endophytic fungus, KL-1.1 isolated from Psidium guajava
leaves. Phytochemistry Letters, 14, 51-55.
Opoku-Temeng, C., Kobayashi, S. D., & DeLeo, F. R. (2019). Klebsiella pneumoniae
capsule polysaccharide as a target for therapeutics and vaccines. Computational and
Structural Biotechnology Journal, 17, 1360-1366.
Petrini, O. (1991). Fungal endophytes of tree leaves. In Microbial Ecology of Leaves (pp.
179-197). Springer, New York, NY.
Pimentel-Elardo, S. M., Kozytska, S., Bugni, T. S., Ireland, C. M., Moll, H., & Hentschel,
U. (2010). Anti-parasitic compounds from Streptomyces sp. strains isolated from
Mediterranean sponges. Marine Drugs, 8(2), 373-380.
Prashith-Kekuda, T. R. (2016). Isolation, characterization and antimicrobial potential of
endophytic actinomycetes. Int J Curr Microbiol Appl Sci, 5(57), 100-116.
Qin, S., Xing, K., Jiang, J. H., Xu, L. H., & Li, W. J. (2011). Biodiversity, bioactive natural
products and biotechnological potential of plant-associated endophytic actinobacteria.
Applied Microbiology and Biotechnology, 89(3), 457-473.
Riquelme, C., Enes Dapkevicius, M. D. L., Miller, A. Z., Charlop-Powers, Z., Brady, S.,
Mason, C., & Cheeptham, N. (2017). Biotechnological potential of Actinobacteria
from Canadian and Azorean volcanic caves. Applied Microbiology and Biotech nology, 101(2), 843-857.
Roy, S., & Banerjee, D. (2015). Bioactive endophytic actinomycetes of Cinnamomum sp.;
isolation, identification, activity guided purification and process optimization of active
metabolite. American Journal of Microbiology, 6(1), 4.
Savi, D. C., Shaaban, K. A., Vargas, N., Ponomareva, L. V., Possiede, Y. M., Thorson, J.
S., & Rohr, J. (2015). Microbispora sp. LGMB259 endophytic actinomycete isolated
from Vochysia divergens (Pantanal, Brazil) producing β-carbolines and indoles with
biological activity. Current Microbiology, 70(3), 345-354.
Schinke, C., Martins, T., Queiroz, S. C., Melo, I. S., & Reyes, F. G. (2017). Antibacterial
compounds from marine bacteria, 2010–2015. Journal of Natural Products, 80(4),
1215-1228.
Shahbazi, S., Karam, M. R. A., Habibi, M., Talebi, A., & Bouzari, S. (2018). Distribution
of extended-spectrum β-lactam, quinolone, and carbapenem resistance genes, and
genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran.
Journal of Global Antimicrobial Resistance, 14, 118-125.
Shankar Naik, B. (2019). Developments in taxol production through endophytic fungal
biotechnology: a review. Oriental Pharmacy and Experimental Medicine, 19(1), 1-13.
Shiomi, K., Hatae, K., Hatano, H., Matsumoto, A., Takahashi, Y., Jiang, C. L., & Ōmura,
S. (2005). A new antibiotic, antimycin A9, produced by Streptomyces sp. K01-0031.
The Journal of Antibiotics, 58(1), 74-78.
Subbulakshmi, G. K., Thalavaipandian, A., Ramesh, V., & Rajendran, A. (2012). Bioactive
endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsa Wall and Thuja
occidentalis L. International Journal of Advanced Life Sciences (IJALS), 4, 9-15.
Sungthong, R., & Nakaew, N. (2015). The genus Nonomuraea: a review of a rare
actinomycete taxon for novel metabolites. Journal of Basic Microbiology, 55(5), 554-
565.
Suwannarach, N., Kumla, J., Sujarit, K., Pattananandecha, T., Saenjum, C., & Lumyong,
S. (2020). Natural bioactive compounds from fungi as potential candidates for
protease inhibitors and immunomodulators to apply for coronaviruses. Molecules,
25(8), 1800.
Taechowisan, T., Chuaychot, N., Chanaphat, S., Wanbanjob, A., & Shen, Y. (2008).
Biological activity of chemical constituents isolated from Streptomyces sp. Tc052, an
endophyte in Alpinia galanga. Int J Pharmacol, 4(2), 95-101.
Taechowisan, T., Lu, C., Shen, Y., & Lumyong, S. (2007). Antitumor activity of 4-
arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. Journal of
Cancer Research and Therapeutics, 3(2), 86.
Taechowisan, T., & Lumyong, S. (2003). Activity of endophytic actimomycetes from roots
of Zingiber officinale and Alpinia galanga against phytopathogenic fungi. Annals of
Microbiology, 53(3), 291-298.
Tanvir, R., Sajid, I., & Hasnain, S. (2014). Larvicidal potential of Asteraceae family
endophytic actinomycetes against Culex quinquefasciatus mosquito larvae. Natural
Product Research, 28(22), 2048-2052.
Traxler, M. F., & Kolter, R. (2012). A massively spectacular view of the chemical lives of
microbes. Proceedings of the National Academy of Sciences, 109(26), 10128-10129.
Verma, V. C., Gond, S. K., Kumar, A., Mishra, A., Kharwar, R. N., & Gange, A. C. (2009).
Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and
anti-microbial activity. Microbial Ecology, 57(4), 749-756.
Walsh, C. T., & Fischbach, M. A. (2010). Natural products version 2.0: connecting genes
to molecules. Journal of the American Chemical Society, 132(8), 2469-2493.
Wang, P., Kong, F., Wei, J., Wang, Y., Wang, W., Hong, K., & Zhu, W. (2014). Alkaloids
from the mangrove-derived actinomycete Jishengella endophytica 161111. Marine
Drugs, 12(1), 477-490.
Wang, T., Li, F., Lu, Q., Wu, G., Jiang, Z., Liu, S., & Sun, C. (2021). Diversity, novelty,
antimicrobial activity, and new antibiotics of cultivable endophytic actinobacteria
isolated from psammophytes collected from Taklamakan Desert. Journal of Pharma ceutical Analysis, 11(2), 241-250.
Xiu, X., Wang, A., Qian, Q., & Wu, S. (2021). The US Public’s Perception of the Threat
of COVID-19 During the Rapid Spread of the COVID-19 Outbreak: Cross-Sectional
Survey Study. Journal of Medical Internet Research, 23(2), e23400.
Yan, L. L., Han, N. N., Zhang, Y. Q., Yu, L. Y., Chen, J., Wei, Y. Z., & Sun, C. H. (2010).
Antimycin A18 produced by an endophytic Streptomyces albidoflavus isolated from
a mangrove plant. The Journal of Antibiotics, 63(5), 259-261.
Yuan, K., Huang, X. L., Yan, W., Zhang, Y. X., Gong, Y. M., Su, S. Z., & Lu, L. (2022).
A systematic review and meta-analysis on the prevalence of stigma in infectious
diseases, including COVID-19: a call to action. Molecular Psychiatry, 27(1), 19-33.
Yuan, N., Song, L., Zhang, S., Lin, W., Cao, Y., Xu, F., & Wang, J. (2015). Bafilomycin
A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute
lymphoblastic leukemia. Haematologica, 100(3), 345.
Zhang, X., Ren, K., & Zhang, L. (2012). Screening and preliminary identification of
medicinal plants endophytic actinomycetes used for inhibiting penicillin-resistant
Staphylococcus aureus. International Journal of Biology.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!