Chapter 3. Computational Alanine Scanning Mutagenesis for Probing Protein Stability and Protein-Protein Interactions: A Literature Review

$39.50

Kyung-Hoon Lee
Department of Biology, Chowan University, One University Dr., Murfreesboro, North Carolina, USA

Part of the book: Advances in Chemistry Research. Volume 77

Abstract

Site-directed mutagenesis is essential for elucidating protein structure-function relationships and understanding protein-protein interactions. Alanine scanning mutagenesis is a versatile strategy for evaluating the rôle and relevance of specific residue side chains on proteins. Computational alanine scanning mutagenesis provides a molecular view of the structural and energetic consequences of mutations and can address the origin of binding affinity and stability of proteins. Computational alanine scannings with MM-PBSA (Molecular mechanics-Poisson Boltzmann Surface Area), MM-GBSA (Molecular Mechanics-Generalized Born Surface Area), FEP (Free Energy Perturbation), and TI (Thermodynamic Integration) methods have been developed to investigate the binding modes in detail at the atomic level and to estimate protein stabilities. The computational alanine scanning methods provide good ways to determine the effect of single residues on the binding affinity and protein stability and to identify hot spot residues on proteins and protein-protein interfaces. Computation of the free energy changes to investigate protein stability and binding affinity has gained tremendous importance due to the considerable potential in drug discovery and structure-based ligand design. In this review article, we introduce recent advances and development in computational alanine scanning methods to understand the stability of proteins and to investigate hot spot residues in the interfaces of protein complexes. We also address the methodologies of the computational techniques used in developing drug design and in protein engineering.

Keywords: alanine scanning mutagenesis, binding affinity, free energy perturbation, free energy simulation, hot spot residue, molecular mechanics/generalized Born surface area, molecular mechanics/Poisson-Boltzmann surface area, molecular dynamics simulation, protein stability, thermodynamic integration


References


[1] Clackson, T., and Wells, J. A. (1995). A hot spot of binding energy in a hormone receptor interface, Science, 267, 383-386.
[2] Magnani, F., Shibata, Y., Serrano-Vega, M. J., and Tate, C. G. (2008). Co-evolving
stability and conformational homogeneity of the human adenosine A2a receptor,
Proc Natl Acad Sci U S A, 105, 10744-10749.
[3] Scott, D. J., Kummer, L., Tremmel, D., and Pluckthun, A. (2013). Stabilizing
membrane proteins through protein engineering, Curr Opin Chem Biol, 17, 427-435.
[4] Ashkenazi, A., Presta, L. G., Marsters, S. A., Camerato, T. R., Rosenthal, K. A.,
Fendly, B. M., and Capon, D. J. (1990). Mapping the CD4 binding site for human
immunodeficiency virus by alanine-scanning mutagenesis, Proc Natl Acad Sci U S
A, 87, 7150-7154.
[5] Gauguin, L., Delaine, C., Alvino, C. L., McNeil, K. A., Wallace, J. C., Forbes, B.
E., and De Meyts, P. (2008). Alanine scanning of a putative receptor binding surface
of insulin-like growth factor-I, J Biol Chem, 283, 20821-20829.
[6] Tang, W. J., Stanzel, M., and Gilman, A. G. (1995). Truncation and alanine scanning mutants of type I adenylyl cyclase, Biochemistry, 34, 14563-14572.
[7] Kellogg, E. H., Leaver-Fay, A., and Baker, D. (2011). Role of conformational
sampling in computing mutation-induced changes in protein structure and stability,
Proteins, 79, 830-838.
[8] Lee, K.-H., and Kuczera, K. (2022). Simulation analysis of selective alanine
mutation effect on stability of human prion protein, J Biomol Struct Dyn, 1-11.
[9] Jandova, Z., Trosanova, Z., Weisova, V., Oostenbrink, C., and Hritz, J. (2018). Free
energy calculations on the stability of the 14-3-3zeta protein, Biochim Biophys Acta
Proteins Proteom, 1866, 442-450.
[10] Manning, T. C., Schlueter, C. J., Brodnicki, T. C., Parke, E. A., Speir, J. A., Garcia,
K. C., Teyton, L., Wilson, I. A., and Kranz, D. M. (1998). Alanine scanning
mutagenesis of an alphabeta T cell receptor: mapping the energy of antigen
recognition, Immunity, 8, 413-425.
[11] Massova, I., and Kollman, P. A. (1999). Computational Alanine Scanning to Probe
Protein-protein Interactions: A Novel Approach to Evaluate Binding Free Energies.,
J. Am. Chem. Soc., 121, 8133-8143.
[12] Moreira, I. S., Fernandes, P. A., and Ramos, M. J. (2007). Computational alanine
scanning mutagenesis–an improved methodological approach, J Comput Chem, 28,
644-654.
[13] Kortemme, T., and Baker, D. (2002). A simple physical model for binding energy
hot spots in protein-protein complexes, Proc Natl Acad Sci U S A, 99, 14116-14121.
[14] Kortemme, T., and Baker, D. (2004). Computational design of protein-protein
interactions, Curr Opin Chem Biol, 8, 91-97.
[15] Russell, R. B., Alber, F., Aloy, P., Davis, F. P., Korkin, D., Pichaud, M., Topf, M.,
and Sali, A. (2004) A structural perspective on protein-protein interactions, Curr
Opin Struct Biol, 14, 313-324.
[16] Thorn, K. S., and Bogan, A. A. (2001). ASEdb: a database of alanine mutations and
their effects on the free energy of binding in protein interactions, Bioinformatics, 17,
284-285.
[17] Pons, J., Rajpal, A., and Kirsch, J. F. (1999). Energetic analysis of an
antigen/antibody interface: alanine scanning mutagenesis and double mutant cycles
on the HyHEL-10/lysozyme interaction, Protein Sci, 8, 958-968.
[18] Hu, Z., Ma, B., Wolfson, H., and Nussinov, R. (2000) Conservation of polar residues
as hot spots at protein interfaces, Proteins, 39, 331-342.
[19] Keskin, O., Ma, B., and Nussinov, R. (2005). Hot regions in protein–protein
interactions: the organization and contribution of structurally conserved hot spot
residues, J Mol Biol, 345, 1281-1294.
[20] Verkhivker, G. M., Bouzida, D., Gehlhaar, D. K., Rejto, P. A., Freer, S. T., and
Rose, P. W. (2003). Computational detection of the binding-site hot spot at the
remodeled human growth hormone-receptor interface, Proteins, 53, 201-219.
[21] Tuncbag, N., Keskin, O., and Gursoy, A. (2010). HotPoint: hot spot prediction
server for protein interfaces, Nucleic Acids Res, 38, W402-406.
[22] Rao, S. N., Singh, U. C., Bash, P. A., and Kollman, P. A. (1987). Free energy
perturbation calculations on binding and catalysis after mutating Asn 155 in
subtilisin, Nature, 328, 551-554.
[23] Jorgensen, W. L., and Thomas, L. L. (2008). Perspective on Free-Energy
Perturbation Calculations for Chemical Equilibria, J Chem Theory Comput, 4, 869-
876.
[24] Kita, Y., Arakawa, T., Lin, T. Y., and Timasheff, S. N. (1994). Contribution of the
surface free energy perturbation to protein-solvent interactions, Biochemistry, 33,
15178-15189.
[25] Kollman, P. A. (1993). Free-Energy Calculations – Applications to Chemical and
Biochemical Phenomena., Chem. Rev., 93, 2395-2417.
[26] Zwanzig, R. W. (1954). High-temperature Equation of State by a Perturbation
Method. I. Nonpolar Gases., J. Chem. Phys., 22, 1420-1426.
[27] Beveridge, D. L., and DiCapua, F. M. (1989). Free energy via molecular simulation:
applications to chemical and biomolecular systems, Annu Rev Biophys Biophys
Chem, 18, 431-492.
[28] Zacharias, M., Straatsma, T. P., and Mccammon, J. A. (1994). Separation-shifted
scaling, a new scaling method for Lennard-joones interactions in thermodynamic
integration., J. Chem. Phys., 100, 9025-9031.
[29] Kirkwood, J. G. (1935). Statistical Mechanics of Fluid Mixtures., J. Chem. Phys., 3,
300-313.
[30] Archontis, G., Watson, K. A., Xie, Q., Andreou, G., Chrysina, E. D., Zographos, S.
E., Oikonomakos, N. G., and Karplus, M. (2005). Glycogen phosphorylase
inhibitors: a free energy perturbation analysis of glucopyranose spirohydantoin
analogues, Proteins, 61, 984-998.
[31] Dolenc, J., Oostenbrink, C., Koller, J., and van Gunsteren, W. F. (2005). Molecular
dynamics simulations and free energy calculations of netropsin and distamycin
binding to an AAAAA DNA binding site, Nucleic Acids Res, 33, 725-733.
[32] Moreira, I. S., Fernandes, P. A., and Ramos, M. J. (2006). Unraveling the importance
of protein-protein interaction: application of a computational alanine-scanning
mutagenesis to the study of the IgG1 streptococcal protein G (C2 fragment)
complex, J Phys Chem B, 110, 10962-10969.
[33] Massova, I., and Kollman, P. A. (2000). Combinded Molecular Mechanical and
Continuum Solvent Approach (MM-PBSA/GBSA) to Predict Ligand Binding,
Perspect. Drug Discovery Des., 18, 113-135.
[34] Martins, S. A., Perez, M. A., Moreira, I. S., Sousa, S. F., Ramos, M. J., and
Fernandes, P. A. (2013). Computational Alanine Scanning Mutagenesis: MM-PBSA
vs TI, J Chem Theory Comput, 9, 1311-1319.
[35] Genheden, S., and Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to
estimate ligand-binding affinities, Expert Opin Drug Discov, 10, 449-461.
[36] Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee,
T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., and
Cheatham, T. E., 3rd. (2000). Calculating structures and free energies of complex
molecules: combining molecular mechanics and continuum models, Acc Chem Res,
33, 889-897.
[37] Laurini, E., Marson, D., Aulic, S., Fermeglia, M., and Pricl, S. (2020).
Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike
Protein/Angiotensin-Converting Enzyme 2 Complex, ACS Nano, 14, 11821-11830.
[38] Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., and Case, D. A. (1998).
Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate DNA helices, J. Am. Chem. Soc., 120, 9401-9409.
[39] Bashford, D., and Case, D. A. (2000). Generalized born models of macromolecular
solvation effects, Annu Rev Phys Chem, 51, 129-152.
[40] Tsui, V., and Case, D. A. (2000). Theory and applications of the generalized Born
solvation model in macromolecular simulations, Biopolymers, 56, 275-291.
[41] Aqvist, J., Medina, C., and Samuelsson, J. E. (1994). A new method for predicting
binding affinity in computer-aided drug design, Protein Eng, 7, 385-391.
[42] Huo, S., Massova, I., and Kollman, P. A. (2002). Computational alanine scanning
of the 1:1 human growth hormone-receptor complex, J Comput Chem, 23, 15-27.
[43] Gohlke, H., and Case, D. A. (2004). Converging free energy estimates: MM PB(GB)SA studies on the protein-protein complex Ras-Raf, J Comput Chem, 25,
238-250.
[44] Ylilauri, M., and Pentikainen, O. T. (2013). MMGBSA as a tool to understand the
binding affinities of filamin-peptide interactions, J Chem Inf Model, 53, 2626-2633.
[45] Simoes, I. C., Costa, I. P., Coimbra, J. T., Ramos, M. J., and Fernandes, P. A. (2017).
New Parameters for Higher Accuracy in the Computation of Binding Free Energy
Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces, J
Chem Inf Model, 57, 60-72.
[46] Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., and Case, D. A. (1998).
Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate DNA Helices., J. Am. Chem. Soc., 120, 9401-9409.
[47] Foloppe, N., and Hubbard, R. (2006). Towards predictive ligand design with free energy based computational methods?, Curr Med Chem, 13, 3583-3608.
[48] Pohorille, A., Jarzynski, C., and Chipot, C. (2010). Good practices in free-energy
calculations, J Phys Chem B, 114, 10235-10253.
[49] Luo, C., Xu, L., Zheng, S., Luo, X., Shen, J., Jiang, H., Liu, X., and Zhou, M. (2005).
Computational analysis of molecular basis of 1:1 interactions of NRG-1β wild-type
and variants with ErbB3 and ErbB4, Proteins, 59, 742-756.
[50] Zoete, V., and Meuwly, M. (2006). Importance of individual side chains for the
stability of a protein fold: computational alanine scanning of the insulin monomer,
J Comput Chem, 27, 1843-1857.
[51] Gohlke, H., Kiel, C., and Case, D. A. (2003). Insights into protein-protein binding
by binding free energy calculation and free energy decomposition for the Ras-Raf
and Ras-RalGDS complexes, J Mol Biol, 330, 891-913.
[52] Tembe, B., and Mccammon, J. A. (1984). Ligand-receptor interactions, Computers
& Chemistry, 8, 281-283.
[53] Lee, K.-H., and Kuczera, K. (2021). Free energy simulations to understand the effect
of Met –> Ala mutations at positions 205, 206 and 213 on stability of human prion
protein, Biophys Chem, 275, 106620.
[54] Lee, K.-H., and Kuczera, K. (2022). Modulation of human transthyretin stability by
the mutations at histidine 88 studied by free energy simulation, Proteins, 90, 1825-
1836.
[55] Lee, K.-H., and Kuczera, K. (2022). Free energy simulations to study mutational
effect of a conserved residue, Trp24, on stability of human serum retinol-binding
protein, J Biomol Struct Dyn, 1-11.
[56] Guo, J., Wang, X., Sun, H., Liu, H., and Yao, X. (2012). The molecular basis of
ICG-II/IGF2R recognition: a combined molecular dynamics simulation, free-energy
calculation and computational alanine scanning study, J. Mol. Model., 18, 1421-
1430.
[57] Ramos, R. M., and Moreira, I. S. (2013). Computational Alanine Scanning
Mutagenesis-An Improved Methodological Approach for Protein-DNA Complexes,
J Chem Theory Comput, 9, 4243-4256.
[58] Zou, H., Luo, C., Zheng, S., Luo, X., Zhu, W., Chem, K., Shen, J., and Jiang, H.
(2007). Molecular insight into the interaction between IFABP and PA by using MM PBSA and alanine scanning methods, J. Phys. Chem. B, 111, 9104-9113.
[59] Anand, P., Nagarajan, D., Mukherjee, S., and Chandra, N. R. (2016) ABS – Scan:
alanine scanning mutagenesis In silico for binding site residues in protein – ligand
complex.
[60] Marimuthu, P., and Singaravelu, K. (2019). Unraveling the molecular mechanism
of benzothiophene and benzofuran scaffold-merged compounds binding to anti apoptotic Myeloid cell leukemia 1, J Biomol Struct Dyn, 37, 1992-2003.
[61] Gesto, D. S., Cerqueira, N. M., Ramos, M. J., and Fernandes, P. A. (2014).
Discovery of new druggable sites in the anti-cholesterol target HMG-CoA reductase
by computational alanine scanning mutagenesis, J Mol Model, 20, 2178.
[62] Li, T., Froeyen, M., and Herdewijn, P. (2008). Computational alanine scanning and
free energy decomposition for E. coli type I signal peptidase with lipopeptide
inhibitor complex, J. Mol. Graph. Model., 26, 813-823.
[63] Li, D., Han, J.-G., Chen, H., Li, L., Zhao, R.-N., Liu, G., and Duan, Y. (2012).
Insight into the structural function of the complex of HIV-1 protease with TMC 126: molecular dynamics simulations and free-energy calculations, J. Mol. Model.,
18, 1841-1854.
[64] Huang, D., Wen, W., Liu, X., Li, Y., and Zhang, J. Z. H. (2019). Computational
analysis of hot spots and binding mechanism in the PD-1/PD-L1 ineraction, RSC
Adv., 9, 14944-14956.
[65] Boukharta, L., Gutierrez-de-Teran, H., and Aqvist, J. (2014). Computational
prediction of alanine scanning and ligand binding energetics in G-protein coupled
receptors, PLoS Comput Biol, 10, e1003585.
[66] Kristensen, C., Kjeldsen, T., Wiberg, F. C., Schaffer, L., Hach, M., Havelund, S.,
Bass, J., Steiner, D. F., and Andersen, A. S. (1997). Alanine scanning mutagenesis
of insulin, J Biol Chem, 272, 12978-12983.
[67] Duan, L., Liu, X., and Zhang, J. Z. H. (2016). Interaction Entropy: A new paradigm
for highly efficient and reliable computation of protein-ligand binding free energy,
J. Am. Chem. Soc., 138, 5722-5728.
[68] Sun, Z., Yan, Y., Yang, M., and Zhang, J. Z. H. (2017). Interaction entropy for
protein-protein binding, J. Chem. Phys., 146, 8.
[69] Yan, Y., Yang, M., Ji, C. G., and Zhang, J. Z. H. (2017). Interaction Entropy for
Computational Alanine Scanning, J Chem Inf Model, 57, 1112-1122.
[70] Qiu, L., Yan, Y., Sun, Z., Song, J., and Zhang, J. Z. H. (2018). Interaction entroy for
computational alanine scanning in protein-protein binding, WIREs Comput Mol Sci,
8, e1342.
[71] Dourado, D. F., and Flores, S. C. (2014). A multiscale approach to predicting affinity
changes in protein-protein interfaces, Proteins, 82, 2681-2690.
[72] Ramadoss, V., Dehez, F., and Chipot, C. (2016). AlaScan: A Graphical User
Interface for Alanine Scanning Free-Energy Calculations, J Chem Inf Model, 56,
1122-1126.
[73] Ramadoss, V., Dehez, F., and Chipot, C. (2016). AlaScan: A Graphical User
Interface for Alanine Scanning Free-Energy Calculations, J. Chem. Inf. Model., 56,
1122-1126.
[74] Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot,
C., Skeel, R. D., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics
with NAMD, J Comput Chem, 26, 1781-1802.
[75] Wood, C. W., Ibarra, A. A., Bartlett, G. J., Wilson, A. J., Woolfson, D. N., and
Sessions, R. B. (2020). BAlaS: fast, interactive and accessible computational
alanine-scanning using BudeAlaScan, Bioinformatics, 36, 2917-2919.
[76] Ibarra, A. A., Bartlett, G. J., Hegedus, Z., Dutt, S., Hobor, F., Horner, K. A.,
Hetherington, K., Spence, K., Nelson, A., Edwards, T. A., Woolfson, D. N.,
Sessions, R. B., and Wilson, A. J. (2019). Predicting and Experimentally Validating
Hot-Spot Residues at Protein-Protein Interfaces, ACS Chem Biol, 14, 2252-2263.
[77] Wood, C. W., Heal, J. W., Thomson, A. R., Bartlett, G. J., Ibarra, A. A., Brady, R.
L., Sessions, R. B., and Woolfson, D. N. (2017). ISAMBARD: an open-source
computational environment for biomolecular analysis, modelling and design,
Bioinformatics, 33, 3043-3050.
[78] Barlow, K. A., S, O. C., Thompson, S., Suresh, P., Lucas, J. E., Heinonen, M., and
Kortemme, T. (2018). Flex ddG: Rosetta Ensemble-Based Estimation of Changes in
Protein-Protein Binding Affinity upon Mutation, J Phys Chem B, 122, 5389-5399.
[79] Kruger, D. M., and Gohlke, H. (2010). DrugScorePPI webserver: fast and accurate
in silico alanine scanning for scoring protein-protein interactions, Nucleic Acids Res,
38, W480-486.
[80] Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., and Serrano, L. (2005)
The FoldX web server: an online force field, Nucleic Acids Res 33, W382-388.
[81] Anand, P., Nagarajan, D., Mukherjee, S., and Chandra, N. (2014). ABS-Scan: In
silico alanine scanning mutagenesis for binding site residues in protein-ligand
complex, F1000Res, 3, 214.
[82] Eswar, N., Eramian, D., Webb, B., Shen, M. Y., and Sali, A. (2008). Protein
structure modeling with MODELLER, Methods Mol Biol, 426, 145-159.
[83] Huey, R., Morris, G. M., Olson, A. J., and Goodsell, D. S. (2007). A semiempirical
free energy force field with charge-based desolvation, J Comput Chem, 28, 1145-1152.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!